
Discriminant Malware Distance Learning on Structural
Information for Automated Malware Classification

Deguang Kong
Dept. of Computer Science and Engineering

University of Texas at Arlington
doogkong@gmail.com

Guanhua Yan
Information Sciences Group (CCS-3)

Los Alamos National Laboratory
ghyan@lanl.gov

ABSTRACT
In this work, we explore techniques that can automatically clas-
sify malware variants into their corresponding families. Our frame-
work extracts structural information from malware programs as at-
tributed function call graphs, further learns discriminant malware
distance metrics, finally adopts an ensemble of classifiers for auto-
mated malware classification. Experimental results show that our
method is able to achieve high classification accuracy.

Categories and Subject Descriptors: I.2.6 [Artificial Intelli-
gence], D.4.6 [Security and Protection]

General Terms: Algorithm, Security, Data Mining
Keywords: Malware categorization, Distance learning

1. INTRODUCTION
Malware are responsible for a large number of malicious activi-

ties in the cyber space, such as spamming, identity theft, and DDoS
(Distributed Denial of Service) attacks. Behind the sheer number
of malware instances, however, lies the fact that a large number of
them came from the same origins. More than 75 percent of mal-
ware detected belong to as few as 25 families, based on the 2006
Microsoft Security Intelligence report [5]. Accurate prediction of
the evolution trend of a malware family also enables us to deploy
effective mitigation methods in advance and thus alleviate the dam-
age caused by this malware family.

Therefore, there is an urgent need of developing methods that can
automatically classify malware instances into their corresponding
families accurately. The goal of this work is to develop a frame-
work that automatically classifies malware instances according to
their inherent rich structural information, such as their function call
graphs and basic block graphs.

In this work, we present a new framework for automated mal-
ware classification using discriminant distance learning on struc-
tural information extracted from malware. This framework extracts
the function call graph from each malware program, and collects
various types of fine-grained features at the function level, such as
what system calls are made and how many I/O read and write oper-
ations have been made in each function. For each type of features,
our framework evaluates the similarity of two malware programs
by iteratively applying the following two basic techniques: (1) dis-
criminant distance metric learning, which projects the original fea-
ture space into a new one such that malware instances belonging
to the same family are closely clustered while clusters formed by
different malware families are separated with large margins; (2)
pairwise graph matching, which aims to find the right pairwise

Copyright is held by the author/owner(s).
SIGMETRICS’13, June 17-21, 2013, Pittsburgh, PA, USA.
ACM 978-1-4503-1900-3/13/06.

A malware

variant

FCG-driven

feature

extraction

Ensemble of

weighted

classifiers

Malware

classification

result

Exploit code

instances
Exploit code

instances

Labeled

malware

samples

distance learning

distance learning

distance learning

opcode

memory

distance learning
register

distance learning

distance learning

IO

flag

API

...

classifier

classifier

classifier

classifier

classifier

classifier

Figure 1: Overview of our automated malware classification frame-
work (solid lines are used for the training process, and dashed line
for the process of classifying a new malware variant)

start

sub40c245

sub40c22c

sub40c278

Opcode: [pusha:1, call:6, add:1, mov: 2, lea:1, pop:2,sub:1]

API: [GetProcAddress:1, VirtualAlloc:1]

Memory: [1,4]

IO: [2,0]

Flag: [3,3,3,3,3,3,0,0,0,0]

Register: [1,1,0,0,0,0,1,1,1,1,1,1,11,11,3,3]

Opcode: [],

API:[],

Memory: [],

IO: [],

Flag:[],

Register: [...]

Opcode: [],

API:[],

Memory: [],

IO: [],

Flag:[],

Register: [...]

Opcode: [],

API:[],

Memory: [],

IO: [],

Flag:[],

Register: [...]

Figure 2: Illustration of an attributed FCG

function-level matching between the function call graphs of two
malware instances in order to measure their structural similarity.
The similarity score estimated between two malware instances for
each type of features reflects the likelihood that they should be clas-
sified into the same malware family – if observed feature values of
that type are used as our evidence. We further learn our confidence
level in each type of evidence and henceforth build a classifier that
predicts the family of a new malware instance by combining differ-
ent types of evidences with their corresponding confidence levels.

2. OVERVIEW OF METHODOLOGY
The overview of our automated malware classification frame-

work is depicted in Figure 1.
Step 1: FCG-driven feature extraction. To extract structural

information from a malware program, we first disassemble the mal-
ware program, and build its function call graph. The function call
graph is further used to drive the process of feature extraction: for
every node (i.e., a function) in the graph, we extract various types
of attributes, including what library APIs are made and how many
I/O read and write operations have been made in this function. In-
formation regarding each type of features is represented as a vector
of numerical values. After Step 1, each labeled malware program
is abstracted into an attributed function call graph (see Fig. 2).

Step 2: Discriminant malware distance learning. The next

347

Table 1: Different scenarios used in our experiments

Scenario op-n mem-n reg-n io-n flag-n api-n ES-dis
Attribute Opcode Memory Register I/O Flag API Ensemble
Distance No No No No No No Yes
learning

step concerns how to compute the distance between two malware
distances represented as their attributed function call graphs. For
each type of attribute, we project the original feature space onto a
new one such that malware instances belonging to the same fam-
ily are closely clustered while clusters formed by different mal-
ware families are separated with large margins. Moreover, we per-
form pairwise graph matching, which aims to find the right pair-
wise function-level matching between the attributed function call
graphs of two malware instances for the purpose of measuring their
structural similarity.

Step 3: Training individual classifiers. For each type of fea-
tures, once we have computed the similarity between any two la-
beled malware instances, we train an individual classifier for it.
Our framework is open to any classifier that, in order to classify
a new sample, requires only information of a set of anchor in-
stances, which are usually the subset of labeled samples in the orig-
inal dataset. Such classifiers include the kNN classifier, for which
the anchor instance set includes the k closest instances from the test
instance, and the SVM classifier, whose support vector contains all
the anchor instances.

