l‘)

Check for
updates

Graphite: Real-Time Graph-Based
Detection of Windows Fileless Malware
Attacks

Priti Wakodikar'®, Joon-Young Gwak'®™) Meng Wang!, Guanhua Yan',
Xiaokui Shu?, Scott Stoller®, and Ping Yang!

! School of Computing, Binghamton University, Binghamton, USA
{pwakodil, jgwakl,mwangl05,ghyan,pyang}@binghamton.edu
2 IBM Thomas J. Watson Research Center, Yorktown Heights, USA
xiaokui.shu@ibm.com
3 Department of Computer Science, Stony Brook University, Stony Brook, USA
stoller@cs.stonybrook.edu

Abstract. Advanced malware attacks often employ sophisticated tac-
tics such as DLL injection, script-based attacks, and the exploitation of
zero-day vulnerabilities. As evidenced by the recent high-profile cyber-
attacks, these techniques have enabled attackers to infiltrate computer
systems that were thought to be well-protected. There is thus an urgent
need to enhance current malware defenses with advanced Artificial Intel-
ligence (AI) techniques that can effectively detect in real-time the elusive
traces of malware attacks concealed within the extensive realm of nor-
mal activities. This paper introduces Graphite, a graph-based approach
for real-time detection of advanced malware attacks based on the event
data collected from Event Tracing for Windows (ETW). Graphite first
abstracts various entities and their relationships embodied within sys-
tem events into computation graphs, which are amenable to graph-based
machine learning methods. As a computation graph can be gigantic, mak-
ing real-time malware detection inefficient, we project the graph into
smaller graphlets, which are then subsequently fed into our graph-based
approach to detect malicious activities. Our experimental results show
that Graphite achieves 87.7% classification accuracy in offline testing and
86.7% accuracy in real-time detection.

Keywords: Malware detection - Machine learning

1 Introduction

The current Internet has been inundated by numerous malware attacks. In 2022,
there were 5.4 billion malware attacks worldwide [65] with over 270,000 identified
as new malware variants in the first half of the year alone, an increase of 45%

P. Wakodikar and J.-Y. Gwak—Co-first authors.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2026
Published by Springer Nature Switzerland AG 2026. All Rights Reserved

S. Alrabaee et al. (Eds.): SecureComm 2024, LNICST 629, pp. 154178, 2026.
https://doi.org/10.1007/978-3-031-94455-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-94455-0_8&domain=pdf
https://doi.org/10.1007/978-3-031-94455-0_8

Graphite: Real-Time Graph-Based Detection 155

over the same period in the previous year [66]. This influx of malware attacks
has been contributing to a wide spectrum of online criminal activities, including
cyber extortion, intellectual property theft, identity theft, email spamming, etc.

In response to advances in malware defense mechanisms, fileless malware
have emerged as an effective attack vector to compromise targeted computer
systems in recent years. Unlike traditional malware that uses custom executable
programs, fileless malware attacks leverage legitimate system utilities such as
PowerShell and Windows Management Instrumentation (WMI) to perform mali-
cious activities [12,40]. Such attacks do not require to install new malware code,
and hence leave little trace behind, which allows them to bypass even the most
up-to-date malware detection systems. A recent report [26] shows a 1,400% surge
in fileless malware attacks from the previous year, underscoring their emergence
as a popular threat vector in today’s cybersecurity landscape.

The literature outlines three main approaches for detecting fileless malware
attacks. Fileless malware attacks sometimes utilize in-memory execution through
built-in tools such as PowerShell [12], evading detection by traditional antivirus
programs that scan for malicious files. Consequently, Memory-based detection
was introduced to scan computer memory for traces of such attacks [36,64].
However, these techniques often incur high execution overhead due to contin-
uous memory scanning [8] and their detection accuracy can suffer against eva-
sive malware attacks due to reliance on known malware signatures [60]. Various
static script analysis methods were proposed to identify malicious intentions
in the scripts developed for these platforms [27,28,46]. However, due to their
static analysis nature, these methods can sometimes be thwarted by sophisti-
cated obfuscation techniques [15,43]. A vast body of provenance-based detec-
tion techniques have been proposed to construct provenance graphs from events
logged by computer systems, which are analyzed to identify sophisticated cyber-
attack operations, including fileless malware attacks [31,32,34,44,61,62]. While
many of these efforts focus on postmortem attack scenario reconstruction, some
apply detection rules on the provenance graphs to identify malicious attacks in
real time. To be effective, these rules need to be manually crafted based on in-
depth knowledge about sophisticated cyberattack operations and be regularly
updated to adapt to evolving attack strategies.

Against this backdrop, this work aims to develop new techniques for the auto-
matic detection of fileless malware attacks. Our work builds upon provenance-
based detection methods, known for their greater resilience against evasion
attacks than memory-based detection methods. To overcome the challenge of
crafting effective policy rules for malware detection based on provenance graphs,
we proposed a graph-based machine learning method to automatically detect
malicious activities at runtime.

As the majority of malware attacks (including fileless ones) target com-
puter systems running Microsoft Windows, we propose a new framework called
Graphite to detect such attacks from system events collected by Event Tracing
for Windows (ETW), the high-speed tracing and logging facility built into Win-
dows systems [74]. Utilizing ETW logs, Graphite abstracts various entities, such

156 P. Wakodikar et al.

as processes and files, and their relationships embodied within system events into
computation graphs [62], which are amenable to graph-based machine learning
methods. Unlike provenance graphs that are process-centered, our computation
graphs are thread-centered graphs, which provides finer-grained information spe-
cific to each thread. Our experimental results in Sect.5 demonstrate that lever-
aging local temporal information associated with each thread, rather than the
global temporal information associated with the entire process, results in higher
classification accuracy.

Several technical challenges hinder the direct application of graph-based
learning models to computation graphs. Firstly, the graph representation of
extensive low-level system event logs can be gigantic, rendering the direct appli-
cation of graph-based learning models inefficient. For instance, a graph con-
structed from more than 100 million system events collected from six computers
over a two-week period comprises over 13 million nodes, requiring 161 GB stor-
age space [62]. Secondly, due to the diversity of system events within a computer
system, nodes and edges in their graph representations are commonly augmented
with heterogeneous attributes. For example, a node may represent a process, a
thread, a file, and more. Overlooking these informative attributes during the
training of a graph-based learning model may lead to significant degradation
in predictive accuracy. Finally, due to the inherent dynamic nature of system
events, their graph representations undergo constant changes over time. Conse-
quently, the temporal evolution introduces an additional layer of intricacy to the
challenge of training predictive graph models for real-time malware detection.

To address the above challenges, we develop a projection algorithm to decom-
pose a large computation graph into small graphlets. Using a technique inspired
by taint analysis, this algorithm captures all the activities of a process and its
descendant processes or threads. The graphlets are fed to a downstream classifi-
cation model for fileless malware detection. Graphite uses a graph-based learning
model that leverages temporal and spatial information in the graphlets to update
node embeddings to perform malware classification.

Due to the challenges in acquiring comprehensive datasets for all types of
fileless attacks, this paper focuses on those leveraging PowerShell scripts. Our
approach is also applicable to other forms of fileless attacks. The source code of
Graphite and the dataset used in this paper is available at!.

In summary, our contributions are outlined as follows:

— We collected event logs of benign and malicious PowerShell scripts down-
loaded from various sources using ETW and proposed a schema to charac-
terize the relationships between different subject and object entities in ETW
logs. Based on this schema, we developed algorithms to construct computation
graphs with various node-level and edge-level attributes. Unlike provenance
graphs that are process centered, our computation graphs are thread-centered,
providing finer-grained information specific to each thread.

— Inspired by taint analysis, we develop a projection algorithm that decomposes
a large computation graph into small graphlets, each of which encompasses

! https://github.com /jgwak1/Graphite.

https://github.com/jgwak1/Graphite
https://github.com/jgwak1/Graphite
https://github.com/jgwak1/Graphite
https://github.com/jgwak1/Graphite
https://github.com/jgwak1/Graphite

Graphite: Real-Time Graph-Based Detection 157

relevant system events initiated by a process and all its descendant processes
and threads.

— We developed a graph-based machine learning model to distinguish between
malicious and benign graphlets. Leveraging the central role of thread nodes
in the schema, our method utilizes temporal and spatial information within
graphlets to update graph embeddings for malware classification. Our experi-
mental results show that Graphite achieves a classification accuracy of 87.7%
on the dataset we collected.

— We developed a real-time malware detection algorithm capable of detecting
malware based on partial graphlets whose size is determined by a user-defined
threshold. Our experimental results show a real-time detection accuracy of
86.7%, slightly lower than offline testing results.

Organization: The rest of the paper is organized as follows. Section2 pro-
vides an overview of ETW and fileless PowerShell malware. Section 3 presents
the design and architecture of Graphite. Section4 introduces our graph-based
malware detection technique. The experimental results are detailed in Sect. 5.
Section 6 summarizes the related work and Sect. 7 concludes the paper.

2 Background

This section provides an overview of Event Tracing for Windows (ETW) and
fileless PowerShell malware.

2.1 Event Tracing for Windows (ETW)

ETW offers facilities to trace and log events raised by both user-mode applica-
tions and kernel-mode drivers within the Windows Operating System [74]. ETW
records system calls related to I/O operations, including file reads and writes,
as well as process operations such as process start and termination. ETW has
many different event providers for tracing different types of events.

We utilize a C# wrapper for ETW called SilkService [23] to collect event logs.
Figure 1 gives an example of a log entry generated by the “Microsoft-Windows-
Kernel-Process” provider. Each entry in an ETW log provides basic information
such as the name and ID of the event provider, and the time when the event
occurred (i.e., TimeStamp). Other keys in the event log are specific to the type
of provider, such as file, process, registry, or network. For instance, the event
“ThreadStop/Stop” in the figure specifies that a process thread with “ThreadID”
11996 has stopped. The corresponding process for this thread has “ProcessID”
8416.

