2018 IEEE Symposium on Privacy-Aware Computing

BigBing: Privacy-Preserving Cloud-Based Malware Classification Service

Yunus Kucuk Nikhil Patil

Zhan Shu Guanhua Yan

Department of Computer Science
Binghamton University, State University of New York
{ykucukl1, npatil5, zshul, ghyan}@binghamton.edu

Abstract—Although cloud-based malware defense services have
made significant contributions to thwarting malware attacks,
there have been privacy concern over using these services to
analyze suspicious files which may contain user-sensitive data.
We develop a new platform called BigBing (a big data approach
to binary code genomics) to offer a privacy-preserving cloud-based
malware classification service. BigBing relies on a community of
contributors who would like to share their binary executables,
and uses a novel blockchain-based scheme to ensure the privacy
of possibly user-sensitive data contained within these files. To
scale up malware defense services, BigBing trains user-specific
classification models to detect malware attacks seen in their
environments. We have implemented a prototype of BigBing,
comprised of a big data cluster, a pool of servers for feature
extraction, and a frontend gateway that facilitates the interaction
between users and the BigBing backend. Using a real-world
malware dataset, we evaluate both execution and classification
performances of the service offered by BigBing. Our experimen-
tal results demonstrate that BigBing offers a useful privacy-
preserving cloud-based malware classification service to fight
against the ever-growing malware attacks.

I. INTRODUCTION

Recent years have witnessed continued growth of malware
species that harm the trustworthiness of cyberspace. According
to G Data, a computer security firm based in Germany, it
took only 4.2 seconds to observe a new malware specimen
in the first quarter of 2017, reduced from 4.6 seconds in
2016 with a yearly total of 6.83 million [23]. Against such
ever-growing malware threats, the existing signature-based
approach to malware defense has been found increasingly use-
less in practice [24], [37]. To counter against the humongous
malware threats in the cyberspace, a large body of research
efforts have applied machine learning techniques to automate
malware defense (e.g., [22], [39], [34], [31], [36]).

Machine learning-based malware defense works effectively
only if there exist sufficient data and computational power
to train accurate predictive models. For a large number of
end users — either institutional or personal — who do not have
access to such resources, their only plausible solution is to use
cloud-based services that support machine learning-based mal-
ware defenses. Indeed, cloud-based malware defense services,
such as VirusTotal [20] and now-discontinued Anubis [3], have
made significant contributions to the community by offering
free malware analysis services. These services use existing AV
(Anti-Virus) scanners or customized malware analysis tools to
analyze the binary samples uploaded by their end customers
and then send back the malware analysis reports.

978-1-5386-8442-9 /18/$31.00 ©2018 IEEE
DOI 10.1109/PAC.2018.00011

43

Unfortunately, cloud-based malware defense services pro-
vided to the end users may come at a hefty privacy cost. For
example, it has been recently found that terabytes of corporate
data, which contain a wide spectrum of sensitive data such
as passwords, keys and proprietary trade secrets, have been
leaked by an end-point anti-malware detection and response
tool called Carbon Black Cb Response through its use of
the free VirusTotal service [8]. On its About page, VirusTotal
clearly states that “Files and URLs sent to VirusTotal will be
shared with antivirus vendors and security companies so as to
help them in improving their services and products. We do this
because we believe it will eventually lead to a safer Internet
and better end-user protection.” [2]

Another challenge for cloud-based malware defenses is that
it is hard to scale the services at the granularity of individual
binary samples. With advanced polymorphic or metamorphic
mechanisms [42], voluminous malware variants can be gener-
ated within a short period of time. Therefore, when a cloud-
based malware defense service becomes popular, it becomes
increasingly difficult for its operator to provision sufficient
computational resources that can keep up with the pace of
new malware attacks. Indeed, the free malware analysis service
offered by Anubis has been discontinued, citing the reason as
lack of “resources to maintain these tools and improve them
to match an ever-changing malware landscape” [3].

Against this backdrop, we have been developing a new
platform called BigBing (a big data approach to binary
code genomics), which offers a privacy-preserving cloud-
based malware classification service. Like other cloud-based
malware defense platforms, BigBing relies on a community
of users to contribute their binary samples. Through BigBing,
however, users’ privacy is preserved because a user uploads
only part of each sample, which alone cannot reveal any
sensitive data. Using proper cryptographic primitives, BigBing
receives a valid binary sample only if multiple parties have
seen the same sample and uploaded complementary chunks
that can be used to reconstruct the entire binary executable.

To facilitate scalable malware defenses, BigBing offers a
classification modeling service: it trains user-specific clas-
sification models from datasets dynamically generated with
distributions that closely match those seen in end users’
environments. Instead of classifying individual binary samples
for end users — which makes it hard to scale the service
to process voluminous malware variants, BigBing returns the
classification models to the users, who should use their own

IEEE
computer
® psoaety

computational resources to apply these models for classifying
binary executables seen in their environments. To accommo-
date various operational environments, BigBing allows a user
to provide her specific operational constraints for training
an actionable classification model. Moreover, while offering
classification modeling as a service, BigBing respects a user’s
privacy by not requesting any information unless it is needed
to train an appropriate classification model for her.
In a nutshell, our main contributions include:

« Inspired by a recent incident of user-sensitive data leak-
age from a cloud-based malware analysis platform, we
have developed a blockchain-based method to support
privacy-preserving sharing of binary executable files in
a cloud environment;

« Different from existing cloud-based malware defense
platforms that offer malware analysis at individual sample
level, we have developed a system that offers malware
classification as a service, which trains user-specific
classification models to detect malware attacks seen in
their environments. The service uses a PSI (Private Set
Intersection)-based protocol for the server to infer the
data distribution in a user’s operational environment.

« Using big data computing platforms (e.g., Spark and Cas-
sandra) and the Flask web application micro-framework,
we have implemented a prototype of BigBing, comprised
of a big data cluster, a pool of servers for feature
extraction, and a frontend gateway that facilitates the
interaction between users and the BigBing backend.

o Using a real-world Windows PE (Portable Executable)
malware dataset, we have evaluated the malware classi-
fication service provided by BigBing from both perspec-
tives of execution and classification performances.

The remainder of the paper is organized as follows. Sec-
tion II introduces related works. Section III presents the archi-
tecture of BigBing as well as its privacy concerns. Section IV
gives a blockchain-based scheme for binary sample sharing
and Section V discusses how BigBing offers classification
modeling as a service. Section VI provides the implementation
details of BigBing. Section VII shows the evaluation results
of BigBing. We draw concluding remarks in Section VIIL

II. RELATED WORKS

Due to the voluminous malware variants, machine learning
has become a popular method to automate malware defenses
(e.g., [22], [39], [34]. [31], [36]). The development of BigBing
has been inspired by two practical challenges in this trend:
how to preserve users’ privacy in collecting malware data
needed for training machine learning models and how to scale
up services to a large number of users. Particularly, although
there has been wide-spread privacy concern over data stored
on public clouds [30], few works have addressed the privacy
challenge of cloud-based malware defense services. Private set
intersection was used in [43] to achieve malware confirmation
in a privacy-preserving manner with focus on signature-based
malware detection.

44

(A il
o R R
- Big data cluster Server pool
LAN
Frontend gateway |
& i 3 —&3
o
@ Internet m
/ —_—
I
#h =2
Binary Sample BigBing
Contributor Attacker Service User
Fig. 1. The architecture of BigBing

Similar to BigBing, a few previous works [29], [33], [28]
have used big data processing capabilities — particularly the
Hadoop implementation of MapReduce — for malware cluster-
ing, triage, and similarity detection. A distinguishing feature
of BigBing compared to these previous efforts is that it uses
big data computing to train predictive models that are tailored
to users’ specific operational environments.

