
BigBing: Privacy-Preserving Cloud-Based Malware Classification Service

Yunus Kucuk Nikhil Patil Zhan Shu Guanhua Yan

Department of Computer Science

Binghamton University, State University of New York

{ykucuk1, npatil5, zshu1, ghyan}@binghamton.edu

Abstract—Although cloud-based malware defense services have
made significant contributions to thwarting malware attacks,
there have been privacy concern over using these services to
analyze suspicious files which may contain user-sensitive data.
We develop a new platform called BigBing (a big data approach
to binary code genomics) to offer a privacy-preserving cloud-based
malware classification service. BigBing relies on a community of
contributors who would like to share their binary executables,
and uses a novel blockchain-based scheme to ensure the privacy
of possibly user-sensitive data contained within these files. To
scale up malware defense services, BigBing trains user-specific
classification models to detect malware attacks seen in their
environments. We have implemented a prototype of BigBing,
comprised of a big data cluster, a pool of servers for feature
extraction, and a frontend gateway that facilitates the interaction
between users and the BigBing backend. Using a real-world
malware dataset, we evaluate both execution and classification
performances of the service offered by BigBing. Our experimen-
tal results demonstrate that BigBing offers a useful privacy-
preserving cloud-based malware classification service to fight
against the ever-growing malware attacks.

I. INTRODUCTION

Recent years have witnessed continued growth of malware

species that harm the trustworthiness of cyberspace. According

to G Data, a computer security firm based in Germany, it

took only 4.2 seconds to observe a new malware specimen

in the first quarter of 2017, reduced from 4.6 seconds in

2016 with a yearly total of 6.83 million [23]. Against such

ever-growing malware threats, the existing signature-based

approach to malware defense has been found increasingly use-

less in practice [24], [37]. To counter against the humongous

malware threats in the cyberspace, a large body of research

efforts have applied machine learning techniques to automate

malware defense (e.g., [22], [39], [34], [31], [36]).

Machine learning-based malware defense works effectively

only if there exist sufficient data and computational power

to train accurate predictive models. For a large number of

end users – either institutional or personal – who do not have

access to such resources, their only plausible solution is to use

cloud-based services that support machine learning-based mal-

ware defenses. Indeed, cloud-based malware defense services,

such as VirusTotal [20] and now-discontinued Anubis [3], have

made significant contributions to the community by offering

free malware analysis services. These services use existing AV

(Anti-Virus) scanners or customized malware analysis tools to

analyze the binary samples uploaded by their end customers

and then send back the malware analysis reports.

Unfortunately, cloud-based malware defense services pro-

vided to the end users may come at a hefty privacy cost. For

example, it has been recently found that terabytes of corporate

data, which contain a wide spectrum of sensitive data such

as passwords, keys and proprietary trade secrets, have been

leaked by an end-point anti-malware detection and response

tool called Carbon Black Cb Response through its use of

the free VirusTotal service [8]. On its About page, VirusTotal

clearly states that “Files and URLs sent to VirusTotal will be

shared with antivirus vendors and security companies so as to

help them in improving their services and products. We do this

because we believe it will eventually lead to a safer Internet

and better end-user protection.” [2]

Another challenge for cloud-based malware defenses is that

it is hard to scale the services at the granularity of individual

binary samples. With advanced polymorphic or metamorphic

mechanisms [42], voluminous malware variants can be gener-

ated within a short period of time. Therefore, when a cloud-

based malware defense service becomes popular, it becomes

increasingly difficult for its operator to provision sufficient

computational resources that can keep up with the pace of

new malware attacks. Indeed, the free malware analysis service

offered by Anubis has been discontinued, citing the reason as

lack of “resources to maintain these tools and improve them

to match an ever-changing malware landscape” [3].

Against this backdrop, we have been developing a new

platform called BigBing (a big data approach to binary

code genomics), which offers a privacy-preserving cloud-

based malware classification service. Like other cloud-based

malware defense platforms, BigBing relies on a community

of users to contribute their binary samples. Through BigBing,

however, users’ privacy is preserved because a user uploads

only part of each sample, which alone cannot reveal any

sensitive data. Using proper cryptographic primitives, BigBing

receives a valid binary sample only if multiple parties have

seen the same sample and uploaded complementary chunks

that can be used to reconstruct the entire binary executable.

To facilitate scalable malware defenses, BigBing offers a

classification modeling service: it trains user-specific clas-

sification models from datasets dynamically generated with

distributions that closely match those seen in end users’

environments. Instead of classifying individual binary samples

for end users – which makes it hard to scale the service

to process voluminous malware variants, BigBing returns the

classification models to the users, who should use their own

43

2018 IEEE Symposium on Privacy-Aware Computing

978-1-5386-8442-9 /18/$31.00 ©2018 IEEE
DOI 10.1109/PAC.2018.00011

computational resources to apply these models for classifying

binary executables seen in their environments. To accommo-

date various operational environments, BigBing allows a user

to provide her specific operational constraints for training

an actionable classification model. Moreover, while offering

classification modeling as a service, BigBing respects a user’s

privacy by not requesting any information unless it is needed

to train an appropriate classification model for her.

In a nutshell, our main contributions include:

• Inspired by a recent incident of user-sensitive data leak-

age from a cloud-based malware analysis platform, we

have developed a blockchain-based method to support

privacy-preserving sharing of binary executable files in

a cloud environment;

• Different from existing cloud-based malware defense

platforms that offer malware analysis at individual sample

level, we have developed a system that offers malware

classification as a service, which trains user-specific

classification models to detect malware attacks seen in

their environments. The service uses a PSI (Private Set

Intersection)-based protocol for the server to infer the

data distribution in a user’s operational environment.

• Using big data computing platforms (e.g., Spark and Cas-

sandra) and the Flask web application micro-framework,

we have implemented a prototype of BigBing, comprised

of a big data cluster, a pool of servers for feature

extraction, and a frontend gateway that facilitates the

interaction between users and the BigBing backend.

• Using a real-world Windows PE (Portable Executable)

malware dataset, we have evaluated the malware classi-

fication service provided by BigBing from both perspec-

tives of execution and classification performances.

The remainder of the paper is organized as follows. Sec-

tion II introduces related works. Section III presents the archi-

tecture of BigBing as well as its privacy concerns. Section IV

gives a blockchain-based scheme for binary sample sharing

and Section V discusses how BigBing offers classification

modeling as a service. Section VI provides the implementation

details of BigBing. Section VII shows the evaluation results

of BigBing. We draw concluding remarks in Section VIII.

II. RELATED WORKS

Due to the voluminous malware variants, machine learning

has become a popular method to automate malware defenses

(e.g., [22], [39], [34], [31], [36]). The development of BigBing

has been inspired by two practical challenges in this trend:

how to preserve users’ privacy in collecting malware data

needed for training machine learning models and how to scale

up services to a large number of users. Particularly, although

there has been wide-spread privacy concern over data stored

on public clouds [30], few works have addressed the privacy

challenge of cloud-based malware defense services. Private set

intersection was used in [43] to achieve malware confirmation

in a privacy-preserving manner with focus on signature-based

malware detection.

Fig. 1. The architecture of BigBing

Similar to BigBing, a few previous works [29], [33], [28]

have used big data processing capabilities – particularly the

Hadoop implementation of MapReduce – for malware cluster-

ing, triage, and similarity detection. A distinguishing feature

of BigBing compared to these previous efforts is that it uses

big data computing to train predictive models that are tailored

to users’ specific operational environments.

