Sluggish Calendar Queues for Network Simulation

Guanhua Yan and Stephan Eidenbenz*
Discrete Simulation Sciences (CCS-5)
Los Alamos National Laboratory
{ghyan, eidenben } @lanl.gov

Abstract

Discrete event simulation is an indispensable tool to
understand the dynamics of communication networks and
evaluate their performance. As the scale and complexity of
these networks increases, simulation itself becomes a com-
putationally prohibitive undertaking. Among all possible
solutions, improving the performance of event manipula-
tion operations is an important one. In this paper, we dis-
cover that in network simulation events are often inserted
into the simulation kernel in their timestamp order. Based
on this observation, we make some simple modifications on
the conventional calendar queue. Experiments show that
the new data structure can achieve two orders of execution
speedup against the conventional calendar queue in some
wireline network simulation and in wireless network simu-
lation, the speedup scales well with the network size.

1 Introduction

As both scale and complexity of communication net-
works grew dramatically over the last several decades, eval-
uating their performance has become an increasingly chal-
lenging problem. Discrete event simulation has survived
as an indispensable tool in understanding and optimizing
the operation of these networks, because alternative ap-
proaches, particularly analytical solutions and real testbeds,
either suffer from lack of tractability or require significant
investment.

Discrete event simulation of large-scale communication
networks is extremely computation-intensive [11]. Achiev-
ing efficient large-scale network simulation requires opti-
mized solutions in multiple dimensions, such as parallel
simulation and model abstraction [17]. In the whole so-
lution space, efficient event management algorithms play
an important role in improving network simulation perfor-
mance. As large-scale network simulation inevitably gen-
erates a tremendous number of simulation events, it is not
surprising that its performance is affected by how efficiently

*Los Alamos National Laboratory Publication No. LA-UR-06-3848

these events are managed in the simulation kernel. Exper-
iments reveal that more than 30% of the computation time
can come from event manipulation operations [3].

Given the impact of event management schemes on
the performance of discrete-event simulation systems, a
plethora of algorithms have been proposed in the last several
decades [6][13][1][12][5]. In both theoretical and empiri-
cal contexts, performance of these algorithms also has been
extensively investigated [2][10]. These studies were usu-
ally conducted in a general setting; usually, they assumed
that applications generate event manipulation operations ac-
cording to certain patterns. For instance, a model widely
used in these studies is the classic hold model [16][7], in
which events are enqueued and dequeued interleavingly.

In this paper, we take a different avenue. We charac-
terize statistical properties of event operations that manifest
themselves in network simulation. Based on these proper-
ties, we slightly modify the conventional calendar queue by
allowing an event to carry a hidden event list that is trans-
parent to the bucket array. Such a simple redesign leads
to significant performance improvement in many circum-
stances. We observe two orders of execution time speedup
against the conventional calendar queue in some wireline
network simulations, and in wireless network simulation,
the speedup scales well with the number of nodes in the
topology. The new data structure is implemented and vali-
dated in the ns-2 network simulator [8], and we thus believe
that it can help the networking community shorten the sim-
ulation turnaround time.

The paper is organized as follows. Section 2 gives a
brief introduction to event manipulation operations in dis-
crete event simulation and then discusses the conventional
calendar queue. Section 3 presents our observations con-
cerning the statistical property that event operations exhibit
in network simulation. Based on these observations, we
propose a data structure that improves the performance of
conventional calendar queues; it is described in Section 4
and analyzed in Section 5. Section 6 presents the empiri-
cal results regarding the performance of our data structure.
Section 7 summarizes this paper.

IEE |-:

COMPUTER
SOCIETY

Proceedings of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS '06)
0-7695-2573-3/06 $20.00 © 2006 IEEE

2 Background

Without exception, every discrete-event simulation sys-
tem is centered on one or more data structures that manage
its simulation events. Such data structures are often called
future event lists (FELs). In the literature, other names have
been used for the same concept, such as future event set,
pending event set, and priority event queue. In this paper,
we will use them interchangeably. In a sequential discrete-
event simulator, usually a single FEL is maintained; a par-
allel or distributed discrete-event simulator, however, has
multiple FELs, each of which is managed by a logical pro-
cess in the parlance of parallel simulation.

Typical operations on a FEL include ENQUEUE, DE-
QUEUE and REMOVE. An ENQUEUE operation inserts
a new event into the FEL; a DEQUEUE operation opera-
tion extracts the event that is scheduled to fire in the near-
est future from the FEL; a REMOVE operation removes a
specific event from the FEL. ENQUEUE and DEQUEUE
operations form the basis of an event-driven simulation sys-
tem. Sometimes, the REMOVE operation is also performed
frequently. For instance, canceling a timer event previously
scheduled is often a necessary operation in network proto-
col simulation.

Given the impact of event manipulation operations on
simulation performance, numerous data structures have
been proposed to manage events in a FEL. Among them,
the calendar queue [1] has received wide recognition be-
cause of its expected O(1) access time on both ENQUEUE
and DEQUEUE operations under many conditions. A cal-
endar queue, by principle, is a multi-list data structure. It
divides simulation time into intervals of equal length, which
are called years. It also maintains an array of buckets, each
of which keeps a list of events in timestamp order. The mul-
tiplication of the array size €2 (i.e., the number of buckets)
and the bucket width § is the length of a year. The times-
tamp of an event is used to decide which bucket it should
be put in. We number all the buckets from 0 to 2 — 1. If an
event has timestamp ¢, then the index of the bucket where it
should be placed, denoted by ¢, is

i=[t/d] mod , (1)

where | -] denotes the integer part of the inside float.