III. ARCHITECTURE OF BIGBING

The design of BigBing has been inspired by the open cloud-
based malware analysis platforms, such as VirusTotal [20] and
now-discontinued Anubis [3]. It relies on a community of users
(institutional or personal) to share their binary samples through
its frontend gateway. BigBing stores these user-contributed
binary samples on a big data cluster machine. BigBing uses
a server pool to extract various features from both static and
dynamic analysis of these binary samples. These feature data
are also stored on the big data cluster machine.

To offer malware classification modeling service, BigBing
requires an end user to upload a sample list of binary exe-
cutable hashes. From this list, BigBing estimates the distribu-
tion of the binary executable data encountered in the user’s
operational environment, and then uses it to construct dynam-
ically a training dataset that closely matches this distribution.
Training a user-specific classification model helps improve
classification accuracy when the model is deployed in her
environment; for example, a university and a bank may need
different binary executable classification models for detecting
the same type of malware attacks.

As illustrated in Figure 1, the physical infrastructure of
BigBing is comprised of three key components connected
within a LAN (Local Area Network):

e Big data cluster: The big data cluster uses HDFS [5]
to store a large corpus of binary executable programs as
well as the feature data extracted from them. The big data
cluster uses the Cassandra database [4] to manage these
feature data. Moreover, Apache Spark and its machine
learning library ML [6] are used to train classification
models from the feature datasets.

e Server pool: The server pool includes commodity server
machines to extract different types of features from binary
executables. A server can run virtual machine-based
sandboxes to observe their dynamic behaviors, execute a
licensed IDA Pro application to disassemble them through

[block_id [block_id [block_id [block_id

[chain_hash [chain_hash [chain_hash [chain_hash

[timestamp [timestamp [timestamp [timestamp

[state [state [state [state

[creator === [creator == [creator == creator

[0 bin_hash [0 bin_hash [bin_hash [bin_hash

[order [J order [order [J order

0 chunk_hashes[N,,,.] 1 chunk_hashes[Nyeq,] [chunk_hashes[Ny.e.] 0 chunk_hashes[Ny...]
Fig. 2. Tllustration of the blockchain for binary executable sharing

static analysis, or be simply used as a baremetal machine
to run these samples in a sterile environment.

e Frontend gateway: The frontend gateway of BigBing
offers a web interface to interact with both binary sample
contributors and BigBing service users. A binary sample
contributor can download a blockchain from the gateway,
based on which she decides what binary samples she
may be able to contribute to BigBing. On the other hand,
through the gateway, a BigBing service user can request
BigBing to train an actionable binary executable classifi-
cation model that best suits her operational environment.
To prevent malicious parties from abusing the service
offered by BigBing, the frontend gateway enforces access
control with password-based authentication.

Threat model. BigBing is designed to achieve two im-
portant property, safety and liveness, and this work considers
any threats posed to each of these properties. Different from
existing cloud-based malware analysis platforms, BigBing puts
privacy preservation into its core design. The safety property of
BigBing concerns whether BigBing, if operated by the adver-
sary, can obtain any sensitive data from its users who use or
contribute to its service. As BigBing relies upon a community
of contributors to share their binary executable samples, a
user may be concerned with uploading an executable program
containing her sensitive data. As evidenced by the recent data
leakage incident from shared malware [8], the user’s concern
is obviously not unfounded. Moreover, for BigBing to train
a user-specific classification model, a user needs to upload a
sample list of binary executable hashes. If BigBing itself does
not have the binary executable program whose hash value
appears on the list, it is totally unnecessary for BigBing to
know it because it does not help improve the accuracy of the
classification model trained but the hash value still reveals
the user’s sensitive information (i.e., the list of executable
programs that the user runs in her environment).

The liveness property of BigBing concerns whether its
operation can be disrupted by malicious users. The adversary
may abuse the service of BigBing by uploading incorrect
executable files or preventing legitimate users from uploading
the correct binary samples. The liveness property of BigBing
is to ensure that its operation should be resilient against this
kind of DoS (denial-of-service) attacks by malicious users.

IV. BLOCKCHAIN-BASED BINARY EXECUTABLE SHARING

Our key idea of addressing users’ privacy concern when
sharing binary executable files with BigBing is to let a user
upload only a chunk of each binary executable file, from which

45

no sensitive data can be leaked to BigBing. Unless there are at
least Npeers users, where Npeers is a system parameter, willing
to upload distinct chunks, BigBing is unable to reassemble the
original binary executable file and thus cannot obtain sensitive
data about any of the users who have uploaded their portions.
Our privacy model is sound: if multiple users have seen
the same binary executable sample in their own operational
environments, it is unlikely to contain data uniquely sensitive
to any of them. In cases where an organization has multiple
employees who may have received multiple copies of the
same malware, they should share the same user account when
contributing to BigBing.

To enforce this privacy model, we use a blockchain-based
scheme to synchronize the users’ knowledge about what
portions of a binary executable sample have already been up-
loaded to the BigBing server. As BigBing operates on a cloud,
it is natural for it to maintain the blockchain, alleviating the
high overhead incurred due to a fully decentralized blockchain
network such as Bitcoin [7] and Ethereum [10].

The blockchain data structure is illustrated in Figure 2. Each
block contains the following fields:

o block_id: The genesis block has a block_id of 0, and
every ensuing block increases its block_id by 1.

o chain_hash: The chain_hash field is used to check the
integrity of the blockchain. It is calculated as the hash of
the current block, except that its chain_hash field is filled
with the chain_hash value of the previous block.

o timestamp (or fs): It gives the time when the current
block is created.

« state: The state of a block can be PENDING (created by
a client), COMMITTED (created by the server, indicating
that a chunk of the binary executable file has been
received by the server successfully), and COMPLETED
(created by the server, indicating the the binary executable
can be reassembled successfully).

« creator: The creator’s ID is given by the field.

« bin_hash: It gives the hash of the binary executable file.

o chunk_hashes: For privacy preservation, a binary exe-
cutable sample is transformed into chunks that satisfy the
following requirement: a party cannot find any sensitive
data from a binary executable file without obtaining
all its chunks. We use transform(b, h) to define the
transform of binary executable file b whose hash is A
t0 Npeers chunks, and reconstruct(chunks, h) the reverse
operation to reconstruct a binary sample b from its chunks
obtained with transform(b, h). We will discuss how to
choose the transform and reconstruct functions shortly.
To simplify verification, the chunk_hashes field of a block
contains the hashes of all the chunks derived from the
binary executable hashed to bin_hash, even though it may
represent only one chunk of the binary executable sample.

o order: It gives the order number of the chunk, from 0 to
Npeers — 1, represented by the current block.

Obviously the naive approach of partitioning the plaintext of
a binary sample into N5 pieces does not preserve privacy.

There are two alternative approaches:

o SAE (striping-after-encryption): Using a block cipher of
256 bits (e.g., Rijndael-256 [25]), the binary sample
is encrypted with its own hash as the key. Chunk ¢,
where 0 < ¢ < Npeers — 1, contains all the bytes in
the encrypted file where their locations, j’s, satisfy the
following: j mod Npeers = ¢. The SAE scheme works
well in a practical setting where Npee,s is small. Consider
a practical setting where Npee,s is 4 and the adversary
wants to use a dictionary attack to recover the plaintext
from partial ciphertext encrypted with the block cipher
whose key is known. With k£ chunks in the ciphertext
missing, the adversary needs to attempt 22°6%/4/2 on
average, which makes his attack effort equivalent to
breaking a block cipher with a block size of 64k bits.

o AONT (all-or-nothing-transformation): We follow the all-
or-nothing encryption algorithm described in [41]. The
binary sample b is divided into Npe.,s — 1 pieces, denoted
as {b; }1<i<N, ... —1- Let Ko(b) be the hash of the binary
sample b stored in the bin_hash field in the block, and
K'(b) its hash with another hash function. Using Ex (V)
to denote the encryption of Y with key X, the first i-th
chunk, b}, where 1 < i < Npeers — 1, is given by b; &
E () (i) and the last chunk is K'(b)Dh1®...0hN,,.,, 1
where h]' = EKo(b)(b{J‘ @j) for j = 1,2, ~~7Npeers — 1.
Due to all-or-nothing transformation, if all the chunks
are available the reconstruction process can be efficiently
done, but any missing chunk makes it hard to reveal any
sensitive information contained in sample b [41].

