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Abstract. Advanced malware attacks often employ sophisticated tac-
tics such as DLL injection, script-based attacks, and the exploitation of 
zero-day vulnerabilities. As evidenced by the recent high-profile cyber-
attacks, these techniques have enabled attackers to infiltrate computer 
systems that were thought to be well-protected. There is thus an urgent 
need to enhance current malware defenses with advanced Artificial Intel-
ligence (AI) techniques that can effectively detect in real-time the elusive 
traces of malware attacks concealed within the extensive realm of nor-
mal activities. This paper introduces Graphite, a graph-based approach 
for real-time detection of advanced malware attacks based on the event 
data collected from Event Tracing for Windows (ETW). Graphite first 
abstracts various entities and their relationships embodied within sys-
tem events into computation graphs, which are amenable to graph-based 
machine learning methods. As a computation graph can be gigantic, mak-
ing real-time malware detection inefficient, we project the graph into 
smaller graphlets, which are then subsequently fed into our graph-based 
approach to detect malicious activities. Our experimental results show 
that Graphite achieves .87.7% classification accuracy in offline testing and 
.86.7% accuracy in real-time detection. 

Keywords: Malware detection · Machine learning 

1 Introduction 

The current Internet has been inundated by numerous malware attacks. In 2022, 
there were 5.4 billion malware attacks worldwide [ 65] with over 270,000 identified 
as new malware variants in the first half of the year alone, an increase of 45% 
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over the same period in the previous year [ 66]. This influx of malware attacks 
has been contributing to a wide spectrum of online criminal activities, including 
cyber extortion, intellectual property theft, identity theft, email spamming, etc. 

In response to advances in malware defense mechanisms, fileless malware 
have emerged as an effective attack vector to compromise targeted computer 
systems in recent years. Unlike traditional malware that uses custom executable 
programs, fileless malware attacks leverage legitimate system utilities such as 
PowerShell and Windows Management Instrumentation (WMI) to perform mali-
cious activities [ 12,40]. Such attacks do not require to install new malware code, 
and hence leave little trace behind, which allows them to bypass even the most 
up-to-date malware detection systems. A recent report [ 26] shows a .1, 400% surge 
in fileless malware attacks from the previous year, underscoring their emergence 
as a popular threat vector in today’s cybersecurity landscape. 

The literature outlines three main approaches for detecting fileless malware 
attacks. Fileless malware attacks sometimes utilize in-memory execution through 
built-in tools such as PowerShell [ 12], evading detection by traditional antivirus 
programs that scan for malicious files. Consequently, Memory-based detection 
was introduced to scan computer memory for traces of such attacks [ 36,64]. 
However, these techniques often incur high execution overhead due to contin-
uous memory scanning [ 8] and their detection accuracy can suffer against eva-
sive malware attacks due to reliance on known malware signatures [ 60]. Various 
static script analysis methods were proposed to identify malicious intentions 
in the scripts developed for these platforms [ 27,28,46]. However, due to their 
static analysis nature, these methods can sometimes be thwarted by sophisti-
cated obfuscation techniques [ 15,43]. A vast body of provenance-based detec-
tion techniques have been proposed to construct provenance graphs from events 
logged by computer systems, which are analyzed to identify sophisticated cyber-
attack operations, including fileless malware attacks [ 31,32,34,44,61,62]. While 
many of these efforts focus on postmortem attack scenario reconstruction, some 
apply detection rules on the provenance graphs to identify malicious attacks in 
real time. To be effective, these rules need to be manually crafted based on in-
depth knowledge about sophisticated cyberattack operations and be regularly 
updated to adapt to evolving attack strategies. 

Against this backdrop, this work aims to develop new techniques for the auto-
matic detection of fileless malware attacks. Our work builds upon provenance-
based detection methods, known for their greater resilience against evasion 
attacks than memory-based detection methods. To overcome the challenge of 
crafting effective policy rules for malware detection based on provenance graphs, 
we proposed a graph-based machine learning method to automatically detect 
malicious activities at runtime. 

As the majority of malware attacks (including fileless ones) target com-
puter systems running Microsoft Windows, we propose a new framework called 
Graphite to detect such attacks from system events collected by Event Tracing 
for Windows (ETW), the high-speed tracing and logging facility built into Win-
dows systems [ 74]. Utilizing ETW logs, Graphite abstracts various entities, such
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as processes and files, and their relationships embodied within system events into 
computation graphs [ 62], which are amenable to graph-based machine learning 
methods. Unlike provenance graphs that are process-centered, our computation 
graphs are thread-centered graphs, which provides finer-grained information spe-
cific to each thread. Our experimental results in Sect. 5 demonstrate that lever-
aging local temporal information associated with each thread, rather than the 
global temporal information associated with the entire process, results in higher 
classification accuracy. 

Several technical challenges hinder the direct application of graph-based 
learning models to computation graphs. Firstly, the graph representation of 
extensive low-level system event logs can be gigantic, rendering the direct appli-
cation of graph-based learning models inefficient. For instance, a graph con-
structed from more than .100 million system events collected from six computers 
over a two-week period comprises over .13 million nodes, requiring .161 GB stor-
age space [ 62]. Secondly, due to the diversity of system events within a computer 
system, nodes and edges in their graph representations are commonly augmented 
with heterogeneous attributes. For example, a node may represent a process, a 
thread, a file, and more. Overlooking these informative attributes during the 
training of a graph-based learning model may lead to significant degradation 
in predictive accuracy. Finally, due to the inherent dynamic nature of system 
events, their graph representations undergo constant changes over time. Conse-
quently, the temporal evolution introduces an additional layer of intricacy to the 
challenge of training predictive graph models for real-time malware detection. 

To address the above challenges, we develop a projection algorithm to decom-
pose a large computation graph into small graphlets. Using a technique inspired 
by taint analysis, this algorithm captures all the activities of a process and its 
descendant processes or threads. The graphlets are fed to a downstream classifi-
cation model for fileless malware detection. Graphite uses a graph-based learning 
model that leverages temporal and spatial information in the graphlets to update 
node embeddings to perform malware classification. 