Events that are mapped into the same bucket are orga-
nized as a sorted list. When an event is enqueued, its times-
tamp is used to decide which bucket it should be put in and
it is then inserted into the corresponding list; dequeueing an
event needs to locate the event with the smallest timestamp
before removing it from the list it is on.

The efficiency of calendar queue depends on the num-
ber of events in each bucket. If the number of events in the
FEL is much larger or smaller than the number of buckets,
its performance deteriorates significantly. It is thus impor-
tant to ensure that the average length of each bucket is short.

This is achieved by resizing the bucket array so that the av-
erage number of events in each bucket is not too small or
too large. The complexity of a resizing operation is O(n),
where n is the number of events in the queue.

Although calendar queues have O(1) access time under
ideal operating conditions, its performance may deteriorate
drastically under two unpleasant circumstances. First, be-
cause it dynamically adapts its bucket array size to the total
number of events, it is possible that the bucket array size
oscillates between two successive values (powers of 2 in
most implementations). Second, if the distribution of event
timestamps is skewed, events can be heavily clustered in a
few buckets and other buckets remain empty; the data struc-
ture thus degenerates into a few sorted lists. Both cases can
be detrimental to the efficiency of calendar queues.

A host of data structures have been proposed to improve
the performance of conventional calendar queues. In [4],
performance of calendar queues is modeled as a Markov
chain and its analysis leads to some suggestions on how
to select the two critical parameters in calendar queues,
bucket width and bucket array size. Dynamic Lazy Cal-
endar queues [9] measure costs associated with ENQUEUE
and DEQUEUE operations and thereby adjust bucket width
when necessary; they also maintain an auxiliary event list
to reduce resizing overhead. Similar to Dynamic Lazy Cal-
endar queues, SNOOPY calendar queues [14] measure per-
formance costs on ENQUEUE and DEQUEUE operations;
they, however, treat bucket width readjustment as an opti-
mization process and thus try to derive the optimal oper-
ating parameters after a resizing operation. Ladder queues
recently proposed in [15] also inherit some ideas from con-
ventional calendar queues. They organize events hierarchi-
cally, using calendar queues as their basic elements. They
do not rely on sampling heuristics to adjust bucket width;
instead, they adapt to different access patterns by spawning
new children calendar queues when necessary.

3 Motivating Observations

In previous work, performance evaluation of future event
set algorithms was usually performed in a general setting.
As our goal is to improve the network simulation perfor-
mance, we are interested in unveiling some statistical prop-
erties of event operations that manifest themselves in net-
work simulation. We conduct a set of experiments on two
networks: one is wired and the other is wireless. The wired
network is a campus network illustrated in Figure 1. It is
adapted from the baseline NMS challenge topology'. Based
on the original link delays, we add a randomized factor that
is uniformly drawn between -0.01 and 0.01 to avoid syn-
chronization among events. A server pool consisting of 4
servers is located in Net 1 (the upper right of the topology).

Uhttp://www.ssfnet.org/Exchange/gallery/baseline/index.html

IEE |-:

COMPUTER
SOCIETY

Proceedings of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS '06)
0-7695-2573-3/06 $20.00 © 2006 IEEE

Each oval represents a router attached with 42 client hosts,
which form 4 LANSs. In total, there are 538 machines in the
network. There is traffic between each client host and one
of the 4 servers.

Figure 1. Campus topology

The wireless network we simulated is adapted from an
example included in the ns-2 network simulator?. It has
50 nodes moving according to the random waypoint model.
The routing protocol used is DSR (Dynamic Source Rout-
ing Protocol). The network interface used by each node is
configured similar to the 914MHz Lucent WaveLAN DSSS
radio interface. We number all the nodes from O to 49.
There is traffic between node 7, for 0 < 7 < 49, and node
(i + 1) mod 50.

We vary the types of network traffic used in both net-
works. The first one is CBR applications that send out traf-
fic at a constant rate over UDP transport protocol. We put
some jitter between consecutive packets. The second traf-
fic type is large file transfers using FTP over TCP transport
protocol.

We use the ns-2 network simulator in all these exper-
iments. In each of them, we collect the following data:
as a simulation event is inserted into the FEL, we record
its timestamp (i.e., the time it is scheduled to fire). After
the simulation finishes, we divide the final series of event
timestamps into the longest sequences with non-decreasing
timestamps, which are called maximal in-order sequences
and abbreviated as MIOSs. For example, suppose that we
have the following data:

05 04 0.7 09 21 14 35 35 36 3.1,

each of which indicates the timestamp of an inserted event.
They thus contain 4 MIOSs:

(0.5],[04 0.7 09 21],[1.4 35 35 3.6],[3.1].

2The input file is ns-2.29/tcl/ex/wireless.tcl

1e+09 1e+08
8 CBR/UDP raffic -
16408 | A, FTP/TCP traffic —— DU S—

CBR/UDF traffic ——
FTP/TCP traffic

1e+07
1e+06
100000
10000
1000
100
10

1

1e+06
100000

Frequency

10000

Frequency

1000

1 10 100 1000
MIOS length MIOS length

(1) Wireline network (2) Wireless network

1000

Figure 2. Frequency histogram on MIOS
length.

