
Ensuring Deception Consistency for FTP Services Hardened
against Advanced Persistent Threats
Zhan Shu

Department of Computer Science
Binghamton University, State University of New York

zshu1@binghamton.edu

Guanhua Yan
Department of Computer Science

Binghamton University, State University of New York
ghyan@binghamton.edu

ABSTRACT

Recent security incidents such as the Target data breach and the
Equifax hack suggest APTs (Advanced Persistent Threats) can sig-
nificantly compromise the trustworthiness of cyber space. This
work explores how to improve the effectiveness of cyber deception
in hardening FTP (File Transfer Protocol) services against APTs.
The main objective of our work is to ensure deception consistency:
when the attackers are trapped, they can only make observations
that are consistent with what they have seen already so that they
cannot recognize the deceptive environment. To achieve deception
consistency, we use logic constraints to characterize an attacker’s
best knowledge (either positive, negative, or uncertain). When mi-
grating the attacker’s FTP connection into a contained environment,
we use these logic constraints to instantiate a new FTP file system
that is guaranteed free of inconsistency. We performed deception
experiments with student participants who just completed a com-
puter security course. Following the design of Turing tests, we find
that the participants’ chances of recognizing deceptive environ-
ments are close to random guesses. Our experiments also confirm
the importance of observation consistency in identifying deception.

KEYWORDS

Cyber deception, deception consistency, advanced persistent threat
ACM Reference Format:

Zhan Shu and Guanhua Yan. 2018. Ensuring Deception Consistency for
FTP Services Hardened against Advanced Persistent Threats. In 5th ACM
Workshop on Moving Target Defense (MTD ’18), October 15, 2018, Toronto,
ON, Canada. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3268966.3268971

1 INTRODUCTION

As evidenced by a number of recent high-profile security incidents
such as the Target data breach [23] and the Equifax hack [1], ad-
vanced persistent threats (APTs) have posed unprecedented security
challenges to Internet users. In the battle of mitigating the ever-
growing APTs, cyber deception has recently regained popularity:
multiple research firms have predicted that the cyber deception
market will grow by more than 9 percent annually and reach more

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MTD ’18, October 15, 2018, Toronto, ON, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6003-6/18/10. . . $15.00
https://doi.org/10.1145/3268966.3268971

than one billion US dollars just in a few years [22]. By manipulat-
ing attackers’ perceptions, cyber deception enables another layer
of dynamic components to the attack surface of a system, which
agrees well with the spirit of the moving target defense paradigm.

Although deception-based defenses such as honey pots have
had a long history and played an important role in understanding
various cyber threats in the past, it is still difficult, if not impossible,
to reason about the effects of cyber deception on the adversary in
practice. Particularly, when deceptive techniques are deployed to
thwart APT attacks, they need to be planned carefully because an
experienced APT attacker can easily recognize “bad lies.” For many
deception-based methods such as decoy and disinformation, their
utility hinges upon the attackers being unaware of their existences.

Against this backdrop, our work explores one important aspect
of cyber deception, deception consistency, which is crucial to its
success in APT mitigation. Deception consistency ensures that the
observationsmade by anAPT attacker (or his malware surrogate) af-
ter he is trapped into a deceptive environment should be consistent
with what he has previously seen so that he cannot recognize the
deceptive environment. To gain deep insights into the challenges
of ensuring deception consistency in specific APT attack scenarios,
we harden existing FTP services with cyber deception capabilities:
we monitor APT attackers’ attempts at exploiting common FTP
service vulnerabilities (e.g., buffer overflow attacks) and migrate
the attackers’ FTP connections into a deceptive environment aimed
at revealing their origins, intents, and capabilities.

For FTP services hardened with cyber deception against APTs,
we explore how to ensure consistency of the attacker’s observations
after he is diverted to a deceptive FTP service. We develop efficient
methods to ensure the observation consistency of the attacker while
migrating his FTP connection into a deceptive environment. In a
nutshell, our contributions are summarized as follows:

• We formulate the problem of deception consistency assur-
ance rigorously and develop techniques to ensure that within
the deceptive environments where the attackers are trapped,
they can make only observations consistent with what they
have seen before. In our methods, we represent attackers’
best knowledge about the FTP file system, either positive,
negative, or uncertain, as logic constraints maintainedwithin
a tree data structure. When migrating the attacker’s FTP con-
nection, these logic constraints are used to instantiate a new
FTP file system in the deceptive environment.
• We instrument FTP services with APT detection capabili-
ties, and develop methods based on process checkpointing
and restoring functionalities to migrate attackers’ FTP con-
nections transparently into contained VMs where attackers’
intents, capabilities and tactics can be further revealed.

Session 3: Protection of Critical Services against Advanced Threats MTD’18, October 15, 2018, Toronto, ON, Canada

69

https://doi.org/10.1145/3268966.3268971
https://doi.org/10.1145/3268966.3268971
https://doi.org/10.1145/3268966.3268971

• To study the effectiveness of our methods, we perform ex-
periments with 32 student participants who have finished
a computer security course. Following the design of Turing
tests, we find that the participants’ capabilities of recogniz-
ing deceptive environments are close to random guesses.
The experiments also demonstrate the crucial importance of
observation consistency in identifying deception.

The remainder of the paper is organized as follows. Section 2
introduces related work and Section 3 the threat model considered
in this work. Section 4 provides our algorithm for ensuring decep-
tion consistency in protecting FTP services and Section 5 some
implementation details. Section 6 presents the evaluation results of
our method. In Section 7 we draw concluding remarks.

2 RELATEDWORK

Even extended with various security features [17, 19], FTP services
have been targets of hackers due to their popularity in enterprise
network environments. A variety of attacks against FTP services
exist, such as bounce attacks, port stealing and sniffing. In this work,
we focus on defending against APT attacks aimed at exploiting
vulnerable FTP services either to gain their initial foothold or to
move laterally inside an enterprise network.

The original concept of cyber deception dated back to the 1990s
when deception was used to baffle an intruder on an Internet gate-
way for several months [15]. Honeypots and honeynets have been
widely deployed to understand emerging cyber threats such as
worms, botnets, and phishing attacks [7, 8, 16, 25, 26]. Cyber decep-
tion has also been used to mitigate threats such as insider attacks,
external reconnaissance, and network eavesdropping [14, 27, 29–
32]. Decoy unpatched software vulnerabilities are used to confuse
the attackers and then trap them into contained environments
where they can successfully exploit unpatched vulnerabilities [12].
Similar to our work, they also uses live process migration to achieve
transparent trapping of attackers. Deception-based methods have
been evaluated [18] in detecting attacks against web applications.
Although inspired by these previous works, the main focus of our
study is to ensure consistency of attackers’ observations throughout
the life cycles of their attacks.

Developing rigorous methods for deception consistency assur-
ance in cyber defense operations agrees well with the recent trend in
building a scientific foundation for cyber deception [20]. Deception
consistency has been discussed in a few previous works [21, 24, 28].
Although they have sharply observed the importance of consistency
for the success of cyber deception, most of their discussions are
done at the conceptual level without providing specific solutions
to achieving deception consistency. To the best knowledge, our
work offers the first systematic approach to ensuring deception
consistency in a specific cyber attack and defense scenario.

3 THREAT MODEL

In our threat model, we consider APT attackers targeting vulnerable
FTP services. The attackers may use anonymous FTP accounts, or
stolen credentials of legitimate users to access the FTP services.
For the FTP service, an easy target for the attacker would be the
buffer that stores the client’s FTP command strings, as evidenced by
the buffer overflow vulnerability in PCMan’s FTP Server 2.0.7 [11]

and the other FTP servers (e.g., TYPSoftFTP server, Ws FTP server,
Typsoft FTP server, and Core FTP server) [4].