Due to the challenges in acquiring comprehensive datasets for all types of 
fileless attacks, this paper focuses on those leveraging PowerShell scripts. Our 
approach is also applicable to other forms of fileless attacks. The source code of 
Graphite and the dataset used in this paper is available at 1. 

In summary, our contributions are outlined as follows: 

– We collected event logs of benign and malicious PowerShell scripts down-
loaded from various sources using ETW and proposed a schema to charac-
terize the relationships between different subject and object entities in ETW 
logs. Based on this schema, we developed algorithms to construct computation 
graphs with various node-level and edge-level attributes. Unlike provenance 
graphs that are process centered, our computation graphs are thread-centered, 
providing finer-grained information specific to each thread. 

– Inspired by taint analysis, we develop a projection algorithm that decomposes 
a large computation graph into small graphlets, each of which encompasses

1 https://github.com/jgwak1/Graphite. 

https://github.com/jgwak1/Graphite
https://github.com/jgwak1/Graphite
https://github.com/jgwak1/Graphite
https://github.com/jgwak1/Graphite
https://github.com/jgwak1/Graphite
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relevant system events initiated by a process and all its descendant processes 
and threads. 

– We developed a graph-based machine learning model to distinguish between 
malicious and benign graphlets. Leveraging the central role of thread nodes 
in the schema, our method utilizes temporal and spatial information within 
graphlets to update graph embeddings for malware classification. Our experi-
mental results show that Graphite achieves a classification accuracy of . 87.7%
on the dataset we collected. 

– We developed a real-time malware detection algorithm capable of detecting 
malware based on partial graphlets whose size is determined by a user-defined 
threshold. Our experimental results show a real-time detection accuracy of 
.86.7%, slightly lower than offline testing results. 

Organization: The rest of the paper is organized as follows. Section 2 pro-
vides an overview of ETW and fileless PowerShell malware. Section 3 presents 
the design and architecture of Graphite. Section 4 introduces our graph-based 
malware detection technique. The experimental results are detailed in Sect. 5. 
Section 6 summarizes the related work and Sect. 7 concludes the paper. 

2 Background 

This section provides an overview of Event Tracing for Windows (ETW) and 
fileless PowerShell malware. 

2.1 Event Tracing for Windows (ETW) 

ETW offers facilities to trace and log events raised by both user-mode applica-
tions and kernel-mode drivers within the Windows Operating System [ 74]. ETW 
records system calls related to I/O operations, including file reads and writes, 
as well as process operations such as process start and termination. ETW has 
many different event providers for tracing different types of events. 

We utilize a C# wrapper for ETW called SilkService [ 23] to collect event logs. 
Figure 1 gives an example of a log entry generated by the “Microsoft-Windows-
Kernel-Process” provider. Each entry in an ETW log provides basic information 
such as the name and ID of the event provider, and the time when the event 
occurred (i.e., TimeStamp). Other keys in the event log are specific to the type 
of provider, such as file, process, registry, or network. For instance, the event 
“ThreadStop/Stop” in the figure specifies that a process thread with “ThreadID” 
.11996 has stopped. The corresponding process for this thread has “ProcessID” 
.8416. 

2.2 Fileless PowerShell Malware 

Living-off-the-land techniques that use built-in system tools such as PowerShell, 
WMI, Command Prompt, and batch scripts, are common in APTs and targeted
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Fig. 1. Example of an ETW event log entry. 

attacks. These tools facilitate lateral movement, data exfiltration, and privi-
lege escalation. Our research primarily focuses on utilizing PowerShell, a script-
ing language for automating tasks on Windows machines. PowerShell provides 
a command prompt interface and facilitates task automation through simple 
scripts. These scripts contain commands referred to as “cmdlets”, each per-
forming a distinct task. The output of one cmdlet can be used as the input to 
subsequent commands. 

PowerShell scripts has been utilized by fileless malware to carry out malicious 
activities with little trace left behind. A typical scenario is the fileless PowerShell 
script attack, in which the attacker leverages PowerShell’s capabilities to execute 
commands directly in memory to gain full access to the Windows API, enabling 
system exploitation while bypassing the need to save the script on disk. This 
makes it difficult to detect fileless PowerShell scripts using traditional file-based 
antivirus solutions. Some of the PowerShell scripts used in our experiments, such 
as Invoke-DllInjection.ps1 [ 75], Invoke-ReflectivePEInjection.ps1 [ 52], Invoke-
PSInject.ps1 [ 52] also inject malicious code into a hijacked process. 

Fileless malware attackers employ a variety of techniques to execute 
suspicious activities. To evade detection, they frequently resort to obfus-
cation methods such as encryption or encoding within PowerShell code. 
This practice presents a challenge for static code analysis aimed at deci-
phering the true intent behind such actions. A PowerShell script “Out-
EncodedAsciiCommand.ps1” serves as an example of these obfuscation tac-
tics [ 6]. The Out-EncodedAsciiCommand PowerShell function encodes a pro-
vided PowerShell script block or path into an ASCII payload. Its execution 
involves multiple parameters, including “Script block”, where payload specifi-
cations are defined. Executing these obfuscated PowerShell scripts often entails 
utilizing built-in Microsoft commands such as “Get-Information.ps1” [ 47], which 
are employed to gather system details. In this specific case, the script aims to 
retrieve data from the registry and execute specific commands based on the 
privilege level under which the script operates.
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Additionally, attackers may employ PowerShell commands such as “Get-
GPPPassword.ps1” [ 75] to extract sensitive data from compromised systems, 
such as login credentials and personal information. 