III. ARCHITECTURE OF BIGBING

The design of BigBing has been inspired by the open cloud-

based malware analysis platforms, such as VirusTotal [20] and

now-discontinued Anubis [3]. It relies on a community of users

(institutional or personal) to share their binary samples through

its frontend gateway. BigBing stores these user-contributed

binary samples on a big data cluster machine. BigBing uses

a server pool to extract various features from both static and

dynamic analysis of these binary samples. These feature data

are also stored on the big data cluster machine.

To offer malware classification modeling service, BigBing

requires an end user to upload a sample list of binary exe-

cutable hashes. From this list, BigBing estimates the distribu-

tion of the binary executable data encountered in the user’s

operational environment, and then uses it to construct dynam-

ically a training dataset that closely matches this distribution.

Training a user-specific classification model helps improve

classification accuracy when the model is deployed in her

environment; for example, a university and a bank may need

different binary executable classification models for detecting

the same type of malware attacks.

As illustrated in Figure 1, the physical infrastructure of

BigBing is comprised of three key components connected

within a LAN (Local Area Network):

• Big data cluster: The big data cluster uses HDFS [5]

to store a large corpus of binary executable programs as

well as the feature data extracted from them. The big data

cluster uses the Cassandra database [4] to manage these

feature data. Moreover, Apache Spark and its machine

learning library ML [6] are used to train classification

models from the feature datasets.

• Server pool: The server pool includes commodity server

machines to extract different types of features from binary

executables. A server can run virtual machine-based

sandboxes to observe their dynamic behaviors, execute a

licensed IDA Pro application to disassemble them through

44

Fig. 2. Illustration of the blockchain for binary executable sharing

static analysis, or be simply used as a baremetal machine

to run these samples in a sterile environment.

• Frontend gateway: The frontend gateway of BigBing

offers a web interface to interact with both binary sample

contributors and BigBing service users. A binary sample

contributor can download a blockchain from the gateway,

based on which she decides what binary samples she

may be able to contribute to BigBing. On the other hand,

through the gateway, a BigBing service user can request

BigBing to train an actionable binary executable classifi-

cation model that best suits her operational environment.

To prevent malicious parties from abusing the service

offered by BigBing, the frontend gateway enforces access

control with password-based authentication.

Threat model. BigBing is designed to achieve two im-

portant property, safety and liveness, and this work considers

any threats posed to each of these properties. Different from

existing cloud-based malware analysis platforms, BigBing puts

privacy preservation into its core design. The safety property of
BigBing concerns whether BigBing, if operated by the adver-
sary, can obtain any sensitive data from its users who use or
contribute to its service. As BigBing relies upon a community

of contributors to share their binary executable samples, a

user may be concerned with uploading an executable program

containing her sensitive data. As evidenced by the recent data

leakage incident from shared malware [8], the user’s concern

is obviously not unfounded. Moreover, for BigBing to train

a user-specific classification model, a user needs to upload a

sample list of binary executable hashes. If BigBing itself does

not have the binary executable program whose hash value

appears on the list, it is totally unnecessary for BigBing to

know it because it does not help improve the accuracy of the

classification model trained but the hash value still reveals

the user’s sensitive information (i.e., the list of executable

programs that the user runs in her environment).

The liveness property of BigBing concerns whether its
operation can be disrupted by malicious users. The adversary

may abuse the service of BigBing by uploading incorrect

executable files or preventing legitimate users from uploading

the correct binary samples. The liveness property of BigBing

is to ensure that its operation should be resilient against this

kind of DoS (denial-of-service) attacks by malicious users.

IV. BLOCKCHAIN-BASED BINARY EXECUTABLE SHARING

Our key idea of addressing users’ privacy concern when

sharing binary executable files with BigBing is to let a user

upload only a chunk of each binary executable file, from which

no sensitive data can be leaked to BigBing. Unless there are at

least Npeers users, where Npeers is a system parameter, willing

to upload distinct chunks, BigBing is unable to reassemble the

original binary executable file and thus cannot obtain sensitive

data about any of the users who have uploaded their portions.

Our privacy model is sound: if multiple users have seen

the same binary executable sample in their own operational

environments, it is unlikely to contain data uniquely sensitive

to any of them. In cases where an organization has multiple

employees who may have received multiple copies of the

same malware, they should share the same user account when

contributing to BigBing.

To enforce this privacy model, we use a blockchain-based

scheme to synchronize the users’ knowledge about what

portions of a binary executable sample have already been up-

loaded to the BigBing server. As BigBing operates on a cloud,

it is natural for it to maintain the blockchain, alleviating the

high overhead incurred due to a fully decentralized blockchain

network such as Bitcoin [7] and Ethereum [10].

The blockchain data structure is illustrated in Figure 2. Each

block contains the following fields:

• block id: The genesis block has a block id of 0, and

every ensuing block increases its block id by 1.

• chain hash: The chain hash field is used to check the

integrity of the blockchain. It is calculated as the hash of

the current block, except that its chain hash field is filled

with the chain hash value of the previous block.

• timestamp (or ts): It gives the time when the current

block is created.

• state: The state of a block can be PENDING (created by

a client), COMMITTED (created by the server, indicating

that a chunk of the binary executable file has been

received by the server successfully), and COMPLETED
(created by the server, indicating the the binary executable

can be reassembled successfully).

• creator: The creator’s ID is given by the field.

• bin hash: It gives the hash of the binary executable file.

• chunk hashes: For privacy preservation, a binary exe-

cutable sample is transformed into chunks that satisfy the

following requirement: a party cannot find any sensitive

data from a binary executable file without obtaining

all its chunks. We use transform(b, h) to define the

transform of binary executable file b whose hash is h
to Npeers chunks, and reconstruct(chunks, h) the reverse

operation to reconstruct a binary sample b from its chunks

obtained with transform(b, h). We will discuss how to

choose the transform and reconstruct functions shortly.

To simplify verification, the chunk hashes field of a block

contains the hashes of all the chunks derived from the

binary executable hashed to bin hash, even though it may

represent only one chunk of the binary executable sample.

• order: It gives the order number of the chunk, from 0 to

Npeers − 1, represented by the current block.

Obviously the naive approach of partitioning the plaintext of

a binary sample into Npeers pieces does not preserve privacy.

45

There are two alternative approaches:

• SAE (striping-after-encryption): Using a block cipher of

256 bits (e.g., Rijndael-256 [25]), the binary sample

is encrypted with its own hash as the key. Chunk i,
where 0 ≤ i ≤ Npeers − 1, contains all the bytes in

the encrypted file where their locations, j’s, satisfy the

following: j mod Npeers = i. The SAE scheme works

well in a practical setting where Npeers is small. Consider

a practical setting where Npeers is 4 and the adversary

wants to use a dictionary attack to recover the plaintext

from partial ciphertext encrypted with the block cipher

whose key is known. With k chunks in the ciphertext

missing, the adversary needs to attempt 2256k/4/2 on

average, which makes his attack effort equivalent to

breaking a block cipher with a block size of 64k bits.