Throughout the life cycle of an APT attack, the attacker can
exploit a vulnerable FTP server to achieve the following goals:
• By hacking a vulnerable FTP server in the DMZ (demilita-
rized zone), the APT attacker can gain his initial foothold
inside the victim enterprise network.
• The APT attacker can also exploit a vulnerable internal FTP
server to move laterally inside the victim enterprise network.

As our main focus is to ensure deception consistency against
an APT attacker who has already been detected, the method used
to identify these attacks is orthogonal to this work. For instance,
given that buffer overflow attacks are a major threat vector against
FTP services, we can monitor FTP users’ attempts in overflowing
the buffer used to store incoming FTP commands.

As APT attackers can be skilled and well-resourced hackers, we
assume that they can recognize deceptive environments from incon-
sistent observations. We also assume that the attacker’s knowledge
about the FTP service is gained only from the outputs of his FTP
commands so he does not rely on any prior knowledge about the
FTP service under exploitation to identify deceptive environments.
Moreover, we assume that the attacker can infer the error code of
his command from its output sent by the FTP server. Although it is
possible to hide such information by manipulating the output of a
command, it may confuse normal FTP users; hence, it is assumed
that the FTP server being protected notifies its user of the authentic
error code – or lack of errors – after each FTP command is executed.

4 ENSURING DECEPTION CONSISTENCY

Our proposed system for hardening FTP services with cyber de-
ception is illustrated in Figure 1. The FTP service, which is instru-
mented with threat detection capabilities, monitors the commands
sent by each individual client to detect if he attempts to exploit
the FTP service. If he does, the server migrates the ongoing FTP
connection to a deceptive FTP service with a file system that has
sensitive information redacted.

Figure 1: FTP services hardened against APT attacks

4.1 Detecting APTs against FTP services

To trap APT attackers into using deceptive FTP service, we first
instrument real FTP services with threat detection capabilities. In
our implementation, we have instrumented two popular FTP server-
side software programs to detect attackers who attempt to send
overly long command strings to overflow the input buffer:
• Bftpd [2]: The main function of a Bftpd server (Version 4.4)
has a while loop and in each iteration the server parses and
processes an incoming FTP command stored in variable str .

Session 3: Protection of Critical Services against Advanced Threats MTD’18, October 15, 2018, Toronto, ON, Canada

70

We instrument the code by checking whether the length
of the command string str exceeds a maximum threshold
MAXLENGTH , and if so, creating a deceptive virtual envi-
ronment for the ongoing FTP connection.
• ProFTPd [9]: The main function of a ProFTPd server (Ver-
sion 1.3.7rc1) contains a while(TRUE) loop, in which the
server accepts an incoming FTP command into buffer cmd_bu f .
Similarly, in the loop we add code that checks if the length
of cmd_bu f exceeds thresholdMAXLENGTH . An attacker
sending an overly long command string will be redirected
into a deceptive FTP server.

ThresholdMAXLENGTH in both Bftpd and ProFTPd should be
large enough so that it is unlikely for a normal FTP user to send
a command string whose length exceeds MAXLENGTH . As our
threat model concerns APT attackers, the simple method of detect-
ing overly long FTP commands can still be effective in identifying
persistent attackers who look for buffer overflow vulnerabilities.

Another way of identifying APT attackers is to hide decoy files
inside the file system used by the real FTP service. After making it
unlikely for normal users to access these files, if the real FTP server
detects attempts of downloading these files, the corresponding FTP
connections will be identified as threats.

4.2 Extracting APT attackers’ traces

We call the process of diverting the APT attacker detected to the
deceptive FTP server as a context switch. We now focus on the
consistency of the FTP file system seen by the attacker after the
context switch. Although a naive approach in which the deceptive
FTP server replicates the FTP file system of the real FTP server will
definitely make it consistent, the defender may not want to reveal
the possibly sensitive information in the original FTP system on the
host to the attacker, except those that have already been observed
by the attacker. Hence, a natural solution is to simulate a different
file system for the deceptive FTP server, which possibly contains
decoy files with misinformation to deceive the attacker.

To ensure observation consistency after the context switch, we
collect all possible traces about theAPT attacker before he is trapped
into the deceptive environment. Based on our threat model, the
attacker gains knowledge about the files on the real FTP server
only through his use of its FTP service. Hence, we instrument the
log system of the real FTP server to support the following: for
each FTP command received, the server records the PID and the
client’s IP address, the raw FTP command, the arguments of the
command, the returned value after executing the command, and
the output results of the command. Raw FTP commands, such as
CWD (changing working directory), LIST (list remote files), and
SIZE (return the size of a file), have been defined in various FTP-
related RFC standards, such as RFCs 697, 959, 1639 and 2228. Our
implementations only concern those raw RTP commands that are
supported by the real FTP server. After a specific FTP connection
is identified as suspicious, we use the attacker’s IP address AIP to
obtain the list of RAW commands, denoted by LAIP , that have been
executed on behalf of the attacker’s FTP connection.

For ease of presentation, we introduce a few other notations
here. For each command with raw command C (e.g., CWD) on list
LAIP , we use (R,O) = C(I) to denote that given input I , executing

command C returns R and generates output O . For example, as-
suming that the attacker listing directory /a which contains a file
b.txt and a sub-directory c, after parsing the logs we obtain the
following: C = LIST, I = “/a”, R = 1 (which means the directory /a
exists), and O =

[['PATH':'/a/b.txt', 'DIR':0, 'PERM':33279, 'USER'=666,
'GROUP':666, 'MODTIME':1510002103, 'SIZE':10],
['PATH':'/a/c', 'DIR':1, 'PERM':16877, 'USER':666,
'GROUP':666, 'MODTIME':1511371699, 'SIZE':4096]].

In this example, each element of output O is a key-value map
that contains the information obtained for a subpath (a file or a
sub-directory): ‘DIR’ indicates whether it is a directory or not (0
means no and 1 means yes), ‘PERM’ gives the permission of the
corresponding path, ‘USER’ is the user ID, ‘GROUP’ is the group
ID, ‘MODTIME’ records the last modification time of the sub-path,
and ‘SIZE’ gives the size of the sub-path in bytes.

Therefore, for deception consistency assurance, we have taken into
consideration not only the structure of the FTP file system, but also the
meta-data associated with the file system. This is important, because
the subtle differences between even the sizes of the same files in
the real and deceptive file systems may alert the attacker.

4.3 Representing attacker’s best knowledge

Figure 2: Attacker’s knowledge represented with tree Tcstr

We use an attributed treeTcstr , as illustrated in Figure 2, to main-
tain the attacker’s best knowledge gained from the outputs of his
FTP commands as logic constraints. The tree is updated dynamically
by iterating over each item on LAIP , the list of commands obtained
from the logs. The tree structure naturally reflects that of a file
system, but it cannot be just the same as a file system because it
needs to represent negative knowledge such as a nonexistent path.
Hence, each node in the tree represents an atomic component in
a path, either a directory or a file, and by concatenating all the
nodes starting from the root, a node also represents a unique path.
For example, node b in Figure 2 corresponds to a unique path /b.
Given node v in the tree, we use path(v) to denote the correspond-
ing absolute path starting from the root. Moreover, a subpath of
path(v) is any path that starts from the root and ends with one of
the parent nodes of v . For example, both / and /b are subpaths of
/b/e.dat. With path p, we use node(p) to denote the last node on
p, |p | the number of nodes on p, and subpaths(p) a set including all
subpaths of p ordered by increasing lengths. We also use parent(v)
to represent the parent node of v .