3 Architecture of Graphite 

Figure 2 gives the architecture of Graphite, which is designed for fileless malware 
detection in enterprise network environments. In Graphite, logs are collected 
using SilkService of ETW and are forwarded to Logstash, where logs are parsed 
and transferred to ElasticSearch [ 63]. ElasticSearch then indexes and processes 
these logs to make them searchable and analyzable. We chose Elasticsearch as 
the log storage solution over traditional disk storage due to its scalability and 
rapid data storage and retrieval capability. Our decision is motivated by the 
substantial event loss experienced when storing ETW logs on disk, due to the 
considerably slower disk writing speed compared to the log generation speed [ 22]. 
By directing logs to ElasticSearch, we prevent event loss and enable real-time 
capture of log data. 

Next, computation graphs are constructed from the ETW logs, abstracting 
log entities and their interactions from system events. Unlike provenance graphs, 
which are process-centered, our computation graphs are thread-centered graphs, 
which provides finer-grained information specific to each thread. Given the gigan-
tic size of computation graphs, it is challenging to apply machine learning tech-
niques to them directly. To address this, we develop a projection algorithm that 
decomposes each computation graph into smaller graphlets. These graphlets are 
then fed into a pre-trained graph-based model for malware detection. 

Fig. 2. Architecture of Graphite . 

3.1 Log Schema 

To facilitate the creation of computation graphs from ETW logs, we designed a 
schema to define entities and their associated attributes. The schema defines five 
types of entities, including two subjects (Thread and Process) and three objects 
(File, Registry, and Network). 

The Thread entity serves as a central hub in our schema. As mentioned 
in Sect. 1, unlike other provenance graphs that are process centered [ 31,32,34,
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Table 1. Node-level and edge-level attributes 

Type of Node Attribute Name Attribute Description 
Process Node Attributes ProcessID Parent process ID 
File Node Attributes FileName Full file path 

FileObject File handler 
Registry Node Attributes KeyObject Registry key handler 

RelativeName Registry key path 
Network Node Attributes daddr Network destination address 
Thread Node Attributes XmlEventData ThreadID Child thread ID 

XmlEventData ProcessID Child process ID 
ThreadID Parent thread ID 
ProcessID Parent process ID 

Process Edge Attributes ImageName Process image name 
XmlEventData ThreadID Child thread ID 
XmlEventData ProcessID Child process ID 
ThreadID Parent thread ID 
ProcessID Parent process ID 
CreateTime Process creation time 
EventName Event’s string representation 
Opcode Event’s numeric representation 
TimeStamp Event’s logged time 

File/Registry/Network Edge Attributes XmlEventData ThreadID Child thread ID 
XmlEventData ProcessID Child process ID 
ThreadID Parent thread ID 
ProcessID Parent process ID 
EventName Event’s string representation 
Opcode Event’s numeric representation 
TimeStamp Event’s logged time 

44,61,73], our thread-centered graphs provide finer-grained information specific 
to each thread. Our experimental results in Sect. 5 show that leveraging local 
temporal information associated with each thread improves the classification 
accuracy. 

An event in the schema specifies a connection between two entities. For 
instance, an event can be a thread of a process reading a file or a thread trans-
mitting data to a network socket. Process creation events connect two processes 
in the schema via thread, while thread creation events connect a process and 
a thread. In our schema, each entity is associated with one or more attributes, 
which specify whether the entity is a subject or an object, as well as its sub-type 
(e.g., File or Process). Events can also have attributes such as timestamp and 
event type. When creating the computation graph, we select persistent attributes 
as node attributes and non-persistent attributes as edge attributes. Persistent 
attributes, such as “FileName” do not change the identity of the node. Non-
persistent attributes such as “TimeStamp” may change over time and alter the
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node’s state. The complete list of node attributes and edge attributes in our 
schema is given in Table 1. 

3.2 Computation Graphs 

Computation graphs are constructed based on the schema. Nodes in the compu-
tation graph represent log entities, and edges represent events. Table 2 lists the 
types of events that can occur between two specified types of entities. 

Table 2. Event types 

Edge types List of events 
File .→ Thread DirEnum/DirNotify/Read/QueryEA/QuerySecurity/QueryInformation 
Thread .→ File Cleanup/Close/Create/CreateNewFile/DeletePath/ 

FSCTL/Flush/NameDelete/NameCreate/SetDelete/ 
SetInformation/OperationEnd/Rename/RenamePath/Write 

Process .→ Thread ThreadStart/ThreadStop/ThreadWorkOnBehalfUpdate 
Thread .→ Process CpuPriorityChange/CpuBasePriorityChange/IOPriorityChange/ 

ImageUnload/ImageLoad/JobStart/JobTerminate/ 
ProcessStart/ProcessStop/ProcessFreeze/PagePriorityChange 

Network .→ Thread Connectionaccepted/Datareceived/DatareceivedoverUDPprotocol/ 
Disconnectissued 

Thread .→ Network ConnectionAttempted/Dataretansmitted/DataSent/ 
DatasentoverUDPprotocol/Protocolcopieddataonbehalfofuser 

Registry .→ Thread 35(QueryKey)/38(QueryValueKey)/39(EnumerateKey)/ 
40(EnumerateValueKey)/41(QueryMultipleValueKey)/45(QuerySecurityKey) 

Thread .→ Registry 32(CreateKey)/33(OpenKey)/34(DeleteKey)/36(SetValueKey)/ 
37(DeleteValueKey)/42(SetInformationKey)/44(CloseKey)/ 
46(SetSecuritykey)/13(RegPerfOpHiveFlushWroteLogFile) 

Node and Edge events are denoted by “EventName” in the log entry except 
for registry nodes. “Opcodes” are used to identify events related to registry 
nodes, which are numeric representations of different events. For example, 
Opcode 35 corresponds to “QueryKey” [ 19], indicating that a Thread is querying 
key information from the registry. Edges in our computation graphs are directed, 
with the direction specifying the flow of information. For instance, if a process 
reads a file, an edge is constructed from the node representing the file to the 
node representing the process, indicating that information flows from the file to 
the process. Likewise, if a process sends data through the network, an edge is 
directed from the node representing the process to the node representing the 
network destination address. When a process starts a thread, an edge is created 
from the node representing the process to the node representing the thread. 