When contributing binary executable samples to BigBing,
each user executes a client-side protocol to interact with its
server counterpart running on the cloud side.

Client: When a user whose ID is cid has a list of binary
executables, denoted by binlist, to share with BigBing, she
calls the CLIENT procedure, whose pseudocode is given in
Algorithm 1. The user also maintains a local list, checklist,
which stores the hashes of all the binary executables for each
of which she has contributed a chunk to BigBing. Hence, if
any of the binary executables on binlist has its hash appear
on checklist, it is immediately ignored to enforce the privacy
policy of BigBing. The CLIENT algorithm uses a priority queue
@ to process chunk uploading in an event-driven manner. Each
element in the queue is the hash of a binary executable with
its priority as the time it should be processed. Initially, the
algorithm inserts the hashes of all the binary executables on
binlist into the queue, with their priorities all set to be the
current time.

If the queue is not empty, at each step, the hash of a
binary executable with the smallest time is scheduled to
be processed at its corresponding time by calling procedure
TIMER_HANDLER. Inside the handler, the client sends a re-
quest that contains the binary hash h and the size of its local
blockchain to the server. In its response, the server sends back
the remaining blockchain that the client has not seen yet.
The client verifies that all the blocks must be valid, using

46

their chain_hash fields (Line 17-22 in Algorithm 1), before it
updates its local copy of the blockchain. The client then calls
procedure UPLOAD to upload a chunk of the binary executable
to the server (if necessary). Finally, the client extracts the next
event with the smallest firing time from priority queue () and
schedules a timer for it.

When calling procedure UPLOAD, the client checks if the
binary hash has already appeared on checklist to ensure that
no more than one chunk will be uploaded to the server. After
passing the check, it performs the following to decide which
chunk it should upload to the server: it goes through the
blockchain and searches previous transactions on the same
binary executable (based on its hash). If a chunk is in a state of
COMMITTED (someone else has already uploaded the chunk)
or COMPLETE (the server has reassembled the entire binary
executable that matches the bin_hash field), it should not be
re-sent. Otherwise, if a chunk is a state PENDING (someone
else is trying to send the same chunk to the server, but it is
not yet committed), the client checks if the transaction has
expired (each transaction has an expiration period Tegp). If
the transaction has not yet expired, the client does not attempt
to upload this chunk for the moment. If the client can find
a chunk that is not either committed, completed, or pending
but not expired, it can proceed to upload this chunk. When
doing so, it creates a new block with its fields properly filled
and sends it to the server; meanwhile, it spawns a new child
process to deal with uploading the chunk to the server and
then adds the hash of the binary executable to checklist.

If all the chunks are pending and not expired, the client
cannot find any chunk to upload at the current moment. In
that circumstance, it inserts a new event to priority queue @
for the same binary executable, with its firing time scheduled
at the earliest expiration time of all these chunks with a delay
of T,;p/2 to absorb clock skewness.

Server: On the server side, it calls the SERVER procedure,
which is given in Algorithm 2. The blockchain C' is initialized
with a genesis block, where its block_id field is 0, its bin_hash
field is O (a non-existing binary executable), and its chain hash
is calculated by assuming that the previous block’s chain hash
is 0. The main body of the SERVER procedure is a loop on
processing each incoming request from a client. To prevent
abuse of service, BigBing allows each user to send at most
LIMIT requests for the same binary executable (Line 10 in
Algorithm 2). Once it receives a legitimate request, the server
sends back the remaining blockchain that the client has not
seen and then waits for the client to send a new block until a
timeout of 7 time units expires.

The server verifies a new block sent from the client: its
chain_hash field must be correct — given this block and the
last block’s chain_hash field, its state field must be PENDING,
its creator must be the client that the server is talking to, its
order number must be valid, its block_id must be that of the
last block plus 1, and its timestamp is within T¢,), time units
relative to the current time. If the new block is valid, the server
puts it at the end of its copy of the blockchain and then spawns
a child process to accept a new chunk from the client. The

Algorithm 1 CLIENT(cid, binlist, checklist)

Algorithm 2 SERVER(sid)

1:
2:
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:

54:
55:

56:
57:
58:
59:
60:
61:
62:
63:
64:
65:

Q@ < an empty priority queue

for each binary executable e on binlist do
h < hash(e), t « get_cur_time()
if h is on checklist then continue end if
insert_with_priority(Q, h,t)

: end for
: if not is_empty(Q) then

(h,t) < pull_highest_priority_element(Q)
Schedule a timer to be fired at time ¢t with parameters

. (h, C, cid, binlist, checklist, Q)

end if

procedure TIMER_HANDLER(h, C, cid, binlist, checklist, Q)
request:
Inform the server of the beginning of a transaction
Send a request (h, size(C')) to the server for the blockchain
Wait for response C’ from the server
prev_h < last block’s chain_hash in C' (or NULL if
size(C) = 0)
for each block b on C’ do
cur_h < b.chain_hash, b.chain_hash < prev_h
if cur_h # hash(b) then go to request end if
prev_h < cur_h, b.chain_hash < cur_h
end for
C«+C+ ' > Append C’ to the tail of C
Call UPLOAD(h, C, cid, binlist, checklist, Q)
Inform the server of the end of transaction
if not is_empty(Q) then
(h,t) < pull_highest_priority_element(Q)
Schedule a timer to be fired at time ¢ with parameters
(h, C, cid, binlist, checklist, Q)
end if
end procedure

procedure UPLOAD(h, C, cid, binlist, checklist, Q)
if h is on checklist then return end if
Initialize array exp of size Npeers With MAX_INT’s
chunks < transform(binlist[h], h)
for i =0, ..., npeers — 1 do
chashes|i| + hash(chunks][i])
end for
for each block b on C' do
if (b.bin_hash # h) or (b.order ¢ {0, ..., Npeers — 1})
or (b.chunk_hashes # chashes) or (b.state = PENDING and
get_cur_time() — b.ts > Teqp) then
continue
end if
if b.state = COMMITTED or COMPLETED then
explb.order] + —1
else if b.state = PENDING and exp[b.order] > 0 then
explb.order] + min(exp[b.order],b.ts + Tezp)
end if
end for
uploaded < false, min_exp < MAX_INT
for : =0, ..., npeers — 1 do
if exp[i] = MAX_INT then

b < last block on chain C'

Create a new block nb with nb.block_id
lb.block_id + 1, mnb.chain_hash lb.chain_hash,
nb.state = PENDING, nb.creator = cid, nb.timestamp =
get_cur_time(), nb.chunk_hashes chashes,
nb.bin_hash = h, nb.order =1

nb.chain_hash < hash(nb)

Send nb to the server, and also spawn a child process
to transfer chunks[i] to the server

Add h onto checklist, uploaded < true

break

else if exp[i] > 0 then
min_exp < min(min_exp, expli])
end if
end for
if uploaded is false and min_exp < MAX_INT then
insert_with_priority(Q, h, min_exp + Tezp/2)
end if
end procedure

47

19:
20:
21:
22:
23:

24:
25:
26:
27:
28:
29:
30:
31:
32:

33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:

50:
51:
52:
53:
54:

RRS AR S S

: C < genesis block, buf < 0, cmap < (0, sem < Semaphore()
: for each transaction from any client cid do
Obtain its request (h,len) for the blockchain
if len > size(C) then go to FINAL end if
count < 0
for each block b on C' do
if b.bin_hash = h and b.creator = cid then
count < count + 1 end if
end for
if count > LIMIT then go to FINAL end if
Send all the blocks on C' from len to the end to client cid
Schedule a timer to be fired after 7 time units
: WAIT:
Wait for the timer to fire or a new response r from client cid
if response r is a new block from client cid then
cur_h < r.chain_hash, lb < last block on C
r.chain_hash < lb.chain_hash
if cur_h # hash(r) or r.state # PENDING or
r.creator # cid or r.order ¢ {0, ..., Npeers — 1} or r.ts >
get_cur_time() + Teap/2 or r.ts < get_cur_time() — Tezp/2
or r.block_id # lb.block_id + 1 then
Cancel the timer, go to FINAL
else

r.chain_hash < cur_h

Append block r at the tail of C

Spawn a child process calling RECV_CHUNK(r, cid)
to receive a chunk of binary executable from client cid

end if
go to WAIT
end if
FINAL:
sem.Acquire(), move items in buf into bu f2, sem.Release()
if buf2 is empty then continue end if
b + last block on C'
for each (h,o, chashesg
Create a new block nb with nb.block_id = lb.block_id+
1, nb.bin_hash h, nb.order o, nb.chain_hash =
Ib.chain_hash, nb.state = COMMITTED, nb.creator = sid,
nb.ts = get_cur_time(), nb.chunk_hashes = chashes
nb.chain_hash <+ hash(nb)
Append nb at the tail of C'
end for
done_set = ()
for each (h,o,chashes) in buf2 do
if h in done_set then continue end if
ready < true
for i = 0,) Npeev‘s do
if cmap[chashes&i]] is empty then
ready < false end if
end for
if ready is false then continue end if
chunks < {cmap[chashes[i]]}1<i<Npeers
de < reconstruct(chunks, h)
if hash(de) = h then

b < last block on C'

Create a new block nb with nb.block_id =
Ib.block_id + 1, nb.bin_hash h, mb.order -1,
nb.chain_hash = lb.chain_hash, nb.state = COMPLETED,
nb.creator sid, nb.ts get_cur_time(),
nb.chunk_hashes = chashes

nb.chain_hash < hash(nb)

Append nb at the tail of C, add h to done_set

end if
end for
end for

in buf2 do

55:

56:
57:
58:
59:
60:
61:
62:
63:
64:

procedure RECV_CHUNK(b, cid)
Wait for cid to transfer a chunk ch
if hash(ch) = b.chunk_hashes[b.order] then
sem.Acquire()
Add (b.bin_hash, b.order, b.chunk_hashes) into buf
cemap|b.chunk_hashes[b.order]] < received chunk
sem.Release()
end if
end procedure

child process calls the RECV_CHUNK to receive the chunk
from the client, and if its hash matches that of this chunk
stored in the block, it saves the chunk inside a map, cmap,
keyed by the chunk hash.

At the end of the main loop of the SERVER procedure, the
server checks if any new chunks (not necessary from the client
that the server just talked to) have been received. For each
received chunk, the server creates a new block with its state
set to be COMMITTED and appends it to the tail of the current
blockchain with its chain_hash field properly calculated. It
is also possible that a new chunk received allows the server
to reassemble an entire binary executable. Using the chunk
hashes as the keys to search cmap, the server reconstructs the
binary sample. If the reconstructed sample has the same hash
as the hash of the binary executable (i.e., h), it is valid and
the server thus appends a new block with its state set to be
COMPLETED and its bin_hash field to be h.

Protocol analysis. Our blockchain-based method for shar-
ing binary executables satisfies the following properties:

o Safety: In this context, the safety property means that
the server cannot obtain sensitive data from any of
the contributors. The CLIENT procedure in Algorithm 1
uses its local checklist to ensure that for any binary
executable at most one chunk should be sent to the server,
which achieves our privacy goal.

« Liveness: The liveness property here means that if there
are at least Npcers users who have the same binary
executable and they have sufficient bandwidth to upload a
chunk of the executable within T,,, time units, the server
will eventually be able to obtain this binary executable.
Our method achieves liveness because if a contributor
finds that she is not able to upload a chunk at the current
moment (because all the chunks are in a PENDING state
without expiring), she will retry after a certain period of
time. For a non-cooperative user, he may choose not to
upload the correct chunk after each request, which makes
the corresponding block expire after T..,. However, as
each user can create at most LIMIT requests on behalf
of the same binary executable (Line 10 in Algorithm 2),
a cooperative user will eventually be able to replace him
in uploading that chunk. It is possible that a malicious
user can create multiple sybil accounts. But due to only a
finite number of sybil accounts he can create, a persistent
cooperative user will still be able to outlast these attempts
and upload the correct chunk eventually. To mitigate the
adverse effects of non-cooperative users, BigBing can
further deploy anomaly detection methods, which are
outside the scope of this work.

V. MALWARE CLASSIFICATION MODELING AS A SERVICE

Through its frontend gateway, a user of BigBing’s server
needs to provide three types of inputs: operational constraints,
performance objective function and constraints, and a sample
list of binary executable hashes.

Operational constraints. A user’s operational constraints
concern what kind of features can be collected from her

48

working environment. For example, although IDA Pro [14]
offers comprehensive capabilities to disassemble executable
programs, a user may not have a license for it to extract
features. A cautious user may not want to use malware features
collected from dynamic execution if she cannot find a malware
execution sandbox with strong isolation.

Performance objective function and constraints. A user
of BigBing’s service also needs to input her performance
objective that should be optimized. As there can be many
different types of malware attacks against the user’s network,
BigBing uses multi-class performance metrics, instead of the
traditional binary classification metrics. The formal definitions
of the multi-class performance metrics supported by BigBing
have been summarized in the Appendix. In addition to classi-
fication performance objectives, BigBing also allows the users
to input their performance constraints. A Neyman-Pearson
classifier, for example, maximizes the detection rate while
keeping the false positive rate below a certain threshold [45].
Hence, for training a Neyman-Pearson classifier, the user needs
to specify detection rate as her performance objective and an
upper limit on false positive rate as her performance constraint.

Sample list of binary executable hashes. To estimate the
data distribution in the user’s environment, BigBing requires
her to upload a sample list of binary executable hashes. The
list is uniformly sampled from all her executable programs,
benign or malicious. A higher sampling rate allows BigBing
to recover the user’s true data distribution more accurately, but
at the price of a higher transmission overhead.

While BigBing requires its users to upload a sample list
of binary executable hashes, a privacy-sensitive user may not
want to reveal to BigBing all the executables that run in her
environment. To alleviate users’ privacy concerns, BigBing
can engage a private set intersection protocol [27] with the
user such that after the protocol, BigBing should only know
the intersection between the executable program hashes on
the user’s sample list and the hashes of those executable
programs stored on BigBing’s big data cluster. There are
efficient algorithms for private set intersection protocols [26],
[40], and we will evaluate the execution performance of PSI
operations used by BigBing in Section VII.

Optimization problem formulated from user inputs.
The frontend gateway forwards the user’s input to the Big-
Bing backend, which trains an optimal predictive model that
satisfies the user’s requirements. Formally, let C, and C)
denote the user’s operational and performance constraints,
respectively, and G),(f) be her performance objective. Also
let the sample hash list be H, and its data distribution
denoted by Dyr. Given a predictive model f, G, (f)p,, gives
a measure of the user’s performance objective on the data
generated from distribution Dy, C,(f) the requirement that
the features used by the predictive model f should satisfy C,,,
and Cy(f)|p,, the requirement that predictive model f should
satisfy performance constraints C,, when applied on data
generated from distribution Dy. Hence, the user’s expectation
on the predictive model can be formulated as the following
optimization problem:

Optimize Go() oy 1
f
Subject to Co(f)
Cp(f)\DH

A. Training user-specific predictive models

Solving the optimization problem formulated as in Eq. (1)
needs knowledge of distribution Dy. The big data clus-
ter of BigBing stores a large corpus of binary executable
samples. It is a well-known challenge to find the ground-
truth family labels for malware samples [32]. To find a
labeled malware dataset, BigBing relies on the detection
results of various AV scanners. We use the Zeus sample
compiled from Github [21] as an example, whose MDS5 hash is
fac741d0618b82cdf7c41c89cffdble. The detection
results of five major AV scanners are given in Table I. From
their detection results, we extract the most unique keywords
as the family labels, as in the last column of Table L.