To represent the attacker’s best knowledge as logic constraints,
we augment each node v in Tcstr with the following attributes:
• state: Attribute state(v) has five possible values: FILE (path(v)
must exist as a file), DIR (path(v) must exist as a directory),
EXIST (path(v) must exist and can be either a file or a direc-
tory), NOTEXIST (path(v)must not exist), and UNCERTAIN

Session 3: Protection of Critical Services against Advanced Threats MTD’18, October 15, 2018, Toronto, ON, Canada

71

(the state of path(v) is uncertain). The default value of at-
tribute state is UNCERTAIN.
• terminal: Attribute terminal(v) has three values: YES (path(v)
must be a file or an empty directory), NO (path(v) must be
a nonempty directory), and UNCERTAIN (otherwise). The
default value of attribute terminal is UNCERTAIN.
• listed: Attribute listed(v) is a Boolean value, which indicates
if the attacker has executed a command listing path(v). The
default value of attribute listed is NO.
• metadata: Attributemetadata(v) maps the metadata fields
of path(v) to their values. The metadata attribute of a node
is updated when the raw LIST command is executed by the
attacker. The default value of each field is NC (no constraint).
• subpath_constrained: This Boolean attribute is useful for
some FTP commands that return an error indicating that part
of a path is a file. Following the example shown in Figure 2,
if path /a/d.txt is a file and the attacker tries to create a
sub-directory under it (e.g., by executing raw FTP command
MKD /a/d.txt), the error code 20 is returned, suggesting
that the attacker would be able to know one of the subpaths
(i.e., either /a or /a/d.txt) is actually a file. The default
value of attribute subpath_constraint is NO.
• contents_seen: This attribute is set to YES only after the
contents of a file have been seen by the attacker, after he
uploads or downloads a file; otherwise, its value is NO. The
default value of attribute contents_seen is NO.

When a new node is created in tree Tcstr , its attributes are
initialized to be their default values. The error codes when an FTP
server parses raw FTP commands are explained in Table 2 at the end
of this paper. We note that the returned values of these commands
can lead to similar observations made by the attacker, such as
whether a path exists, whether a subpath of a path is a file, and
whether a directory is empty. We thus define four basic procedures
of updating tree Tcstr whose pseudo code is given in Algorithm 1:

• handle_path_exist(p, s): this procedure is called when
it is confirmed that path p must exist. If the type of path p
is certain, state s is provided with the confirmed type, a file
(FILE) or a directory (DIR); otherwise, type EXIST is provided
as the input parameter. When this procedure is called, all
subpaths of path p are also confirmed to be a directory (DIR).
If it is a file, we ensure node(p) is a terminal node.
• handle_path_not_exist(p): this procedure is calledwhen
it is confirmed that path p does not exist. We process each of
the ancestor nodes of node(p) in the tree, denoted by q, start-
ing from the root: if it has been confirmed previously that
q is a terminal node (either an empty directory or a file), or
node(q) is not in treeTcstr and its parent node has been listed
(i.e., listed(parent(node(q)) = YES), the knowledge that path
p does not exist has already been represented by the existing
constraints in tree Tcstr and the procedure is thus aborted;
otherwise, a new node is created for q with its state as UN-
CERTAIN. Finally, if the parent node of pathp is not listed, we
insert node(p) intoTcstr (if not in it yet), label its state as NO-
TEXIST, and mark it as a terminal node. If node(p) already ex-
ists when the procedure is called, we need to remove all chil-
dren (including their descendants) from node(p). However,

there is a subtle case where there exists such a descendant q
from the tree rooted at node(p) that subpath_constraint(q)
is YES: we need to change subpath_constraint(parent(p)) to
YES because we are now sure that one subpath of parent(p)
must be a file.
• handle_subpath_is_file(p): for some FTP commands
(e.g., MKD and DELE), if one of the subpaths of the path
parameter is a file, an error is returned. We process each
of the ancestor nodes of node(p) in the tree, denoted by
q, starting from the root: if the state of node q is FILE, it
is unnecessary to proceed further because the knowledge
has already been contained within tree Tcstr ; otherwise we
create a new node for q with its state as UNCERTAIN if it is
not in tree Tcstr yet. Finally, we insert node(p) with its state
as UNCERTAIN and mark its subpath_constrained attribute
as YES.
• handle_path_removal(p): this procedure is calledwhen
we need to remove node(p) from its parent node. We simply
change the state of the node(p) to NONEXIST. After doing so,
if the parent node of node(p) has been listed and it becomes
empty after removing node(p), we mark it as a terminal node;
otherwise, if the parent node is not empty before the removal,
it now may become empty.

Based on the four aforementioned basic procedures, we define
the list of operations for each raw FTP command. We summarize
these operations in Table 2, and it is noted that a constant number of
basic procedures are needed for processing each raw FTP command.

4.4 Instantiating a consistent file system

Given tree Tcstr with the attacker’s best knowledge represented as
logic constraints, we instantiate a new FTP file system in two steps:
• lift: We lift the attacker’s positive knowledge about the
file system into certainty. Completely positive knowledge
includes a path being a directory or a file, its metadata values,
and if a path is listed, all the contents within it. Moreover,
partially positive knowledge includes an existing path, either
a directory or a file, and the fact that one subpath of a path
must be a file.When creating the file system for the deceptive
FTP server, we lift the attacker’s partially positive knowledge
into completely positive in a non-deterministic manner. Once
the lift step is finished, the file system created must be free
of inconsistency according to constraints in Tcstr .
• expand: The expansion phase expands the file system lifted
from the attacker’s positive knowledge into one that achieves
the defender’s deception goal. For example, the defender
can put a vulnerable software program in the expanded file
system, which may look valuable to the attacker, so if it is
installed on the attacker’s own system, it creates a backdoor
for the defender. It is out of the scope of this work how to
expand the file system to achieve a certain deception goal.

The pseudo-code of these two steps is presented in Algorithm 2.
In procedure lift, we use the recursive DFS (Depth-First-Search)
algorithm to traverse each node in tree Tcstr : if it is completely
positive knowledge, we replicate the contents for the deceptive
FTP server. Otherwise, if a node is in state EXIST, we lift it to a file
with probability P0 and a directory with probability 1 − P0. For a

Session 3: Protection of Critical Services against Advanced Threats MTD’18, October 15, 2018, Toronto, ON, Canada

72

Algorithm 1 Four basic procedures for updating Tcstr
1: procedure handle_path_exist(p , s) ▷ s ∈ {FILE, DIR, EXIST}
2: for q ∈ subpaths(p) do
3: Insert node(q) if not existing yet, state(node(q)) ← DIR
4: end for

5: if node(p) does not exist in Tcstr then

6: Insert node(p) to Tcstr , state(node(p)) ← EXIST
7: end if

8: if s is FILE then

9: state(node(p)) ← s , terminal (node(p)) ← YES
10: else if (s is DIR) or (state(node(p)) < {FILE, DIR, EXIST}) then
11: state(node(p)) ← s
12: end if

13: end procedure

14: procedure handle_path_not_exist(p) ▷ p is a path
15: for q ∈ subpaths(p) do
16: if node(q) exists in Tcstr then

17: Quit procedure if terminal (node(q)) is YES
18: else if l isted (parent (node(q))) is YES then
19: Quit procedure due to certainty of parent (node(q))
20: else

