Dynamic Balancing of Packet Filtering Workloads
on Distributed Firewalls

Guanhua Yan'

t Information Sciences (CCS-3)
Los Alamos National Laboratory
{ghyan, eidenben}@lanl.gov

Abstract—Firewalls are widely deployed nowadays to enforce
security policies of enterprise networks. While having played
crucial roles in securing these networks, firewalls themselves are
subject to performance limitations. An overloaded firewall can
cause severe damage to the protected enterprise network, because
any legitimate communication through it is either degraded
or even completely severed. In this paper, we address how to
dynamically balance packet filtering workloads on distributed
firewalls efficiently in large enterprise networks.

We model dynamic load balancing on distributed firewalls as
a minimax optimization problem, and show that it is strongly
NP-complete even if we eliminate all precedence relationships
among policy rules by rule rewriting. Accordingly, we propose a
light-weight rule distribution scheme that quickly balances work-
loads among all firewalls. Our scheme is adaptive to incoming
traffic. Moreover, dynamically placing and ordering policy rules
on distributed firewalls reduces the probability that attackers
successfully infer the rule distribution. Experimental results show
that using a commodity PC, our approach can reduce the peak
firewall workload in distributed firewall systems by 40% within
less than five minutes, compared against alternative solutions that
only optimize rule ordering on individual firewalls.

I. INTRODUCTION

Firewalls are the most pervasive defense appliances that
enforce security policies in today’s enterprise networks. A
firewall either controls the traffic that flows between an enter-
prise network and the outside Internet, or regulates the traffic
among different domains in the same enterprise network.
While having played crucial roles in securing these networks,
firewalls themselves are subject to performance limitations.
A firewall may be deployed on a high-speed link where its
computational resource is the bottleneck. Next, as a response
to a growing number of cyber-attacks in the Internet, enterprise
networks tend to enforce tighter control over their traffic. As a
result, the increasing complexity of security policies naturally
increases the computational burden on firewalls. Moreover,
from an attacker’s perspective, overloading firewalls can cause
desirably severe damage to the victim enterprise network,
since any legitimate communication through these overloaded
firewalls is either degraded or even completely severed. This
is not impossible given the recent advances in firewall policy
reconstruction by active probing [15].

It is thus important to protect firewalls from being over-
loaded. Two research directions have been pursued indepen-
dently to address this problem. The first approach is optimizing
rule ordering on individual firewalls [11], [1]. The second one

Songqing Chen?

Stephan Eidenbenz'

! Department of Computer Science
George Mason University
sqchen@cs.gmu.edu

exploits parallelism, that is, use multiple firewalls on the same
link to perform packet inspection simultaneously [14], [7]. In
this paper, we propose a solution that integrates merits of both
methods to optimally balance packet inspection workloads on
distributed firewalls. It is noted that a large enterprise network
is usually comprised of multiple domains (or branches), each
of which often has its own firewalls and policy rules. The key
idea of our approach is to balance packet filtering workloads
among the distributed firewalls within the same enterprise net-
work such that the maximum workload among all individual
firewalls is minimized. Our solution extends the wisdom from
both research directions as mentioned: it not only exploits the
parallelism inherent in the multiple firewalls within the same
enterprise network, but also dynamically reorders the rules
on each individual firewall based on traffic characteristics.
Our approach, however, distinguishes itself from existing work
by dynamically relocating firewall rules on the distributed
firewalls as a response to the changing traffic characteristics.

Our key contributions in this paper are summarized as
follows. We formulate the optimization of dynamic firewall
rule distribution as a minimax problem subject to precedence
constraints among firewall rules. We show that this prob-
lem is strongly NP-complete, even if we eliminate all the
precedence constraints by rewriting firewall rules. Accord-
ingly, we propose a light-weight rule distribution algorithm
that quickly balances the packet filtering workload among
all firewalls. Our approach does not demand any additional
resource/infrastructure support, is adaptive to the changing
traffic characteristics, and also reduces the probability that
attackers successfully infer the rule distribution. Experimen-
tal results show that using a commidity PC, our algorithm
can reduce the peak firewall workload in distributed firewall
systems by 40% within less than five minutes, compared
against alternative solutions that only optimize rule ordering
on individual firewalls.