• AONT (all-or-nothing-transformation): We follow the all-

or-nothing encryption algorithm described in [41]. The

binary sample b is divided into Npeers−1 pieces, denoted

as {bi}1≤i≤Npeers−1. Let K0(b) be the hash of the binary

sample b stored in the bin hash field in the block, and

K ′(b) its hash with another hash function. Using EX(Y)
to denote the encryption of Y with key X , the first i-th
chunk, b′i, where 1 ≤ i ≤ Npeers − 1, is given by bi ⊕
EK′(b)(i) and the last chunk is K ′(b)⊕h1⊕...⊕hNpeers−1

where hj = EK0(b)(b
′
j ⊕ j) for j = 1, 2, ..., Npeers − 1.

Due to all-or-nothing transformation, if all the chunks

are available the reconstruction process can be efficiently

done, but any missing chunk makes it hard to reveal any

sensitive information contained in sample b [41].

When contributing binary executable samples to BigBing,

each user executes a client-side protocol to interact with its

server counterpart running on the cloud side.

Client: When a user whose ID is cid has a list of binary

executables, denoted by binlist, to share with BigBing, she

calls the CLIENT procedure, whose pseudocode is given in

Algorithm 1. The user also maintains a local list, checklist,
which stores the hashes of all the binary executables for each

of which she has contributed a chunk to BigBing. Hence, if

any of the binary executables on binlist has its hash appear

on checklist, it is immediately ignored to enforce the privacy

policy of BigBing. The CLIENT algorithm uses a priority queue

Q to process chunk uploading in an event-driven manner. Each

element in the queue is the hash of a binary executable with

its priority as the time it should be processed. Initially, the

algorithm inserts the hashes of all the binary executables on

binlist into the queue, with their priorities all set to be the

current time.

If the queue is not empty, at each step, the hash of a

binary executable with the smallest time is scheduled to

be processed at its corresponding time by calling procedure

TIMER HANDLER. Inside the handler, the client sends a re-

quest that contains the binary hash h and the size of its local

blockchain to the server. In its response, the server sends back

the remaining blockchain that the client has not seen yet.

The client verifies that all the blocks must be valid, using

their chain hash fields (Line 17-22 in Algorithm 1), before it

updates its local copy of the blockchain. The client then calls

procedure UPLOAD to upload a chunk of the binary executable

to the server (if necessary). Finally, the client extracts the next

event with the smallest firing time from priority queue Q and

schedules a timer for it.

When calling procedure UPLOAD, the client checks if the

binary hash has already appeared on checklist to ensure that

no more than one chunk will be uploaded to the server. After

passing the check, it performs the following to decide which

chunk it should upload to the server: it goes through the

blockchain and searches previous transactions on the same

binary executable (based on its hash). If a chunk is in a state of

COMMITTED (someone else has already uploaded the chunk)

or COMPLETE (the server has reassembled the entire binary

executable that matches the bin hash field), it should not be

re-sent. Otherwise, if a chunk is a state PENDING (someone

else is trying to send the same chunk to the server, but it is

not yet committed), the client checks if the transaction has

expired (each transaction has an expiration period Texp). If

the transaction has not yet expired, the client does not attempt

to upload this chunk for the moment. If the client can find

a chunk that is not either committed, completed, or pending

but not expired, it can proceed to upload this chunk. When

doing so, it creates a new block with its fields properly filled

and sends it to the server; meanwhile, it spawns a new child

process to deal with uploading the chunk to the server and

then adds the hash of the binary executable to checklist.
If all the chunks are pending and not expired, the client

cannot find any chunk to upload at the current moment. In

that circumstance, it inserts a new event to priority queue Q
for the same binary executable, with its firing time scheduled

at the earliest expiration time of all these chunks with a delay

of Texp/2 to absorb clock skewness.

Server: On the server side, it calls the SERVER procedure,

which is given in Algorithm 2. The blockchain C is initialized

with a genesis block, where its block id field is 0, its bin hash
field is 0 (a non-existing binary executable), and its chain hash

is calculated by assuming that the previous block’s chain hash

is 0. The main body of the SERVER procedure is a loop on

processing each incoming request from a client. To prevent

abuse of service, BigBing allows each user to send at most

LIMIT requests for the same binary executable (Line 10 in

Algorithm 2). Once it receives a legitimate request, the server

sends back the remaining blockchain that the client has not

seen and then waits for the client to send a new block until a

timeout of τ time units expires.

The server verifies a new block sent from the client: its

chain hash field must be correct – given this block and the

last block’s chain hash field, its state field must be PENDING,

its creator must be the client that the server is talking to, its

order number must be valid, its block id must be that of the

last block plus 1, and its timestamp is within Texp time units

relative to the current time. If the new block is valid, the server

puts it at the end of its copy of the blockchain and then spawns

a child process to accept a new chunk from the client. The

46

Algorithm 1 CLIENT(cid, binlist, checklist)

1: Q← an empty priority queue
2: for each binary executable e on binlist do
3: h← hash(e), t← get cur time()
4: if h is on checklist then continue end if
5: insert with priority(Q, h, t)
6: end for
7: if not is empty(Q) then
8: (h, t)← pull highest priority element(Q)
9: Schedule a timer to be fired at time t with parameters

(h,C, cid, binlist, checklist,Q)
10: end if
11:
12: procedure TIMER HANDLER(h,C, cid, binlist, checklist,Q)
13: request:
14: Inform the server of the beginning of a transaction
15: Send a request (h, size(C)) to the server for the blockchain
16: Wait for response C′ from the server
17: prev h ← last block’s chain hash in C (or NULL if

size(C) = 0)
18: for each block b on C′ do
19: cur h← b.chain hash, b.chain hash← prev h
20: if cur h �= hash(b) then go to request end if
21: prev h← cur h, b.chain hash← cur h
22: end for
23: C ← C + C′ � Append C′ to the tail of C
24: Call UPLOAD(h,C, cid, binlist, checklist,Q)
25: Inform the server of the end of transaction
26: if not is empty(Q) then
27: (h, t)← pull highest priority element(Q)
28: Schedule a timer to be fired at time t with parameters

(h,C, cid, binlist, checklist,Q)
29: end if
30: end procedure
31:
32: procedure UPLOAD(h,C, cid, binlist, checklist,Q)
33: if h is on checklist then return end if
34: Initialize array exp of size Npeers with MAX INT’s
35: chunks← transform(binlist[h], h)
36: for i = 0, ..., npeers− 1 do
37: chashes[i]← hash(chunks[i])
38: end for
39: for each block b on C do
40: if (b.bin hash �= h) or (b.order /∈ {0, ..., Npeers − 1})

or (b.chunk hashes �= chashes) or (b.state = PENDING and
get cur time()− b.ts > Texp) then

41: continue
42: end if
43: if b.state = COMMITTED or COMPLETED then
44: exp[b.order]← −1
45: else if b.state = PENDING and exp[b.order] > 0 then
46: exp[b.order]← min(exp[b.order], b.ts+ Texp)
47: end if
48: end for
49: uploaded← false, min exp← MAX INT
50: for i = 0, ..., npeers− 1 do
51: if exp[i] = MAX INT then
52: lb← last block on chain C
53: Create a new block nb with nb.block id =

lb.block id + 1, nb.chain hash = lb.chain hash,
nb.state = PENDING, nb.creator = cid, nb.timestamp =
get cur time(), nb.chunk hashes = chashes,
nb.bin hash = h, nb.order = i