21: Insert node(q) with state(node(q)) as UNCERTAIN
22: end if

23: lastq ← node(q)
24: end for

25: if l isted (lastq) is NO then

26: Insert node(p) if it does not exist in Tcstr
27: state(node(p)) ← NOTEXIST, terminal (node(p)) ← YES
28: if subpath_constrained (w) is YES wherew is a descendant

of node(p) then
29: subpath_constrained (parent (node(p)) ← YES
30: end if

31: Remove all children of node(p), including their descendants
32: end if

33: end procedure

34: procedure handle_subpath_is_file(p) ▷ p is a path
35: for q ∈ subpaths(p) do
36: if node(q) exists in Tcstr then

37: Quit procedure if state(node(q)) is FILE
38: else

39: Insert node(q) with its state as UNCERTAIN
40: end if

41: end for

42: Quit procedure if node(p) exists and state(node(p)) is FILE
43: Insert node(p) to Tcstr if node(p) does not exist
44: subpath_constrained (node(p)) ← YES
45: end procedure

46: procedure handle_path_removal(p) ▷ p is a path
47: state(node(p)) ← NOTEXIST
48: if terminal (parent (node(p))) is NO then

49: terminal (parent (node(p))) ← UNCERTAIN
50: end if

51: if l isted (parent (node(p))) is YES then
52: if parent (node(p)) doesn’t have children nodes then

53: terminal (parent (node(p))) ← YES
54: end if

55: end if

56: end procedure

directory that is not a terminal node inTcstr but does not have any
children nodes in state DIR or FILE, we add a new single file (with
probability P1) or sub-directory (with probability 1 - P1) in it so that
the constraint can be satisfied. Another subtle case occurs when a
node is in state UNCERTAIN and its subpath_constrained attribute
is YES, which means that one of the subpaths (including itself) is a
file. With probability P2, the node itself is lifted to a file, and with
probability 1−P2, the path corresponding to the node does not exist
and one subpath of the parent node is a file. In the latter case, we re-
move the node and change the parent node’s subpath_constrained
attribute to YES. However, it is possible that a parent node may have
multiple children nodes whose subpath_constrained attributes are
set to YES. In that case, we prioritize the lifting operations based on
the processing order. If processing one child node lifts it to a file so
its parent node must be a directory, the other children nodes must
also be files. On the other hand, if processing one child node lifts it
to a non-existing node so the subpath_constrained attribute of its
parent node becomes YES, it means that the parent node itself or
one of its subpaths must be a file and therefore all its other children
nodes must not exist.

The three probability parameters, P0, P1 and P2, during the lift
step offer non-determinism in instantiating a new FTP file system
for the deceptive FTP server. Non-determinism is important because
otherwise, the attacker may realize the deceptive environment. For
example, if he notices that an error of a non-existing path is always
correlated to the existence of its parent path, this surely looks
suspicious to him, suggesting that a deterministic algorithm that
always lifts a non-existing path to an existing parent path is not ideal.
Currently all three probability parameters are set to 1/2 by default.

When instantiating the FTP file system for the deceptive FTP
server during the lift step, we need to ensure that the meta-
data fields of the files or directories created should be consistent
with their corresponding constraints stored in tree Tcstr . If the
contents_seen attribute of a path is YES, we need to ensure that if
the corresponding file on the deceptive FTP server is requested,
a duplicate of the original one should be returned. If the size of a
file has been seen by the attacker, the file created for the deceptive
server should have the same size. In Section 4.5, we will discuss a
number of techniques that can speed up the process of instantiating
the FTP file system.

The expand procedure also uses the recursive DFS algorithm to
traverse nodes in tree Tcstr . Obviously only directories need to be
expanded, and a directory that has been listed or is confirmed to be
a terminal node cannot be expanded any more. While expanding
a directory, we check the corresponding constraints in Tcstr to
ensure that the simulated files or sub-directories should not con-
flict with the attacker’s negative knowledge about the file system,
corresponding to those nodes in the NOTEXIST state.

4.5 Performance optimization

It may take a long time to create the entire FTP file system from
scratch for the deceptive FTP server. If the attacker’s FTP connec-
tion is restored thereafter, the attacker may identify the deceptive
environment due to the long latency after the attack command is
sent to the server. We apply the following techniques to shorten
the context switch period.

Session 3: Protection of Critical Services against Advanced Threats MTD’18, October 15, 2018, Toronto, ON, Canada

73

(1) Deferred-expansion technique: We restore the attacker’s
FTP connection immediately after the lift step, and the context
switch process will keep expanding the file system until the entire
file system is created. This may lead to some inconsistency issues,
if part of the file system explored by the attacker immediately after
the context switch has not been expanded yet. Therefore, until
the file system is fully expanded, the context switch process will
keep updating a separate constraint treeT ′cstr with new constraints
generated from the attacker’s FTP commands executed on the de-
ceptive FTP server, and constraints in bothTcstr andT ′cstr are used
to avoid conflicts while expanding the FTP file system.

(2) Pre-generation technique: Instead of creating every part
of the FTP file system from scratch on demand, some directories
can be pre-generated for the deceptive FTP server. Later during
the expand operation, if a directory needs to be created, a pre-
generated directory is randomly chosen, based on its level in the
file system, and then hooked into the expanded FTP file system.

(3) Request-forwarding technique: If the contents_seen at-
tribute of a path is YES and if the corresponding file is large, copy-
ing the file to the deceptive FTP server may be time consuming
during the context switch. To reduce the overhead, we can let the
deceptive FTP server forward the file transfer request to the origi-
nal FTP server, which works as a proxy in responding to the file
transfer request.

(4) File bloating technique: When creating a file of a specific
size, a naive method that truncates a larger file to the correct size
may cut off the file, leading to inconsistent file contents. A better
approach is to extend an existing file that is slightly smaller than
the target size with unused padded bytes. For example, the truncate
utility in Linux can extend a file to a specified size efficiently because
it creates a sparse file without allocating real physical blocks for
the padded bytes [13].

5 IMPLEMENTATION

The architecture illustrated in Figure 1 can be implemented in a
variety of ways: the real and deceptive FTP servers can be deployed
on different physical hosts, different VMs on the same physical host,
different VMs on different physical hosts, different containers on
the same physical host, different containers on different physical
hosts, and so on. Each of these implementations has its own advan-
tages and challenges. This section presents the specific challenges
we have faced when deploying the real FTP server on the host and
the deceptive FTP server in a VM on the same host, as well as our
solutions to address these challenges. We choose this implementa-
tion because it does not need an extra physical machine to host the
deceptive FTP server and nowadays VMs are hard to escape even if
the attacker manages to break out of the jailed FTP service.

5.1 Migrate attacker’s FTP connection into a

VM on the same host

When we implement the context switch by redirecting an ongoing
attack FTP connection to a deceptive FTP server within a VM on the
same host, we need to address two types of transparency challenges:
• Service transparency: The FTP service provided by the
deceptive FTP server should continue without noticeable
changes of the underlying network status to the attacker.
After the context switch, therefore, the attacker’s FTP client

Algorithm 2 Instantiate a file system based on Tcstr and T ′cstr
Require: Tcstr , three configurable probabilities P0, P1, and P2
1: Step 1: lift(Tcstr , root (Tcstr))
2: Step 2: expand(Tcstr , root (Tcstr))
3:
4: procedure lift(T , v) ▷ T is a tree and v is a node
5: for each child node w of v in T do

6: Call procedure lift(T , w)
7: end for

8: if state(v) is NOTEXIST then

9: Continue ▷ Do nothing
10: else if state(v) is EXIST then ▷ parent node of v must be DIR
11: r ← a random number in [0, 1]
12: if r ≤ P0 then
13: state(v) ← FILE, terminal (v) ← YES
14: else

15: state(v) ← DIR
16: end if

17: else if state(v) is FILE or DIR then

18: state(parent (v)) ← DIR, terminal (parent (v)) ← NO
19: if state(v) is DIR and (l isted (v) is NO) and (terminal (v) is