Figure 2 presents the frequency histogram on the MIOS
lengths in all the experiments. Note that the figure uses log-
arithmic scale. In all four cases a large number of MIOSs
involve more than one event, and a few MIOSs even have
more than 100 events in them! The following table gives
the percentage of MIOSs that have at least 5 and 10 events
in all the scenarios:

Wireline Wireless
CBR FTP CBR FTP
>5events | 20.1% 16.5% | 7.6% 11.3%
>10events | 14.1% 14.1% | 4.8% 6.6%

The long sequences of in-order events observed in the net-
work simulation can originate from several places. First,
shared media have been widely used in both wireline and
wireless networks. On such media, a packet transmitted
by one entity can be seen by all other parties. Typical im-
plementations usually use a simulation event to signal the
arrival of this packet at each receiver. Hence all the simu-
lation events triggered by a single packet transmitted bear
the same timestamp (if we do not put any jitter on delays.
In many circumstances jitter does not affect simulation re-
sults significantly.) Second, bursty traffic such as TCP traf-
fic leads to in-order events. In packet-level traffic simula-
tion, packet arrivals are usually represented as simulation
events. If traffic is more bursty, intervals between packet
arrivals are shorter and it is thus more likely that events rep-
resenting them are inserted into the FEL consecutively. In
addition, bursty traffic not only results from bursty traffic
sources like TCP applications, but also comes from con-
gested network components such as queues in NICs (Net-
work Interface Cards). Finally, many scheduling algorithms
in network protocols use FIFO (First In First Out) mecha-
nism. Therefore, after old events representing input traf-
fic are processed, new events generated to represent output
traffic are still in timestamp order.

As we have observed above, a significant number of
events in network simulation appear in timestamp order
when they are inserted into the FEL. A natural question,
then, is: can we exploit such an observation to improve the
performance of pending event set algorithms? In the next
section, we describe a sluggish calendar queue, a modified

IEE |-:

COMPUTER
SOCIETY

Proceedings of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS '06)
0-7695-2573-3/06 $20.00 © 2006 IEEE

version of the conventional calendar queue, that exploits in-
order event sequences to accelerate event manipulation op-
erations.

4 Sluggish Calendar Queues

A sluggish calendar queue consists of two components:
a layman event list and a bucket array. The layman event list
is a doubly-linked list, which stores events in timestamp or-
der. We call an event on the layman list a layman event. The
bucket array resembles the bucket array in a conventional
calendar queue but events are organized in a different man-
ner. In each bucket, all the events that have been mapped
into it are organized into a doubly-linked list in timestamp
order. We call such a list a trunk event list and an event on
a trunk event list a trunk event. In contrast to the conven-
tional calendar queue, a trunk event in a sluggish calendar
queue keeps a pointer to another doubly-linked list, which
is called a branch event list. An event on a branch event
list is called a branch event. Events on a branch event list
are also organized in timestamp order, but their timestamps
may not necessarily be mapped into the same bucket as the
corresponding trunk event. The timestamp of a trunk event
must be no greater than that of any event on its branch event
list.

Layman event list

D layman event
I:l trunk event
H:l branch event

Figure 3. A sluggish calendar queue

Figure 3 illustrates a sluggish calendar queue with 4
buckets and the width of each bucket is 1 time unit. In
this queue, there are 20 events in total but there are only
7 trunk events. Hence the number of trunk events can be
much smaller than the total number of events in the queue.
Later we will explain that this is the key idea of this data
structure. In addition, the trunk event with timestamp 0.5 in
bucket 0 has only one event on its branch event list, but that
event, with timestamp 7.4, should be mapped into bucket 3
if it were a trunk event.

We now describe event manipulation operations on a
sluggish calendar queue. The data structure is extended
from the conventional calendar queue. Thus, event manip-
ulation operations on these two data structure bear a lot of
similarities. In the following discussion, we will highlight
the places where the sluggish calendar queue differs from
the conventional calendar queue. We ask readers to refer to

[1] for details of conventional calendar queues.

Stability is an important property of pending event set al-
gorithms. A stable event manipulation algorithm preserves
the enqueueing order of any two events carrying the same
timestamp when they are dequeued. Stable event manipu-
lation algorithms are often desirable because they facilitate
debugging of simulation code. We thus strictly impose the
stability requirement upon the sluggish calendar queue.

4.1 ENQUEUE Operation

When we insert a new event, denoted by e, into a
sluggish calendar queue, we first check whether it can be
added onto the layman event list. We use parameter « to
constrain the number of events we want to check against
the new event. Starting from the tail of the layman event
list, we iteratively compare the timestamps of the last «
events against that of the new event; if we find one that has
a smaller timestamp than the latter or an exactly the same
timestamp as the latter, we stop the iteration and insert the
new event after that event. If we fail to find the proper po-
sition among the last o events, we check the first « events.
Similarly, starting from the head of the layman event list,
we iteratively compare the timestamps of the first a events
against that of the new event; if we find one that has a larger
timestamp than the latter, we stop the iteration and insert the
new event before that event. We are careful here to ensure
that events bearing the same timestamp appear on the lay-
man event list in a FIFO manner. In our implementation,
we set the default value of « to be 3.

In the above approach, if there are less than 2« events on
the layman event list, some events may be compared against
the new one twice. To avoid that, we keep the total number
of events on the layman event list, denoted as L;.;. Before
all the comparisons above, we check whether L;.; is larger
than 2«. If it is, we perform the aforementioned compar-
isons; otherwise, we simply check all the events on the list
to find the proper location. If the new event is inserted onto
the layman event list, we increase L;.; by one.

It is possible that the new event can not be placed among
the first « or the last o events on the layman event list. If
this is true, we migrate the layman event list into the bucket
array. More specifically, the head event of the layman event
list is converted to a trunk event and all other events to its
branch events. Based on the timestamp of the new trunk
event, we use Equation (1) to decide which bucket it should
be put in and then insert it onto the corresponding trunk
event list in timestamp order. To ensure the FIFO property
described earlier, all the events that bear the same times-
tamp must appear before the new trunk event. After migrat-
ing the whole layman event list into the bucket array, we
add the new event to the layman event list. At this time, the
layman event list has a single event on it.