54: nb.chain hash← hash(nb)
55: Send nb to the server, and also spawn a child process

to transfer chunks[i] to the server
56: Add h onto checklist, uploaded← true
57: break
58: else if exp[i] > 0 then
59: min exp← min(min exp, exp[i])
60: end if
61: end for
62: if uploaded is false and min exp < MAX INT then
63: insert with priority(Q, h,min exp+ Texp/2)
64: end if
65: end procedure

Algorithm 2 SERVER(sid)

1: C ← genesis block, buf ← ∅, cmap← ∅, sem← Semaphore()
2: for each transaction from any client cid do
3: Obtain its request (h, len) for the blockchain
4: if len > size(C) then go to FINAL end if
5: count← 0
6: for each block b on C do
7: if b.bin hash = h and b.creator = cid then
8: count← count+ 1 end if
9: end for

10: if count > LIMIT then go to FINAL end if
11: Send all the blocks on C from len to the end to client cid
12: Schedule a timer to be fired after τ time units
13: WAIT:
14: Wait for the timer to fire or a new response r from client cid
15: if response r is a new block from client cid then
16: cur h← r.chain hash, lb← last block on C
17: r.chain hash← lb.chain hash
18: if cur h �= hash(r) or r.state �= PENDING or

r.creator �= cid or r.order /∈ {0, ..., Npeers − 1} or r.ts >
get cur time() + Texp/2 or r.ts < get cur time()− Texp/2
or r.block id �= lb.block id+ 1 then

19: Cancel the timer, go to FINAL
20: else
21: r.chain hash← cur h
22: Append block r at the tail of C
23: Spawn a child process calling RECV CHUNK(r, cid)

to receive a chunk of binary executable from client cid
24: end if
25: go to WAIT
26: end if
27: FINAL:
28: sem.Acquire(), move items in buf into buf2, sem.Release()
29: if buf2 is empty then continue end if
30: lb← last block on C
31: for each (h, o, chashes) in buf2 do
32: Create a new block nb with nb.block id = lb.block id+

1, nb.bin hash = h, nb.order = o, nb.chain hash =
lb.chain hash, nb.state = COMMITTED, nb.creator = sid,
nb.ts = get cur time(), nb.chunk hashes = chashes

33: nb.chain hash← hash(nb)
34: Append nb at the tail of C
35: end for
36: done set = ∅
37: for each (h, o, chashes) in buf2 do
38: if h in done set then continue end if
39: ready ← true
40: for i = 0, ..., Npeers do
41: if cmap[chashes[i]] is empty then
42: ready ← false end if
43: end for
44: if ready is false then continue end if
45: chunks← {cmap[chashes[i]]}1≤i≤Npeers

46: de← reconstruct(chunks, h)
47: if hash(de) = h then
48: lb← last block on C
49: Create a new block nb with nb.block id =

lb.block id + 1, nb.bin hash = h, nb.order = −1,
nb.chain hash = lb.chain hash, nb.state = COMPLETED,
nb.creator = sid, nb.ts = get cur time(),
nb.chunk hashes = chashes

50: nb.chain hash← hash(nb)
51: Append nb at the tail of C, add h to done set
52: end if
53: end for
54: end for
55:
56: procedure RECV CHUNK(b, cid)
57: Wait for cid to transfer a chunk ch
58: if hash(ch) = b.chunk hashes[b.order] then
59: sem.Acquire()
60: Add (b.bin hash, b.order, b.chunk hashes) into buf
61: cmap[b.chunk hashes[b.order]]← received chunk
62: sem.Release()
63: end if
64: end procedure

47

child process calls the RECV CHUNK to receive the chunk

from the client, and if its hash matches that of this chunk

stored in the block, it saves the chunk inside a map, cmap,

keyed by the chunk hash.

At the end of the main loop of the SERVER procedure, the

server checks if any new chunks (not necessary from the client

that the server just talked to) have been received. For each

received chunk, the server creates a new block with its state

set to be COMMITTED and appends it to the tail of the current

blockchain with its chain hash field properly calculated. It

is also possible that a new chunk received allows the server

to reassemble an entire binary executable. Using the chunk

hashes as the keys to search cmap, the server reconstructs the

binary sample. If the reconstructed sample has the same hash

as the hash of the binary executable (i.e., h), it is valid and

the server thus appends a new block with its state set to be

COMPLETED and its bin hash field to be h.

Protocol analysis. Our blockchain-based method for shar-

ing binary executables satisfies the following properties:

• Safety: In this context, the safety property means that

the server cannot obtain sensitive data from any of

the contributors. The CLIENT procedure in Algorithm 1

uses its local checklist to ensure that for any binary

executable at most one chunk should be sent to the server,

which achieves our privacy goal.

• Liveness: The liveness property here means that if there

are at least Npeers users who have the same binary

executable and they have sufficient bandwidth to upload a

chunk of the executable within Texp time units, the server

will eventually be able to obtain this binary executable.

Our method achieves liveness because if a contributor

finds that she is not able to upload a chunk at the current

moment (because all the chunks are in a PENDING state

without expiring), she will retry after a certain period of

time. For a non-cooperative user, he may choose not to

upload the correct chunk after each request, which makes

the corresponding block expire after Texp. However, as

each user can create at most LIMIT requests on behalf

of the same binary executable (Line 10 in Algorithm 2),

a cooperative user will eventually be able to replace him

in uploading that chunk. It is possible that a malicious

user can create multiple sybil accounts. But due to only a

finite number of sybil accounts he can create, a persistent
cooperative user will still be able to outlast these attempts

and upload the correct chunk eventually. To mitigate the

adverse effects of non-cooperative users, BigBing can

further deploy anomaly detection methods, which are

outside the scope of this work.

V. MALWARE CLASSIFICATION MODELING AS A SERVICE

Through its frontend gateway, a user of BigBing’s server

needs to provide three types of inputs: operational constraints,

performance objective function and constraints, and a sample
list of binary executable hashes.

Operational constraints. A user’s operational constraints

concern what kind of features can be collected from her

working environment. For example, although IDA Pro [14]

offers comprehensive capabilities to disassemble executable

programs, a user may not have a license for it to extract

features. A cautious user may not want to use malware features

collected from dynamic execution if she cannot find a malware

execution sandbox with strong isolation.

Performance objective function and constraints. A user

of BigBing’s service also needs to input her performance

objective that should be optimized. As there can be many

different types of malware attacks against the user’s network,

BigBing uses multi-class performance metrics, instead of the

traditional binary classification metrics. The formal definitions

of the multi-class performance metrics supported by BigBing

have been summarized in the Appendix. In addition to classi-

fication performance objectives, BigBing also allows the users

to input their performance constraints. A Neyman-Pearson

classifier, for example, maximizes the detection rate while

keeping the false positive rate below a certain threshold [45].

Hence, for training a Neyman-Pearson classifier, the user needs

to specify detection rate as her performance objective and an

upper limit on false positive rate as her performance constraint.

Sample list of binary executable hashes. To estimate the

data distribution in the user’s environment, BigBing requires

her to upload a sample list of binary executable hashes. The

list is uniformly sampled from all her executable programs,

benign or malicious. A higher sampling rate allows BigBing

to recover the user’s true data distribution more accurately, but

at the price of a higher transmission overhead.