NO) and (∄w ∈ children(v) : state(w) = DIR or FILE) then
20: r ← a random number in [0, 1]
21: if r ≤ P1 then ▷ Add something to satisfy the constraint
22: Add a new file in path(v)
23: else

24: Add a new sub-directory in path(v)
25: end if

26: end if

27: else if state(v) is UNCERTAIN then

28: if (subpath_constrained (v) is YES) then
29: if (subpath_constrained (parent (v)) is NO) then
30: if state(parent (v)) is UNCERTAIN then

31: r ← a random number in [0, 1]
32: if r ≤ P2 then ▷ it is a file
33: state(v) ← FILE, terminal (v) ← YES
34: state(parent (v)) ← DIR
35: terminal (parent (v)) ← NO
36: else ▷ it doesn’t exist
37: subpath_constrained (parent (v)) ← YES
38: Remove v from children of parent (v)
39: end if

40: else ▷ This needs to be a file
41: state(v) ← FILE, terminal (v) ← YES
42: end if

43: end if

44: end if

45: end if

46: end procedure

47: procedure Expand(T , v) ▷ T is a tree and v must be a directory
48: for each nodew wherew ∈ children(v) and state(w) = DIR do

49: Call procedure expand(T , w)
50: end for

51: if (l isted (v) is NO) and (terminal (v) is not YES) then
52: Simulate files or sub-directories inside path(v) without con-

flicting with constraints in Tcstr or T ′cstr
53: end if

54: end procedure

Session 3: Protection of Critical Services against Advanced Threats MTD’18, October 15, 2018, Toronto, ON, Canada

74

Figure 3: Deceptive FTP service within a VM on same host

should be able to continue communicating with the same
destination IP address of the real FTP server, although actually
talking to the deceptive FTP server in the VM.
• Migration transparency: The process of migrating the at-
tacker’s FTP connection to the deceptive FTP server should
be done with low latency so that the attacker cannot tell
whether process migration has occurred.

Our implementation is illustrated in Figure 3. Without loss of
generality, we walk through an example in which the real FTP
server runs on a host with a NIC (Network Interface Card) with
public IP address RIP and MAC address RMAC .

During the initialization phase, which occurs before the at-
tacker’s FTP connection is detected, the host creates a placeholder
VM for the deceptive FTP server. The VM is connected to a virtual
network created on the host machine through a virtual interface
with IP address V IP1 and MAC address VMAC1. The host itself is
connected to the virtual network through a virtual interface with
IP address V IP2 and MAC address VMAC2. During the initializa-
tion phase, the deceptive FTP server is started to accept new FTP
connections (the reason will be explained later in Step VB3). Inside
the VM, there is also an ephemeral agent, AдentVM , which expects
to contain a new attacker’s FTP connection.

After the attacker’s FTP connection is detected, it is migrated
from the host machine into the VM and then served by the deceptive
FTP server. This process, which is called the context switch phase,
consists of the following steps:
• CW1:The real FTP server obtains the PID (Process Identifier)
of the attacker’s FTP connection and also his IP address (AIP),
and then notifies the defense agent AдentD , which runs on
the host machine, of both the PID and the AIP.
• CW2: On receiving these information, AдentD dumps all
the states associated with process PID into an image file,
using the CRIU utility [3].
• CW3:After dumping the attacker’s FTP connection,AдentD
immediately adds a new iptables rule on the host machine
dropping packets sent from the attacker’s IP address AIP.
Otherwise, the real FTP server may reply with a rejection
packet that looks suspicious to the attacker.
• CW4: The image file is then compressed and transmitted to
AдentVM inside the VM through its IP address V IP1. Along
with the attacker’s process image file, AдentD also sends a
list of logic constraints to AдentVM .
• CW5:After transmitting all the files to the VM,AдentD adds
another iptables rule that drops all the packets from the VM
with source IP addresses as V IP1.

In the next stage (the VM bootstrapping phase) AдentVM re-
stores the attacker’s FTP connection and also carefully changes the
state of the VM so that even if the attacker breaks out of the decep-
tive FTP service, he still cannot recognize the contained deceptive
environment. More specifically AдentVM performs the following:

• VB1:AдentVM changes the IP address of the VM (i.e., virtual
interface 1 in Figure 1(2)) from V IP1 to that of the host RIP .
This is necessary because the attacker’s FTP connection still
assumes that the FTP server’s IP address is RIP .
• VB2:We next need to ensure that the VM can communicate
with the attacker after its IP address is changed to RIP . A
standard OS kernel typically delivers a packet as follows.
It first checks whether the destination IP address is in the
same network. If so, the ARP protocol is used to find the
MAC address associated with the destination IP address.
Otherwise, it uses the routing table to find the route for the
packet based on the destination IP address. If no such route
is found, the default route is used to forward the packet. As
we do not plan to change the OS kernel in this work, we
consider the following two cases:
– Case VB2(a): The attacker’s source IP address does not
belong to the same subnet as the real FTP server. This can
occur when the attacker tries to exploit the FTP service
from outside the enterprise network, hoping to find his
initial foothold inside the network. In this case, we add a
default route inside the VM to forward every packet to a
gateway. The IP address of the gateway, denoted asGIP , is
set to be the same as that of the host machine’s gateway, if
it exists, or an arbitrary one that shares the same network
mask with RIP but is different from RIP . The purpose of
this step is to prevent the attacker from finding out the
deceptive environment based on an unrealistic gateway
IP addressGIP used inside the VM. Afterwards, AдentVM

adds a static ARP rule that binds IP addressGIP toVMAC2,
the virtual MAC address through which the host machine
is attached to the same virtual network as the VM.

– Case VB2(b): The attacker’s source IP address belongs
to the same subnet as the real FTP server. This happens
when the attacker attempts to compromise an internet
FTP server for its lateral movement inside the enterprise
network. In this case, setting a default route does not work
because the OS kernel at the data link layer uses the ARP
protocol to find the destination MAC address. Hence, we
create a static ARP rule that binds the attacker’s IP address
AIP directly to VMAC2 inside the VM.

• VB3: Using CRIU [3], AдentVM restores the attacker’s FTP
connection inside the VM from the image file dumped from
the real FTP service by AдentD . Recall that during the ini-
tialization phase, an FTP server is started to accept new FTP
connections inside the VM. This running FTP server is cru-
cial for two reasons. First, the attacker may log out and then
re-log into the server. If he cannot log into the server again,
he may recognize the deceptive environment. Second, for
some FTP client software (e.g., gftp [6]), when the user up-
loads or downloads a file, instead of using the original FTP
connection, they create another one to deal with file transfer.

Session 3: Protection of Critical Services against Advanced Threats MTD’18, October 15, 2018, Toronto, ON, Canada

75

In such cases, if there is no FTP server running, the attacker
will not be able to upload or download files, which makes
him suspicious of the deceptive environment.
• VB4: AдentVM kills itself so the attacker cannot find the
process ofAдentVM even if he can break out of the deceptive
FTP server. This is the reason why AдentVM is ephemeral.
This step is done instantly afterAдentVM finishes its tasks to
minimize the likelihood of a race condition that the attacker
can exploit to find the existence of AдentVM .

While AдentVM performs bootstrapping inside the VM, AдentD
creates two other agents on the host, AдentRI and AдentV I2, to
perform packet address translation:

• AдentRI : Working at the MAC layer, AдentRI monitors each
packet on the real interfaceRMAC sent from the attacker’s IP
addressAIP , changes its destinationMAC address toVMAC1
(i.e., the virtual interface of the VM), and then resends the
packet through virtual interface VMAC2.
• AдentV I2: Also working at the MAC layer, AдentV I2 mon-
itors each packet on virtual interface VMAC2 (i.e., the one
through which the host attaches to the virtual network), and
if a packet is destined to the attacker’s IP address, AдentV I2

changes its source MAC address to the real interface RMAC
and sends it to the attacker through the real interface RMAC .