We continue working on the example shown in Figure 3.

IEE |-:

COMPUTER
SOCIETY

Proceedings of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS '06)
0-7695-2573-3/06 $20.00 © 2006 IEEE

Suppose that we need to enqueue two events, whose times-
tamps are 11.7 and 1.7 respectively. For the first one, we
simply put it at the tail of the layman event list. For the
second, however, we need to migrate the layman event list
into the bucket array. As the head event has timestamp 1.3,
the new trunk event should be inserted into bucket 1. Figure
4 illustrates the new layman event list and the structure of
bucket 1 after all the operations. The other buckets remain
intact and are thus ignored in the graph.

Layman event list

@ layman event
I:l trunk event

H:l branch event

Bucket array (only bucket 1)

Figure 4. The sluggish calendar queue after
enqueueing operations

After a new trunk event is inserted into the bucket array,
it is checked whether the number of buckets in the array
needs to be readjusted. We leave more detailed discussion
on resizing operations in Section 4.4.

4.2 DEQUEUE Operation

The DEQUEUE operation extracts the event that bears
the smallest timestamp from the sluggish calendar queue.
Because the timestamp of a trunk event must be no greater
than that of any event on its branch event list, we can ignore
all branch events when deciding which event to be dequeued
next. It, however, is possible that the event with smallest
timestamp is still on the layman event list. As events on the
layman event list have already been ordered in timestamps,
the event to be dequeued should be either the head event of
the layman event list or the trunk event with the smallest
timestamp in the bucket array.

When we dequeue an event from a sluggish calendar
queue, we first use the same method as in the conventional
calendar queue to locate the trunk event with the smallest
timestamp, and then compare it against the timestamp of
the head event on the layman event list. If the former is
greater than the latter, we simply remove the head event
from the layman event list. Here, we notice that an event on
the layman event list must be enqueued after any one that
has already been migrated into the bucket array. Hence, if
the two events have exactly the same timestamp, we should
dequeue the trunk event first based on the FIFO policy. If
the trunk event has a smaller timestamp, we should also de-
queue the trunk event first.

When we dequeue a trunk event, we first remove it from
the corresponding trunk event list. If the trunk event has a

branch event list, we convert the head event of the branch
event list to a trunk event and the remaining part of the list
to the branch event list of the new trunk event, and then in-
sert the new trunk event into the proper bucket in timestamp
order. Unfortunately, if the trunk event list has an event that
bears exactly the same timestamp as the new trunk event, we
can not use the FIFO policy to decide their orders any more.
An example can help us understand this situation. Suppose
four events are enqueued in order and their timestamps are
0.8, 1.3, 0.7, and 1.3 respectively. They form two MIOSs,
each having two events. We also assume that both of them
have been migrated into the bucket array, the bucket width
of which is 1 simulation time unit. After the event with
timestamp 0.7 is dequeued, the last event with timestamp
1.3 is inserted into the trunk event list in bucket 1; later af-
ter the event with timestamp 0.8 is dequeued, we need to
insert its branch event with timestamp 1.3 into bucket 1. If
we apply the FIFO policy, this event should be put behind
the one that is already there. This obviously violates the or-
der in which they were enqueued. We thus can not use the
FIFO policy to decide the order in which events with the
same timestamp should be positioned in the trunk event list.

To solve this problem, we assign a unique MIOS iden-
tifier to each trunk event when it is migrated from the lay-
man event list. When we dequeue a trunk event, we pass
its identifier on to the new trunk event converted from its
branch event list. Apparently, no two trunk events have the
same MIOS identifier in the system. In the previous setting
when we insert a new trunk event onto a trunk event list, if
it has the same timestamp as another one already on the list,
we use their MIOS identifiers for tie-breaking. Events with
smaller MIOS identifiers are placed before those with larger
values on the trunk event list.

MIOS identifiers may be exhausted if the simulation runs
for a long time. When this occurs, we can reassign MIOS
identifiers to the trunk events in the bucket array. A simple
reassignment scheme is to sort the MIOS identifiers of all
the trunk events and then reassign the MIOS identifier of a
trunk event as the order in the sorted sequence. Hence, the
original order of MIOS identifiers is still maintained. The
complexity of this approach is O(m -logm), where m is the
number of trunk events at the time of reassignment.

If MIOS identifiers are exhausted quickly and reassign-
ment i an expensive process, we can concatenate all trunk
events into a doubly-linked list based on their orders of
MIOS identifiers. We call it the universal trunk event list.
When migrating the layman event list into the bucket array,
we put the new trunk event at the tail of the universal trunk
event list. When a trunk event is dequeued, if one of its
branch events is converted to a trunk event, we substitute
the new trunk event for the old one on the universal trunk
event list and otherwise, we remove the old trunk event from
the list. The universal trunk event list can be used to speed

IEE |-:

COMPUTER
SOCIETY

Proceedings of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS '06)
0-7695-2573-3/06 $20.00 © 2006 IEEE

up reassignment process. Because events appear on the list
in the same order as they are enqueued, the reassignment
process becomes simple: the MIOS identifier of each trunk
event is reset to be its position on this list. In this approach,
the reassignment process takes only O(m) time, where m
is the number of trunk events in the bucket array. The per-
formance improvement comes at a price of extra memory
required to maintain the universal trunk event list.