We use a unique ID (UID) to uniquely identify each entity and event, which 
is a hash value computed using attributes of nodes and edges. Table 3 shows how
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UID is computed. As a Process ID can be reused for different processes (e.g., 
after the termination of one process and the subsequent start of another), the 
UID of a process is computed using both the process ID and its corresponding 
creation time. To uniquely identify a Thread node, we use a combination of the 
thread ID, the associated Process’s ID and creation time, and the timestamp 
of the “ThreadStart” event corresponding to the creation of the thread. For file 
identification, the UID of a file node is computed using the file name (FileName). 
Similarly, we use the relative path of a registry key (RelativeName) to uniquely 
identify it. IP address (daddr) is used to uniquely identify the network endpoint. 
Since each event occurs at a specific time, each edge is uniquely identified by 
the timestamp associated with the event. Additionally, we include the host name 
(HostName) in computing the UID to differentiate entities across different hosts. 

Table 3. Node and edge UID rules 

UID types UID Rules 
File Node hash(FileName+HostName) 
Process Node hash(ProcessID+CreationTime+ HostName) 
Registry Node hash(RelativeName+HostName) 
Network Node hash(daddr + HostName) 
Thread Node hash(ProcessID+ThreadID+TimeStamp+CreationTime+HostName) 
Edge hash(ProcessID+ThreadID+EventName+Opcode+Timestamp+HostName) 

To construct the computation graph from ETW logs, we first sort and parse 
event logs based on their respective timestamps. For each log entry, we create 
two nodes and a corresponding edge connecting these nodes. The computation 
graph is implemented using a graph library called igraph [ 70]. The resulting 
graph is a multi-graph, meaning that each event corresponds to one edge in the 
graph. 

3.3 Graph Projection 

Computation graphs contain rich information about process activities. However, 
such graphs are usually very large in enterprise network environments [ 62], mak-
ing it difficult to apply machine learning techniques on them directly. To tackle 
this issue, we developed a process-based projection algorithm to decompose the 
computation graph into smaller graphlets. 

Given a process ID, our projection algorithm first traverses the computation 
graph to locate the “ProcessStart” event that matches the process ID, which 
serves as the root of the projected graphlet. The algorithm then starts from the 
root process and uses a procedure similar to taint analysis [ 18] to prune the 
computation graph to include all and only the activities of a process, its descen-
dant processes, and all threads associated with those processes. Descendant pro-
cesses and associated thread nodes are identified by locating “ProcessStart” and
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Fig. 3. An example of graph projection with root process .P1 (TS: ThreadStart, PS: 
ProcessStart). 

“ThreadStart” events during traversal from the root. File, registry, and network 
nodes linked to these processes/threads are also included in the graphlet. The 
complexity of our projection algorithm is .O(V + E), where .V is the number of 
vertices and .E is the number of edges in the graph. 

Figure 3 illustrate the projection of a computation graph onto a graphlet. 
The root process in the graph is . P1. The graphlet contains all activities of . P1, 
its child process . P2, and its associated threads . T2, . T3, and  . T5. File (F), network 
(N), and registry (R) nodes that are connected to these process/thread nodes 
are also added to the graphlet, which are leaf nodes of the graphlet. 

4 Graph-Based Malware Classifications 

We developed a graph-based approach to detect malware based on graphlets 
constructed from ETW logs. Our model, built upon Random Forest [ 10], lever-
ages the temporal and spatial information within graphlets to perform malware 
classification. Random Forest was chosen as the base model due to its ability to 
capture complex and non-linear patterns in smaller datasets as well as its supe-
rior performance compared to alternative models such as logistic regression [ 45] 
and SVM [ 7]. 

Our graph-based approach leverages node types (e.g., process, file, registry, 
network, and thread) and edge-level attributes such as EventName and TimeS-
tamp for malware detection. The temporal information utilized in Graphite is 
the chronological order of event timestamps, which can be classified as local or 
global. Local temporal information refers to the sorted sequence of event times-
tamps associated with specific graph components, such as a thread or between 
two nodes. Global temporal information refers to the chronological order of event 
timestamps across the entire graphlet. Spatial information includes any informa-
tion derived from the connectivity relationships between nodes and edges such 
as information flow between neighboring nodes via edges or the leverage of local 
neighborhood specifics in graph-based methods.
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Our graph-based approach is designed based on the computation graph 
schema described in Sect. 3.1, where threads serve as central entities for estab-
lishing connections with all other node types, while connections among other 
node types are restricted. As described in Sect. 3, thread-centered scheme pro-
vides finer-grained temporal and spacial information (which is specific to each 
thread), than the process-centered scheme. Our graph-based approach lever-
ages local temporal information associated with each thread node using .N -gram 
EventName features extracted from graphlets and utilize spatial information 
surrounding the thread node by counting the types of its neighboring nodes. 

A special case is when .N = 1, where temporal information is no longer 
captured. Instead, the distribution of EventNames associated with a thread node 
is obtained. 

4.1 Generation of Graph Embeddings 

This section describes how Graphite generates graph embeddings. We use an .N -
gram CountVectorizer [ 69] to learn and recognize .N -gram EventName features 
from sorted EventName sequences of all threads from all training graphlets. For 
each thread node in a graphlet, its associated chronologically ordered Event-
Name sequence is obtained from the EventName and TimeStamp attributes of 
its incoming and outgoing edges. 

Next, we utilize the CountVectorizer to count the occurrences of .N -gram 
EventName features within the sorted EventName sequence of each thread node. 

Fig. 4. Generation of thread node embeddings.
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This produces an .N -gram EventName feature vector, capturing temporal infor-
mation local to each thread node. We also count the number of neighboring 
nodes of each type that are connected to each thread node by incoming or out-
going edges. We ensure no duplicate counts for the same neighbor, even with 
multiple edges in between. The alternative counting approach, allowing multiple 
counts for the same neighbor, provides interaction frequency and is used in our 
Extended N-gram approach described in Sect. 4.4. The thread node embedding 
is the concatenation of the thread node’s .N -gram EventName feature vector and 
its neighboring node-type count vector. Figure 4 provides an example illustrating 
how node embeddings are generated for a thread node. The graph embedding 
is derived using sum-pooling [ 79], aggregating all thread node embeddings using 
the element-wise vector-sum operation. 