TABLE 1
DETECTION RESULTS BY DIFFERENT AV SCANNERS ON A ZEUS SAMPLE
WITH MD5 HASH fac741d0618b82cdf7c41c89cffdble

AV scanner Detection Result Keyword
Microsoft PWS:Win32/Zbot!ZA Zbot
Kaspersky Trojan-Spy.Win32.Zbot.bopd Zbot

ESET-NOD32 Win32/Spy.Zbot. YW Zbot
McAfee PWS-Zbot.gen.ds Zbot
Symantec Infostealer Infostealer

From the detection results by different AV scanners, Big-
Bing currently applies the majority voting scheme [46] to label
their corresponding families: among n AV scanners, if more
than half of them identify it as a family label [, it is labeled
as family /. However, the other types of heuristics can be
used here to derive malware family labels, such as conflict-free
malware labeling [44].

For each item on the user-provided sample hash list H,
its label is decided through majority voting based on the
detection results of different AV scanners (if the label cannot
be decided, it is given as unknown). After processing all the
sample hashes on H, BigBing calculates the frequency of each
family label, and the derived frequency histogram is used to
approximate the user’s data distribution Dy in Eq. (1). For
convenience, we let Dy (I) denote the frequency of family
label [in distribution Dg.

Let list B denote all labeled binary executables stored on the
cluster. BigBing needs to sample list B to generate a training
dataset whose distribution matches Dy;. To this end, BigBing
examines each sample on list B to check if it satisfies the
user-provided operational constraints, and if so, puts it onto
list O which eventually contains all eligible samples that have
been found to meet users’ operational constraints. By abusing
notation O slightly, we use O(l) to denote the list of all
samples in O with family label .

BigBing next generates a training dataset 7' to train a
predictive model that solves the optimization problem stated
in Eq. (1). Taking into account its available computational

49

resources, BigBing has an internal parameter m to control
the size of the training dataset 7. With inputs including
distribution Dy, the list of eligible samples O, and dataset
size m, the sampling algorithm is given in Algorithm 3 to
generate training dataset 7'. It is noted that a sampling scheme
with replacement is used to generate dataset 7. Moreover, for
a family label that is present in Dy but not in O, it is ignored
due to lack of representative samples available to BigBing.

Algorithm 3 Generation of training dataset 7'

Require: distribution Dy, list O, parameter m
Ensure: Distribution of dataset 1" matches Dy
T+ 0
for each label [of interest in distribution Dy do
if length of O(I) is greater than O then
my < m-Dg(l)
for 1 <i<m; do
r < a random executable program from O(l)
Add r onto dataset T’
end for
end if
end for

Given the training dataset 7', BigBing next searches for a
predictive model that solves the optimization problem shown
in Eq. (1). BigBing considers only those classification models
F' that have already been implemented on the Apache Spark
platform, and for each hyperparameter used by classifier f in
F, it keeps a list of plausible values. The hyperparameters
of a machine learning model are the knobs that control the
complexity or the capacity of the model but cannot be changed
in model training. BigBing uses the grid search method to find
the optimal classifier. For each classifier f in F', it considers
all combinations of plausible hyperparameter values, under
each of which BigBing uses the training dataset " to train an
optimal classifier and then applies cross-validation to measure
its average classification performances. If the parameterized
classifier trained cannot meet any of the predefined perfor-
mance constraints, it is rejected; otherwise, it is put into a
candidate list L. After evaluating all possible combinations
of hyperparameter settings for each classifier in F', the one
among {L; : f € F'} that optimizes the objective performance
function is chosen and returned to the user.

VI. IMPLEMENTATION

We have developed a prototype of BigBing, whose web
interface is still under development. Its big data cluster is
hosted on a Super Micro SuperServer (6028TR-HTR) with
eight Intel Xeon E5 2620 8-core processors, four 128GB
DDR-4 2133MHz ECC/REG RAMs, and four Seagate 4Tb
hard disks. The big data cluster runs 64bit Ubuntu Linux
of version 16.04, hosts an HDFS (Hadoop Distributed File
System) [5], relies on Apache Spark and its ML library [6] for
data processing and machine learning, and uses the Cassandra
database [4] to manage malware samples and their features.

We use several workstations in our laboratory as the server
pool of BigBing. Each workstation is equipped with an Intel
17-4790 8-core 3.60GHz CPU, 32G RAM, and a 2T hard
disk. Each of these workstations runs 64bit Ubuntu Linux
of version 16.04 and uses KVM/QEMU for virtual machine-
based sandboxing. One of these workstations has a Linux-
based license to run IDA Pro disassembler of version 6.9 [14].

The software component of BigBing consists of two parts:
blockchain-based binary executable sharing and malware clas-
sification as a service. Based on the results from the simple
Python LOC (Line of Code) counter provided at [1], the former
part has 547 and 376 lines of Python code on the server and
client side, respectively, and the latter is implemented with
7,122 lines of Python code.

The functionality of binary executable sharing given in
Algorithms 1 and 2 has been developed on top of Flask,
a Python micro-framework for web development [12]. We
have implemented a web service which uses the Flask-based
RESTful API for the communications between BigBing and
any user who would like to contribute her binary executable
samples. The client sends requests to the server for each
transaction using the HTTP protocol, and all the requests and
responses are transmitted in the JSON data format.

For Windows PE malware samples, BigBing uses the fol-
lowing tools to extract malware features (to differentiate the
tools used for feature extraction, we follow the convention
X:Y to denote feature type Y extracted by tool X):

o pefile [16]: pefile is a Python module to read and
work with PE files. As shown in [46], both numerical
and boolean features extracted from the PE headers
are useful for predicting malware families [46]. We
thus use pefile to extract malware features of type
pefile:numerical and pefile:boolean.

o hexdump [13]: The Linux hexdump utility can be used
to extract the frequencies of byte sequence n-grams as
malware features of type hexdump:n-gram.

o IDA Pro [14]: We use a dedicated server running IDA Pro
to extract the CFG (control flow graph) of each malware
sample and extract structural information as malware
features of type idapro:cfg.

o Cuckoo [9]: Cuckoo is a popular sandbox for malware
analysis. We run PE malware samples within a virtual
machine contained with KVM/QEMU. From the analysis
report, we extract the number of times each API call
has been made by the malware as its features of type
cuckoo:api. For the network configuration inside the
VM for malware analysis, we have four different modes:
Internet (the VM has Internet access with offensive traffic
blocked due to ethical concern), simulated Internet with
InetSim [15], simulated Internet with FakeNet [11], and
no Internet simulator.

The raw features extracted with the aforementioned tools are
stored on the HDFS. We next preprocess the raw feature data
into data formats that are readable by the Spark ML library.
Using Spark, we perform imputation of missing features with
their means, standard scaling, and feature selection on the raw

50

feature data. The feature selection algorithm chosen affects the
classification performance significantly [46]. As the feature
selection algorithms implemented even in the latest Spark
package perform poorly on malware data, we use the linear
SVM model with a L;-norm regularization term implemented
by scikit-learn [19] to select at most 200 features for
each feature type.