2.2 Fileless PowerShell Malware

Living-off-the-land techniques that use built-in system tools such as PowerShell,
WMI, Command Prompt, and batch scripts, are common in APTs and targeted

158 P. Wakodikar et al.

{ "ProviderGuid": "22fb2cd6-0e7b-422b-a0c7-2fad1fd0e716", "YaraMatch": [], "ProviderName":
"Microsoft-Windows-Kernel-Process", "EventName": "ThreadStop/Stop", "Opcode": 2,
"OpcodeName": "Stop", "TimeStamp": "2019-03-03T17:58:14.2862348+00:00", "ThreadID":11996,
"ProcessID":8416, "ProcessName": “', "PointerSize":8, "EventDatalLength":76, "XmlIEventData"q{
"FormattedMessage": “Thread 11,996 (in Process 8,416) stopped.", "StartAddr": “Ox7fffe299a110",
"ThreadID": “11,996", "UserStackLimit": “0x3d632000", "StackLimit": “Oxfffff38632d39000", "MSec":
“560.5709", "TebBase": “0x91c000", "CycleTime": “4,266,270", "ProcessID": “8,416", "PID": “8416",
"StackBase": “0xfffff38632d40000", "SubProcessTag": “0", "TID": “11996", "ProviderName": “Microsoft-
Windows-Kernel-Process", "PName" ', "UserStackBase": “0x3d640000", "EventName":
“ThreadStop/Stop", "Win32StartAddr": “0x7fffe299a110" } }

Fig. 1. Example of an ETW event log entry.

attacks. These tools facilitate lateral movement, data exfiltration, and privi-
lege escalation. Our research primarily focuses on utilizing PowerShell, a script-
ing language for automating tasks on Windows machines. PowerShell provides
a command prompt interface and facilitates task automation through simple
scripts. These scripts contain commands referred to as “cmdlets”, each per-
forming a distinct task. The output of one cmdlet can be used as the input to
subsequent commands.

PowerShell scripts has been utilized by fileless malware to carry out malicious
activities with little trace left behind. A typical scenario is the fileless PowerShell
script attack, in which the attacker leverages PowerShell’s capabilities to execute
commands directly in memory to gain full access to the Windows API, enabling
system exploitation while bypassing the need to save the script on disk. This
makes it difficult to detect fileless PowerShell scripts using traditional file-based
antivirus solutions. Some of the PowerShell scripts used in our experiments, such
as Invoke-DllInjection.psl [75], Invoke-ReflectivePEInjection.psl [52], Invoke-
PSInject.psl [52] also inject malicious code into a hijacked process.

Fileless malware attackers employ a variety of techniques to execute
suspicious activities. To evade detection, they frequently resort to obfus-
cation methods such as encryption or encoding within PowerShell code.
This practice presents a challenge for static code analysis aimed at deci-
phering the true intent behind such actions. A PowerShell script “Out-
EncodedAsciiCommand.psl” serves as an example of these obfuscation tac-
tics [6]. The Out-EncodedAsciiCommand PowerShell function encodes a pro-
vided PowerShell script block or path into an ASCII payload. Its execution
involves multiple parameters, including “Script block”, where payload specifi-
cations are defined. Executing these obfuscated PowerShell scripts often entails
utilizing built-in Microsoft commands such as “Get-Information.ps1” [47], which
are employed to gather system details. In this specific case, the script aims to
retrieve data from the registry and execute specific commands based on the
privilege level under which the script operates.

Graphite: Real-Time Graph-Based Detection 159

Additionally, attackers may employ PowerShell commands such as “Get-
GPPPassword.psl” [75] to extract sensitive data from compromised systems,
such as login credentials and personal information.

3 Architecture of Graphite

Figure 2 gives the architecture of Graphite, which is designed for fileless malware
detection in enterprise network environments. In Graphite, logs are collected
using SilkService of ETW and are forwarded to Logstash, where logs are parsed
and transferred to ElasticSearch [63]. ElasticSearch then indexes and processes
these logs to make them searchable and analyzable. We chose Elasticsearch as
the log storage solution over traditional disk storage due to its scalability and
rapid data storage and retrieval capability. Our decision is motivated by the
substantial event loss experienced when storing ETW logs on disk, due to the
considerably slower disk writing speed compared to the log generation speed [22].
By directing logs to ElasticSearch, we prevent event loss and enable real-time
capture of log data.

Next, computation graphs are constructed from the ETW logs, abstracting
log entities and their interactions from system events. Unlike provenance graphs,
which are process-centered, our computation graphs are thread-centered graphs,
which provides finer-grained information specific to each thread. Given the gigan-
tic size of computation graphs, it is challenging to apply machine learning tech-
niques to them directly. To address this, we develop a projection algorithm that
decomposes each computation graph into smaller graphlets. These graphlets are
then fed into a pre-trained graph-based model for malware detection.

Projection

s D /
@ Input e /
Graph . |
|:{> Embeddings :{> lees o
S generator ° e)

2{3;‘.
—

log

Event

Event Computation Graph Graphlet Graphite n-gram Classification
logs Generation

Fig. 2. Architecture of Graphite .

3.1 Log Schema

To facilitate the creation of computation graphs from ETW logs, we designed a
schema to define entities and their associated attributes. The schema defines five
types of entities, including two subjects (Thread and Process) and three objects
(File, Registry, and Network).

The Thread entity serves as a central hub in our schema. As mentioned
in Sect. 1, unlike other provenance graphs that are process centered [31,32,34,

160 P. Wakodikar et al.

Table 1. Node-level and edge-level attributes

Type of Node Attribute Name Attribute Description
Process Node Attributes ProcessID Parent process ID
File Node Attributes FileName Full file path
FileObject File handler
Registry Node Attributes KeyObject Registry key handler
RelativeName Registry key path
Network Node Attributes daddr Network destination address
Thread Node Attributes XmlEventData_ThreadID |Child thread ID
XmlEventData_ProcessID|Child process ID
ThreadID Parent thread ID
ProcessID Parent process ID
Process Edge Attributes ImageName Process image name

XmlEventData_ThreadID |Child thread ID
XmlEventData_ProcessID|/Child process ID

ThreadID Parent thread ID

ProcessID Parent process 1D

CreateTime Process creation time
EventName Event’s string representation
Opcode Event’s numeric representation
TimeStamp Event’s logged time

File/Registry /Network Edge Attributes XmlEventData_ThreadID |Child thread ID
XmlEventData_ProcessID|/Child process ID

ThreadID Parent thread ID

ProcessID Parent process 1D

EventName Event’s string representation
Opcode Event’s numeric representation
TimeStamp Event’s logged time

44,61,73], our thread-centered graphs provide finer-grained information specific
to each thread. Our experimental results in Sect.5 show that leveraging local
temporal information associated with each thread improves the classification
accuracy.

An event in the schema specifies a connection between two entities. For
instance, an event can be a thread of a process reading a file or a thread trans-
mitting data to a network socket. Process creation events connect two processes
in the schema via thread, while thread creation events connect a process and
a thread. In our schema, each entity is associated with one or more attributes,
which specify whether the entity is a subject or an object, as well as its sub-type
(e.g., File or Process). Events can also have attributes such as timestamp and
event type. When creating the computation graph, we select persistent attributes
as node attributes and non-persistent attributes as edge attributes. Persistent
attributes, such as “FileName” do not change the identity of the node. Non-
persistent attributes such as “TimeStamp” may change over time and alter the

Graphite: Real-Time Graph-Based Detection 161

node’s state. The complete list of node attributes and edge attributes in our
schema is given in Table 1.

3.2 Computation Graphs

Computation graphs are constructed based on the schema. Nodes in the compu-
tation graph represent log entities, and edges represent events. Table 2 lists the
types of events that can occur between two specified types of entities.

Table 2. Event types

Edge types List of events

File — Thread DirEnum/DirNotify /Read/QueryEA /QuerySecurity /QueryInformation
Thread — File Cleanup/Close/Create/CreateNewFile /DeletePath/
FSCTL/Flush/NameDelete/NameCreate/SetDelete/
SetInformation/OperationEnd/Rename/RenamePath/Write

Process — Thread 'ThreadStart/ThreadStop/ThreadWorkOnBehalfUpdate

Thread — Process |CpuPriorityChange/CpuBasePriorityChange/IOPriorityChange/
ImageUnload /ImageLoad/JobStart/JobTerminate/

ProcessStart /ProcessStop/ProcessFreeze/PagePriority Change

Network — Thread Connectionaccepted/Datareceived/DatareceivedoverUDPprotocol/
Disconnectissued

Thread — Network ConnectionAttempted/Dataretansmitted /DataSent/
DatasentoverUDPprotocol /Protocolcopieddataonbehalfofuser

Registry — Thread 35(QueryKey)/38(QueryValueKey)/39(EnumerateKey)/
40(EnumerateValueKey)/41(QueryMultipleValueKey) /45(QuerySecurityKey)
Thread — Registry|32(CreateKey)/33(OpenKey)/34(DeleteKey)/36(SetValueKey)/
37(DeleteValueKey) /42(SetInformationKey) /44 (CloseKey) /
46(SetSecuritykey)/13(RegPerfOpHiveFlushWroteLogFile)

Node and Edge events are denoted by “EventName” in the log entry except
for registry nodes. “Opcodes” are used to identify events related to registry
nodes, which are numeric representations of different events. For example,
Opcode 35 corresponds to “QueryKey” [19], indicating that a Thread is querying
key information from the registry. Edges in our computation graphs are directed,
with the direction specifying the flow of information. For instance, if a process
reads a file, an edge is constructed from the node representing the file to the
node representing the process, indicating that information flows from the file to
the process. Likewise, if a process sends data through the network, an edge is
directed from the node representing the process to the node representing the
network destination address. When a process starts a thread, an edge is created
from the node representing the process to the node representing the thread.