4.2 Data Encoding and Pre-processing 

We utilize non-machine-specific attributes such as “EventName” for feature 
extraction. Because the “EventName” attribute comprises .59 known categor-
ical values listed in Table 2, we use one-hot encoding to convert it into a binary 
vector of 0’s and 1’s. Two additional features are added to account for ‘Null’ 
and ‘Unknown’ events in ETW logs. This process resulted in a bit-vector repre-
sentation with a length of .61 bits. The “Timestamp” attribute, converted into a 
scalar from its original date-time format, is utilized alongside the “EventName” 
feature vector to compose edge features. For node features, we utilize a .5-bit vec-
tor where each bit denotes a distinct node type, namely file, registry, network, 
process, and thread. The resulting node and edge features are then fed into the 
downstream machine learning model. 

4.3 Real-Time Malware Detection 

The log collection and graphlet generation for our real-time malware detection 
follow the procedure described in Sect. 3. However, waiting for each process to 
complete its execution before classification is impractical for real-time detection. 
To address this, we perform classification for a process when one of the following 
conditions holds: (1) the process completes execution, (2) the size of graphlet 
reaches a pre-defined threshold determined by malware analysts, or (3) the pro-
cess remains inactive for an extended period. Moreover, graphlet generation and 
malware classification can run in parallel across multiple GPUs/CPUs, allowing 
to produce classification results in real-time. Performance results of our real-time 
detection are given in Sect. 5.3. 

4.4 Alternative Graph-Based Approaches 

We also experimented with graph-based approaches outlined below, whose detec-
tion accuracy is presented in Sect. 5. 

Extended .N -gram extends Graphite .N -gram by utilizing additional features 
that provide spatial information around thread nodes. Such features include the
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Table 4. Comparison of different graph-based approaches. 

Graph-based Approaches Spatial Information Temporal Information 
Graphite .N -gram Local to thread Local to thread 
Extended .N -gram Local to thread Local to thread 
Standard .K-hop message passing Information flow None 
.N -gram .K-hop message passing Information flow Local to edge 

number of times a thread node interacts with its neighboring nodes and the 
average number of thread nodes to which a file, registry, network, and process 
node connects. 

Standard .K-hop message passing updates node embeddings by aggregating 
information, such as EventName of incoming edges and node types, from .K-
hop neighbors of nodes (i.e., nodes that are reachable within .K edges) via . K
iterations [ 14]. This approach utilizes spatial information from graphlets, but 
does not incorporate temporal information. 

.N -gram .K-hop message passing integrates temporal information into the 
standard .K−hop message passing by incorporating .N -gram EventName features 
extracted from the event sequence sorted by timestamp of incoming edges. The 
extraction of .N -gram EventName features is facilitated by the conversion of the 
graphlet, a multigraph with each edge representing an event, into timestamp-
sorted event sequences on edges. 

Table 4 summarizes the temporal and space information utilized in different 
graph-based approaches. 

Table 5. Node and edge statistics of malware and benign graphlets. 

Malware Benign 
Mean Standard Dev. Mean Standard Dev. 

Node count 1440.58 803.95 1363.89 624.56 
Edge count 18577.22 14275.37 18066.90 14459.97 
File node 597.03 480.55 593.26 379.07 
Network node 1.26 3.67 1.12 0.63 
Registry node 786.63 521.53 734.92 458.26 
Process node 2.11 2.61 1.96 6.78 
Thread node 53.54 296.35 32.63 61.34 

5 Experimental Evaluation 

This section presents our experimental results. Three machines were used to 
train and tune all models. One machine is equipped with a 2.65-3.6 GHz AMD
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EPYC 7413 CPU and NVIDIA RTX A6000 48GB GPUs, another has a 2.8– 
3.35 GHz AMD EPYC 7402P CPU and NVIDIA Tesla T4 15GB GPUs, and the 
third is a 2.90–3.50 GHz machine with Intel Xeon Gold 6326 processor. 

5.1 Data Collection 

We collected malicious and benign PowerShell scripts from VirusTotal [ 1] and  
over .15 other websites [ 5,13,20,21,30,33,42,49– 53,55,56,59,67,68,71,75]. Each 
PowerShell script labelled as malicious has been confirmed as malicious by 
multiple malware detection engines on VirusTotal. The collected PowerShell 
scripts exhibit diverse writing styles. Some scripts took a considerable amount 
of time to run due to a large number of cmdlets and complex looping struc-
tures, while others finished execution more quickly. Additionally, many mali-
cious PowerShell scripts require appropriate parameters, keyboard input, or a 
specific software version. We analyzed and executed .1, 152 benign and .949 mal-
ware scripts downloaded from the above websites and excluded scripts that 
failed to execute or could not complete their major functionalities. The final 
dataset used in our experiments comprises .690 malicious PowerShell scripts 
and .771 benign ones. We collected logs using four ETW event providers [ 78]: 
(1) Microsoft-Windows-Kernel-Process records operations on processes and 
threads; (2) Microsoft-Windows-Kernel-File captures file-related activities; (3) 
Microsoft-Windows-Kernel-Registry records Windows registry operations; and 
(4) Microsoft-Windows-Kernel-Network records network-related activities. To 
execute malicious PowerShell scripts, we established an isolated virtual machine 
(VM) with Internet connections, ensuring that any activities or changes within 
the isolated virtual machine do not impact the host system or other virtual 
machines. To prevent machine learning models from performing classification 
based on machine/VM-specific information, we collected benign and malicious 
log samples using the same VM configuration. The total number of log entries 
is .81, 726, 548 and .96, 287, 768 for malware and benign samples, respectively. 