While BigBing requires its users to upload a sample list

of binary executable hashes, a privacy-sensitive user may not

want to reveal to BigBing all the executables that run in her

environment. To alleviate users’ privacy concerns, BigBing

can engage a private set intersection protocol [27] with the

user such that after the protocol, BigBing should only know

the intersection between the executable program hashes on

the user’s sample list and the hashes of those executable

programs stored on BigBing’s big data cluster. There are

efficient algorithms for private set intersection protocols [26],

[40], and we will evaluate the execution performance of PSI

operations used by BigBing in Section VII.

Optimization problem formulated from user inputs.
The frontend gateway forwards the user’s input to the Big-

Bing backend, which trains an optimal predictive model that

satisfies the user’s requirements. Formally, let Co and Cp

denote the user’s operational and performance constraints,

respectively, and Gp(f) be her performance objective. Also

let the sample hash list be H , and its data distribution

denoted by DH . Given a predictive model f , Gp(f)|DH
gives

a measure of the user’s performance objective on the data

generated from distribution DH , Co(f) the requirement that

the features used by the predictive model f should satisfy Co,

and Cp(f)|DH
the requirement that predictive model f should

satisfy performance constraints Cp when applied on data

generated from distribution DH . Hence, the user’s expectation

on the predictive model can be formulated as the following

optimization problem:

48

Optimize
f

Gp(f)|DH
(1)

Subject to Co(f)

Cp(f)|DH

A. Training user-specific predictive models

Solving the optimization problem formulated as in Eq. (1)

needs knowledge of distribution DH . The big data clus-

ter of BigBing stores a large corpus of binary executable

samples. It is a well-known challenge to find the ground-

truth family labels for malware samples [32]. To find a

labeled malware dataset, BigBing relies on the detection

results of various AV scanners. We use the Zeus sample

compiled from Github [21] as an example, whose MD5 hash is

fac741d0618b82cdf7c41c89cffdb19e. The detection

results of five major AV scanners are given in Table I. From

their detection results, we extract the most unique keywords

as the family labels, as in the last column of Table I.

TABLE I
DETECTION RESULTS BY DIFFERENT AV SCANNERS ON A ZEUS SAMPLE

WITH MD5 HASH fac741d0618b82cdf7c41c89cffdb19e

AV scanner Detection Result Keyword
Microsoft PWS:Win32/Zbot!ZA Zbot
Kaspersky Trojan-Spy.Win32.Zbot.bopd Zbot

ESET-NOD32 Win32/Spy.Zbot.YW Zbot
McAfee PWS-Zbot.gen.ds Zbot

Symantec Infostealer Infostealer

From the detection results by different AV scanners, Big-

Bing currently applies the majority voting scheme [46] to label

their corresponding families: among n AV scanners, if more

than half of them identify it as a family label l, it is labeled

as family l. However, the other types of heuristics can be

used here to derive malware family labels, such as conflict-free

malware labeling [44].

For each item on the user-provided sample hash list H ,

its label is decided through majority voting based on the

detection results of different AV scanners (if the label cannot

be decided, it is given as unknown). After processing all the

sample hashes on H , BigBing calculates the frequency of each

family label, and the derived frequency histogram is used to

approximate the user’s data distribution DH in Eq. (1). For

convenience, we let DH(l) denote the frequency of family

label l in distribution DH .

Let list B denote all labeled binary executables stored on the

cluster. BigBing needs to sample list B to generate a training

dataset whose distribution matches DH . To this end, BigBing

examines each sample on list B to check if it satisfies the

user-provided operational constraints, and if so, puts it onto

list O which eventually contains all eligible samples that have

been found to meet users’ operational constraints. By abusing

notation O slightly, we use O(l) to denote the list of all

samples in O with family label l.
BigBing next generates a training dataset T to train a

predictive model that solves the optimization problem stated

in Eq. (1). Taking into account its available computational

resources, BigBing has an internal parameter m to control

the size of the training dataset T . With inputs including

distribution DH , the list of eligible samples O, and dataset

size m, the sampling algorithm is given in Algorithm 3 to

generate training dataset T . It is noted that a sampling scheme

with replacement is used to generate dataset T . Moreover, for

a family label that is present in DH but not in O, it is ignored

due to lack of representative samples available to BigBing.

Algorithm 3 Generation of training dataset T

Require: distribution DH , list O, parameter m
Ensure: Distribution of dataset T matches DH

T ← ∅
for each label l of interest in distribution DH do

if length of O(l) is greater than 0 then
ml ← m · DH(l)
for 1 ≤ i ≤ ml do

r ← a random executable program from O(l)
Add r onto dataset T

end for
end if

end for

Given the training dataset T , BigBing next searches for a

predictive model that solves the optimization problem shown

in Eq. (1). BigBing considers only those classification models

F that have already been implemented on the Apache Spark

platform, and for each hyperparameter used by classifier f in

F , it keeps a list of plausible values. The hyperparameters

of a machine learning model are the knobs that control the

complexity or the capacity of the model but cannot be changed

in model training. BigBing uses the grid search method to find

the optimal classifier. For each classifier f in F , it considers

all combinations of plausible hyperparameter values, under

each of which BigBing uses the training dataset T to train an

optimal classifier and then applies cross-validation to measure

its average classification performances. If the parameterized

classifier trained cannot meet any of the predefined perfor-

mance constraints, it is rejected; otherwise, it is put into a

candidate list Lf . After evaluating all possible combinations

of hyperparameter settings for each classifier in F , the one

among {Lf : f ∈ F} that optimizes the objective performance

function is chosen and returned to the user.

VI. IMPLEMENTATION

We have developed a prototype of BigBing, whose web

interface is still under development. Its big data cluster is

hosted on a Super Micro SuperServer (6028TR-HTR) with

eight Intel Xeon E5 2620 8-core processors, four 128GB

DDR-4 2133MHz ECC/REG RAMs, and four Seagate 4Tb

hard disks. The big data cluster runs 64bit Ubuntu Linux

of version 16.04, hosts an HDFS (Hadoop Distributed File

System) [5], relies on Apache Spark and its ML library [6] for

data processing and machine learning, and uses the Cassandra

database [4] to manage malware samples and their features.

49

We use several workstations in our laboratory as the server

pool of BigBing. Each workstation is equipped with an Intel

i7-4790 8-core 3.60GHz CPU, 32G RAM, and a 2T hard

disk. Each of these workstations runs 64bit Ubuntu Linux

of version 16.04 and uses KVM/QEMU for virtual machine-

based sandboxing. One of these workstations has a Linux-

based license to run IDA Pro disassembler of version 6.9 [14].
The software component of BigBing consists of two parts:

blockchain-based binary executable sharing and malware clas-

sification as a service. Based on the results from the simple

Python LOC (Line of Code) counter provided at [1], the former

part has 547 and 376 lines of Python code on the server and

client side, respectively, and the latter is implemented with

7,122 lines of Python code.
The functionality of binary executable sharing given in

Algorithms 1 and 2 has been developed on top of Flask,

a Python micro-framework for web development [12]. We

have implemented a web service which uses the Flask-based

RESTful API for the communications between BigBing and

any user who would like to contribute her binary executable

samples. The client sends requests to the server for each

transaction using the HTTP protocol, and all the requests and

responses are transmitted in the JSON data format.
For Windows PE malware samples, BigBing uses the fol-

lowing tools to extract malware features (to differentiate the

tools used for feature extraction, we follow the convention

X:Y to denote feature type Y extracted by tool X):

• pefile [16]: pefile is a Python module to read and

work with PE files. As shown in [46], both numerical

and boolean features extracted from the PE headers

are useful for predicting malware families [46]. We

thus use pefile to extract malware features of type

pefile:numerical and pefile:boolean.