We use a unique ID (UID) to uniquely identify each entity and event, which
is a hash value computed using attributes of nodes and edges. Table 3 shows how

162 P. Wakodikar et al.

UID is computed. As a Process ID can be reused for different processes (e.g.,
after the termination of one process and the subsequent start of another), the
UID of a process is computed using both the process ID and its corresponding
creation time. To uniquely identify a Thread node, we use a combination of the
thread ID, the associated Process’s ID and creation time, and the timestamp
of the “ThreadStart” event corresponding to the creation of the thread. For file
identification, the UID of a file node is computed using the file name (FileName).
Similarly, we use the relative path of a registry key (RelativeName) to uniquely
identify it. IP address (daddr) is used to uniquely identify the network endpoint.
Since each event occurs at a specific time, each edge is uniquely identified by
the timestamp associated with the event. Additionally, we include the host name
(HostName) in computing the UID to differentiate entities across different hosts.

Table 3. Node and edge UID rules

UID types UID Rules

File Node hash(FileName+HostName)

Process Node hash(ProcessID+CreationTime+ HostName)

Registry Nodehash(RelativeName-+HostName)

Network Nodehash(daddr + HostName)
(
(

Thread Node |hash(ProcessID+ThreadID+TimeStamp+CreationTime+HostName)
Edge hash(ProcessID+ThreadID+EventName+Opcode+Timestamp+HostName)

To construct the computation graph from ETW logs, we first sort and parse
event logs based on their respective timestamps. For each log entry, we create
two nodes and a corresponding edge connecting these nodes. The computation
graph is implemented using a graph library called igraph [70]. The resulting
graph is a multi-graph, meaning that each event corresponds to one edge in the
graph.

3.3 Graph Projection

Computation graphs contain rich information about process activities. However,
such graphs are usually very large in enterprise network environments [62], mak-
ing it difficult to apply machine learning techniques on them directly. To tackle
this issue, we developed a process-based projection algorithm to decompose the
computation graph into smaller graphlets.

Given a process ID, our projection algorithm first traverses the computation
graph to locate the “ProcessStart” event that matches the process ID, which
serves as the root of the projected graphlet. The algorithm then starts from the
root process and uses a procedure similar to taint analysis [18] to prune the
computation graph to include all and only the activities of a process, its descen-
dant processes, and all threads associated with those processes. Descendant pro-
cesses and associated thread nodes are identified by locating “ProcessStart” and

Graphite: Real-Time Graph-Based Detection 163

/ [
s
T Ts T2

P2 —>» T5 P2 —>» T5

TS Ts

(a) The computation graph. (b) The graphlet.

Fig. 3. An example of graph projection with root process P; (TS: ThreadStart, PS:
ProcessStart).

“ThreadStart” events during traversal from the root. File, registry, and network
nodes linked to these processes/threads are also included in the graphlet. The
complexity of our projection algorithm is O(V + E), where V is the number of
vertices and F is the number of edges in the graph.

Figure 3 illustrate the projection of a computation graph onto a graphlet.
The root process in the graph is P;. The graphlet contains all activities of P,
its child process P», and its associated threads T5, T3, and Ts. File (F), network
(N), and registry (R) nodes that are connected to these process/thread nodes
are also added to the graphlet, which are leaf nodes of the graphlet.

4 Graph-Based Malware Classifications

We developed a graph-based approach to detect malware based on graphlets
constructed from ETW logs. Our model, built upon Random Forest [10], lever-
ages the temporal and spatial information within graphlets to perform malware
classification. Random Forest was chosen as the base model due to its ability to
capture complex and non-linear patterns in smaller datasets as well as its supe-
rior performance compared to alternative models such as logistic regression [45]
and SVM [7].

Our graph-based approach leverages node types (e.g., process, file, registry,
network, and thread) and edge-level attributes such as EventName and TimeS-
tamp for malware detection. The temporal information utilized in Graphite is
the chronological order of event timestamps, which can be classified as local or
global. Local temporal information refers to the sorted sequence of event times-
tamps associated with specific graph components, such as a thread or between
two nodes. Global temporal information refers to the chronological order of event
timestamps across the entire graphlet. Spatial information includes any informa-
tion derived from the connectivity relationships between nodes and edges such
as information flow between neighboring nodes via edges or the leverage of local
neighborhood specifics in graph-based methods.

164 P. Wakodikar et al.

Our graph-based approach is designed based on the computation graph
schema described in Sect. 3.1, where threads serve as central entities for estab-
lishing connections with all other node types, while connections among other
node types are restricted. As described in Sect. 3, thread-centered scheme pro-
vides finer-grained temporal and spacial information (which is specific to each
thread), than the process-centered scheme. Our graph-based approach lever-
ages local temporal information associated with each thread node using N-gram
EventName features extracted from graphlets and utilize spatial information
surrounding the thread node by counting the types of its neighboring nodes.

A special case is when N = 1, where temporal information is no longer
captured. Instead, the distribution of EventNames associated with a thread node
is obtained.

4.1 Generation of Graph Embeddings

This section describes how Graphite generates graph embeddings. We use an N-
gram CountVectorizer [69] to learn and recognize N-gram EventName features
from sorted EventName sequences of all threads from all training graphlets. For
each thread node in a graphlet, its associated chronologically ordered Event-
Name sequence is obtained from the EventName and TimeStamp attributes of
its incoming and outgoing edges.

Next, we utilize the CountVectorizer to count the occurrences of N-gram
EventName features within the sorted EventName sequence of each thread node.

Node embedding of thread T
N =2 gram

‘Computing T's node-embedding

Write(t5,
rite(t5) 1. Get the event-sequence of thread T sorted by timestamp

7
/7’@% (Thread-level event-sequence)
%
/7(/7/ [Threadstart(t1), Write(t2), Read(t3), Read(t4), Write(t5), OpenKey(t6)]

2. Get the 2-gram event counts using the

OpenKey (t6) Read (13) pretrained 2-gram countvectorizer.
y &
Read (t4) > 2 e L& all 2-gram features
Qg:”{\‘\\@?&‘\\ ‘&6@?@ f’\c encountered by
L & & Q,bb ,obo & aé‘m 2-gram countvectorizer
& & & X in training
| T's node-embedding [1,0,1,1,0,0,0,..]
4. Concatenate the node-type counts with 3. Get the node-type counts of 1-hop neighboring nodes of T.
2-gram event counts to obtain (Each node is counted once)
thread T's node embedding. N
N P & FRNTP
> @ @ < &
Q-Q? & @Q\&Gf’é@Y@ é(}o [1,1,0,0,1]
L & & S D & ,,,o‘*'

Fig. 4. Generation of thread node embeddings.

Graphite: Real-Time Graph-Based Detection 165

This produces an N-gram EventName feature vector, capturing temporal infor-
mation local to each thread node. We also count the number of neighboring
nodes of each type that are connected to each thread node by incoming or out-
going edges. We ensure no duplicate counts for the same neighbor, even with
multiple edges in between. The alternative counting approach, allowing multiple
counts for the same neighbor, provides interaction frequency and is used in our
Extended N-gram approach described in Sect.4.4. The thread node embedding
is the concatenation of the thread node’s N-gram EventName feature vector and
its neighboring node-type count vector. Figure 4 provides an example illustrating
how node embeddings are generated for a thread node. The graph embedding
is derived using sum-pooling [79], aggregating all thread node embeddings using
the element-wise vector-sum operation.

4.2 Data Encoding and Pre-processing

We utilize non-machine-specific attributes such as “EventName” for feature
extraction. Because the “EventName” attribute comprises 59 known categor-
ical values listed in Table 2, we use one-hot encoding to convert it into a binary
vector of 0’s and 1’s. Two additional features are added to account for ‘Null’
and ‘Unknown’ events in ETW logs. This process resulted in a bit-vector repre-
sentation with a length of 61 bits. The “Timestamp” attribute, converted into a
scalar from its original date-time format, is utilized alongside the “EventName”
feature vector to compose edge features. For node features, we utilize a 5-bit vec-
tor where each bit denotes a distinct node type, namely file, registry, network,
process, and thread. The resulting node and edge features are then fed into the
downstream machine learning model.

4.3 Real-Time Malware Detection

The log collection and graphlet generation for our real-time malware detection
follow the procedure described in Sect. 3. However, waiting for each process to
complete its execution before classification is impractical for real-time detection.
To address this, we perform classification for a process when one of the following
conditions holds: (1) the process completes execution, (2) the size of graphlet
reaches a pre-defined threshold determined by malware analysts, or (3) the pro-
cess remains inactive for an extended period. Moreover, graphlet generation and
malware classification can run in parallel across multiple GPUs/CPUs, allowing
to produce classification results in real-time. Performance results of our real-time
detection are given in Sect. 5.3.

4.4 Alternative Graph-Based Approaches

We also experimented with graph-based approaches outlined below, whose detec-
tion accuracy is presented in Sect. 5.

Ezxtended N-gram extends Graphite N-gram by utilizing additional features
that provide spatial information around thread nodes. Such features include the

166 P. Wakodikar et al.

Table 4. Comparison of different graph-based approaches.

Graph-based Approaches Spatial Information/Temporal Information
Graphite N-gram Local to thread Local to thread
Extended N-gram Local to thread Local to thread

Standard K-hop message passing Information flow |None

N-gram K-hop message passing |Information flow |Local to edge

number of times a thread node interacts with its neighboring nodes and the
average number of thread nodes to which a file, registry, network, and process
node connects.

Standard K-hop message passing updates node embeddings by aggregating
information, such as EventName of incoming edges and node types, from K-
hop neighbors of nodes (i.e., nodes that are reachable within K edges) via K
iterations [14]. This approach utilizes spatial information from graphlets, but
does not incorporate temporal information.

N-gram K-hop message passing integrates temporal information into the
standard K —hop message passing by incorporating N-gram EventName features
extracted from the event sequence sorted by timestamp of incoming edges. The
extraction of N-gram EventName features is facilitated by the conversion of the
graphlet, a multigraph with each edge representing an event, into timestamp-
sorted event sequences on edges.

Table 4 summarizes the temporal and space information utilized in different
graph-based approaches.

Table 5. Node and edge statistics of malware and benign graphlets.