II. BACKGROUND AND MOTIVATION

A distributed firewall system in an enterprise network en-
forces security policies on the traffic that enters or departs
from the enterprise network or that traverses between internal
subnets. We model a distributed firewall system as a set of
firewalls falling into two categories: frontier firewalls and
compartmental firewalls. The former separate the enterprise
network from the outside Internet, and the latter reside between

U.S. Government work not protected by U.S. copyright

209

two subnetworks inside the enterprise network. In Fig. 1(1),
we show these two types of firewalls in an example enterprise
network. We further abstract the enterprise network topology
into an undirected graph G(V, E). In this graph, we define
three types of nodes. The internet node i represents the outside
Internet, a subnet node represents an internal subnet, and a
firewall node represents a firewall. An edge is added between
two nodes if the corresponding components in the original
topology are directly connected. We use sets S and F' to
denote the entire set of subnet nodes and firewall nodes in the
graph respectively. Following the same example, the enterprise
network topology is abstracted into a graph with 10 nodes, as
illustrated in Fig. 1(2). In this paper, we assume that there
exists a unique routing path between any two nodes in graph
G(V, E). The assumption is reasonable because multi-path
traffic engineering is rarely deployed in enterprise networks.
Let set J be {i}U.S and we call nodes in set J domain nodes.

B8 end host
@ frontier firewall

compartmental firewall

(1) Network topology

(2) Abstracted graph

Fig. 1. An enterprise network topology and its abstracted graph

The security policy of an enterprise network regulates what
types of traffic should be allowed among domain nodes in set
J. In distributed firewalls, security policies are represented
as firewall rules. A firewall rule is defined as a sextuple:
(pid, src_ip, src_port, dst_ip, dst_port, action), where pid
is protocol ID, src_ip and dst_ip are source and destination IP
addresses, src_port and dst_port are source and destination
port numbers, and action indicates how a packet matching the
rule should be processed. Typical firewall rule actions include
“accept”, “deny”, and ‘“drop”, which may be coupled with
“log” actions. Both “deny” and “drop” actions drop the packet,
but the “deny” action sends a denying feedback to its source.
Wildcard * is used to match a range of fields. In addition, we
define the matching space of a firewall rule as the entire set
of packets that matches it.

In the example, suppose that the IP address of the end host
is 202.133.0.22 and there are two rules, r; and ro, and 7
precedes ro. 71 is (TCP, 18.x.%.x, %, 202.133.0.22, 80, accept)
and 7o is (¥, 18. % . * .x, %, 202.133.0.22, %, deny). We assume
that traffic from the outside Internet reaches host hgy by
traversing along the path fy — s; — f1 — s2 — f3 — s3 —
fa — s4 — hg. Placing the two rules on any of the firewalls
on this path can ensure that host hg accepts only HTTP traffic
with port number 80 from the 18.0.0.0/8 network.

Such flexibility in policy rule placement is helpful in balanc-
ing firewall workloads, since we can strategically place firewall
rules so that the maximum workload among all firewalls is
minimized. This is the key idea of our approach. In this

paper, we propose a systematic solution to the following
questions: (1) In order to achieve the security goal of the
enterprise network, what constraints does a rule distribution
scheme have to satisfy? (Section III) (2) To balance firewall
workloads, what data should we collect from the system and
how should we do that? (Section IV) (3) How should we
characterize firewall workloads and what is the optimization
objective function for balancing firewall workloads? (Section
V) (4) How difficult is the problem? (Section VI) (5) What
algorithm should we use to balance firewall workloads quickly
and effectively? (Sections VII and VIII). We evaluate the
effectiveness and efficiency of our solution in Section IX.

III. RULE DISTRIBUTION CONSTRAINTS

Correlations among some policy rules prevent us from dis-
tributing the rules in a straightforward fashion. In the example,
if we put 1 on fy and r5 on f4, every packet destined to host
ho from network 18.0.0.0/8 is dropped by firewall f; because
of rule 7. This suggests that a feasible rule distribution
scheme is subject to certain constraints. To characterize these
rule distribution constraints, we need to know how rules are
organized on firewalls. List-based firewalls are a family of
firewalls widely used in large enterprise networks [2]. In list-
based firewalls, after the first rule matching the packet is found,
the action specified by the rule is performed on the packet
under inspection. Here, we consider only list-based firewalls.

RULES WITH PRECEDENCE RELATIONSHIPS

Let ® denote the entire set of policy rules in an enterprise
network. Define precedence relationship < on two policy rules
as follows: r; < r; if rule r; has a higher priority than rule r;.
Let I' denote the entire set of precedence relationships among
rules in ®. We say that pair (®,I") is feasible if it satisfies
two conditions: (1) in I', there are no cyclic precedence
relationships among rules in ®, and (2) for any two rules in ®
whose matching spaces overlap with each other, there exists
a precedence relationship between them in I'. Here, we do
not assume that a feasible pair (®,I') is exhaustive, that is,
some traffic may not match any rule in ®. As to such traffic,
an enterprise network must specify a default action. In our
framework, we do not specify the default action, and such a
decision is left to the network administrator for simplifying
the presentation of rule set ®.