• hexdump [13]: The Linux hexdump utility can be used

to extract the frequencies of byte sequence n-grams as

malware features of type hexdump:n-gram.

• IDA Pro [14]: We use a dedicated server running IDA Pro

to extract the CFG (control flow graph) of each malware

sample and extract structural information as malware

features of type idapro:cfg.

• Cuckoo [9]: Cuckoo is a popular sandbox for malware

analysis. We run PE malware samples within a virtual

machine contained with KVM/QEMU. From the analysis

report, we extract the number of times each API call

has been made by the malware as its features of type

cuckoo:api. For the network configuration inside the

VM for malware analysis, we have four different modes:

Internet (the VM has Internet access with offensive traffic

blocked due to ethical concern), simulated Internet with
InetSim [15], simulated Internet with FakeNet [11], and

no Internet simulator.

The raw features extracted with the aforementioned tools are

stored on the HDFS. We next preprocess the raw feature data

into data formats that are readable by the Spark ML library.

Using Spark, we perform imputation of missing features with

their means, standard scaling, and feature selection on the raw

feature data. The feature selection algorithm chosen affects the

classification performance significantly [46]. As the feature

selection algorithms implemented even in the latest Spark

package perform poorly on malware data, we use the linear

SVM model with a L1-norm regularization term implemented

by scikit-learn [19] to select at most 200 features for

each feature type.

VII. EXPERIMENTAL EVALUATION

We use a Windows PE malware dataset with 15,983 un-

packed and 6,480 packed samples belonging to 12 families,

Bagle, Bifrose, Hupigon, Koobface, Ldpinch, Lmir, Rbot, Sd-
bot, Swizzor, Vundo, Zbot, and Zlob. Additionally, we use

494 benign PE programs. The distributions of both unpacked

and packed malware samples are shown in Figure 3. In our

experiments we use this dataset to evaluate the performance

of BigBing from two perspectives: its execution performance
and classification performance.

Fig. 3. Malware data distributions

A. Execution performance of BigBing

In this part, we perform three sets of experiments to evaluate

the efficiency of the BigBing platform.

(A.1) Blockchain-based binary executable sharing. In the

experiments, we consider six clients, each of them possessing

500 malware executables randomly picked among 1317 Zbot

malware samples. Each client establishes its first connection

with the server after a random delay within 10 seconds.

Afterwards, each client continually sends requests until all the

samples on its list of binary samples have been contributed.

The parameters in Algorithms 1 and 2 are configured as

follows: Texp = 3600 (sec), Npeers = 3, LIMIT = 3,

and τ = 5 (sec). Therefore, for each binary executable, at

least three contributors have to get involved in uploading the

complete sample. Each user can make at most three attempts

to contribute to the same malware program.

We design three scenarios to evaluate the performance of

the blockchain-based binary executable sharing scheme:

• Case 1: all six clients are cooperative by following the

protocol in Algorithm 1 strictly;

• Case 2: three clients are fully cooperative but the other

three are only partially cooperative: they initiate the

transactions to upload their chunks so these transactions

appear on the blockchain but they do not attempt to

transfer their chunks to BigBing successfully;

50

(1) Case 1 (2) Case 2 (3) Case 3

Fig. 4. The number of blocks per state on the blockchain maintained on the server

• Case 3: three clients are fully cooperative but the other

three are malicious and collude among themselves: for

each binary executable hash they see, they use the same

different file in computing the chunks and their hashes.

Figure 4 shows the number of blocks per state on the

blockchain maintained by the server in the three cases. In Case

1, there are 560 binary executables that are shared by at least

three of the six fully cooperative users, and they are received

successfully by the server in 621 seconds (about 0.17 hour).

In this case, because all six clients are fully cooperative, it

takes only a short period of time to upload all the sharable

binary executables. The two curves representing blocks in

the PENDING and COMMITTED state, respectively, overlap

with each other because all the cooperative clients upload the

chunks that they have promised to send.

In Case 2, there are 76 binary executables shared by the

three fully cooperative users, and it takes 10,985 seconds

(about 3.1 hours) for the BigBing server to reassemble all these

samples (which correspond to the 76 blocks in a COMPLETED
state on the blockchain). From Figure 4(2) we observe that

blocks in a PENDING state outnumber those in a COMMITTED
state, because there are three partially cooperative users who

promise to send their chunks but do not upload them later.

There are also three notable bumps for the number of blocks

in a PENDING state on the blockchain. The first one occurs

at the time after around 556 seconds, when each client has

finished initiating the transactions for uploading its binary

executable chunks without waiting for any timer to expire
(see Algorithm 1). The second bump happens at the time

after around 5444 seconds, when clients wait for a period of

(1 + 1/2) · Texp (i.e., 5400 seconds) to recheck an unexpired

chunk in a PENDING state in the blockchain. The last bump

occurs after an elapse time of 10,868 seconds when another

such waiting period has expired.

In Case 3, there are 76 binary executables which are shared

by three fully cooperative users, and all of them have been

received within 675 seconds (about 0.19 hour). Similarly to

Case 1, the two curves representing blocks in PENDING and

COMMITTED, respectively, overlap with each other. This is

because the three malicious clients use a different file to

calculate chunk hashes and after these chunks are uploaded to

the server successfully, the states of these chunks are changed

from PENDING to COMMITTED using newly created blocks

on the blockchain. Only after the server fails to reassemble

a binary executable with a matching hash from these chunks

can it realize that these clients have uploaded a different file.

Comparing Case 3 against Case 2, we notice that the three

malicious and colluding clients affect little the time needed for

the three cooperative users to upload the 76 sharable binary

executables. This is because these cooperative users know that

the blocks created by the malicious ones contain wrong chunk

hashes and thus ignore them according to the protocol.

(A.2) PSI operation in user data distribution matching.
BigBing uses a PSI-based protocol to ensure client’s privacy

in uploading her list of binary executable hashes and in this set

of experiments, we measure the execution overhead of finding

the intersection of binary executable MD5 hashes between

the client and the server using two different PSI algorithms,

one based on the Diffie-Hellman algorithm [35] and the other

oblivious transfer (OT) [38]. In our experiment, the server

has 15,983 samples and the client has a local list of 10,000

executable programs with the number of intersecting samples

with the server ranging between 2,000 and 10,000. We adapt

the implementation code of both algorithms from [18] to run

in a distributed computing environment where the client and

the server are located on different physical machines. The

execution performances using two desktops in our laboratory

are depicted in Figure 5, from which it is observed that the OT-

based algorithm leads to negligible execution overhead, which

is around half a second in all five scenarios.

(A.3) Responsiveness of malware classification modeling
as a service. Based on its available computational resources,

BigBing uses parameter m to control the size of the training

dataset T . We show how the execution times at different stages

of BigBing vary with parameter m. In the experiments, we

use all different types of Windows PE malware features when

training a classifier, and the size of the user-provided sample

hash list is 1,000. For each setting of parameter m, we run the

experiments for 10 times, and calculate the average execution

time of each of the following stages:

• Transmission: Forward the user’s request to the BigBing

backend and return the model trained to the user.