Back to the example we discussed earlier, suppose a DE-
QUEUE operation is performed on the sluggish calendar
queue shown in Figure 3. The event with timestamp 0.5
has the smallest timestamp among all the events. After it
is dequeued, its single branch event with timestamp 7.4 be-
comes a trunk event, which is mapped into bucket 3. As
that bucket already has a trunk event with timestamp 7.4,
we need to use their MIOS identifiers to decide their rela-
tive order. The new sluggish calendar queue is illustrated in
Figure 5.

Layman event list

(GE) vua §X)) 5 G¥) s QT v GT'H)

Bucket array

() taymanevent [| branch event
[] wunkevenr () MIOS identifier

Figure 5. The sluggish calendar queue after
dequeueing an event

If a trunk event is dequeued from the bucket array, we
check whether its size needs to be readjusted. The resizing
operation is discussed in detail in Section 4.4.

4.3 REMOVE Operation

The REMOVE operation is very important in network
simulation. For example, when a TCP packet is transmitted,
a retransmission timer is scheduled. If the packet is suc-
cessfully received and thus acknowledged by the receiver,
the retransmission timer scheduled earlier needs to be can-
celed. A REMOVE operation is thus performed to erase the
given event from the FEL. When a REMOVE operation is
called, a pointer to the event is also specified.

In a sluggish calendar queue, removing an event is sim-
ple because all events are organized in doubly-linked lists.
If the event to be deleted is a layman event, we simply re-
move it from the layman event list. Similarly, removing a
branch event just needs to erase it from the corresponding
branch event list. Removing a trunk event is exactly the
same as dequeueing a trunk event: erase it from the trunk
event list, convert the head event on its branch event list
to a trunk event and then put the new trunk event into the
corresponding bucket. In addition, after removing a trunk

event, we need to check whether the bucket array should be
resized.

4.4 RESIZE Operation

Similar to the conventional calendar queue, the effi-
ciency of a sluggish calendar queue largely depends on how
trunk events are distributed in the buckets. If there are too
many trunk events in a bucket, it may take a significant
amount of time to insert a new trunk event onto its trunk
event list; on the other hand, if there are too few trunk events
in the bucket array, many buckets have empty trunk event
lists. Hence, we need to readjust the array size under both
circumstances.

Let Ny, denote the number of trunk events in the system
and the (2 be the array size. The condition for triggering an
operation that increases the array size is defined as

Nip > A - Q. 2)

Similarly, the condition for triggering an operation that re-
duces the array size is defined as

Ntr <)\l - Q. (3)

In the implementation of the ns-2 network simulator, A\p
is 2 and A; is 1/2 (in a conventional calendar queue, all
events can be deemed as trunk events). However, a slug-
gish calendar queue can tolerate relatively few trunk events.
Even though some buckets may have empty trunk event
lists, it is possible that as trunk events are dequeued and thus
their branch events are converted to trunk events, new trunk
events may be mapped onto these buckets. Therefore, the
performance of sluggish calendar queues is less sensitive to
relatively few trunk events. We thus reduce the possibility
of decreasing bucket array size by using smaller \;, whose
default value is 1/16 in our implementation.

Performance of a calendar queue is a function of both the
total number of buckets € and the bucket width § [4]. As
simulation advances, it is possible that an improper bucket
width may cause trunk events to be clustered in only a few
buckets. This may also happen to a sluggish calendar queue.
To avoid this, we force a sluggish calendar queue to readjust
its bucket width if the number of trunk events in a bucket
exceeds a threshold 6. In our implementation, we set 6 to
be 100 by default. We use a relatively large threshold to
avoid readjusting ¢ frequently at the initial stage of a sim-
ulation when usually many events are enqueued consecu-
tively. Once the total number of the events in the system
becomes stationary, we can decrease it to a smaller value.

In a RESIZE operation, we readjust § in the same way
as the implementation of calendar queues in the ns-2 net-
work simulator. It is briefly introduced as follows. First, we
check the most populated bucket, whose index is denoted
by %, and let T3, and 1,4, be the minimum and maxi-
mum timestamps among all the trunk events in that bucket

IEE |-:

COMPUTER
SOCIETY

Proceedings of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS '06)
0-7695-2573-3/06 $20.00 © 2006 IEEE

respectively. Because all trunk events in a bucket are orga-
nized into a cyclic linked list in the implementation, only
constant time is needed to determine 75,,;,, and T},q:. We
use 7 to denote the number of trunk events with different
timestamps in bucket). Then the new bucket width is de-
termined by the following formula:

4(Tmaz - Tmin)
min(Q,n)

o= “

After the bucket array is resized or the bucket width is
readjusted, we enqueue all the events in the old bucket array
into the new one.

5 Algorithm Analysis

In this section, we analyze the event manipulation oper-
ations of a sluggish calendar queue from both correctness
and performance perspectives.

5.1 Correctness Analysis

Correctness of an event-driven simulation system is rel-
evant to whether causality errors occur. In the context of
pending event set algorithms, we define causality errors as
situations in which events are dequeued from the FEL out
of timestamp order. Occurrence of causality errors in this
setting indicates incorrectness of event manipulation oper-
ations and is thus not allowable. Based on the algorithm
description in Section 4, we can easily prove the following
theorem (proof is omitted here):

Theorem 1 Sluggish calendar queues do not produce
causality errors.

Similarly, we have the following theorem (proof omitted):

Theorem 2 Sluggish calendar queues are stable.

5.2 Performance Analysis

Complexity analysis of sluggish calendar queues is sim-
ilar to that of conventional calendar queues. For a majority
of ENQUEUE and DEQUEUE operations, it is unnecessary
to resize the bucket array size and they can thus be finished
in O(1) time. If a RESIZE operation is performed when an
event is enqueued or dequeued, O(m) time is needed, where
m is the total number of trunk events in the system. There-
fore, the expected amortized cost associated with an EN-
QUEUE (or DEQUEUE) operation is O(1) under normal
operating conditions, but in the worst case where almost
every ENQUEUE (or DEQUEUE) operation needs to resize
the bucket array size, the amortized cost becomes O(m).