After the attacker’s FTP connection is migrated into the VM, the
transmission time of a packet between the deceptive FTP server and
the real NIC of the host differs from that between the real FTP server
and the real NIC. As the VM is located within the same physical
host machine as the real FTP server, the migration latency is small
compared to that where attackers’ connections are migrated onto
different physical machines.

The four agents, AдentD , AдentRI , AдentV I2 and AдentVM are
implemented in Python. Root privilege is needed by AдentD to
dump the attacker’s FTP connection from the real FTP server on
the host machine, and by AдentVM to restore the connection, add
the default route for packet forwarding, and create a static ARP
binding rule inside the VM. AдentRI and AдentV I2 use Scapy [10]
to monitor, rebuild, and send packets on network interfaces directly;
because they need to interact with the network stack in the OS
kernel, they are also executed with root privilege on the host.

5.2 Other implementation issues

CRIU. We have used CRIU version 2.6 for live migration of the
attacker’s FTP connection. Following the tutorial of CRIU, the pro-
cess of using CRIU to dump and restore FTP connections in Bftpd
is straightforward. But when doing the same thing on ProFTPd, we
encounter an error:“Error (criu/pie/parasite.c:339): can’t dump un-
priviliged task whose /proc doesn’t belong to it." Examining the source
code of ProFTPd, we find that ProFTPd jails each FTP connection by
changing the root directory of its corresponding process, but CRIU
cannot access the files in the system directory /proc, which leads
to the aforementioned error. To circumvent the problem, we copy
both the fd directory and the cgroup file in the system directory
/proc/$PID to /proc/$PID in the jailed file system, create a soft
link with name self at /proc in the jailed file system, and then
change the permission of /proc/ in the jailed file system to be
777 (i.e., readable, writable, and executable by everyone). After the

FTP connection is restored inside the VM by AдentVM , the entire
directory /proc is deleted from the FTP file system.

Another issue when migrating the FTP connection for ProFTPd
is that three files (PFTEST.pid, PFTEST.score, PFTEST.score.lck) are
not dumped by CRIU, but their existences are checked by CRIU
when restoring the FTP connection. The problem can be solved by
copying these three files from the host machine into the VM.

Virtualization. We have chosen KVM/QEMU to create VMs
and virtual networks as they are full integrated into Linux. The
virtual network created as seen in Figure 3 is isolated from any
physical network to which the host machine belongs. The VM
cannot use NAT (Network Address Translation) to communicate
with the outside network as in the default user-mode networking
configuration, because its network interface shares the same IP
address as that of the host machine. Instead, our proposed system
relies on address manipulation at the data link layer by the two
agents, AдentRI and AдentV I2, to enable communications between
the VM and the attacker’s machine.

As the real FTP server runs on a host machinewhile the deceptive
one in a VM, one inherent source of inconsistency is virtualization
latency: the response time per command experienced by the at-
tacker when interacting with the deceptive FTP server inside the
VM is longer than that with the real FTP server. This issue does
not exist in some other implementations (e.g., both the real and the
deceptive FTP servers run inside VMs). To reduce latency incon-
sistency, we make up the difference within the real FTP server by
delaying processing each command for a period that is close to the
virtualization latency. The delay can be configured based on the
hardware support for virtualization.

6 EXPERIMENTS

In our experiments, we evaluate the effectiveness of our methods in
deceiving APT attackers. We also measure the virtualization latency
due to the necessity of containing the attackers within VMs, and
the migration latency during the context switch.

6.1 Deception experiments

We evaluate the effectiveness of our method in deceiving simulated
APT attackers. We use two laptops, both of which have Ubuntu
16.04.3 LTS installed. One laptop is used to run the native FTP
client provided by Ubuntu Linux, and the other runs a ProFTPd
FTP server. The two laptops are located in the same office room,
using a campus wireless network for communications. The FTP
server runs on a Dell Inspiron 15 5800 Series Laptop, which has
the dual-core Intel i7-5500U CPU and 64GB RAM, and the same OS
(Ubuntu 16.04.3 LTS) is used for both the host machine and the VM.

In our experiments, we consider two types of FTP file systems:
• Project file system: The FTP file system is populated with
real files and directories extracted from the ProFTPd project.
• Random file system: The FTP file system is created with
random directories, each populated with random files.

For the deceptive FTP server, we use the instantiation algorithm
described in Section 4.4 to create its file system: if the random file
system is used for the real FTP server, the file systems used by the
real and deceptive FTP servers share similar ratios of the numbers
of files to that of sub-directories inside the directories at the same
level; otherwise, the simulated file system used by the deceptive

Session 3: Protection of Critical Services against Advanced Threats MTD’18, October 15, 2018, Toronto, ON, Canada

76

Table 1: Evaluation results from two sets of experiments. X/Y

means a student’s answer is X and the ground truth is Y. ‘Yes’

means that deception is enabled and ‘No’ no deception.

Group ID #students Level Exp. 1 Exp. 2
1 1 undergraduate No/No Yes/Yes
2 1 undergraduate No/No No/Yes
3 1 graduate No/No Yes/No
4 1 graduate No/No No/Yes
5 3 graduate No/No Yes/Yes
6 3 graduate No/Yes No/Yes
7 3 undergraduate No/Yes No/Yes
8 1 undergraduate Yes/No Yes/No
9 1 undergraduate No/No No/No
10 1 undergraduate No/No No/Yes
11 1 undergraduate Yes/No No/No
12 3 undergraduate Yes/No Yes/Yes
13 3 undergraduate Yes/Yes No/No
14 3 graduate Yes/Yes No/No
15 3 undergraduate No/No No/Yes
16 3 graduate Yes/Yes Yes/Yes

FTP server has a similar distribution of the number of files per type
in a directory (e.g., the numbers of C source and header files).

The APT attacks are simulated by 32 students (18 undergraduate
and 14 graduate) who completed a computer security course. These
students form 16 groups, as shown in Table 1. As we do not limit
each group’s experiment time, the time each group spent ranged
from 10 minutes to an hour (including both experiments). We pro-
vide a list of around 20 sample FTP commands in case that the
students are not familiar with FTP commands. These commands
include ls, cd, delete, mkdir, rename, put, and get, and they can lead
to both positive and negative knowledge about the FTP file system.
The participants are encouraged to use the other commands, if
they help them identify the deceptive environment. Among these
commands, one is overly long and will be treated as a threat by
the FTP server. Once such a command is detected, with probability
1/2 the FTP server switches to the deceptive mode where the live
FTP connection is migrated into the VM. For each group of partic-
ipants, we have two experiments, one using the ProFTPd project
file system, and the other a random file system as described earlier.

In each experiment, the participants observe the outputs of their
FTP commands, including an overly long one that is deemed as a
buffer overflow attack by the server. At the end of each experiment,
they need to decide if the server has switched to a deceptive mode
after their attack. Participants are allowed to write down what
they have seen on the computer screen, and a few teams even took
pictures of the computer screen for close examination later. For
groups with multiple members, they are free to discuss but the
majority of their votes is used as their final decision.

The results are summarized in Table 1. It is noted that even if the
participants guess randomly without seeing their FTP command
outputs, their accuracy is expected to be 50%. In our experiments,
the accuracy for the first experiment with the project file system is
68.8% and the second one with a random file system is 50%.