51

Fig. 5. Execution time of PSI operation in user
data distribution matching

Fig. 6. The execution time of each stage for
malware classification as a service

Fig. 7. Performances under different distribu-
tion matching schemes

• Distribution estimation: Given the user-provided sample

hash list, estimate distribution DH .

• Data generation: Based on the user’s operational con-

straints, generate a list of feasible samples, sample this

list to get a training dataset of size m, fetch the feature

data from the HDFS, and generate the training data file.

• Model training: Use the grid search method to find the

predictive model that optimizes the user’s performance

objective while satisfying her performance constraints.

Figure 6 shows the average execution time of each stage

after the user submits her request. Clearly, the overall response

time is dominated by the data generation and model training

stages. When decreasing the training dataset size m, the exe-

cution time decreases almost linearly. Even with m = 10, 000,

the overall response time is around 22 minutes, suggesting that

the users do not have to wait for a long time to get a predictive

model trained by BigBing.

B. Classification performance of BigBing

In this part, we evaluate the classification performances of

the prediction models trained by BigBing using the metrics

defined in the Appendix. When the classification results based

on cuckoo:api features are presented, the Internet access

mode is used by default unless stated otherwise.

(B.1) Matching users’ data distribution. In this set of

experiments, we show the importance of matching the malware

data distribution in the user’s environment when generating

the training datasets. We consider the following distribution

matching schemes based on DH , assuming that its malware

families are ordered in decreasing order of frequencies:

• Best-matching: Based on the user-provided sample hash

list H , we generate a training dataset T whose distribu-

tion exactly matches DH discovered from H . This is the

scheme used by BigBing in its operation.

• Reverse-matching: We match DH except that the order

of malware families are reversed. Hence, the family with

the least samples in H has the largest number of samples

in the training dataset generated.

• Random-matching: We match DH but randomly change

the order of malware families.

• Uniform-matching: We generate a training dataset with

the same number of samples for each malware family. In

this case, the user does not need to provide a representa-

tive sample hash list H .

When matching a specific distribution, BigBing may not

have sufficient samples for certain underrepresented families.

We sample malware features with replacement in distribution

matching. Typically, the number of malware families seen

in a user’s operating environment is much smaller than that

available on a cloud-based environment like BigBing. In this

set of experiments, we thus assume that the user observes only

attacks from a subset of malware families.

We first randomly choose 2,000 unpacked PE samples

among all available data, and then select only those from the

Bagle, Bifrose, and Hupigon families for testing. On average,

about 819 samples are selected for testing. The selected test

samples are divided into five folds, and in each experiment,

one fold is selected as the user’s sample hash list and the

remaining ones for testing. The size of the training dataset m
is set to be 4,000, and the weighted F-measure is used as the

performance objective.

Figure 7 shows the classification performances under differ-

ent data distribution matching schemes. Since we have only

three families in the testing dataset, we ignore the results from

random-matching. We observe that the average weighted F-

measure across five different feature types using best-matching

leads to 11.6% improvement over that under reverse-matching,

and 4.4% improvement over that under uniform-matching.

(1) ACC (2) DR under FPR < 0.05

Fig. 8. Evaluation results under two different performance objectives, ACC,
and DR under FPR < 0.05

(B.2) User-specified objective function and constraints.
In addition to weighted F-measure, BigBing also supports the

52

(1) pefile:numerical (2) pefile:boolean (3) hexdump:1-gram (4) cuckoo:api

Fig. 9. The F-measures by family when only packed PE malware samples are considered

Fig. 10. Classification performances from cuckoo API features under
different network configurations

other types of performance objectives and constraints. In a new

set of experiments, we use 5,000 malware samples for testing,

which are randomly drawn from the unpacked PE malware

samples available to BigBing. These test samples are divided

to five folds, each of which is used as the user’s sample hash

list and the remaining for testing. In Figure 8, we show the

evaluation results under two different performance objectives,

one using classification accuracy (ACC) as the performance

objective, and the other detection rate (DR) while under the

constraint that the false positive rate should be below 5%.

For this set of experiments, we can see that the best-matching

scheme performs slightly better than uniform-matching, but

does much better than reverse-matching and random-matching.

Note that in these experiments, the testing malware samples

are drawn from all families, instead of only a subset of them.

This leads to smaller improvement of best-matching over

uniform-matching, compared with what we see in Figure 7.

(B.3) Packed PE malware samples. BigBing is capable

of training predictive models for classifying packed Windows

malware. Tools such as PEiD [17] can be used to detect

common malware packers. We run a set of experiments with

6,480 packed Windows malware, among which 1,000 are

randomly chosen for testing and are thus not seen by BigBing

for training the classifiers. The 1,000 test samples are further

divided into five folds, each of which is used for user-

provided MD5 hash list and the remaining ones to evaluate

the classification performances.

Figure 9 shows the average F-measures of each malware

family on different types of malware features. From Figure 9,

we make the following observations. (1) The API call features

extracted from Cuckoo outputs have the best discriminative

power. This is expected because features extracted from static

malware analysis become less meaningful after malware sam-

ples are packed. Among the three types of static malware fea-

tures, numerical ones extracted from PE headers lead to good

classification performances, which is encouraging because the

overhead of extracting such features is much lower than setting

up a Cuckoo sandbox for dynamic malware analysis. (2) The

best-matching scheme leads to the best classification measures

compared to the other schemes. This is expected because

BigBing trains a classifier that optimizes the classification

measure with a training dataset reflecting what is seen in the

user’s working environment.

(B.4) Effect of network configuration. In another set

of experiments, we compare the classification performances

based on Cuckoo API features under four different network

configurations, including Internet, simulated Internet with In-

etSim, simulated Internet with FakeNet, and no simulated

Internet. During the process of feature extraction, we observe

that in some cases Cuckoo does not report any dynamic

analysis results. For fair comparison, we consider a set of

15,759 unpacked binary executables with Cuckoo API fea-

tures extracted successfully. The classification performances

under these four different network configurations are shown

in Figure 10. We observe that, with Internet access, the

classification performance is close to perfection and for the

other three network configuration modes, the malware classi-

fication performances are comparable. The result shows that

further research is needed to improve the realism of Internet

simulators used for malware analysis.

VIII. CONCLUSIONS

In this work, we have developed a new platform called

BigBing which provides a privacy-preserving malware clas-

sification service. BigBing uses a blockchain-based method

to achieve privacy-preserving sharing of binary executable

files. With user-provided operational constraints and perfor-

mance objective functions, BigBing trains classification mod-

els specifically tailored to their operational environments.

BigBing relies on big data computing platforms to enhance

responsiveness of its malware classification modeling service.

Using real-world Windows PE malware samples, we have

shown that BigBing offers a promising big data-based platform

to fight against the ever-evolving malware threats.

53

ACKNOWLEDGMENT

We acknowledge NSF Award CNS-1618631 for supporting this
work and anonymous reviewers for their constructive comments.