Table 5 gives the average number of nodes and edges in graphlets and their 
standard deviations. The table shows that, on average, malware graphlets con-
tain slightly more nodes and edges than benign graphlets. Moreover, the stan-
dard deviation of node counts in malware graphlets is higher than that in benign 
ones. There is no apparent linear relationship to determine whether a graphlet 
is benign or malicious based solely on the number of nodes or edges. The table 
also shows that malicious graphlets tend to have more thread nodes than benign 
ones. While mean values differ between malware and benign samples across dif-
ferent feature types, the substantial overlap in standard deviations suggests that 
individual feature types are not highly discriminatory for distinguishing between 
malware and benign samples. 

5.2 Effectiveness of Graphite 

This section evaluates the effectiveness of Graphite against baseline models that 
ignore the graph structure. The baseline models are Random Forest with . 1, . 2,
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and .4-gram features. In the .1-gram model, the model simply counts the number 
of node types and event names as features, leveraging neither temporal nor 
spatial information of graphlets. The .2-gram and .4-gram models utilize .N -gram 
EventName features extracted from the global timestamp-ordered sequence of 
events (as opposed to per-thread event sequences), combined with node type 
counts. These models leverage global temporal information of graphlets, but not 
spatial information. 

Table 6. Comparison of average validation scores and classification accuracy. 

Mean Avg. 
Val.Acc. 

Mean Avg. 
Val.F1 

Max Avg. 
Val.Acc. 

Max Avg. 
Val.F1 

Test 
Accuracy 

Test 
F1-Score 

Baseline .1-gram 0.749 0.715 0.791 0.772 0.784 0.767 
Baseline .2-gram 0.739 0.689 0.808 0.788 0.791 0.776 
Baseline .4-gram 0.780 0.715 0.868 0.853 0.849 0.832 
Graphite .1-gram 0.748 0.714 0.791 0.771 0.781 0.768 
Graphite .2-gram 0.762 0.717 0.833 0.814 0.815 0.797 
Graphite .4-gram 0.817 0.774 0.898 0.887 0.877 0.863 

Extended .4-gram 0.815 0.772 0.896 0.885 0.883 0.872 

Standard .3-hop M.P. 0.719 0.674 0.772 0.745 0.767 0.736 
.4-gram .3-hop M.P. 0.720 0.677 0.772 0.745 0.781 0.764 
Combined .4-gram 0.804 0.752 0.893 0.882 0.870 0.858 
FEATHER-GRAPH 0.642 0.596 0.670 0.634 0.648 0.619 
Graph2Vec 0.814 0.800 0.871 0.862 0.600 0.580 
GAT 0.706 0.664 0.761 0.731 0.6007 0.5339 
GIN 0.710 0.710 0.786 0.771 0.604 0.567 

We used .80% of the dataset for training and the remainder for testing. To 
ensure a balanced representation, we perform a stratified split [ 38] on the dataset, 
not only by the label but also by the source of PowerShell scripts (i.e., the web-
sites from which the scripts were obtained). This approach is employed because 
scripts originating from the same source tend to exhibit common attributes such 
as writing styles, which may not accurately reflect the script’s actual behavior. 
Performing a stratified split mitigates potential biases introduced by an imbal-
anced distribution of data sources in the dataset. 

The model-tuning process involved an extensive exploration of hyperparame-
ter ranges, comprising .6912 sets generated by combining typical values for hyper-
parameters. We employed .k-fold cross-validation with .k = 10, a widely accepted 
choice. This approach avoids reliance on a single hyperparameter configuration, 
such as default settings, which is crucial for preventing “unintentional hyperpa-
rameter hacking” [ 24]. Hyperparameters yielding the highest validation scores 
were utilized to assess the model’s classification accuracy and F1 scores during 
testing. 

Table 6 presents the mean and maximum average validation scores, test accu-
racy and test F1-scores of the baseline approach, Graphite and other graph-based
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approaches discussed in Sect. 4.4, unsupervised graph-embedding approaches 
Graph2Vec [ 48] and FEATHER-GRAPH [ 58], and two conventional Graph Neu-
ral Network (GNN) models GAT [ 72] and  GIN [  76]. The mean and the maximum 
average validation scores were obtained from hyperparameter tuning based on 
.10-fold Cross Validation, which represent the overall and best performance scores 
across various hyperparameter sets and splits within the training set, respec-
tively. The test scores reflect the performance of the best model on the test set, 
corresponding to the hyperparameter set with the maximum average validation 
score. 

For both baseline models and Graphite, we conducted experiments with . 1, 
. 2, and  .4-gram features. We did not choose higher values, as extracting .N -gram 
features from the long global event sequence could result in significant high fea-
ture dimensions. In the Standard message passing approach, we experimented 
with . 3 hops to ensure sufficient information flow. As .4-gram models consistently 
do better than .1-gram and .2-gram models, we obtained the performance results 
of .4-gram for Extended .N -gram and .N -gram .k-hop message passing approach. 
The Combined .N -gram approach in the table concatenates the graph embed-
dings of Graphite .4-gram and Baseline .4-gram. This integration aims to provide 
the model with both local and global temporal information, exploring potential 
complementary effects. 

To evaluate the performance of FEATHER-GRAPH [ 57], we followed the 
experimental setup outlined in the original paper for graph classification, includ-
ing the hyperparameter settings. This setup utilizes the topological feature of 
node degree to derive graph embeddings, without using any trainable param-
eters. Graph2Vec is a neural embedding model that includes neural hyperpa-
rameters such as the graph embedding dimension and the number of learning 
epochs, along with other non-neural hyperparameters. We used the best empiri-
cal hyperparameter combination that yielded the best performance in the down-
stream task to evaluate the implementation of Graph2Vec given at [ 57]. Once we 
obtained graph embeddings from FEATHER-GRAPH and Graph2Vec, we used 
Random Forest as the classifier and fine-tuned it using the same hyper-parameter 
combinations as Graphite. GAT and GIN were fine-tuned with hyperparameter 
combinations that focused on lower model complexity configurations to avoid 
overfitting on small datasets. 