Malware Benign

Mean |Standard Dev.Mean [Standard Dev.
Node count |1440.58 (803.95 1363.89 624.56
Edge count [18577.2214275.37 18066.90/14459.97
File node 597.03 480.55 593.26 |379.07
Network node|1.26 3.67 1.12 0.63
Registry node|786.63 |521.53 734.92 458.26
Process node |2.11 2.61 1.96 6.78
Thread node [53.54 |296.35 32.63 61.34

5 Experimental Evaluation

This section presents our experimental results. Three machines were used to
train and tune all models. One machine is equipped with a 2.65-3.6 GHz AMD

Graphite: Real-Time Graph-Based Detection 167

EPYC 7413 CPU and NVIDIA RTX A6000 48GB GPUs, another has a 2.8—
3.35 GHz AMD EPYC 7402P CPU and NVIDIA Tesla T4 15GB GPUs, and the
third is a 2.90-3.50 GHz machine with Intel Xeon Gold 6326 processor.

5.1 Data Collection

We collected malicious and benign PowerShell scripts from VirusTotal [1] and
over 15 other websites [5,13,20,21,30,33,42,49-53,55,56,59,67,68,71,75]. Each
PowerShell script labelled as malicious has been confirmed as malicious by
multiple malware detection engines on VirusTotal. The collected PowerShell
scripts exhibit diverse writing styles. Some scripts took a considerable amount
of time to run due to a large number of cmdlets and complex looping struc-
tures, while others finished execution more quickly. Additionally, many mali-
cious PowerShell scripts require appropriate parameters, keyboard input, or a
specific software version. We analyzed and executed 1,152 benign and 949 mal-
ware scripts downloaded from the above websites and excluded scripts that
failed to execute or could not complete their major functionalities. The final
dataset used in our experiments comprises 690 malicious PowerShell scripts
and 771 benign ones. We collected logs using four ETW event providers [78]:
(1) Microsoft-Windows-Kernel-Process records operations on processes and
threads; (2) Microsoft- Windows-Kernel-File captures file-related activities; (3)
Microsoft- Windows-Kernel-Registry records Windows registry operations; and
(4) Microsoft- Windows-Kernel-Network records network-related activities. To
execute malicious PowerShell scripts, we established an isolated virtual machine
(VM) with Internet connections, ensuring that any activities or changes within
the isolated virtual machine do not impact the host system or other virtual
machines. To prevent machine learning models from performing classification
based on machine/VM-specific information, we collected benign and malicious
log samples using the same VM configuration. The total number of log entries
is 81,726,548 and 96, 287,768 for malware and benign samples, respectively.

Table 5 gives the average number of nodes and edges in graphlets and their
standard deviations. The table shows that, on average, malware graphlets con-
tain slightly more nodes and edges than benign graphlets. Moreover, the stan-
dard deviation of node counts in malware graphlets is higher than that in benign
ones. There is no apparent linear relationship to determine whether a graphlet
is benign or malicious based solely on the number of nodes or edges. The table
also shows that malicious graphlets tend to have more thread nodes than benign
ones. While mean values differ between malware and benign samples across dif-
ferent feature types, the substantial overlap in standard deviations suggests that
individual feature types are not highly discriminatory for distinguishing between
malware and benign samples.

5.2 Effectiveness of Graphite

This section evaluates the effectiveness of Graphite against baseline models that
ignore the graph structure. The baseline models are Random Forest with 1, 2,

168 P. Wakodikar et al.

and 4-gram features. In the 1-gram model, the model simply counts the number
of node types and event names as features, leveraging neither temporal nor
spatial information of graphlets. The 2-gram and 4-gram models utilize N-gram
EventName features extracted from the global timestamp-ordered sequence of
events (as opposed to per-thread event sequences), combined with node type
counts. These models leverage global temporal information of graphlets, but not
spatial information.

Table 6. Comparison of average validation scores and classification accuracy.

Mean Avg. Mean Avg. Max Avg. Max Avg. | Test Test

Val.Acc. Val.F1 Val.Acc. Val.F1 Accuracy |[F1-Score
Baseline 1-gram 0.749 0.715 0.791 0.772 0.784 0.767
Baseline 2-gram 0.739 0.689 0.808 0.788 0.791 0.776
Baseline 4-gram 0.780 0.715 0.868 0.853 0.849 0.832
Graphite 1l-gram 0.748 0.714 0.791 0.771 0.781 0.768
Graphite 2-gram 0.762 0.717 0.833 0.814 0.815 0.797
Graphite 4-gram 0.817 0.774 0.898 0.887 0.877 0.863
Extended 4-gram 0.815 0.772 0.896 0.885 0.883 0.872
Standard 3-hop M.P.[0.719 0.674 0.772 0.745 0.767 0.736
4-gram 3-hop ML.P. |0.720 0.677 0.772 0.745 0.781 0.764
Combined 4-gram 0.804 0.752 0.893 0.882 0.870 0.858
FEATHER-GRAPH |0.642 0.596 0.670 0.634 0.648 0.619
Graph2Vec 0.814 0.800 0.871 0.862 0.600 0.580
GAT 0.706 0.664 0.761 0.731 0.6007 0.5339
GIN 0.710 0.710 0.786 0.771 0.604 0.567

We used 80% of the dataset for training and the remainder for testing. To
ensure a balanced representation, we perform a stratified split [38] on the dataset,
not only by the label but also by the source of PowerShell scripts (i.e., the web-
sites from which the scripts were obtained). This approach is employed because
scripts originating from the same source tend to exhibit common attributes such
as writing styles, which may not accurately reflect the script’s actual behavior.
Performing a stratified split mitigates potential biases introduced by an imbal-
anced distribution of data sources in the dataset.

The model-tuning process involved an extensive exploration of hyperparame-
ter ranges, comprising 6912 sets generated by combining typical values for hyper-
parameters. We employed k-fold cross-validation with k = 10, a widely accepted
choice. This approach avoids reliance on a single hyperparameter configuration,
such as default settings, which is crucial for preventing “unintentional hyperpa-
rameter hacking” [24]. Hyperparameters yielding the highest validation scores
were utilized to assess the model’s classification accuracy and F1 scores during
testing.

Table 6 presents the mean and maximum average validation scores, test accu-
racy and test F1-scores of the baseline approach, Graphite and other graph-based

Graphite: Real-Time Graph-Based Detection 169

approaches discussed in Sect.4.4, unsupervised graph-embedding approaches
Graph2Vec [48] and FEATHER-GRAPH [58], and two conventional Graph Neu-
ral Network (GNN) models GAT [72] and GIN [76]. The mean and the maximum
average validation scores were obtained from hyperparameter tuning based on
10-fold Cross Validation, which represent the overall and best performance scores
across various hyperparameter sets and splits within the training set, respec-
tively. The test scores reflect the performance of the best model on the test set,
corresponding to the hyperparameter set with the maximum average validation
score.

For both baseline models and Graphite, we conducted experiments with 1,
2, and 4-gram features. We did not choose higher values, as extracting N-gram
features from the long global event sequence could result in significant high fea-
ture dimensions. In the Standard message passing approach, we experimented
with 3 hops to ensure sufficient information flow. As 4-gram models consistently
do better than 1-gram and 2-gram models, we obtained the performance results
of 4-gram for Extended N-gram and N-gram k-hop message passing approach.
The Combined N-gram approach in the table concatenates the graph embed-
dings of Graphite 4-gram and Baseline 4-gram. This integration aims to provide
the model with both local and global temporal information, exploring potential
complementary effects.

To evaluate the performance of FEATHER-GRAPH [57], we followed the
experimental setup outlined in the original paper for graph classification, includ-
ing the hyperparameter settings. This setup utilizes the topological feature of
node degree to derive graph embeddings, without using any trainable param-
eters. Graph2Vec is a neural embedding model that includes neural hyperpa-
rameters such as the graph embedding dimension and the number of learning
epochs, along with other non-neural hyperparameters. We used the best empiri-
cal hyperparameter combination that yielded the best performance in the down-
stream task to evaluate the implementation of Graph2Vec given at [57]. Once we
obtained graph embeddings from FEATHER-GRAPH and Graph2Vec, we used
Random Forest as the classifier and fine-tuned it using the same hyper-parameter
combinations as Graphite. GAT and GIN were fine-tuned with hyperparameter
combinations that focused on lower model complexity configurations to avoid
overfitting on small datasets.

We observe that Graphite 4-gram achieves the highest average validation
score and classification accuracy, indicating that local temporal information
is most effective in distinguishing between benign and malware samples. The
Extended 4-gram has similar validation scores and accuracy, suggesting that the
additional spatial features have minimal impact. Among baseline models, the
4-gram model performs the best, followed by the 2-gram model, suggesting that
global temporal information also helps improve the classification accuracy. With
1-grams, Graphite demonstrates comparable performance to the baseline model,
suggesting that neighboring node-type information for thread nodes has minimal
effect on performance.

170 P. Wakodikar et al.

The table also shows that both baseline and Graphite exhibit lower classifi-
cation accuracy compared to the maximum average validation score for 1-gram
and 2-gram. The classification accuracy of Graphite 4-gram is similar to its max-
imum average validation score. Additionally, Graphite outperforms its baseline
counterparts in 2-gram and 4-gram, achieving 4% higher test accuracy and test
F1 score.

Moreover, the table shows that message passing performs worse than the
baseline models. As threads serve as the central entities in our schema, it is
common to observe many cycles between threads and other node types within
the computation graph. In our dataset, over 50% of distinct node pairs exhibit
cyclic relationships for both benign and malware graphlets. In such a topology,
multi-hop information propagation leads to an excess of cyclic information flows,
a recognized issue with message passing [14]. The conventional GNN models,
GAT and GIN, which leverage message passing to extract spatial information,
also did not perform well. This can be attributed to GNNs being prone to over-
smoothing [16] in such highly cyclic topology.