Such flexibility comes at a cost in a distributed firewall
system. If the default action is “deny” and if a packet does not
match any rule on the last firewall along its path, this firewall
does not know whether the packet matches a policy rule in &
at an upstream firewall. To overcome such an ambiguity, we
utilize some unused fields in IP headers and introduce a new
allowed-to-pass (ATP) field. When a packet reaches the first
firewall in the system, its ATP field is cleared. We assume that
a firewall can tell whether it is the first firewall on the path
of an incoming packet based on the port from which it comes
from. When a packet is accepted by the first rule along its
path, its ATP field is changed to 1. When a firewall does not
find any rule to match a packet, it checks whether it is the
last firewall on its path. If so and if it also finds that the ATP

210

field of the packet is O, it processes the packet according to
the default action; otherwise, it forwards the packet.

CONSTRAINTS OF RULE DISTRIBUTION

Modeling constraints of rule distribution requires new nota-
tions. Let a(r) be the entire set of source domain nodes from
which any traffic matching rule r can originate, and 3(r) be the
entire set of domain nodes to which any traffic matching rule
r can be destined. Both «(r) and 3(r) are computed from the
source and destination IP address field of rule r. Following
the example in Section II, a(r1) = {i} and B(r1) = {s4}.
Note that it is possible that «(r) or S(r) for a specific rule r
contains more than one domain node in J. In addition, we use
P(a,b), where a,b € J, to denote the entire set of firewalls on
the path from domain node a to domain node b. In the same
example, P(i,s1) = {fo f1. f3, J1}.

Rule distribution matrix. A firewall rule distribution
scheme can be modeled as a rule distribution matrix M. In
the rule distribution matrix, M[r|[f], where r € ® and f € F,
is the order of rule r on the rule list at firewall f if rule r is
placed on firewall f, or O otherwise. That is to say, if there
are k rules, which we denote by 7, 75, ..., and 7, on firewall
fs, and without loss of generality, we assume the order of rule
7; 18 4, then we have M[7;][fs] = 1.

Obviously, the number of rules placed on a firewall is the
maximum order that a rule can have on it and no two rules on
the same firewall should have the same order. Hence, a rule
distribution scheme must satisfy the following two constraints
in the form of first-order logic:

Vre ®,VfeF:

0 < MI][f] < Ypeq HMILS] > 0}, Q)
Vfe F,Vred,Vte d:
(r#t AM[r][f] > 0 M[t][f] > 0)
— Mr][f] # M[t][f], 2)

where 1{p} is the indicator function: If proposition p holds, it
returns 1; otherwise, it returns 0. Hence,), 4 1{M[t][f] >
0} gives the number of rules that are placed on firewall f.

Completeness constraint. We define the traffic demand
space of rule r, denoted by Y(r), as a set that includes every
possible (a, b) pair where a € a(r), b € §(r), and a # b. Intu-
itively, under an effective rule distribution scheme, every rule r
in @ should be placed on every domain node pair in Y (7). That
is, all possible paths from nodes in a(r) to nodes in 5(r). This,
however, may not be necessary in some cases. For instance,
suppose that Subnet 4 in Fig. 1 has prefix 202.133.0.0/24 and
Subnet 3 has prefix 202.133.1.0/24. There are two policy rules:
r3 is (TCP,202.133.0.%, x,202.133.1.x%, 8080, accept), r4 is
(TCP, *, x,202.133.1.%, 8080, deny), and r3 precedes rs. We
have: a(rs) = {s4}, B(r3s) = {s3}, a(rs) = {4, s1, s2, 3, 4},
and B(ry) = {s3}. We also assume that no domain nodes
except s4 have a routing path to node sg3 that traverses firewall
f1. It is obviously unnecessary to put rule r4 on firewall f,
because all traffic matching rule r4 at firewall f3 must be
checked against rule rs first.