From the experiments, we also make the following observations:

• Consistency is crucial for hiding the deceptive environments.
Participants rely heavily on signals that have changed after
the attack to decide whether deception has occurred. For
instance, participants in Group 5 noticed that in Experiment
1, before the attack, the original file system has one file whose
permission characters include ‘t’ (temporary file), but after
the attack, this permission character is not found for the
same file. After seeing this, they immediately concluded that
deception must have occurred. We fixed the bug after their
experiments, and none of the groups after their experiments
could use it again to identify the deceptive environment.
• When no clear inconsistency observed, participants tend to
think no deception occurs. The fraction of no deception an-
swers is 62.5%, which is significantly higher than the fraction
of experiments with deception disabled (53.1%). This psy-
chological effect may benefit the defenders because with
improved cyber deception methodologies, the attackers tend
to think that no deception should occur.

6.2 Virtualization latency

In the host-to-VM scenario, a delay closed to the virtualization
latency needs to be added by the real FTP server in its FTP com-
mand processing so the attacker experiences a similar round-trip
delay after the context switch. We perform experiments to measure
the response time per FTP command experienced by a simulated
attacker, when he interacts with the real FTP server on the host
or the deceptive FTP server inside the VM. As the response time
may change with the FTP command, we use a random set of FTP
commands of different types in the experiments. Moreover, a FTP
command can generate multiple packets, so we also measure the
response time at the packet level. One set of experiments uses the
same two laptops as Section 6.1, and the other two workstations
located within in the same office.

Figure 4(1) depicts the response times in different settings. Be-
tween the two laptops, the average FTP command response time
and the packet-level response time differ by 200 and 100 millisec-
onds due to virtualization, respectively. When the experiments are
performed between two desktops, both the average FTP command
response time and the packet-level response time differ by 50 mil-
liseconds. The smaller response times between the desktops result
from their higher processing power. As in an enterprise network
FTP services are usually deployed on dedicated desktop servers, the
extra delay of 50 milliseconds per command should be acceptable
to normal FTP users.

6.3 Migration latency

To measure migration latencies, we perform experiments using
an FTP file system with a regular five-level structure (including
the root). We assume that the root is at level 0. We define a width
parameter, w , to be the fixed number of entries in any directory.
Assuming that there are more directories at lower levels and more
files at higher levels, we let the number of directories at level k
in a directory be w/2k−1. For instance, if w = 8, the root direc-
tory contains 8 sub-directories and no files, and a directory at level
1 has four sub-directories and four files. In each experiment, we
execute 20 commands randomly sampled from [ls, cd, mkdir, rm,
delete, rename, get] (with replacement) and execute them from

Session 3: Protection of Critical Services against Advanced Threats MTD’18, October 15, 2018, Toronto, ON, Canada

77

 0.0625

 0.25

 1

 4

 16

 64

 256

 2 4 6 8 10 12 14 16 18

Ex
ec

uti
on

 tim
e (

se
co

nd
s)

Width

LIFT
EXPAND (on demand)

EXPAND (pre-generation)

(1) Response time (2) Migration latency

Figure 4: Latency results in the experiments. The error bars show the standard deviations.

the FTP client side. For each path argument of a command (com-
mand rename requires two path arguments), we recursively gener-
ate it starting from the root: with probability 1/2 the current path
is appended with a number chosen from [1,w] and then returned,
and with another probability 1/2 a number randomly chosen from
[1,w + 2] is appended to the current path and the process continues
at the next level. Using this scheme, it is possible that a non-existing
path is created, either due to choosing a file as part of a subpath or
choosing a non-existing subpath in the current directory.

Figure 4(2) presents the execution times of the lift and ex-
pand procedures when varying the width parameterw ; for the ex-
pand procedure, it also gives the results in two cases depending on
whether the pre-generation scheme is used or not (see Section 4.4).
Clearly, the execution times of both lift and expand increase with
parameterw . Largerw implies a larger file system with more files
and directories, making it longer to create a new file system for the
deceptive FTP server inside the VM. Moreover, the lift procedure
is short (less than 600 milliseconds in our experiments), regardless
ofw . Recall that the attacker’s FTP connection is restored immedi-
ately after the lift procedure is completed. Hence, the migration
latency which may be visible to the attacker is very short. It is also
observed that pre-generating part of the file system significantly
shortens the time to instantiate the entire file system inside the
VM, which is helpful when there is a race between the attacker’s
continuing exploration of the deceptive FTP file system and the
defender’s creation of (mis-)information to deceive the attacker.

7 CONCLUSIONS

This work studies how to use deception to protect FTP services from
APT attacks. We develop methods to ensure observation consis-
tency, which makes it hard for APT attackers to detect the deceptive
environment. With participants with computer security training
for a full semester, our experiments have demonstrated the crucial
importance of consistency in identifying deceptive environments.

Although making it more difficult for APT attackers to recognize
deception, our proposed method is not a panacea for thwarting all
types of APT attacks. Like any other defensive technology, it incurs
extra overhead and may be subverted by more advanced attacks.
In the future, we will continue to improve the effectiveness of
deception-based methods against APTs in different attack scenarios
and also investigate the economics of deception-based methods:
will the defense benefits of a cyber deception technique be worthy
of its deployment cost in practice?

ACKNOWLEDGMENT

We acknowledge NSF Award CNS-1618631 for supporting this work.

REFERENCES

[1] https://www.equifaxsecurity2017.com/.
[2] Bftpd. http://bftpd.sourceforge.net/.
[3] CRIU. https://criu.org/.
[4] CVE Details. https://www.cvedetails.com/.
[5] File Transfer Protocol. https://en.wikipedia.org/wiki/File_Transfer_Protocol.
[6] gFTP. https://www.gftp.org/.
[7] Kippo - SSH Honeypot. https://github.com/desaster/kippo.
[8] Papers from the Honeynet project. https://www.honeynet.org/papers.
[9] ProFTPD. http://www.proftpd.org/.
[10] Scapy. http://www.secdev.org/projects/scapy/.
[11] CVE-2013-4730. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2013-4730, 2013.
[12] F. Araujo, K. W. Hamlen, S. Biedermann, and S. Katzenbeisser. From patches to

honey-patches: Lightweight attacker misdirection, deception, and disinformation.
In Proceedings of ACM CCS’14, 2014.

[13] Archlinux. Sparse file. https://wiki.archlinux.org/index.php/sparse_file.
[14] K. Borders, L. Falk, and A. Prakash. Openfire: Using deception to reduce network

attacks. In Proceedings of SecureComm’07. IEEE, 2007.
[15] B. Cheswick. An evening with berferd in which a cracker is lured, endured, and

studied. In Proceedings of the Winter USENIX Conference, 1992.
[16] F. Cohen. The use of deception techniques: Honeypots and decoys. 3, 2006.
[17] P. Ford-Hutchinson. Securing ftp with tls (rfc 4217). 2005.
[18] X. Han, N. Kheir, and D. Balzarotti. Evaluation of deception-based web attacks

detection. In Proceedings of ACM Workshop on Moving Target Defense, 2017.
[19] M. Horowitz and S. Lunt. Ftp security extensions (RFC 2228), 1997.
[20] S. Jajodia, V. Subrahmanian, V. Swarup, and C. Wang. Cyber Deception: Building

the Scientific Foundation. Springer, 2016.
[21] J. Jones. Cyber deception via system manipulation. In Proceedings of the 12th

International Conference on Cyber Warfare and Security, 2017.
[22] M. Korolov. Deception technology grows and evolves. https://www.csoonline.

com/article/3113055/security/deception-technology-grows-and-evolves.html.
[23] K. McCoy. Target to pay $18.5M for 2013 data breach that affected

41 million consumers. https://www.usatoday.com/story/money/2017/05/23/
target-pay-185m-2013-data-breach-affected-consumers/102063932/.