Here we notice the performance difference between
sluggish calendar queues and conventional calendar queues.
For the latter, although its expected amortized cost associ-
ated with an ENQUEUE (or DEQUEUE) operation is also

O(1), its worst case amortized cost is O(n), where n is to-
tal number of events in the system [10]. Therefore, if a
simulation system like many network simulations has a lot
of events enqueued in non-decreasing timestamp order (i.e.,
n >> m), sluggish calendar queues suffer less performance
degradation than conventional calendar queues under un-
pleasant circumstances.

As the number of trunk events in the system affects the
performance of sluggish calendar queues, we analytically
derive its relationship with the total number of events. For
tractability purpose, we assume that all MIOSs have the
same size w. We also assume that no layman event is de-
queued; in other words, when an event is dequeued, it must
be a trunk event. Furthermore, the probability of dequeue-
ing a trunk event is uniformly distributed over all the trunk
events in the system. The pattern the sluggish calendar
queue is accessed is modeled by the classic hold model, in
which ENQUEUE and DEQUEUE operations are invoked
interleavingly [16][7]. Hence, the total number of events in
the system after a pair of ENQUEUE and DEQUEUE oper-
ations remain constant. The system is initialized to have n
events.

We then do steady state analysis on the system as de-
scribed. Let ago)’ for 1 < ¢ < w, denote the number of
trunk events with ¢ — 1 branch events at the steady state. We
use A to represent Zial(o) . We consider the distribution
of trunk events after k (k > 1) pairs of DEQUEUE and EN-
QUEUE operations . Let bgk) denote the expected number
of trunk events with ¢ — 1 branch events after the k-th DE-
QUEUE operation and agk) the expected number of trunk
events with ¢ — 1 branch events after the k£-th ENQUEUE op-
eration. Similarly, let A%*) represent Eiagk). Consider the
k-th DEQUEUE operation. Because the trunk event to be
dequeued is uniformly distributed, the probability of choos-
ing a trunk event that has w — 1 branch events is agf) JAF),
Hence, we have
b = (1 —aP /A x o) 4 aF) AR (aF) — 1)
(1—1/AW)) x olP) (5)

Similarly, we have the following:

W = (1 1/A®) x a® | e /a® ()
by = (1=1/AW) xal), +ai), /A ()

Comparing Equations (5) and (6), we notice that the lat-
ter has one more term. That results from the case in which a
trunk event with w — 1 branch events is dequeued and thus
a new trunk event with w — 2 branch events is generated.
This observation also applies to the other equations.

IEE |-:

COMPUTER
SOCIETY

Proceedings of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS '06)
0-7695-2573-3/06 $20.00 © 2006 IEEE

After the k-th ENQUEUE operation, it is possible that
the layman event list is converted to a trunk event with w—1
branch events. For each ENQUEUE operation, this proba-
bility is 1/w. Hence, we have

al® = b 5 (1= 1/w) + (6P +1) x 1/w
b{®) 1 /w. ©)

For trunk events with any other number of branch events,
their numbers remain the same after an ENQUEUE opera-
tion. Therefore,

a® =M vti1<t<w-1. (10)

If we assume that the system is steady, its state must return
to the original state after some finite number of iterations,
which is denoted as K. We then build a system of equations
as follows:

O = o
K 0
a”(w—)l = agu)—l (a1
NISENC)

Unfortunately, it is very difficult to solve the above system
of equations analytically. If we are limited to those systems
where the number of trunk events is much larger than w,
then A is relatively constant. We assume that A®*) is
m for all k£ (kK > 0). We then derive the following from
Equation (11):

ago) =m/w, Vi1 <t<w. (12)
Equation (12) suggests that in the steady state, there is the
same number of trunk events with different branch event list
lengths. Recall that the total number of events in the system
is n. On average there are w/2 events on the layman event
list. We thus have

1
n:w/2+(1+2+...+w)-m:w/2+%~m (13)
Therefore,
2n —w
= 14
" w(w+ 1) (14

Following the above result, we can establish the following
theorem:

Theorem 3 Given the assumptions on access patterns as
described, sluggish calendar queues reduce the worst case
amortized cost on ENQUEUE and DEQUEUE operations
by a factor of ©(w?) relative to conventional calendar
queues, where w is the number of events in a MIOS.

6 Experiments

We have implemented the sluggish calendar queue in the
ns-2 network simulator. To ensure a fair comparison be-
tween them in later experiments, we first validate our imple-
mentation against the conventional calendar queue. Since
both pending event set algorithms are stable, access patterns
on the future event list should be exactly the same if the sim-
ulation scenario is the same. This is consistently observed
in our validation tests.

We now investigate how sluggish calendar queues per-
form empirically with a new set of experiments, which ex-
tend the topologies used in Section 3. We still use the two
types of traffic, FTP traffic over TCP and CBR traffic over
UDP. In the wireline network simulation, we vary the num-
ber of campus networks between 1, 2, 3, and 4. If there
is only one campus network, there is traffic between every
client and one of the four servers in it; otherwise, all the
campus networks form a ring topology and traffic is speci-
fied between each client in a campus network and a server
in the next campus network clockwise. In the wireless net-
work simulation, we vary the number of mobile nodes be-
tween 50, 100, and 150. In the scenario with N nodes, we
number the nodes from 0 to N — 1. The traffic pattern is
defined between every node ¢ and node (¢ + 1) mod N.