VII. EXPERIMENTAL EVALUATION

We use a Windows PE malware dataset with 15,983 un-
packed and 6,480 packed samples belonging to 12 families,
Bagle, Bifrose, Hupigon, Koobface, Ldpinch, Lmir, Rbot, Sd-
bot, Swizzor, Vundo, Zbot, and Zlob. Additionally, we use
494 benign PE programs. The distributions of both unpacked
and packed malware samples are shown in Figure 3. In our
experiments we use this dataset to evaluate the performance
of BigBing from two perspectives: its execution performance
and classification performance.

5000

IS
S
15}
S

I Unpacked samples
3 Packed samples

3000

2000

Number of samples

H
°
1<}
S

0
SN L oot o0k, 20080 700% 20P

Malware family

\ N
202 3\«05:\19@52;0“&

Fig. 3. Malware data distributions

A. Execution performance of BigBing

In this part, we perform three sets of experiments to evaluate
the efficiency of the BigBing platform.

(A.1) Blockchain-based binary executable sharing. In the
experiments, we consider six clients, each of them possessing
500 malware executables randomly picked among 1317 Zbot
malware samples. Each client establishes its first connection
with the server after a random delay within 10 seconds.
Afterwards, each client continually sends requests until all the
samples on its list of binary samples have been contributed.
The parameters in Algorithms 1 and 2 are configured as
follows: T, = 3600 (sec), Npeers = 3, LIMIT 3,
and 7 = 5 (sec). Therefore, for each binary executable, at
least three contributors have to get involved in uploading the
complete sample. Each user can make at most three attempts
to contribute to the same malware program.

We design three scenarios to evaluate the performance of
the blockchain-based binary executable sharing scheme:

o Case 1: all six clients are cooperative by following the
protocol in Algorithm 1 strictly;

o Case 2: three clients are fully cooperative but the other
three are only partially cooperative: they initiate the
transactions to upload their chunks so these transactions
appear on the blockchain but they do not attempt to
transfer their chunks to BigBing successfully;

Case 1

3000

3000

Case 3

. ymmmmmmmmmmmmsmn - - -
+ pending e || leeessasassnnaas o r . pending o
. o . o
2500 ' committed o 25001 4 . pending 2500 " committed -
— “\“ . — o
completed o H ' committed completed ‘\,\“
2000 ‘»,"’\ 2000} = completed 2000 ‘\«‘\'
.o " o
2 o = H o o
€ o € H c *
3 1500 R 3 1500 = 3 1500 o*
o o o ad] o &
o P o | o 4
- = .\’\
1000 1000} 1000 o
x o
¢
K3
o
500 500 500F o
: s
g g
ole 0 olet
100 200 300 400 500 600 700 2000 4000 6000 8000 10000 12000 100 200 300 400 500 600 700 8
Time (s) Time (s) Time (s)
(1) Case 1 (2) Case 2 (3) Case 3

Fig. 4. The number of blocks per state on the blockchain maintained on the server

o Case 3: three clients are fully cooperative but the other
three are malicious and collude among themselves: for
each binary executable hash they see, they use the same
different file in computing the chunks and their hashes.

Figure 4 shows the number of blocks per state on the
blockchain maintained by the server in the three cases. In Case
1, there are 560 binary executables that are shared by at least
three of the six fully cooperative users, and they are received
successfully by the server in 621 seconds (about 0.17 hour).
In this case, because all six clients are fully cooperative, it
takes only a short period of time to upload all the sharable
binary executables. The two curves representing blocks in
the PENDING and COMMITTED state, respectively, overlap
with each other because all the cooperative clients upload the
chunks that they have promised to send.

In Case 2, there are 76 binary executables shared by the
three fully cooperative users, and it takes 10,985 seconds
(about 3.1 hours) for the BigBing server to reassemble all these
samples (which correspond to the 76 blocks in a COMPLETED
state on the blockchain). From Figure 4(2) we observe that
blocks in a PENDING state outnumber those in a COMMITTED
state, because there are three partially cooperative users who
promise to send their chunks but do not upload them later.
There are also three notable bumps for the number of blocks
in a PENDING state on the blockchain. The first one occurs
at the time after around 556 seconds, when each client has
finished initiating the transactions for uploading its binary
executable chunks without waiting for any timer to expire
(see Algorithm 1). The second bump happens at the time
after around 5444 seconds, when clients wait for a period of
(14+1/2) - Teyyp (e, 5400 seconds) to recheck an unexpired
chunk in a PENDING state in the blockchain. The last bump
occurs after an elapse time of 10,868 seconds when another
such waiting period has expired.

In Case 3, there are 76 binary executables which are shared
by three fully cooperative users, and all of them have been
received within 675 seconds (about 0.19 hour). Similarly to
Case 1, the two curves representing blocks in PENDING and
COMMITTED, respectively, overlap with each other. This is
because the three malicious clients use a different file to
calculate chunk hashes and after these chunks are uploaded to

51

the server successfully, the states of these chunks are changed
from PENDING to COMMITTED using newly created blocks
on the blockchain. Only after the server fails to reassemble
a binary executable with a matching hash from these chunks
can it realize that these clients have uploaded a different file.
Comparing Case 3 against Case 2, we notice that the three
malicious and colluding clients affect little the time needed for
the three cooperative users to upload the 76 sharable binary
executables. This is because these cooperative users know that
the blocks created by the malicious ones contain wrong chunk
hashes and thus ignore them according to the protocol.

(A.2) PSI operation in user data distribution matching.
BigBing uses a PSI-based protocol to ensure client’s privacy
in uploading her list of binary executable hashes and in this set
of experiments, we measure the execution overhead of finding
the intersection of binary executable MDS5 hashes between
the client and the server using two different PSI algorithms,
one based on the Diffie-Hellman algorithm [35] and the other
oblivious transfer (OT) [38]. In our experiment, the server
has 15,983 samples and the client has a local list of 10,000
executable programs with the number of intersecting samples
with the server ranging between 2,000 and 10,000. We adapt
the implementation code of both algorithms from [18] to run
in a distributed computing environment where the client and
the server are located on different physical machines. The
execution performances using two desktops in our laboratory
are depicted in Figure 5, from which it is observed that the OT-
based algorithm leads to negligible execution overhead, which
is around half a second in all five scenarios.

(A.3) Responsiveness of malware classification modeling
as a service. Based on its available computational resources,
BigBing uses parameter m to control the size of the training
dataset T'. We show how the execution times at different stages
of BigBing vary with parameter m. In the experiments, we
use all different types of Windows PE malware features when
training a classifier, and the size of the user-provided sample
hash list is 1,000. For each setting of parameter m, we run the
experiments for 10 times, and calculate the average execution
time of each of the following stages:

o Transmission: Forward the user’s request to the BigBing
backend and return the model trained to the user.

1400

wca\
oea® me{\ca A-

1200

1000

I Transmission

I Distribution estimation
I Data generation

[Model training

Qe{\\e‘x}ge{\\e”“\:\eﬁd"“\p .

1.0

0.9 % .

800

600

Time(sec)
Time (sec)

400

200

0.8 N

0.7

0.6

Weighted F-measure
<

Feature type

1
2000

4000 6000

size
E Diffie-Hellman based
3 OT based

Fig. 5. Execution time of PSI operation in user
data distribution matching

8000 10000

10000 8000 6000

Size

Fig. 6.

o Distribution estimation: Given the user-provided sample
hash list, estimate distribution Dy;.
Data generation: Based on the user’s operational con-
straints, generate a list of feasible samples, sample this
list to get a training dataset of size m, fetch the feature
data from the HDFS, and generate the training data file.
e Model training: Use the grid search method to find the
predictive model that optimizes the user’s performance
objective while satisfying her performance constraints.
Figure 6 shows the average execution time of each stage
after the user submits her request. Clearly, the overall response
time is dominated by the data generation and model training
stages. When decreasing the training dataset size m, the exe-
cution time decreases almost linearly. Even with m = 10, 000,
the overall response time is around 22 minutes, suggesting that
the users do not have to wait for a long time to get a predictive
model trained by BigBing.