To deal with such a situation, we use D(r), where r €
®, to denote the set of domain node pairs (a,b) that satisfy
the following condition: any traffic from domain node a to
domain node b must match another rule preceding rule r. If
(a, by € D(r), we say that rule r is dominated between node
pair (a,b). In the example, we have D(r4) = {(s4, s3)}. We
say that a rule distribution matrix M is complete if every rule
r in @ is placed on all possible paths from nodes in «(r) to
nodes in [(r) except those covered by node pairs in D(r).
The completeness constraint can be formalized as follows:

Vr € ®: (Y{a,b) € T(r) —D(r):

(3f € F: f € P(a,b) A M[r][f] > 0)) 3)

Soundness constraint. We say that a rule distribution
matrix M is sound if precedence relationships are never
violated under M. In other words, a sound rule distribution
matrix means that if r, < rp, then for every packet matching
rule 7y, rule r, must be checked before rule r,. One obvious
solution is that we always put rule r, before rule r; on every
firewall rule list where rule r; is placed. It is, however, not
a necessary condition to satisfy the soundness property. To
illustrate that, we first introduce a minor change to how a rule
is processed (later in Section V, we will show that this change
is unnecessary by adding some special rules): when a packet
with its ATP set matches a rule, the packet is immediately
forwarded, regardless of the action of the rule. Now, suppose
that rule r; is placed on firewall f. The precedence relationship
is never violated if the following condition holds: for each
path on which traffic matching rule r, can possibly traverse,
if firewall f is on this path, there always exists an upstream
firewall, relative to firewall f, that installs rule r,.

To formalize the soundness constraint, we let o(a,b, f)
denote the order of firewall f among those on the path from
domain node a to domain node b; if firewall f is not on the
path from domain node a to domain node b, ¢(a, b, f) is +oc.
The soundness constraint can be formalized as follows:

Vfe FNre ® vVie d:
(r <t AM[r][f] > 0A M[t][f] > 0)
— M{r][f] < Mt][f],
Vry € ®,¥ro € ®,Vf € F: (11 <12 A MJro][f] >0) —
(V{a,b) € T(r1) : p(a,b, f) < 400 —
(31" € F: o(a,b, f') < pla,b, £) A Mr][f] > 0)).
&)

“

IV. HIT COUNTING

Besides the distribution constraints, optimizing policy rule
distribution also needs the frequencies at which rules are hit.
Our approach ensures that hit counts collected are consistent
across different rule distribution schemes. We assign a unique
ID to each domain node in J. Let uid(a) be the unique ID
of domain node a. We also utilize some unused fields in IP
headers for hit counting. The three new fields in an IP header
are (src_nid,dst_nid, flag). The first two fields store the
unique IDs of the source and destination domain nodes, and

211

the flag field stores a value chosen from {Marked, Hit}.
The two flag values are some special bits so that they are
distinguishable from the values when the flag field is unused.

When a packet from the outside Internet arrives at a frontier
firewall, the firewall checks whether the packet spoofs the
source IP address by using a fake IP address belonging to
the enterprise network; if not, the packet can be used for hit
counting purpose. When a packet from the internal network
arrives at a firewall, the firewall checks whether the packet
comes from a domain node that is directly connected to it;
if so, the packet can also be used for hit counting purpose.
If a firewall finds a packet that can be used for hit counting
purpose, it, with a predefined probability p € (0, 1], calculates
the unique IDs of the source and destination domain nodes
based on the source and destination IP addresses in the packet,
inscribes these two unique IDs into the src_nid and dst_nid
fields, and then sets the flag field as Marked. We say that
we mark a packet if we set its flag field as Marked. Each
firewall f also maintains a counter K,,(f), which keeps the
number of packets that are marked locally.

For each rule r placed on a firewall f, firewall f maintains
a counter, denoted by wiflf’w, for every possible domain node
pair (a,b) € Y(r) satisfying f € P(a,b). When a marked
packet matches rule 7 on firewall f, firewall f increases wia’w
by one, where a and b are the src_nid and dst_nid fields of
the packet, and then updates the flag field in the packet as
Hit. But if the flag field is already Hit, the corresponding
counter is not updated, even if it matches a local rule.

A firewall also keeps a set of neighboring domain nodes to
which it is directly connected. When a firewall fails to match
any rule on it against a marked packet, it checks whether the
dst_nid field of the packet matches any of its neighboring
domain nodes; if it does, the firewall increases by one a locally

. . b . .
maintained counter u@' >, where a and b are its src_nid and

dst_nid fields. u;a’w stores the total number of packets that

fail to match any rule on the path from domain node a to
domain node b. As uﬁf’w is only updated at the last firewall
on the path from domain node a to domain node b, domain
node b must be directly connected to firewall f.