We observe that Graphite .4-gram achieves the highest average validation 
score and classification accuracy, indicating that local temporal information 
is most effective in distinguishing between benign and malware samples. The 
Extended .4-gram has similar validation scores and accuracy, suggesting that the 
additional spatial features have minimal impact. Among baseline models, the 
.4-gram model performs the best, followed by the .2-gram model, suggesting that 
global temporal information also helps improve the classification accuracy. With 
.1-grams, Graphite demonstrates comparable performance to the baseline model, 
suggesting that neighboring node-type information for thread nodes has minimal 
effect on performance.
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The table also shows that both baseline and Graphite exhibit lower classifi-
cation accuracy compared to the maximum average validation score for .1-gram 
and .2-gram. The classification accuracy of Graphite .4-gram is similar to its max-
imum average validation score. Additionally, Graphite outperforms its baseline 
counterparts in .2-gram and 4-gram, achieving .4% higher test accuracy and test 
F1 score. 

Moreover, the table shows that message passing performs worse than the 
baseline models. As threads serve as the central entities in our schema, it is 
common to observe many cycles between threads and other node types within 
the computation graph. In our dataset, over .50% of distinct node pairs exhibit 
cyclic relationships for both benign and malware graphlets. In such a topology, 
multi-hop information propagation leads to an excess of cyclic information flows, 
a recognized issue with message passing [ 14]. The conventional GNN models, 
GAT and GIN, which leverage message passing to extract spatial information, 
also did not perform well. This can be attributed to GNNs being prone to over-
smoothing [ 16] in such highly cyclic topology. 

The table also shows that FEATHER-GRAPH did not perform well. This is 
because the graph embeddings generated from FEATHER-GRAPH captures the 
structural information of the graph, but benign and malware graphlets are not 
easily distinguishable based on graph structure. This is based on the observation 
that in both benign and malware graphlets, there are typically .4−5 active threads 
interacting with different node types, with a higher number of connections linked 
to file and registry nodes. Graph2Vec achieves high average validation scores 
but the lowest test scores. Graph2Vec trains an embedding neural network to 
produce similar embeddings for structurally similar graphs. It captures nuanced 
structural information within the training graphs, leading to high validation 
scores. However, the low test scores indicate that Graph2Vec may not generalize 
well to unseen graphs. Some researchers suggest that Graph2Vec is non-inductive 
and does not naturally generalize to unseen graphs outside the training set [ 4]. 

5.3 Real-Time Responsiveness 

It took .10 seconds to start Silkservice and .45 seconds to initialize the logstash. 
Logstash processes and transfers event logs to Elasticsearch without any notice-
able delay. On average, it takes approximately .3.07 seconds to collect .1, 000 log 
entries. Generating one graphlet from .1, 000 log entries takes approximately . 0.9
seconds on average, including the time to construct the computation graph (. 0.83
seconds) and perform the projection to generate the graphlet (.0.06 seconds). 
On average, producing prediction results for samples with .1, 000 nodes takes 
approximately .0.08 seconds for Graphite 2-gram and .0.56 seconds for 4-gram, 
on average. 

Table 7 presents the classification accuracy and F1-score of baseline models 
and Graphite using threshold values of .500 and .1, 000 nodes, which correspond 
to roughly one-third and two-thirds of the average number of nodes in graphlets, 
respectively. The table shows that, for both thresholds, the accuracy of F-1 score 
of Graphite .1-gram and .2-gram is similar to their baseline counterparts. The
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Table 7. Real-Time detection accuracy with a threshold of .500 and .1, 000 nodes. 

Test 
Accuracy #500 

Test 
F1-Score #500 

Test 
Accuracy #1000 

Test 
F1-Score #1000 

Baseline .1-gram 0.670 0.686 0.741 0.725 
Baseline .2-gram 0.758 0.734 0.741 0.723 
Baseline .4-gram 0.802 0.779 0.808 0.799 
Graphite .1-gram 0.706 0.697 0.747 0.736 
Graphite .2-gram 0.730 0.713 0.758 0.744 
Graphite .4-gram 0.846 0.829 0.867 0.859 

classification accuracy of Graphite .4-gram is the best for both .500 and . 1, 000
thresholds, which is close to that of offline detection (.0.846 vs. .0.877 and . 0.867
vs. .0.877, respectively), indicating that Graphite .4-gram performs well even with 
partial sub-graphs. 

Additionally, Graphite consume .135MB memory for classifying each sample, 
which includes the memory used for loading one graphlet into memory, extracting 
the feature vector from that graphlet, and making a prediction. 

5.4 Distribution of Average Validation Scores 

Figure 5(a) presents the distribution of average validation scores of Graphite .4-
gram and Baseline .4-gram across all .6912 hyperparameter sets evaluated using 
10-fold cross validation. The figure shows that the average validation scores of 
Graphite .4-gram are consistently higher than those of baseline 4-gram, indicat-
ing the sustained effectiveness of Graphite .4-gram rather than being limited to 
isolated outliers. Figure 5(b) shows that higher .N in .N -gram features improves 
the validation accuracy. 

The figure also visualizes the distribution’s shape, which is required informa-
tion in selecting the appropriate hypothesis testing method. Given the paired 
nature of the average validation scores between Graphite .4-gram and baseline 
.4-gram, and considering their non-normal, multimodal distributions observed in 
the figure, we selected a paired non-parametric permutation test with median 
test statistic to assess the statistical significance of the score differences. Uti-
lizing the median test statistic to compare central tendencies, .1-gram results 
(p-values of .0.9804 for average validation accuracy and .0.29 for average valida-
tion F1-scores) indicated no significant difference. However, for both .2-gram and 
.4-gram, p-values of .0.0002 for average validation scores demonstrated statistical 
significance.
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Fig. 5. Average validation accuracy distribution. 

6 Related Work 

This section presents related work on fileless malware attack detection and 
graph-based malware detection. 