B. Classification performance of BigBing

In this part, we evaluate the classification performances of
the prediction models trained by BigBing using the metrics
defined in the Appendix. When the classification results based
on cuckoo:api features are presented, the Internet access
mode is used by default unless stated otherwise.

(B.1) Matching users’ data distribution. In this set of
experiments, we show the importance of matching the malware
data distribution in the user’s environment when generating
the training datasets. We consider the following distribution
matching schemes based on Dy, assuming that its malware
families are ordered in decreasing order of frequencies:

o Best-matching: Based on the user-provided sample hash
list H, we generate a training dataset 7" whose distribu-
tion exactly matches Dy discovered from H. This is the
scheme used by BigBing in its operation.
Reverse-matching: We match Dy except that the order
of malware families are reversed. Hence, the family with
the least samples in H has the largest number of samples
in the training dataset generated.

Random-matching: We match Dy but randomly change
the order of malware families.

Uniform-matching: We generate a training dataset with
the same number of samples for each malware family. In

4000

The execution time of each stage for
malware classification as a service

52

@@ best-matching (avg=0.9764)
V-V reverse-matching (avg=0.8750)
Q@ @ uniform-matching (avg=0.9355)

Fig. 7. Performances under different distribu-
tion matching schemes

this case, the user does not need to provide a representa-
tive sample hash list H.

When matching a specific distribution, BigBing may not
have sufficient samples for certain underrepresented families.
We sample malware features with replacement in distribution
matching. Typically, the number of malware families seen
in a user’s operating environment is much smaller than that
available on a cloud-based environment like BigBing. In this
set of experiments, we thus assume that the user observes only
attacks from a subset of malware families.

We first randomly choose 2,000 unpacked PE samples
among all available data, and then select only those from the
Bagle, Bifrose, and Hupigon families for testing. On average,
about 819 samples are selected for testing. The selected test
samples are divided into five folds, and in each experiment,
one fold is selected as the user’s sample hash list and the
remaining ones for testing. The size of the training dataset m
is set to be 4,000, and the weighted F-measure is used as the
performance objective.

Figure 7 shows the classification performances under differ-
ent data distribution matching schemes. Since we have only
three families in the testing dataset, we ignore the results from
random-matching. We observe that the average weighted F-
measure across five different feature types using best-matching
leads to 11.6% improvement over that under reverse-matching,
and 4.4% improvement over that under uniform-matching.

) W
et meﬂca 49

A @
oo el a0 o0 o
e \,e*'\\e"““e@“ W

peﬁ\e'-":ea\e'-“‘:\e*du“‘"' e
ol &V e
06 AN /4
04
02
00

\
20

a0
° 6

6o

N

D w8
v

06

04

02

00

e)

Detection rate

Classification accuracy

Feature type Feature type

@-@ best-matching
V-V reverse-matching

(1) AcC

Fig. 8. Evaluation results under two different performance objectives, ACC,
and DR under FPR < 0.05

00 random-matching
% % uniform-matching

@-@ best-matching
V-V reverse-matching

00 random-matching
% % uniform-matching

(2) DR under FPR < 0.05

(B.2) User-specified objective function and constraints.
In addition to weighted F-measure, BigBing also supports the

Bagyg
Bifrosg
Pigoy,
%bace
iy,
Ly
Rbog.
Sty
Si Wizz0r
Vong,

T ko

> {20,

Bagre
Bingg,
Huﬁl‘ga n
Koop, e
Diny,
Lmjy
Rboy
Satbo,
SWizzy
Ving,
6o
Zlop

<

> o =4 = ” 1? > 2; >
£ 08 E° E° Ny Eos
8 g) 24'>i \ / £ \ / \ E
s & / \/ 8 \ \ s
zo zo0 / ¥ < zo / g / zo
[v 2 y)/ ¥ x e |3 [
304 5 0.} B s 3 04 304
2 2 2 2
8 § | 20 g 8
E o E 02 4 Eo E o
£ & il £

0. 0. 0. 0.0/

Malware family Malware family Malware family Malware family
@@ best-dist-matching © 0 random-dist-matching ©-0 best-dist-matching 00 random-dist-matching @@ best-dist-matching © © random-dist-matching @@ best-dist-matching © © random-dist-matching

V-V reverse-dist-matching *—# uniform-dist-matching V-V reverse-dist-matching

*—% uniform-dist-matching

V-V reverse-distmatching % uniform-dist-matching V-V reverse-dist-matching *—# uniform-dist-matching

(1) pefile:numerical (2) pefile:boolean

(3) hexdump:1-gram (4) cuckoo:api

Fig. 9. The F-measures by family when only packed PE malware samples are considered

o

2 O
NI RN

& &

Malware family

e-0
A-A
* -k
* -

cuckoo:api (internet)
cuckoo:api (inetsim)
cuckoo:api (fakenet)
cuckoo:api (no simulator)

Fig. 10. Classification performances from cuckoo API features under
different network configurations

other types of performance objectives and constraints. In a new
set of experiments, we use 5,000 malware samples for testing,
which are randomly drawn from the unpacked PE malware
samples available to BigBing. These test samples are divided
to five folds, each of which is used as the user’s sample hash
list and the remaining for testing. In Figure 8, we show the
evaluation results under two different performance objectives,
one using classification accuracy (ACC) as the performance
objective, and the other detection rate (DR) while under the
constraint that the false positive rate should be below 5%.
For this set of experiments, we can see that the best-matching
scheme performs slightly better than uniform-matching, but
does much better than reverse-matching and random-matching.
Note that in these experiments, the testing malware samples
are drawn from all families, instead of only a subset of them.
This leads to smaller improvement of best-matching over
uniform-matching, compared with what we see in Figure 7.

(B.3) Packed PE malware samples. BigBing is capable
of training predictive models for classifying packed Windows
malware. Tools such as PEiD [17] can be used to detect
common malware packers. We run a set of experiments with
6,480 packed Windows malware, among which 1,000 are
randomly chosen for testing and are thus not seen by BigBing
for training the classifiers. The 1,000 test samples are further
divided into five folds, each of which is used for user-
provided MDS5 hash list and the remaining ones to evaluate
the classification performances.

Figure 9 shows the average F-measures of each malware
family on different types of malware features. From Figure 9,
we make the following observations. (1) The API call features

53

extracted from Cuckoo outputs have the best discriminative
power. This is expected because features extracted from static
malware analysis become less meaningful after malware sam-
ples are packed. Among the three types of static malware fea-
tures, numerical ones extracted from PE headers lead to good
classification performances, which is encouraging because the
overhead of extracting such features is much lower than setting
up a Cuckoo sandbox for dynamic malware analysis. (2) The
best-matching scheme leads to the best classification measures
compared to the other schemes. This is expected because
BigBing trains a classifier that optimizes the classification
measure with a training dataset reflecting what is seen in the
user’s working environment.

(B.4) Effect of network configuration. In another set
of experiments, we compare the classification performances
based on Cuckoo API features under four different network
configurations, including Internet, simulated Internet with In-
etSim, simulated Internet with FakeNet, and no simulated
Internet. During the process of feature extraction, we observe
that in some cases Cuckoo does not report any dynamic
analysis results. For fair comparison, we consider a set of
15,759 unpacked binary executables with Cuckoo API fea-
tures extracted successfully. The classification performances
under these four different network configurations are shown
in Figure 10. We observe that, with Internet access, the
classification performance is close to perfection and for the
other three network configuration modes, the malware classi-
fication performances are comparable. The result shows that
further research is needed to improve the realism of Internet
simulators used for malware analysis.