[24] V. Neagoe and M. Bishop. Inconsistency in deception for defense. In Proceedings
of the 2006 Workshop on New Security Paradigms. ACM, 2006.

[25] T. H. Project. Sebek: A kernel based data capture tool, 2003.
[26] N. Provos. Honeyd-a virtual honeypot daemon. In 10th DFN-CERT Workshop,

Hamburg, Germany, volume 2, page 4, 2003.
[27] N. Rowe, H. Goh, S. Lim, and B. Duong. Experiments with a testbed for auto-

mated defensive deception planning for cyber-attacks. In Proceedings of the 2nd
International Conference on I-Warfare and Security (ICIW’07), 2007.

[28] N. C. Rowe. Deception in defense of computer systems from cyber attack. Cyber
Warfare and Cyber Terrorism, page 97, 2007.

[29] J. Sun and K. Sun. Desir: Decoy-enhanced seamless ip randomization. In Pro-
ceedings of INFOCOM’16. IEEE, 2016.

[30] J. Sun, K. Sun, and Q. Li. Cybermoat: Camouflaging critical server infrastructures
with large scale decoy farms. In Proceedings of IEEE CNS’17. IEEE, 2017.

[31] J. Yuill, D. Denning, and F. Feer. Using deception to hide things from hackers:
Processes, principles, and techniques. Journal of Information Warfare, 5(3), 2006.

[32] J. J. Yuill. Defensive computer-security deception operations: Processes, principles
and techniques. In Ph.D. Dissertation, North Carolina State University, 2006.

Session 3: Protection of Critical Services against Advanced Threats MTD’18, October 15, 2018, Toronto, ON, Canada

78

https://www.equifaxsecurity2017.com/
http://bftpd.sourceforge.net/
https://criu.org/
https://www.cvedetails.com/
https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://www.gftp.org/
https://github.com/desaster/kippo
https://www.honeynet.org/papers
http://www.proftpd.org/
http://www.secdev.org/projects/scapy/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4730
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4730
https://wiki.archlinux.org/index.php/sparse_file
https://www.csoonline.com/article/3113055/security/deception-technology-grows-and-evolves.html
https://www.csoonline.com/article/3113055/security/deception-technology-grows-and-evolves.html
https://www.usatoday.com/story/money/2017/05/23/target-pay-185m-2013-data-breach-affected-consumers/102063932/
https://www.usatoday.com/story/money/2017/05/23/target-pay-185m-2013-data-breach-affected-consumers/102063932/

Table 2: Operations performed on tree Tcstr to maintain attacker’s knowledge as logic constraints

Command Returned Meaning Operations performed on tree Tcstr to maintain logic constraints
value R

LIST(path)

-1 path doesn’t exist handle_path_not_exist(path).
0 path is a file handle_path_exist(path, FILE).
1 path is a directory handle_path_exist(path, DIR); l isted (node(path)) = YES;

for each entry e in the output, insert a new node v , if not in Tcstr yet,
and update attributes: state(v) = DIR if e.DIR = 1, or state(v) = FILE and
terminal (v) = YES if e.DIR=0;metadata(v)[permission] = e.PERM;
metadata(v)[user] = e.USER;metadata(v)[дroup] = e.GROUP;
metadata(v)[size] = e.SIZE;metadata(v)[modtime] = e.MODTIME.

CWD(path)
0 path exists handle_path_exist(path, DIR).
2 path doesn’t exist handle_path_not_exist(path).
20 path is a file handle_path_exist(path, FILE).

USER(path) 0 path exists handle_path_exist(path, DIR).
2 path doesn’t exist handle_path_not_exist(path).

GROUP(path) 20 path is a file handle_path_exist(path, FILE).

MKD(path)

1 parent is a directory handle_path_exist(path, DIR);
and path doesn’t terminal (node(path)) = YES; terminal (parent (node(path))) = NO;
exist yet l isted (node(path)) = YES; update the metadata fields of node(path).

2 parent doesn’t exist handle_path_not_exist(path).
17 path already exists handle_path_exist(path, EXIST).
20 subpath is a file handle_subpath_is_file(parent (path)).

RMD(path)

1 successfully remove handle_path_exist(path, EXIST); handle_path_removal(path);
a directory handle_path_not_exist(path).

2 path doesn’t exist handle_path_not_exist(path).
20 subpath is a file handle_subpath_is_file(path).
39 directory not empty handle_path_exist(path, DIR); terminal (node(path)) = NO.

STOR(path) 0 successfully upload handle_path_exist(path, FILE);
or append a file terminal (node(path)) = YES; contents_seen(node(path)) = YES.

APPE(path) 21 path is a directory handle_path_exist(path, DIR).
13 permission denied handle_path_exist(path, FILE); permission(node(path)) = NO_WRITE

RETR(path)

2 path doesn’t exist handle_path_not_exist(path).
21 path is a directory handle_path_exist(path, DIR).
0 successfully download handle_path_exist(path, FILE);

a file terminal (node(path)) = YES; contents_seen(node(path)) = YES.

DELE(path)

0 file deleted successfully handle_path_exist(path, FILE); handle_path_removal(path);
2 path doesn’t exist handle_path_not_exist(path).
20 subpath is a file handle_subpath_is_file(parent (path)).
21 path is a directory handle_path_exist(path, DIR).

RNFR(path)
1 path exists handle_path_exist(path, EXIST).
2 path doesn’t exist handle_path_not_exist(path).
20 subpath is a file handle_subpath_is_file(parent (path)).

RNTO(oldp ,

0 successfully change handle_path_exist(oldp , EXIST); handle_path_exist(newp , EXIST);

newp)

oldp to newp copy attributes in node(oldp) into node(newp); handle_path_removal(oldp).
39 both are directories but handle_path_exist(oldp , DIR); handle_path_exist(newp , DIR);

newp is not empty terminal (node(newp)) = NO.
2 parent path doesn’t exist handle_path_not_exist(parent (newp))
20 rename directory to file handle_path_exist(oldp , DIR); handle_path_exist(newp , FILE).
21 rename file to directory handle_path_exist(oldp , FILE); handle_path_exist(newp , DIR).

MDTM(path,
0 successfully change time handle_path_exist(path, FILE);

new_t ime)

metadata(node(path))[modtime] = new_t ime .
2 path doesn’t exist handle_path_not_exist(path).
22 path is directory handle_path_exist(path, DIR).

SIZE(path,
0 successfully change size handle_path_exist(path, FILE);

new_size)

metadata(node(path))[size] = new_size .
2 path doesn’t exist handle_path_not_exist(path).
22 path is directory handle_path_exist(path, DIR).

CHMOD(path,
0 successfully change handle_path_exist(path, FILE);

new_perm)

permission metadata(node(path))[permission] = new_perm.
2 path doesn’t exist handle_path_not_exist(path).
22 path is directory handle_path_exist(path, DIR).

Session 3: Protection of Critical Services against Advanced Threats MTD’18, October 15, 2018, Toronto, ON, Canada

79

	Abstract
	1 Introduction
	2 Related work
	3 Threat model
	4 Ensuring deception consistency
	4.1 Detecting APTs against FTP services
	4.2 Extracting APT attackers' traces
	4.3 Representing attacker's best knowledge
	4.4 Instantiating a consistent file system
	4.5 Performance optimization

	5 Implementation
	5.1 Migrate attacker's FTP connection into a VM on the same host
	5.2 Other implementation issues

	6 Experiments
	6.1 Deception experiments
	6.2 Virtualization latency
	6.3 Migration latency

	7 Conclusions
	References