The table also shows that FEATHER-GRAPH did not perform well. This is
because the graph embeddings generated from FEATHER-GRAPH captures the
structural information of the graph, but benign and malware graphlets are not
easily distinguishable based on graph structure. This is based on the observation
that in both benign and malware graphlets, there are typically 4—5 active threads
interacting with different node types, with a higher number of connections linked
to file and registry nodes. Graph2Vec achieves high average validation scores
but the lowest test scores. Graph2Vec trains an embedding neural network to
produce similar embeddings for structurally similar graphs. It captures nuanced
structural information within the training graphs, leading to high validation
scores. However, the low test scores indicate that Graph2Vec may not generalize
well to unseen graphs. Some researchers suggest that Graph2Vec is non-inductive
and does not naturally generalize to unseen graphs outside the training set [4].

5.3 Real-Time Responsiveness

It took 10 seconds to start Silkservice and 45 seconds to initialize the logstash.
Logstash processes and transfers event logs to Elasticsearch without any notice-
able delay. On average, it takes approximately 3.07 seconds to collect 1,000 log
entries. Generating one graphlet from 1,000 log entries takes approximately 0.9
seconds on average, including the time to construct the computation graph (0.83
seconds) and perform the projection to generate the graphlet (0.06 seconds).
On average, producing prediction results for samples with 1,000 nodes takes
approximately 0.08 seconds for Graphite 2-gram and 0.56 seconds for 4-gram,
on average.

Table 7 presents the classification accuracy and Fl-score of baseline models
and Graphite using threshold values of 500 and 1,000 nodes, which correspond
to roughly one-third and two-thirds of the average number of nodes in graphlets,
respectively. The table shows that, for both thresholds, the accuracy of F-1 score
of Graphite 1-gram and 2-gram is similar to their baseline counterparts. The

Graphite: Real-Time Graph-Based Detection 171

Table 7. Real-Time detection accuracy with a threshold of 500 and 1,000 nodes.

Test Test Test Test
Accuracy #500 F1-Score #500 Accuracy #1000 |F1-Score #1000
Baseline 1-gram |0.670 0.686 0.741 0.725
Baseline 2-gram |0.758 0.734 0.741 0.723
Baseline 4-gram |0.802 0.779 0.808 0.799
Graphite 1-gram|0.706 0.697 0.747 0.736
Graphite 2-gram|0.730 0.713 0.758 0.744
Graphite 4-gram|0.846 0.829 0.867 0.859

classification accuracy of Graphite 4-gram is the best for both 500 and 1,000
thresholds, which is close to that of offline detection (0.846 vs. 0.877 and 0.867
vs. 0.877, respectively), indicating that Graphite 4-gram performs well even with
partial sub-graphs.

Additionally, Graphite consume 135 MB memory for classifying each sample,
which includes the memory used for loading one graphlet into memory, extracting
the feature vector from that graphlet, and making a prediction.

5.4 Distribution of Average Validation Scores

Figure 5(a) presents the distribution of average validation scores of Graphite 4-
gram and Baseline 4-gram across all 6912 hyperparameter sets evaluated using
10-fold cross validation. The figure shows that the average validation scores of
Graphite 4-gram are consistently higher than those of baseline 4-gram, indicat-
ing the sustained effectiveness of Graphite 4-gram rather than being limited to
isolated outliers. Figure 5(b) shows that higher N in N-gram features improves
the validation accuracy.

The figure also visualizes the distribution’s shape, which is required informa-
tion in selecting the appropriate hypothesis testing method. Given the paired
nature of the average validation scores between Graphite 4-gram and baseline
4-gram, and considering their non-normal, multimodal distributions observed in
the figure, we selected a paired non-parametric permutation test with median
test statistic to assess the statistical significance of the score differences. Uti-
lizing the median test statistic to compare central tendencies, 1-gram results
(p-values of 0.9804 for average validation accuracy and 0.29 for average valida-
tion Fl-scores) indicated no significant difference. However, for both 2-gram and
4-gram, p-values of 0.0002 for average validation scores demonstrated statistical
significance.

172 P. Wakodikar et al.

Average Validation Accuracy Comparison (Graphite 4-gram vs. Baseline 4-gram) Average Validation Accuracy by Varying N (Graphite N-gram)

s Baseline 4-gram
== Graphite 4-gram

W Graphite 1-gram
== Graphite 2-gram
W Graphite 4-gram

600

1000

500

400

300

200

100

Count of Hyperparameter-sets (Total 6912)

Count of Hyperparameter-sets (Total 6912)

0

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.70

Average Validation Accuracy Average Validation Accuracy

(a) Graphite 4-gram vs. Baseline 4-gram (b) Graphite N-gram by varying N

Fig. 5. Average validation accuracy distribution.

6 Related Work

This section presents related work on fileless malware attack detection and
graph-based malware detection.

6.1 Fileless Malware Attacks

Memory-based detection methods examine computer memory to unveil traces
left by fileless malware attacks [9,36,37,64,80]. These techniques extract fea-
tures from memory contents and then apply rule-based methods or machine
learning models to detect fileless malware. However, most of these techniques
rely on known malware signatures for identification, and signature-based detec-
tion methods are prone to evasion attacks [60]. Additionally, these techniques
can cause significant performance degradation due to continuous memory scan-
ning [8].

Static analysis techniques have been developed to detect malicious Power-
Shell scripts. Mimura et al. [46] decomposed PowerShell scripts into individual
words and utilized them as machine learning features to detect fileless malware.
Danny et al. [27] detected evasive malicious PowerShell commands using natural
language processing and character-level Convolutional Neural Networks (CNNs).
Choi et al. [17] leveraged Graph Convolutional Networks (GCNs) to calculate
Jaccard similarities between new and existing scripts and used these similari-
ties to construct an adjacency matrix for the detection of malicious activities.
Bucevschi et al. proposed techniques based on the perceptron algorithm [54] to
detect anomalies in PowerShell code by extracting relevant features, and build-
ing a model to describe a malicious command [11]. Li et al. [43] developed a
sub-tree based deobfuscation method to help detect malicious obfuscated Pow-
erShell scripts. However, the above approaches require the source code of the

Graphite: Real-Time Graph-Based Detection 173

scripts and may be thwarted by dynamic script generation and sophisticated
code obfuscation.

Researchers have also employed dynamic analysis for malware detection.
Lanzi et al. [41] proposed to use a system-centric access activity model, which
monitors interactions between benign programs and the operating system, to
detect malware. This approach, however, detects only malware that tampers
with binaries or settings of the operating system or applications. Jindal et al. [35]
proposed Neurlux, which utilizes a Cuckoo sandbox to generate dynamic analy-
sis reports detailing behavioral information, and uses word sequences present in
these reports to predict whether a report is from a malicious binary. However,
this work focuses on classifying given samples rather than detecting malware in
real time.

6.2 Graph/Provenance-Based Malware Detection

There have been numerous attempts at detecting malware attacks using
provenance-based techniques. These techniques involve the construction of prove-
nance graphs from computer system logs, which are further examined to iden-
tify malware attacks. Shu et al. [62] identified malicious behavior by construct-
ing computation graphs that support historical and real-time threat detection.
SLEUTH [31] performs policy-based real-time attack detection and reconstruc-
tion using computation graphs constructed from system call logs. [61] integrated
audit logs and taint analysis to trace historical provenance data and detect
anomalous activities within the system. In [44], the authors developed malware
detection techniques through analysis of ETW logs and critical sections of appli-
cation executables. RAIN [34] records system-call events at runtime and conducts
dynamic information flow tracking (DIFT) to detect attacks. Wang et al. [32]
employed system audit logs and dependency-preserving log reduction methods
to offer insights into attack specifics (e.g., the direction, timing and the execution
details) of Advanced Persistent Threats (APTs). The above works focus on rule-
based approaches to detect malicious activities. Our method, in contrast, applies
graph-based machine learning methods for automated detection of fileless mal-
ware. Wang et al. [73] proposed ProvDetector, a provenance-based approach for
detecting stealthy malware. This method uses a set of benign provenance graphs
generated from the same program in various environment as the training dataset
to build a model to detect if the program has been hijacked by stealthy mal-
ware. However, ProvDetector cannot detect malicious software other than the
monitored programs. UNICORN [25] constructs provenance graphs using pub-
licly available datasets and employs a K-medoids clustering algorithm to detect
anomalies related to APT attacks that deviate from the host’s normal evolving
behavior. Unlike our approach which focuses on detecting fileless malware, UNI-
CORN is specifically tailored to the characteristics of APTs. Additionally, the
provenance graphs proposed in the aforementioned work are process-centered.
In contrast, our computation graphs are thread-centered, providing finer-grained
information specific to each thread.

174 P. Wakodikar et al.

Despite the success of graph neural networks (GNNs) in other graph-based
domains, their utilization in malware detection is relatively limited. Yan et
al. [77] used Deep Graph Convolutional Neural Networks (DGCNNs) [79] to
classify malware executables represented as CFGs. SDGNet [81] uses a Graph
Convolutional Network (GCN) to classify malware samples based on their control
flow graphs. DL-FHMC [2] utilizes CFG-based behavioral patterns for adversar-
ial IoT malicious software detection. Soteria [3] employs an auto-encoder and a
CNN architecture to detect and classify malware samples represented as CFGs.
Kang et al. [39] applied static analysis techniques to construct function call
graphs (FCGs) from malware programs and utilizes an ensemble classifier to
detect malware based on FCGs. Herath et.al. [29] propose techniques to identify
subgraphs of the malware CFG that contribute most towards classification and
provide insight into importance of the nodes within it. However, as the above
works require static analysis of the malware programs to construct FCGs or
CFGs, they are not suitable for malware detection in situations where these
malware programs are not available, such as fileless malware attacks.