Step 4: Building ensemble of weighted classifiers. For each
type of features we have considered, the similarity measure be-
tween two malware instances reflects the likelihood that they be-
long to the same family. Given a new malware variant, for each
type of features, we form its evidence as the distance it is from
each of its anchor instances as well as the label information of each
anchor instance. The type of an evidence is defined to be the type
of attribute from which it is formed. To learn the confidence level
associated with a type of evidence, we use an Adaboost-like ap-
proach, which gives an increasingly higher penalty to training sam-
ples that are wrongly classified. We henceforth build a classifier
that predicts the family of a new malware instance by combining
different types of evidences according to their corresponding con-
fidence levels.

The output of the training phase of our automated malware clas-
sification framework is an ensemble of classifiers. Given a new
unknown malware sample, we first construct its function call graph
from the disassembly code, and for each function node in it, we
extract different types of attribute. Next, for each type of attribute,
we form its evidence that describes the distance between the new
sample and the anchor instances as well as how each anchor in-
stance is labeled. We then feed the evidence to the corresponding
individual classifier. By combining all the evidences, the ensemble
of weighted classifiers makes the final decision on which malware
family it should be classified into.

3. EXPERIMENTS
We use a malware dataset from Offensive Computing [6], which

contains 526,179 unique malware variants collected in the wild.
The malware dataset contains both packed and unpacked instances,
and in our evaluation, we only use unpacked ones, and disasem-
ble them with IDA pro [1]. We obtain 11 families of malware:
Bagle, Bifrose, Ldpinch, Swizzor, Zbot, Koobface, Lmir, Rbot, Sd-
bot, Vundo, and Zlob.

We use 80% of the malware samples from each family to train
our model, and the remaining ones are used for testing the effec-

Table 2: Average F-1 measure in terms of percentage across all families.
For SVM, we show the results when γ = 0.3, γ = 0.7, and also the
average when γ is chosen from [0.1, 0.3, · · ·, 1.9]; for kNN, we show the
results when k = 6, 10, and also the average when k is chosen from [2, 4,
..., 16].

classifier γ/k op-n mem-n reg-n io-n flag-n api-n ES-dis
SVM 0.3 86.06 84.20 86.14 85.07 68.59 82.99 93.88
kNN 6 48.89 67.82 56.52 54.53 85.33 66.71 91.23
SVM 0.7 88.61 87.49 87.76 87.63 72.25 82.65 98.73
kNN 10 62.33 66.30 87.79 58.26 66.11 68.90 95.31
SVM avg 84.54 84.51 83.57 85.52 68.39 84.72 93.44
kNN avg 54.28 65.77 69.04 55.25 73.52 66.39 90.54

tiveness of our approach. This process is iterated for five times,
and we report the averages as the classification performance.

Parameter setting: For the k-nearest neighbor classifier, we
choose k between 6 and 10. For the SVM classifier, we use the

Gaussian kernel: k(Gi,Gj) = e
−γ

D2
i,j

t2 ,, where γ is a tunable pa-
rameter, and t is the average distance of the k-nearest neighbors for
each malware. We choose γ between 0.3 and 0.7, and t is computed
using the three nearest neighbors. We compare the performances of
the methods in different scenarios as shown in Table 1. Our method
corresponds to the ES-dis scenario.

In Table 2, we show the average performance improvement across
all malware families. Clearly, for both classifiers, the F1 measure
is significantly improved using our method (i.e., ES-dis). For in-
stance, considering both the average cases, our method improves
over the best individual method by 9.3% for the SVM classifier,
and by 23.2% for the kNN classifier.

4. RELATED WORK
Since the seminal works done by Schultz et al. [8] and Kolter et

al. [2], machine learning techniques have been used in a number
of efforts to automatically distinguish malware from benign exe-
cutable programs (e.g., [7, 3, 4]). In contrast to these earlier works
on malware detection, this study focuses on malware classification
by distinguishing instances from different families. In [9], Yan et
al. compared the discriminative power of different types of mal-
ware features for automated malware classification.

5. CONCLUSIONS
We present a generic framework for automated malware classifi-

cation. We develop methods to compute the similarity of two mal-
ware programs based on their attributed function call graphs, and
use an ensemble of classifiers that learn from the pairwise malware
distances and classify new malware instances automatically.

6. REFERENCES
[1] http://www.hex-rays.com/products/ida/index.shtml.
[2] J. Z. Kolter and M. A. Maloof. Learning to detect and classify malicious

executables in the wild. Journal of Machine Learning Research, 7, 2006.
[3] D. Kong, Y. Jhi, T. Gong, S. Zhu, P. Liu, and H. Xi. Sas: Semantics aware

signature generation for polymorphic worm detection. In SecureComm, pages
1–19, 2010.

[4] D. Kong, D. Tian, P. Liu, and D. Wu. Sa3: Automatic semantic aware attribution
analysis of remote exploits. In SecureComm, pages 190–208, 2011.

[5] Microsoft security intelligence report, January-June 2006.
[6] http://www.offensivecomputing.net/. Accessed in March 2012.
[7] R. Perdisci, A. Lanzi, and W. Lee. Mcboost: Boosting scalability in malware

collection and analysis using statistical classification of executables. In ACSAC,
pages 301–310, 2008.

[8] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo. Data mining methods for
detection of new malicious executables. In In Proceedings of the IEEE
Symposium on Security and Privacy, pages 38–49, 2001.

[9] G. Yan, N. Brown, and D. Kong. Exploring discriminatory features for
automated malware classification. In Proceedings of DIMVA’13.

348