6.1 Bucket Array Snapshots

We take the snapshots of the bucket arrays in some ex-
periments. Figure 6 gives the results from simulating the
wireline networks with 2 and 4 campuses. The left side cor-
responds to the conventional calendar queue and the right
side to the sluggish calendar queue. One observation is that
the bucket array size using the sluggish calendar queue is
only a half or one fourth of that using the conventional cal-
endar queue. This is unsurprising, since for the sluggish
calendar queue branch events and layman events are not in-
cluded in the figure. We are more interested in how (trunk)
events are distributed in the buckets because this largely de-
termines the average cost associated with an ENQUEUE
operation. It is clear that the number of events in the buckets
under the conventional calendar queue exhibits higher vari-
ation than the number of trunk events in the buckets under
the sluggish calendar queue. This is especially prominent
for TCP traffic simulation. When 2 campuses are simulated,
bucket 2324 contains 367 events, much more than any other
bucket. More interestingly, when 4 campuses are simulated,
the calendar queue essentially degenerates into only a few
linearly sorted lists: bucket 152 has 10548 events, bucket
153 has 307 events, bucket 154 has 37 events, bucket 242
has 896 events, and almost all other buckets do not have
any events in them. If the sluggish calendar queue is used,
however, we do not observe this: in all the experiments, the
longest trunk event list has only 12 events on it.

IEE |-:

COMPUTER
SOCIETY

Proceedings of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS '06)
0-7695-2573-3/06 $20.00 © 2006 IEEE

CBR/UDP, 2 campuses —— CBR/UDP, 2'campuses ——1

Number of events
Number of trunk events

o - N w & oo o N

o - N w & oo o N

0 128 256 384 512 640 768 896 1024 0

Bucket index Bucket index

Conventional calendar queue Sluggish calendar queue

(1) CBR/UDP, 2 campuses

64 128 192 256 320 384 448 512

CBR/UDP, 4 campuses ——— CBR/UDP, 4 campuses ——1

Number of events
Number of trunk events

0
0 256 512 768 1024 1280 1536 1792 2048 0

Bucket index Bucket index

Conventional calendar queue Sluggish calendar queue
(3) CBR/UDP, 4 campuses

128 256 384 512 640 768 896 1024

1000

FTP/TCP, 2 campuses ——1

Number of events
Number of trunk events
L O N A)

1
0 1024 2048 3072 4096 5120 6144 7168 8192 0

Bucket index Bucket index

Conventional calendar queue

(2) FTP/TCP, 2 campuses

100000 14

FTP/TCP, 2 campuses —1

256 512 768 1024 1280 1536 1792 2048

Sluggish calendar queue

FTP/TCP, 4 campuses ——

10000

1000

100

Number of events
Number of trunk events

10

1

o 2048 4096 6144 8192 0

Bucket index Bucket index

Conventional calendar queue
(4) FTP/TCP, 4 campuses

Figure 6. Number of (trunk) events in each bucket in the wireline network simulation.

Figure 7 presents the bucket array snapshots from simu-
lating the wireless networks with 100 and 150 nodes. Sim-
ilarly, the left side corresponds to the conventional calen-
dar queue and the right side to the sluggish calendar queue.
Observations made from the wireline network simulation
repeat themselves in the wireless network simulation. The
number of buckets under the conventional calendar queue
is much larger than that under the sluggish calendar queue;
the ratio between these two varies between 256 and 512.
The number of events in the buckets under the conventional
calendar queue still has higher variation than the number
of trunk events in the buckets under the sluggish calen-
dar queue. Compared with the wireline network simula-
tion, however, events are more evenly spread among all the
buckets except that for the scenario having TCP traffic and
100 nodes, events seem clustered in the first half part of the
bucket array. Under the sluggish calendar queue, the peak
number of trunk events in a bucket is still very small, which
is 13. Another interesting observation is that when the num-
ber of mobile nodes increases, trunk events tend to spread
in the buckets more evenly.

6.2 Speedup

We simulate each topology for 10 times on a standalone
(i.e., without network connection) desktop with 3GHz CPU
and 1GB memory. The simulation length for each topology
is set long enough to reduce the impact of other factors such
as background OS programs. Figure 8 depicts the speedup
of the sluggish calendar queue in both wireline and wireless
network simulations. The speedup is defined as the average
execution time needed if the conventional calendar queue is
used divided by that if the sluggish calendar queue is used.

128 18

CBRIUDP ——
64 | | ! FTP/TCP e 17

32 + t + e 16
15
14

Speedup
)
Speedup

13
12

PR=—=_ 14

CBRUDP ——

FTP/TCP -
05 1 -
1 15 2 25 3 35 4 50 100 150
Number of campuses Number of nodes

(1) Wireline network (2) Wireless network

Figure 8. Execution speedup.

From Figure 8, we observe that for the wireless CBR
traffic simulation, the sluggish calendar queue performs
slightly better than the conventional calendar queue. In all
cases, the average speedup is 1.024. On the other hand, for
the wireline FTP traffic simulation, the speedup varies with
the number of campuses in the network. If there is only one
campus, the speedup is 1.226. If there are two or three cam-
puses, the sluggish calendar queue performs slightly worse
than the conventional calendar queue, with average speedup
0.934; we conjecture that this results from the extra compu-
tation cost imposed by the sluggish calendar queue, such as
event comparison on the layman event list. More interest-
ing is the case when there are 4 campuses: the speedup is
as high as 56! From Figure 6, we know that in this scenario
the bucket array in the conventional calendar queue degen-
erates into a few sorted lists, which obviously slows down
the simulation significantly.