7 Conclusion and Future Work

This paper presents Graphite, a graph-based approach to automatic detection
of fileless malware attacks in real-time. Graphite generates computation graphs
from system event logs collected via ETW and projects them into smaller
graphlets, which are then fed into a graph-based malware detection model.
We have evaluated the effectiveness of Graphite using benign and malicious
PowerShell scripts from numerous sources. Our experimental results show that
Graphite achieves 87.7% classification accuracy in offline testing, and 84.6% and
86.7% accuracy in real-time detection for two different pre-defined thresholds.
In the future, we plan to leverage explainable Al to further improve the detec-
tion accuracy of Graphite. We also plan to develop methods to bridge the gap
between explanations generated by explainable Al tools and those that human
analysts can easily understand.

Acknowledgement. This work is supported in part by a SUNY-IBM AI Research
Alliance grant. We thank the anonymous reviewers for their constructive comments.

References

1. Virustotal (2023). https://www.virustotal.com

2. Abusnaina, A., et al.. DL-FHMC: deep learning-based fine-grained hierarchical
learning approach for robust malware classification. IEEE Trans. Dependable
Secure Comput. 19(5), 3432-3447 (2021)

3. Alasmary, H., et al.: Soteria: detecting adversarial examples in control flow graph-
based malware classifiers. In: International Conference on Distributed Computing
Systems, pp. 888-898 (2020)

https://www.virustotal.com
https://www.virustotal.com
https://www.virustotal.com
https://www.virustotal.com

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Graphite: Real-Time Graph-Based Detection 175

Bai, Y., et al.: Unsupervised inductive graph-level representation learning via
graph-graph proximity. In: International Joint Conference on Artificial Intelligence,
pp. 1988-1994. ijcai.org (2019)

BlackSnufkin: pt-toolkit (2022). https://github.com/BlackSnufkin/PT-ToolKit/
tree/f78567ce9b4701acfd6af21196b95eef44bbe9cs /PowerShell-Scripts

Bohannon, D.: Invoke-obfuscation (2019). https://github.com/danielbohannon/
Invoke-Obfuscation

Boser, B.E., Guyon, .M., Vapnik, V.N.: A training algorithm for optimal margin
classifiers. In: Workshop on Computational Learning Theory, pp. 144-152 (1992)
Botacin, M., Grégio, A., Alves, M.A.Z.: Near-memory & in-memory detection of
fileless malware. In: Symposium on Memory Systems, pp. 23-38 (2020)

Bozkir, A.S., Tahillioglu, E., Aydos, M., Kara, I.: Catch them alive: a malware
detection approach through memory forensics, manifold learning and computer
vision. Comput. Sec. 103, 102166 (2021)

Breiman, L.: Random forests. Mach. Learn. 45(1), 5-32 (2001)

Bucevschi, A.G., Balan, G., Prelipcean, D.B.: Preventing file-less attacks with
machine learning techniques. In: 2019 21st International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC), pp. 248-252. IEEE
(2019)

Buckbee, M.: What is fileless malware? PowerShell exploited (2023). https://www.
varonis.com/blog/fileless-malware

Camichel, C.: Bazaar by abuse.ch (2024). https://bazaar.abuse.ch/browse.php?
search=tag%3Aps1

Cantwell, G.T., Newman, M.E.: Message passing on networks with loops. Proc.
Natl. Acad. Sci. 116(47), 23398-23403 (2019)

Chai, H., Ying, L., Duan, H., Zha, D.: Invoke-deobfuscation: Ast-based and
semantics-preserving deobfuscation for powershell scripts. In: International Con-
ference on Dependable Systems and Networks, pp. 295-306 (2022)

Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., Sun, X.: Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view. In:
AAAT Conference on Artificial Intelligence, vol. 34, pp. 3438-3445 (2020)

Choi, S.: Malicious PowerShell detection using graph convolution network. Appl.
Sci. 11(14), 6429 (2021)

Clause, J., Li, W., Orso, A.: Dytan: a generic dynamic taint analysis framework.
In: International Symposium on Software Testing and Analysis, pp. 196-206 (2007)
Damari, O.: (2019). https://github.com/repnz/etw-providers-docs/blob/master/
Manifests- Win10-10240/Microsoft- Windows- Kernel-Registry.xml

Fleschutz, M.: Powershell (2023). https://github.com/fleschutz/PowerShell/tree/
main/scripts

Godoy, E.G.: Sysadmin-survival-kit-scripts ~ (2021). https://github.com/
ErickRock/Sysadmin-Survival-Kit-Scripts

Gwak, J.Y., Wakodikar, P., Wang, M., Yan, G., Shu, X., Stoller, S.D., Yang, P.:
Debugging malware classification models based on event logs with explainable ai.
In: 2023 IEEE International Conference on Data Mining Workshops (ICDMW),
pp- 939-948 (2023)

Goémez, A.M.M., Bot, C., Mahmoud, M., Chernofsky, E.: (2019). https://github.
com/mandiant/SilkETW

Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Annual Conference on Neural Information Processing Systems (NIPS
2017), pp. 1024-1034 (2017)

https://github.com/BlackSnufkin/PT-ToolKit/tree/f78567ce9b4701acfd6af21196b95eef44bbc9c5/PowerShell-Scripts
https://github.com/BlackSnufkin/PT-ToolKit/tree/f78567ce9b4701acfd6af21196b95eef44bbc9c5/PowerShell-Scripts
https://github.com/BlackSnufkin/PT-ToolKit/tree/f78567ce9b4701acfd6af21196b95eef44bbc9c5/PowerShell-Scripts
https://github.com/BlackSnufkin/PT-ToolKit/tree/f78567ce9b4701acfd6af21196b95eef44bbc9c5/PowerShell-Scripts
https://github.com/BlackSnufkin/PT-ToolKit/tree/f78567ce9b4701acfd6af21196b95eef44bbc9c5/PowerShell-Scripts
https://github.com/BlackSnufkin/PT-ToolKit/tree/f78567ce9b4701acfd6af21196b95eef44bbc9c5/PowerShell-Scripts
https://github.com/BlackSnufkin/PT-ToolKit/tree/f78567ce9b4701acfd6af21196b95eef44bbc9c5/PowerShell-Scripts
https://github.com/BlackSnufkin/PT-ToolKit/tree/f78567ce9b4701acfd6af21196b95eef44bbc9c5/PowerShell-Scripts
https://github.com/BlackSnufkin/PT-ToolKit/tree/f78567ce9b4701acfd6af21196b95eef44bbc9c5/PowerShell-Scripts
https://github.com/BlackSnufkin/PT-ToolKit/tree/f78567ce9b4701acfd6af21196b95eef44bbc9c5/PowerShell-Scripts
https://github.com/danielbohannon/Invoke-Obfuscation
https://github.com/danielbohannon/Invoke-Obfuscation
https://github.com/danielbohannon/Invoke-Obfuscation
https://github.com/danielbohannon/Invoke-Obfuscation
https://github.com/danielbohannon/Invoke-Obfuscation
https://github.com/danielbohannon/Invoke-Obfuscation
https://www.varonis.com/blog/fileless-malware
https://www.varonis.com/blog/fileless-malware
https://www.varonis.com/blog/fileless-malware
https://www.varonis.com/blog/fileless-malware
https://www.varonis.com/blog/fileless-malware
https://www.varonis.com/blog/fileless-malware
https://www.varonis.com/blog/fileless-malware
https://bazaar.abuse.ch/browse.php?search=tag%3Aps1
https://bazaar.abuse.ch/browse.php?search=tag%3Aps1
https://bazaar.abuse.ch/browse.php?search=tag%3Aps1
https://bazaar.abuse.ch/browse.php?search=tag%3Aps1
https://bazaar.abuse.ch/browse.php?search=tag%3Aps1
https://bazaar.abuse.ch/browse.php?search=tag%3Aps1
https://bazaar.abuse.ch/browse.php?search=tag%3Aps1
https://bazaar.abuse.ch/browse.php?search=tag%3Aps1
https://github.com/repnz/etw-providers-docs/blob/master/Manifests-Win10-10240/Microsoft-Windows-Kernel-Registry.xml
https://github.com/repnz/etw-providers-docs/blob/master/Manifests-Win10-10240/Microsoft-Windows-Kernel-Registry.xml
https://github.com/repnz/etw-providers-docs/blob/master/Manifests-Win10-10240/Microsoft-Windows-Kernel-Registry.xml
https://github.com/repnz/etw-providers-docs/blob/master/Manifests-Win10-10240/Microsoft-Windows-Kernel-Registry.xml
https://github.com/repnz/etw-providers-docs/blob/master/Manifests-Win10-10240/Microsoft-Windows-Kernel-Registry.xml
https://github.com/repnz/etw-providers-docs/blob/master/Manifests-Win10-10240/Microsoft-Windows-Kernel-Registry.xml
https://github.com/repnz/etw-providers-docs/blob/master/Manifests-Win10-10240/Microsoft-Windows-Kernel-Registry.xml
https://github.com/repnz/etw-providers-docs/blob/master/Manifests-Win10-10240/Microsoft-Windows-Kernel-Registry.xml
https://github.com/repnz/etw-providers-docs/blob/master/Manifests-Win10-10240/Microsoft-Windows-Kernel-Registry.xml
https://github.com/repnz/etw-providers-docs/blob/master/Manifests-Win10-10240/Microsoft-Windows-Kernel-Registry.xml
https://github.com/repnz/etw-providers-docs/blob/master/Manifests-Win10-10240/Microsoft-Windows-Kernel-Registry.xml
https://github.com/repnz/etw-providers-docs/blob/master/Manifests-Win10-10240/Microsoft-Windows-Kernel-Registry.xml
https://github.com/repnz/etw-providers-docs/blob/master/Manifests-Win10-10240/Microsoft-Windows-Kernel-Registry.xml
https://github.com/repnz/etw-providers-docs/blob/master/Manifests-Win10-10240/Microsoft-Windows-Kernel-Registry.xml
https://github.com/repnz/etw-providers-docs/blob/master/Manifests-Win10-10240/Microsoft-Windows-Kernel-Registry.xml
https://github.com/repnz/etw-providers-docs/blob/master/Manifests-Win10-10240/Microsoft-Windows-Kernel-Registry.xml
https://github.com/repnz/etw-providers-docs/blob/master/Manifests-Win10-10240/Microsoft-Windows-Kernel-Registry.xml
https://github.com/fleschutz/PowerShell/tree/main/scripts
https://github.com/fleschutz/PowerShell/tree/main/scripts
https://github.com/fleschutz/PowerShell/tree/main/scripts
https://github.com/fleschutz/PowerShell/tree/main/scripts
https://github.com/fleschutz/PowerShell/tree/main/scripts
https://github.com/fleschutz/PowerShell/tree/main/scripts
https://github.com/fleschutz/PowerShell/tree/main/scripts
https://github.com/fleschutz/PowerShell/tree/main/scripts
https://github.com/ErickRock/Sysadmin-Survival-Kit-Scripts
https://github.com/ErickRock/Sysadmin-Survival-Kit-Scripts
https://github.com/ErickRock/Sysadmin-Survival-Kit-Scripts
https://github.com/ErickRock/Sysadmin-Survival-Kit-Scripts
https://github.com/ErickRock/Sysadmin-Survival-Kit-Scripts
https://github.com/ErickRock/Sysadmin-Survival-Kit-Scripts
https://github.com/ErickRock/Sysadmin-Survival-Kit-Scripts
https://github.com/ErickRock/Sysadmin-Survival-Kit-Scripts
https://github.com/mandiant/SilkETW
https://github.com/mandiant/SilkETW
https://github.com/mandiant/SilkETW
https://github.com/mandiant/SilkETW
https://github.com/mandiant/SilkETW