VIII. CONCLUSIONS

In this work, we have developed a new platform called
BigBing which provides a privacy-preserving malware clas-
sification service. BigBing uses a blockchain-based method
to achieve privacy-preserving sharing of binary executable
files. With user-provided operational constraints and perfor-
mance objective functions, BigBing trains classification mod-
els specifically tailored to their operational environments.
BigBing relies on big data computing platforms to enhance
responsiveness of its malware classification modeling service.
Using real-world Windows PE malware samples, we have
shown that BigBing offers a promising big data-based platform
to fight against the ever-evolving malware threats.

ACKNOWLEDGMENT

We acknowledge NSF Award CNS-1618631 for supporting this
work and anonymous reviewers for their constructive comments.

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

REFERENCES

A simple Python LOC counter. https:/github.com/tsaulic/pycount.
About VirusTotal. https://www.virustotal.com/en/about/about/.

Anubis. http://anubis.iseclab.org/.

Apache Cassandra. http://cassandra.apache.org/.

Apache Hadoop. http://hadoop.apache.org/.

Apache Spark. http://spark.apache.org/.

bitcoin. https://bitcoin.org/.

Carbon Black may leaking terabytes of customer
data (UPDATED). http://www.healthcareitnews.com/news/
carbon-black-may-be-leaking- terabytes-customer-data-updated.
Cuckoo Sandbox. https://cuckoosandbox.org.

ethereum. https://www.ethereum.org/.

FakeNet. https://practicalmalwareanalysis.com/fakenet/.

Flask. http://flask.pocoo.org/.

hexdump. https://en.wikipedia.org/wiki/Hex_dump.

IDA Pro. https://www.hex-rays.com/.

INetSim: Internet Services Simulation Suite. http://www.inetsim.org/.
pefile. https://github.com/erocarrera/pefile.

PEiD. https://www.aldeid.com/wiki/PEiD.

Private Set Intersection (PSI). https://github.com/encryptogroup/PSI#
private-set-intersection-psi.

Scikit-learn: machine learning in Python. http://scikit-learn.org/.
VirusTotal. https://www.virustotal.com/.

Zeus source code 2.0.8.9. https://github.com/Visgean/Zeus.

M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and
J. Nazario. Automated classification and analysis of internet malware.
In Recent Advances in Intrusion Detection. Springer, 2007.

R. Benzmller. Malware trends 2017. https://blog.gdatasoftware.com/
2017/04/29666- malware-trends-2017.

E. Chung. Antivirus software is ’increasingly useless’ and may
make your computer less safe. http://www.cbc.ca/news/technology/
antivirus-software- 1.3668746, 2016.

J. Daemen and V. Rijmen. The design of Rijndael: AES—the advanced.
Journal of Cryptology, 4(1):3-72, 1991.

C. Dong, L. Chen, and Z. Wen. When private set intersection meets
big data: an efficient and scalable protocol. In Proceedings of the 2013
ACM Conference on Computer & Communications Security, 2013.

M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching
and set intersection. In International conference on the theory and
applications of cryptographic techniques, pages 1-19. Springer, 2004.
X. Hu, K. G. Shin, S. Bhatkar, and K. Griffin. Mutantx-s: Scalable
malware clustering based on static features. In USENIX Annual
Technical Conference, pages 187-198, 2013.

J. Jang, D. Brumley, and S. Venkataraman. Bitshred: feature hashing
malware for scalable triage and semantic analysis. In Proceedings of
ACM conference on Computer and communications security, 2011.

W. Jansen and T. Grance. Sp 800-144. guidelines on security and privacy
in public cloud computing. 2011.

J. Kinable and O. Kostakis. Malware classification based on call graph
clustering. Journal in computer virology, 7(4), 2011.

P. Li, L. Liu, D. Gao, and M. K. Reiter. On challenges in evaluating
malware clustering. In International Workshop on Recent Advances in
Intrusion Detection. Springer, 2010.

S.-T. Liu, H.-c. Huang, and Y.-M. Chen. A system call analysis method
with MapReduce for malware detection. In International Conference on
Parallel and Distributed Systems. IEEE, 2011.

M. M. Masud, T. M. Al-Khateeb, K. W. Hamlen, J. Gao, L. Khan, J. Han,
and B. Thuraisingham. Cloud-based malware detection for evolving data
streams. ACM Transactions on Management Information Systems, 2011.
C. Meadows. A more efficient cryptographic matchmaking protocol for
use in the absence of a continuously available third party. In IEEE
Symposium on Security and Privacy, pages 134—134. IEEE, 1986.

A. Mohaisen, O. Alrawi, and M. Mohaisen. Amal: High-fidelity,
behavior-based automated malware analysis and classification. Com-
puters & Security, 52:251-266, 2015.

R. O’Callahan. Disable Your Antivirus Software (Except Microsoft’s).
https://blog.gdatasoftware.com/2017/04/29666- malware-trends-2017.

be

54

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

B. Pinkas, T. Schneider, and M. Zohner. Scalable private set intersection
based on ot extension. ACM Transactions on Privacy and Security
(TOPS), 21(2):7, 2018.

K. Rieck, T. Holz, C. Willems, P. Diissel, and P. Laskov. Learning
and classification of malware behavior. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 108-125. Springer, 2008.

P. Rindal and M. Rosulek. Malicious-secure private set intersection
via dual execution. Proceedings of ACM Conference on Computer and
Communications Security (CCS’17), 2017.

R. L. Rivest. All-or-nothing encryption and the package transform. In
International Workshop on Fast Software Encryption. Springer, 1997.
M. Sikorski and A. Honig. Practical malware analysis: the hands-on
guide to dissecting malicious software. No Starch Press, 2012.

H. Sun, J. Su, X. Wang, R. Chen, Y. Liu, and Q. Hu. Primal: Cloud-
based privacy-preserving malware detection. In Australasian Conference
on Information Security and Privacy, pages 153-172. Springer, 2017.
G. Yan. Finding common ground among experts’ opinions on data
clustering: With applications in malware analysis. In Proceedings of the
30th International Conference on Data Engineering. IEEE, 2014.

G. Yan. Be sensitive to your errors: Chaining neyman-pearson criteria for
automated malware classification. In ACM Symposium on Information,
Computer and Communications Security, 2015.

G. Yan, N. Brown, and D. Kong. Exploring discriminatory features
for automated malware classification. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 41-61. Springer, 2013.

APPENDIX A: MULTI-CLASS CLASSIFICATION
PERFORMANCE METRICS

Let X = {xo0,X1,...,Xxn—1} denote the feature data extracted
from N testing malware samples, and their true labels are given
by Y = {yo,v1,...,yn—1}, respectively. The prediction results by
a multi-class classifier for the n malware samples are given by

Y =

{90,791, ..., yn—1}. The set of malware family labels is denoted

by L. We also have the delta function &(p) defined, which returns
1 if predicate p is true or O otherwise. The following multi-class
classification performance metrics can be defined:

o Classification accuracy (ACC'):

1 N1
ACC = > 6y =))
i=0
o Weighted F-measure (Fy,):
1 N—1
Fy = NZF(Z) > i =1), 3
leL i=0
where F'(I) is the F-measure by label defined by
Fl) = 2 - precision(l) - recall(l)
= precision(l) + recall(l) ’
with
N—1 ¢/~
0 =00y =1
precision(l) = 2izo N(i A) () 4
Do 0@ =1)
N—1 ¢/~
0 =0D0(yi =1
recall(l) = 2izo N(—yl)0y) (5)
Yo 0(wi=1)
o (Weighted) detection rate (DR):
N-1
5 O(y; =1
DR=Y" % - recall(l) 6)

leL

o (Weighted) false positive rate (FPR):

e Sy =0 X e A 6 =)
PR=2, N SN oy 1)

leL