6.1 Fileless Malware Attacks 

Memory-based detection methods examine computer memory to unveil traces 
left by fileless malware attacks [ 9,36,37,64,80]. These techniques extract fea-
tures from memory contents and then apply rule-based methods or machine 
learning models to detect fileless malware. However, most of these techniques 
rely on known malware signatures for identification, and signature-based detec-
tion methods are prone to evasion attacks [ 60]. Additionally, these techniques 
can cause significant performance degradation due to continuous memory scan-
ning [ 8]. 

Static analysis techniques have been developed to detect malicious Power-
Shell scripts. Mimura et al. [ 46] decomposed PowerShell scripts into individual 
words and utilized them as machine learning features to detect fileless malware. 
Danny et al. [ 27] detected evasive malicious PowerShell commands using natural 
language processing and character-level Convolutional Neural Networks (CNNs). 
Choi et al. [ 17] leveraged Graph Convolutional Networks (GCNs) to calculate 
Jaccard similarities between new and existing scripts and used these similari-
ties to construct an adjacency matrix for the detection of malicious activities. 
Bucevschi et al. proposed techniques based on the perceptron algorithm [ 54] to  
detect anomalies in PowerShell code by extracting relevant features, and build-
ing a model to describe a malicious command [ 11]. Li et al. [ 43] developed a 
sub-tree based deobfuscation method to help detect malicious obfuscated Pow-
erShell scripts. However, the above approaches require the source code of the
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scripts and may be thwarted by dynamic script generation and sophisticated 
code obfuscation. 

Researchers have also employed dynamic analysis for malware detection. 
Lanzi et al. [ 41] proposed to use a system-centric access activity model, which 
monitors interactions between benign programs and the operating system, to 
detect malware. This approach, however, detects only malware that tampers 
with binaries or settings of the operating system or applications. Jindal et al. [ 35] 
proposed Neurlux, which utilizes a Cuckoo sandbox to generate dynamic analy-
sis reports detailing behavioral information, and uses word sequences present in 
these reports to predict whether a report is from a malicious binary. However, 
this work focuses on classifying given samples rather than detecting malware in 
real time. 

6.2 Graph/Provenance-Based Malware Detection 

There have been numerous attempts at detecting malware attacks using 
provenance-based techniques. These techniques involve the construction of prove-
nance graphs from computer system logs, which are further examined to iden-
tify malware attacks. Shu et al. [ 62] identified malicious behavior by construct-
ing computation graphs that support historical and real-time threat detection. 
SLEUTH [ 31] performs policy-based real-time attack detection and reconstruc-
tion using computation graphs constructed from system call logs. [ 61] integrated 
audit logs and taint analysis to trace historical provenance data and detect 
anomalous activities within the system. In [ 44], the authors developed malware 
detection techniques through analysis of ETW logs and critical sections of appli-
cation executables. RAIN [ 34] records system-call events at runtime and conducts 
dynamic information flow tracking (DIFT) to detect attacks. Wang et al. [ 32] 
employed system audit logs and dependency-preserving log reduction methods 
to offer insights into attack specifics (e.g., the direction, timing and the execution 
details) of Advanced Persistent Threats (APTs). The above works focus on rule-
based approaches to detect malicious activities. Our method, in contrast, applies 
graph-based machine learning methods for automated detection of fileless mal-
ware. Wang et al. [ 73] proposed ProvDetector, a provenance-based approach for 
detecting stealthy malware. This method uses a set of benign provenance graphs 
generated from the same program in various environment as the training dataset 
to build a model to detect if the program has been hijacked by stealthy mal-
ware. However, ProvDetector cannot detect malicious software other than the 
monitored programs. UNICORN [ 25] constructs provenance graphs using pub-
licly available datasets and employs a K-medoids clustering algorithm to detect 
anomalies related to APT attacks that deviate from the host’s normal evolving 
behavior. Unlike our approach which focuses on detecting fileless malware, UNI-
CORN is specifically tailored to the characteristics of APTs. Additionally, the 
provenance graphs proposed in the aforementioned work are process-centered. 
In contrast, our computation graphs are thread-centered, providing finer-grained 
information specific to each thread.
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Despite the success of graph neural networks (GNNs) in other graph-based 
domains, their utilization in malware detection is relatively limited. Yan et 
al. [ 77] used Deep Graph Convolutional Neural Networks (DGCNNs) [ 79] to  
classify malware executables represented as CFGs. SDGNet [ 81] uses a Graph 
Convolutional Network (GCN) to classify malware samples based on their control 
flow graphs. DL-FHMC [ 2] utilizes CFG-based behavioral patterns for adversar-
ial IoT malicious software detection. Soteria [ 3] employs an auto-encoder and a 
CNN architecture to detect and classify malware samples represented as CFGs. 
Kang et al. [ 39] applied static analysis techniques to construct function call 
graphs (FCGs) from malware programs and utilizes an ensemble classifier to 
detect malware based on FCGs. Herath et.al. [ 29] propose techniques to identify 
subgraphs of the malware CFG that contribute most towards classification and 
provide insight into importance of the nodes within it. However, as the above 
works require static analysis of the malware programs to construct FCGs or 
CFGs, they are not suitable for malware detection in situations where these 
malware programs are not available, such as fileless malware attacks. 

7 Conclusion and Future Work 

This paper presents Graphite, a graph-based approach to automatic detection 
of fileless malware attacks in real-time. Graphite generates computation graphs 
from system event logs collected via ETW and projects them into smaller 
graphlets, which are then fed into a graph-based malware detection model. 
We have evaluated the effectiveness of Graphite using benign and malicious 
PowerShell scripts from numerous sources. Our experimental results show that 
Graphite achieves .87.7% classification accuracy in offline testing, and .84.6% and 
.86.7% accuracy in real-time detection for two different pre-defined thresholds. 
In the future, we plan to leverage explainable AI to further improve the detec-
tion accuracy of Graphite. We also plan to develop methods to bridge the gap 
between explanations generated by explainable AI tools and those that human 
analysts can easily understand. 
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