176

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

P. Wakodikar et al.

Han, X., Pasquier, T., Bates, A., Mickens, J., Seltzer, M.: Unicorn: Run-
time provenance-based detector for advanced persistent threats. arXiv preprint
arXiv:2001.01525 (2020)

Help Net Security: Fileless attacks increase 1,400% (2023). https://www.
helpnetsecurity.com/2023/07 /04 /threat-actors-detection-evasion/

Hendler, D., Kels, S., Rubin, A.: Detecting malicious powershell commands using
deep neural networks. In: Asia Conference on Computer and Communications
Security, pp. 187-197 (2018)

Hendler, D., Kels, S., Rubin, A.: AMSI-based detection of malicious PowerShell
code using contextual embeddings. In: ACM Asia Conference on Computer and
Communications Security, pp. 679-693 (2020)

Herath, J.D., Wakodikar, P.P., Yang, P., Yan, G.: Cfgexplainer: explaining graph
neural network-based malware classification from control flow graphs. In: 2022
52nd Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pp. 172-184 (2022)

Hochwald, J.: Powershell-collection (2023). https://github.com/jhochwald/
PowerShell-collection

Hossain, M.N., et al.: SLEUTH: Real-time attack scenario reconstruction from
COTS audit data. In: USENIX Security Symposium, pp. 487-504 (2017)
Hossain, M.N., Wang, J., Sekar, R., Stoller, S.D.: Dependence-Preserving data
compaction for scalable forensic analysis. In: USENIX Security Symposium, pp.
1723-1740 (2018)

IAMinZoho: Offsec-powershell (May 2023). https://github.com/TAMinZoho/
OFFSEC-PowerShell

Ji, Y., et al.: Rain: refinable attack investigation with on-demand inter-process
information flow tracking. In: Computer and Communications Security (CCS), pp.
377-390 (2017)

Jindal, C., Salls, C., Aghakhani, H., Long, K., Kruegel, C., Vigna, G.: Neurlux:
dynamic malware analysis without feature engineering. In: Proceedings of the 35th
Annual Computer Security Applications Conference, pp. 444-455 (2019)

Kara, I.: Fileless malware threats: recent advances, analysis approach through
memory forensics and research challenges. Expert Syst. Appli., 119133 (2022)
Khalid, O., et al.: An insight into the machine-learning-based fileless malware
detection. Sensors 23(2), 612 (2023)

Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and
model selection. In:14th International Joint Conference on Artificial Intelligence,
vol. 14(2) (2001)

Kong, D., Yan, G.: Discriminant malware distance learning on structural informa-
tion for automated malware classification. In: ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 1357-1365 (2013)

Kumar, S., et al.: An emerging threat fileless malware: a survey and research
challenges. Cybersecurity 3(1), 1-12 (2020)

Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E.: Accessminer:
using system-centric models for malware protection. In: Proceedings of the 17th
ACM Conference on Computer and Communications Security, pp. 399412 (2010)
Larrubia, P.: Win-debloat-tools (2023). https://github.com/LeDragoX/Win-
Debloat-Tools/tree/main/src/scripts

Li, Z., Chen, Q.A., Xiong, C., Chen, Y., Zhu, T., Yang, H.: Effective and light-
weight deobfuscation and semantic-aware attack detection for powershell scripts.
In: Computer and Communications Security, pp. 1831-1847 (2019)

http://arxiv.org/abs/2001.01525
https://www.helpnetsecurity.com/2023/07/04/threat-actors-detection-evasion/
https://www.helpnetsecurity.com/2023/07/04/threat-actors-detection-evasion/
https://www.helpnetsecurity.com/2023/07/04/threat-actors-detection-evasion/
https://www.helpnetsecurity.com/2023/07/04/threat-actors-detection-evasion/
https://www.helpnetsecurity.com/2023/07/04/threat-actors-detection-evasion/
https://www.helpnetsecurity.com/2023/07/04/threat-actors-detection-evasion/
https://www.helpnetsecurity.com/2023/07/04/threat-actors-detection-evasion/
https://www.helpnetsecurity.com/2023/07/04/threat-actors-detection-evasion/
https://www.helpnetsecurity.com/2023/07/04/threat-actors-detection-evasion/
https://www.helpnetsecurity.com/2023/07/04/threat-actors-detection-evasion/
https://www.helpnetsecurity.com/2023/07/04/threat-actors-detection-evasion/
https://github.com/jhochwald/PowerShell-collection
https://github.com/jhochwald/PowerShell-collection
https://github.com/jhochwald/PowerShell-collection
https://github.com/jhochwald/PowerShell-collection
https://github.com/jhochwald/PowerShell-collection
https://github.com/jhochwald/PowerShell-collection
https://github.com/IAMinZoho/OFFSEC-PowerShell
https://github.com/IAMinZoho/OFFSEC-PowerShell
https://github.com/IAMinZoho/OFFSEC-PowerShell
https://github.com/IAMinZoho/OFFSEC-PowerShell
https://github.com/IAMinZoho/OFFSEC-PowerShell
https://github.com/IAMinZoho/OFFSEC-PowerShell
https://github.com/LeDragoX/Win-Debloat-Tools/tree/main/src/scripts
https://github.com/LeDragoX/Win-Debloat-Tools/tree/main/src/scripts
https://github.com/LeDragoX/Win-Debloat-Tools/tree/main/src/scripts
https://github.com/LeDragoX/Win-Debloat-Tools/tree/main/src/scripts
https://github.com/LeDragoX/Win-Debloat-Tools/tree/main/src/scripts
https://github.com/LeDragoX/Win-Debloat-Tools/tree/main/src/scripts
https://github.com/LeDragoX/Win-Debloat-Tools/tree/main/src/scripts
https://github.com/LeDragoX/Win-Debloat-Tools/tree/main/src/scripts
https://github.com/LeDragoX/Win-Debloat-Tools/tree/main/src/scripts
https://github.com/LeDragoX/Win-Debloat-Tools/tree/main/src/scripts
https://github.com/LeDragoX/Win-Debloat-Tools/tree/main/src/scripts

44.

45.
46.
47.
48.

49.
50.
51.
52.
53.
54.
55.

56.
57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Graphite: Real-Time Graph-Based Detection 177

Ma, S., Lee, K.H., Kim, C.H., Rhee, J., Zhang, X., Xu, D.: Accurate, low cost
and instrumentation-free security audit logging for windows. In: Annual Computer
Security Applications Conference, pp. 401-410 (2015)

Maalouf, M.: Logistic regression in data analysis: an overview. Inter. J. Data Analy.
Techniq. Strategies 3(3), 281-299 (2011)

Mimura, M., Tajiri, Y.: Static detection of malicious PowerShell based on word
embeddings. Internet of Things 15, 100404 (2021)

Mittal, N.: nishang (2023). https://github.com/samratashok /nishang

Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal,
S.: graph2vec: Learning distributed representations of graphs. arXiv preprint
arXiv:1707.05005 (2017)

Nefedov, D.: (2023). https://github.com/farag2/Utilities

Olin, B.: Terminal-icons (2023). https://github.com/devblackops/Terminal-Icons
RaouzRouik: smallposh (2022). https://github.com/RaouzRouik/smallposh
RiskyDissonance: poshc2 (2022). https://github.com/nettitude/PoshC2
Rodriguez, N.: Powershell-scripts (2023). https://github.com/nickrod518/
PowerShell-Scripts

Rosenblatt, F.: The perceptron: a probabilistic model for information storage and
organization in the brain. Psychol. Rev. 65(6), 386 (1958)

Ross, C.: Randomps-scripts (2017). https://github.com/xorrior/RandomPS-
Scripts

Ross, C.: Empire (2019). https://github.com/EmpireProject /Empire
Rozemberczki, B., Kiss, O., Sarkar, R.: Karate club: an api oriented open-source
python framework for unsupervised learning on graphs. In: Proceedings of the
29th ACM International Conference on Information & Knowledge Management,
pp. 3125-3132 (2020)

Rozemberczki, B., Sarkar, R.: Characteristic functions on graphs: birds of a feather,
from statistical descriptors to parametric models. In: Proceedings of the 29th ACM
International Conference on Information & Knowledge Management, pp. 1325—
1334 (2020)

Russell, J.: powershell-scripts (2021). https://github.com/jrussellfreelance/
powershell-scripts

Saad, S., Mahmood, F., Briguglio, W., Elmiligi, H.: Jsless: a tale of a fileless
javascript memory-resident malware. In: 15th International Conference on Infor-
mation Security Practice and Experience, pp. 113-131 (2019)