REFERENCES

[1] A simple Python LOC counter. https://github.com/tsaulic/pycount.
[2] About VirusTotal. https://www.virustotal.com/en/about/about/.
[3] Anubis. http://anubis.iseclab.org/.
[4] Apache Cassandra. http://cassandra.apache.org/.
[5] Apache Hadoop. http://hadoop.apache.org/.
[6] Apache Spark. http://spark.apache.org/.
[7] bitcoin. https://bitcoin.org/.
[8] Carbon Black may be leaking terabytes of customer

data (UPDATED). http://www.healthcareitnews.com/news/
carbon-black-may-be-leaking-terabytes-customer-data-updated.

[9] Cuckoo Sandbox. https://cuckoosandbox.org.
[10] ethereum. https://www.ethereum.org/.
[11] FakeNet. https://practicalmalwareanalysis.com/fakenet/.
[12] Flask. http://flask.pocoo.org/.
[13] hexdump. https://en.wikipedia.org/wiki/Hex dump.
[14] IDA Pro. https://www.hex-rays.com/.
[15] INetSim: Internet Services Simulation Suite. http://www.inetsim.org/.
[16] pefile. https://github.com/erocarrera/pefile.
[17] PEiD. https://www.aldeid.com/wiki/PEiD.
[18] Private Set Intersection (PSI). https://github.com/encryptogroup/PSI#

private-set-intersection-psi.
[19] Scikit-learn: machine learning in Python. http://scikit-learn.org/.
[20] VirusTotal. https://www.virustotal.com/.
[21] Zeus source code 2.0.8.9. https://github.com/Visgean/Zeus.
[22] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and

J. Nazario. Automated classification and analysis of internet malware.
In Recent Advances in Intrusion Detection. Springer, 2007.

[23] R. Benzmller. Malware trends 2017. https://blog.gdatasoftware.com/
2017/04/29666-malware-trends-2017.

[24] E. Chung. Antivirus software is ’increasingly useless’ and may
make your computer less safe. http://www.cbc.ca/news/technology/
antivirus-software-1.3668746, 2016.

[25] J. Daemen and V. Rijmen. The design of Rijndael:AES—the advanced.
Journal of Cryptology, 4(1):3–72, 1991.

[26] C. Dong, L. Chen, and Z. Wen. When private set intersection meets
big data: an efficient and scalable protocol. In Proceedings of the 2013
ACM Conference on Computer & Communications Security, 2013.

[27] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching
and set intersection. In International conference on the theory and
applications of cryptographic techniques, pages 1–19. Springer, 2004.

[28] X. Hu, K. G. Shin, S. Bhatkar, and K. Griffin. Mutantx-s: Scalable
malware clustering based on static features. In USENIX Annual
Technical Conference, pages 187–198, 2013.

[29] J. Jang, D. Brumley, and S. Venkataraman. Bitshred: feature hashing
malware for scalable triage and semantic analysis. In Proceedings of
ACM conference on Computer and communications security, 2011.

[30] W. Jansen and T. Grance. Sp 800-144. guidelines on security and privacy
in public cloud computing. 2011.

[31] J. Kinable and O. Kostakis. Malware classification based on call graph
clustering. Journal in computer virology, 7(4), 2011.

[32] P. Li, L. Liu, D. Gao, and M. K. Reiter. On challenges in evaluating
malware clustering. In International Workshop on Recent Advances in
Intrusion Detection. Springer, 2010.

[33] S.-T. Liu, H.-c. Huang, and Y.-M. Chen. A system call analysis method
with MapReduce for malware detection. In International Conference on
Parallel and Distributed Systems. IEEE, 2011.

[34] M. M. Masud, T. M. Al-Khateeb, K. W. Hamlen, J. Gao, L. Khan, J. Han,
and B. Thuraisingham. Cloud-based malware detection for evolving data
streams. ACM Transactions on Management Information Systems, 2011.

[35] C. Meadows. A more efficient cryptographic matchmaking protocol for
use in the absence of a continuously available third party. In IEEE
Symposium on Security and Privacy, pages 134–134. IEEE, 1986.

[36] A. Mohaisen, O. Alrawi, and M. Mohaisen. Amal: High-fidelity,
behavior-based automated malware analysis and classification. Com-
puters & Security, 52:251–266, 2015.

[37] R. O’Callahan. Disable Your Antivirus Software (Except Microsoft’s).
https://blog.gdatasoftware.com/2017/04/29666-malware-trends-2017.

[38] B. Pinkas, T. Schneider, and M. Zohner. Scalable private set intersection
based on ot extension. ACM Transactions on Privacy and Security
(TOPS), 21(2):7, 2018.

[39] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov. Learning
and classification of malware behavior. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 108–125. Springer, 2008.

[40] P. Rindal and M. Rosulek. Malicious-secure private set intersection
via dual execution. Proceedings of ACM Conference on Computer and
Communications Security (CCS’17), 2017.

[41] R. L. Rivest. All-or-nothing encryption and the package transform. In
International Workshop on Fast Software Encryption. Springer, 1997.

[42] M. Sikorski and A. Honig. Practical malware analysis: the hands-on
guide to dissecting malicious software. No Starch Press, 2012.

[43] H. Sun, J. Su, X. Wang, R. Chen, Y. Liu, and Q. Hu. Primal: Cloud-
based privacy-preserving malware detection. In Australasian Conference
on Information Security and Privacy, pages 153–172. Springer, 2017.

[44] G. Yan. Finding common ground among experts’ opinions on data
clustering: With applications in malware analysis. In Proceedings of the
30th International Conference on Data Engineering. IEEE, 2014.

[45] G. Yan. Be sensitive to your errors: Chaining neyman-pearson criteria for
automated malware classification. In ACM Symposium on Information,
Computer and Communications Security, 2015.

[46] G. Yan, N. Brown, and D. Kong. Exploring discriminatory features
for automated malware classification. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 41–61. Springer, 2013.

APPENDIX A: MULTI-CLASS CLASSIFICATION

PERFORMANCE METRICS

Let X = {x0,x1, ...,xN−1} denote the feature data extracted
from N testing malware samples, and their true labels are given
by Y = {y0, y1, ..., yN−1}, respectively. The prediction results by
a multi-class classifier for the n malware samples are given by
Ŷ = {ŷ0, ŷ1, ..., ŷN−1}. The set of malware family labels is denoted
by L. We also have the delta function δ(p) defined, which returns
1 if predicate p is true or 0 otherwise. The following multi-class
classification performance metrics can be defined:

• Classification accuracy (ACC):

ACC =
1

N

N−1∑

i=0

δ(yi = ŷi) (2)

• Weighted F-measure (Fw):

Fw =
1

N

∑

l∈L

F (l)

N−1∑

i=0

δ(yi = l), (3)

where F (l) is the F-measure by label defined by

F (l) =
2 · precision(l) · recall(l)
precision(l) + recall(l)

,

with

precision(l) =

∑N−1
i=0 δ(ŷi = l)δ(yi = l)
∑N−1

i=0 δ(ŷi = l)
(4)

recall(l) =

∑N−1
i=0 δ(ŷi = l)δ(yi = l)
∑N−1

i=0 δ(yi = l)
(5)

• (Weighted) detection rate (DR):

DR =
∑

l∈L

∑N−1
i=0 δ(yi = l)

N
· recall(l) (6)

• (Weighted) false positive rate (FPR):

FPR =
∑

l∈L

∑N−1
i=0 δ(yi = l)

N
·
∑N−1

i=0 δ(yi �= l) · δ(ŷi = l)
∑N−1

i=0 δ(yi �= l)

54