The speedups for wireless network simulations are more
consistent, as shown in Figure 8. When we increase the
number of nodes from 50 to 150 in the topology, the
speedup grows monotonically from about 1.1 to 1.7, irre-
spective of the traffic type in the network. But we do not

Proceedings of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation

of Computer and Telecommunication Systems (MASCOTS '06)
0-7695-2573-3/06 $20.00 © 2006 IEEE

FTP/TCP, 4 campuses T——1

512 1024 1536 2048 2560 3072 3584 4096

Sluggish calendar queue

IEE l-'

COMPUTER

SOCIETY

350 14

CBR/UDP, 100 nodes ——1 CBR/YDP, 100 nodes ———1

300

250

200

150

Number of events

100

Number of trunk events

50

0
o 16384 32768 49152 65536

Bucket index Bucket index

Conventional calendar queue Sluggish calendar queue

(1) CBR/UDP, 100 nodes

160

CBR/UDP, 150 npdes ——1 CBR/UDP, 150 nodes

140
120
100
80
60

Number of events
Number of trunk events

40
20

0

0 32768 65536 98304
Bucket index

131072 0
Bucket index

Conventional calendar queue Sluggish calendar queue
(3) CBR/UDP, 150 nodes

32 64 96 128 160 192 224 256

FTP/TCP, 100 nodes ———1

Number of events
Number of trunk events
£y

0
0 16384 32768 49152 65536 0

Bucket index Bucket index

Conventional calendar queue
(2) FTP/TCP, 100 nodes

FTP/TCP, 100 nodes ——1

32 64 96 128 160 192 224 256

Sluggish calendar queue

FTP/TCP, 150 nodes ——

Number of events
Number of trunk events

0
131072 0

0 32768 65536 98304
Bucket index

Conventional calendar queue
(4) FTP/TCP, 150 nodes

Figure 7. Number of (trunk) events in each bucket in the wireless network simulation.

observe the dramatic performance improvement as seen in
the 4-campus wireline network simulation.

7 Conclusions

In this paper, we have shown that in network simulation
events are often inserted into the FEL in their timestamp
order. The sluggish calendar queue rests on this observa-
tion and extends the conventional calendar queue by allow-
ing events to carry a branch event list. Experiments show
that the new data structure performs much better than the
conventional calendar queue in many cases and comparably
well in others. For future research direction, we plan to test
sluggish calendar queues in other application domains, such
as discrete-event social activity simulations.

References

[1] R. Brown. Calendar queues: A fast O(1) priority queue im-
plementation for the simulation event set problem. Commu-
nications of the ACM, 31(10), 1988.

K. Chung, J. Sang, and V. Rego. A performance compar-
ison of event calendar algorithms: An empirical approach.
Software-Practice and Experience, 23(10), October 1993.

[2

—

[3] J. C. Comfort. The simulation of a microprocessor based
event set processor. In Proceedings of the 14th Annual Sym-
posium on Simulation, Tampa, Florida, USA, 1981.

[4] K. B. Erickson and R. E. Ladner. Optimizing static calen-
dar queues. ACM Transactions on Modeling and Computer
Simulation, 10(3), July 2000.

[5] R. S. M. Goh and I. L-J Thng. Mlist: An efficient pending
event set structure for discrete event simulation. Interna-
tional Journal of Simulation, 4(5-6), December 2003.

[6] G. H. Gonnet. Heaps applied to event driven mechanisms.
Communications of the ACM, 19(7), 1976.

[7]1 D. W.Jones. An empirical comparison of priority-queue and
event-set implementations. Communications of the ACM,
29(4), April 1986.

[8] The network simulator - ns-2. http://www.isi.edu/nsnam/ns/.

[9] S. Oh and J. Ahn. Dynamic lazy calendar queue: An event
list for network simulation. In Proceedings of the 32nd An-
nual Simulation Symposium, 1999.

[10] R. Ronngren and R. Ayani. A comparative study of parallel
and sequential priority queue algorithms. ACM Transactions

on Modeling and Computer Simulation, 7(2), April 1997.

[11] G. R. Riley and M. H. Ammar. Simulating large networks
- how big is big enough? In Proceedings of First Interna-
tional Conference on Grand Challenges for Modeling and

Simulation, January 2002.

[12] R. Ronngren, J. Riboe, and R. Ayani. Lazy queue: An effi-
cient implementation of the pending-event set. In Proceed-

ings of the 24th Annual Simulation Symposium, 1991.

[13] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search

trees. Journal of the ACM, 32(3), July 1985.

K. L. Tan and L.-J. Thng. SNOOPY calendar queue. In Pro-
ceedings of the 2000 Winter Simulation Conference, 2000.

W. T. Tang, R. S. M. Goh, and 1. L.-J. Thng. Ladder
queue: An O(1) priority queue structure for large-scale dis-
crete event simulation. ACM Transactions on Modeling and
Computer Simulation, 15(3), July 2005.

J. G. Vaucher and P. Duval. A comparison of simulation
event lists. Communications of the ACM, 18(4), June 1975.

G. Yan. Improving Large-Scale Network Traffi ¢ Simulation
with Multi-Resolution Models. PhD thesis, Department of
Computer Science, Dartmouth College, 2005.

[14]

[15]

[16]

[17]

Proceedings of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation

of Computer and Telecommunication Systems (MASCOTS '06)
0-7695-2573-3/06 $20.00 © 2006 IEEE

FTP/TCP, 150 nodes ——

64 128 192 256 320 384 448 512

Sluggish calendar queue

IEE l-'

COMPUTER

SOCIETY

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