Shiqing, M., Zhang, X., Xu, D.: ProTracer: towards practical provenance tracing
by alternating between logging and tainting. In: Network and Distributed System
Security Symposium (2016)

Shu, X., et al.: Threat intelligence computing. In: ACM SIGSAC Conference on
Computer and Communications Security, pp. 1883-1898 (2018)

Shukla, P., Kumar, S.: Learning Elastic Stack 7. 0 : distributed search, analytics,
and visualization using elasticsearch, logstash, beats, and kibana. Packt Publishing
(2019)

Sihwail, R., Omar, K., Arifin, K.A.Z.: An effective memory analysis for malware
detection and classification. Comput. Mater. Continua 67(2) (2021)

SonicWall: 2022 SonicWall cyber threat report (2022). https://sonicguard.com/
datasheets/2022-sonicwall-cyber-threat-report.pdf

SonicWall: Mid-year update: 2022 SonicWall cyber threat report (2022). https://
www.sonicwall.com/medialibrary /en/white-paper /mid- year-2022-cyber-threat-
report.pdf

https://github.com/samratashok/nishang
https://github.com/samratashok/nishang
https://github.com/samratashok/nishang
https://github.com/samratashok/nishang
https://github.com/samratashok/nishang
http://arxiv.org/abs/1707.05005
https://github.com/farag2/Utilities
https://github.com/farag2/Utilities
https://github.com/farag2/Utilities
https://github.com/farag2/Utilities
https://github.com/farag2/Utilities
https://github.com/devblackops/Terminal-Icons
https://github.com/devblackops/Terminal-Icons
https://github.com/devblackops/Terminal-Icons
https://github.com/devblackops/Terminal-Icons
https://github.com/devblackops/Terminal-Icons
https://github.com/devblackops/Terminal-Icons
https://github.com/RaouzRouik/smallposh
https://github.com/RaouzRouik/smallposh
https://github.com/RaouzRouik/smallposh
https://github.com/RaouzRouik/smallposh
https://github.com/RaouzRouik/smallposh
https://github.com/nettitude/PoshC2
https://github.com/nettitude/PoshC2
https://github.com/nettitude/PoshC2
https://github.com/nettitude/PoshC2
https://github.com/nettitude/PoshC2
https://github.com/nickrod518/PowerShell-Scripts
https://github.com/nickrod518/PowerShell-Scripts
https://github.com/nickrod518/PowerShell-Scripts
https://github.com/nickrod518/PowerShell-Scripts
https://github.com/nickrod518/PowerShell-Scripts
https://github.com/nickrod518/PowerShell-Scripts
https://github.com/xorrior/RandomPS-Scripts
https://github.com/xorrior/RandomPS-Scripts
https://github.com/xorrior/RandomPS-Scripts
https://github.com/xorrior/RandomPS-Scripts
https://github.com/xorrior/RandomPS-Scripts
https://github.com/xorrior/RandomPS-Scripts
https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire
https://github.com/jrussellfreelance/powershell-scripts
https://github.com/jrussellfreelance/powershell-scripts
https://github.com/jrussellfreelance/powershell-scripts
https://github.com/jrussellfreelance/powershell-scripts
https://github.com/jrussellfreelance/powershell-scripts
https://github.com/jrussellfreelance/powershell-scripts
https://sonicguard.com/datasheets/2022-sonicwall-cyber-threat-report.pdf
https://sonicguard.com/datasheets/2022-sonicwall-cyber-threat-report.pdf
https://sonicguard.com/datasheets/2022-sonicwall-cyber-threat-report.pdf
https://sonicguard.com/datasheets/2022-sonicwall-cyber-threat-report.pdf
https://sonicguard.com/datasheets/2022-sonicwall-cyber-threat-report.pdf
https://sonicguard.com/datasheets/2022-sonicwall-cyber-threat-report.pdf
https://sonicguard.com/datasheets/2022-sonicwall-cyber-threat-report.pdf
https://sonicguard.com/datasheets/2022-sonicwall-cyber-threat-report.pdf
https://sonicguard.com/datasheets/2022-sonicwall-cyber-threat-report.pdf
https://sonicguard.com/datasheets/2022-sonicwall-cyber-threat-report.pdf
https://www.sonicwall.com/medialibrary/en/white-paper/mid-year-2022-cyber-threat-report.pdf
https://www.sonicwall.com/medialibrary/en/white-paper/mid-year-2022-cyber-threat-report.pdf
https://www.sonicwall.com/medialibrary/en/white-paper/mid-year-2022-cyber-threat-report.pdf
https://www.sonicwall.com/medialibrary/en/white-paper/mid-year-2022-cyber-threat-report.pdf
https://www.sonicwall.com/medialibrary/en/white-paper/mid-year-2022-cyber-threat-report.pdf
https://www.sonicwall.com/medialibrary/en/white-paper/mid-year-2022-cyber-threat-report.pdf
https://www.sonicwall.com/medialibrary/en/white-paper/mid-year-2022-cyber-threat-report.pdf
https://www.sonicwall.com/medialibrary/en/white-paper/mid-year-2022-cyber-threat-report.pdf
https://www.sonicwall.com/medialibrary/en/white-paper/mid-year-2022-cyber-threat-report.pdf
https://www.sonicwall.com/medialibrary/en/white-paper/mid-year-2022-cyber-threat-report.pdf
https://www.sonicwall.com/medialibrary/en/white-paper/mid-year-2022-cyber-threat-report.pdf
https://www.sonicwall.com/medialibrary/en/white-paper/mid-year-2022-cyber-threat-report.pdf
https://www.sonicwall.com/medialibrary/en/white-paper/mid-year-2022-cyber-threat-report.pdf
https://www.sonicwall.com/medialibrary/en/white-paper/mid-year-2022-cyber-threat-report.pdf
https://www.sonicwall.com/medialibrary/en/white-paper/mid-year-2022-cyber-threat-report.pdf

178

67.

68.
69.

70.

71.
72.

73.

74.

75.
76.
7.

78.

79.

80.

81.

P. Wakodikar et al.

stevencohn: ~ Windowspowershell ~ (2023). https://github.com/stevencohn/
WindowsPowerShell

Sutherland, S.: Powershellery (2023). https://github.com/nullbind /Powershellery
scikit-learn development team: Countvectorizer (2024). https://scikit-learn.org/
stable/modules/generated/sklearn.feature_extraction.text.Count Vectorizer.html
igraph core team, T.: Igraph (2003). https://igraph.org/python/tutorial/0.9.8/
tutorial.html

Tworek, G.: Psbits (2023). https://github.com/gtworek /PSBits

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio’, P., Bengio, Y.: Graph
attention networks. ArXiv abs/ arXiv: 1710.10903 (2018)

Wang, Q., et al.: You are what you do: Hunting stealthy malware via data prove-
nance analysis. In: NDSS (2020)

Warnars, N.: Detecting fileless malicious behaviour of .net c2 agents using etw
(2020)

Will: Powersploit (2020). https://github.com/PowerShellMafia/PowerSploit

Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
In: International Conference on Learning Representations (2019)

Yan, J., Yan, G., Jin, D.: Classifying malware represented as control flow graphs
using deep graph convolutional neural network. In: International Conference on
Dependable Systems and Networks, pp. 52-63 (2019)

Yoshizaki, 1. Providers (2022). https://gist.github.com/guitarrapc/
35a94b908bad677a7310

Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architec-
ture for graph classification. In: AAATI Conference on Artificial Intelligence, vol. 32
(2018)

Zhang, S., Hu, C., Wang, L., Mihaljevic, M.J., Xu, S., Lan, T.: A malware detection
approach based on deep learning and memory forensics. Symmetry 15(3), 758
(2023)

Zhang, Z., Li, Y., Dong, H., Gao, H., Jin, Y., Wang, W.: Spectral-based directed
graph network for malware detection. IEEE Trans. Netw. Sci. Eng. 8(2), 957-970
(2020)

https://github.com/stevencohn/WindowsPowerShell
https://github.com/stevencohn/WindowsPowerShell
https://github.com/stevencohn/WindowsPowerShell
https://github.com/stevencohn/WindowsPowerShell
https://github.com/stevencohn/WindowsPowerShell
https://github.com/nullbind/Powershellery
https://github.com/nullbind/Powershellery
https://github.com/nullbind/Powershellery
https://github.com/nullbind/Powershellery
https://github.com/nullbind/Powershellery
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://igraph.org/python/tutorial/0.9.8/tutorial.html
https://igraph.org/python/tutorial/0.9.8/tutorial.html
https://igraph.org/python/tutorial/0.9.8/tutorial.html
https://igraph.org/python/tutorial/0.9.8/tutorial.html
https://igraph.org/python/tutorial/0.9.8/tutorial.html
https://igraph.org/python/tutorial/0.9.8/tutorial.html
https://igraph.org/python/tutorial/0.9.8/tutorial.html
https://igraph.org/python/tutorial/0.9.8/tutorial.html
https://igraph.org/python/tutorial/0.9.8/tutorial.html
https://igraph.org/python/tutorial/0.9.8/tutorial.html
https://github.com/gtworek/PSBits
https://github.com/gtworek/PSBits
https://github.com/gtworek/PSBits
https://github.com/gtworek/PSBits
https://github.com/gtworek/PSBits
http://arxiv.org/abs/1710.10903
https://github.com/PowerShellMafia/PowerSploit
https://github.com/PowerShellMafia/PowerSploit
https://github.com/PowerShellMafia/PowerSploit
https://github.com/PowerShellMafia/PowerSploit
https://github.com/PowerShellMafia/PowerSploit
https://gist.github.com/guitarrapc/35a94b908bad677a7310
https://gist.github.com/guitarrapc/35a94b908bad677a7310
https://gist.github.com/guitarrapc/35a94b908bad677a7310
https://gist.github.com/guitarrapc/35a94b908bad677a7310
https://gist.github.com/guitarrapc/35a94b908bad677a7310
https://gist.github.com/guitarrapc/35a94b908bad677a7310