Recall that p denotes the marking probability. We measure:

a 1 b
wft? = O3 wl reefanere) ©
feF
1
weth = =3 WP aedbeda#tb (D)
Pt

V. OPTIMIZATION OBJECTIVE FUNCTION

IMMEDIATE ALLOW-TO-PASS RULE

Given a complete and sound rule distribution matrix and the
hit count for each rule, it is still difficult to characterize the
workload on a firewall. For example, we have two rules r, and
75, Whose matching spaces partially overlap. Suppose that rule
T, 18 placed on an upstream firewall relative to the one that rule
7y 1s placed on. To characterize the workload on the firewall
where 1}, is placed, we need to know how much traffic matches

both rules. This part of traffic is forwarded immediately when
checking it against rule r;, due to its positive ATP field. For the
traffic that matches only rule r,, it should be checked against
subsequent rules.

To circumvent this problem, we introduce a special rule,
which is called the immediate allow-to-pass (IATP) rule. The
IATP rule is placed on every firewall and it is always the first
rule on a firewall rule list. This rule checks the ATP field of
every traversing packet, and if the ATP field is set, the packet is
forwarded immediately. As a packet with a positive ATP field
has already been accepted by a rule placed on an upstream
firewall, the introduction of such special rules does not affect
the completeness and soundness property.

Let /4 be the IATP rule. The following constraint says that
the first rule on each firewall rule list must be the IATP rule:

Ve F:MFAf] =1 ®)

As the special rule is added on every firewall, we need to
modify Constraint (1) slightly as follows:
Vre ®,VfeF: (M[r][f]=0)V

(2 < M[F][f] <1+ > HM[f] > 0}).

ted

©))

FIREWALL WORKLOAD CHARACTERIZATION

The workload on a firewall depends on the processing
overhead of each rule on it, the order of the rules on it, and the
incoming traffic pattern. Let ¢;(r) be the inspection overhead
of rule r and ¢, (r) be the action overhead of rule r if a packet
under inspection matches rule . We assume that for any rule
in ®U{r’4}, its inspection cost is the same for all the packets
that are checked against it.

The workload on a firewall includes several components.
First, we consider the workload imposed when the firewall
finds a regular rule in ® that matches the packet under
inspection. Due to the IATP rule, a packet can be checked
against the rule that it matches only once. Let 71 (f) denote the
workload of firewall f due to processing packets that matches
a rule on firewall f. Then:

ha(f) = Z

Vre®d:M[r][f]>0

>

V(a,b)eY(r):Q1(a,b,r,f)

wi® (o5 + ci(r') + ca(r)), (10)

where

ci(r'). (11)

Or.f =

>

V' €®: M [r'][fIZ0AM '] [f]S MIr][f]
and Proposition Q1(a,b,r, f) is defined as follows:
Ql(a7b7r7 f) =
f € P(a,b) A
~(3f € F: M[r][f'] > 0 A p(a,b, ') < pla,b, £))(12)

Second, we consider the workload of firewall f due to
checking against the IATP rule, denoted by fiz(f). We in-
troduce the primary action function of a rule (: & —
{accept, drop}; ((r) returns accept if rule r accepts the

212

packets matching it or drop if rule r drops the packets
matching it. Then, we have:

ha(f) = Z

Vred:{(r)=accept

Z ,w7(4a,b> .

V(a,b)eX(r):Q2(a,b,r,f)

(ci(r') + ca(r™)), (13)

where Proposition Q2(a,b,r, f) is defined as follows:
Q2(a7 b7 T, f) =
f € P(a,b) A
Gf e F: M[r][f'] > 0Ap(a,b,) < ¢(a,b, f)).(14)

Third, we consider the workload of firewall f when it
cannot find a rule that matches the packet under inspection.
In this case, there are two sub-cases: it has to process those
packets that do not match any rule on the firewalls along
their paths, and it also has to process those packets that
match a regular rule in ¢ but that rule is placed only on
downstream firewalls. We use 7iz(f) and 7i4(f) to characterize
the workloads due to these two sub-cases, respectively. Let
clef denote the cost of the default action on a packet that
does not match any rule in ®, and ¢/*? the cost of forwarding
a packet when a firewall cannot find a rule that matches the
packet but the packet is not destined to a domain node adjacent
to it. Note that ¢f*¢ should be no less than c;(r4). We then
have:

hs(f) = > ul®P (&5 4 ¢4, (15)
Va€JVbeJ:a#bA fEP(a,b)
ha(f) = >
Vre®: M[r][f]=0
> w6 + g, 16)
Y{a,byeY(r):Q1(a,b,r,f)
where

& =ci(r™) + Z ci(r').
vr/e®:M(r'][f]>0

When marking an IP packet for hit counting purpose, a

firewall also spends some CPU cycles on calculating its source

and destination domain node IDs. We use &5 (f) to denote the

workload of firewall f due to calculating domain node IDs.

Let ¢, denote the processing overhead on computing source

and destination domain node IDs for a single packet. We have:

hs(f) = Km(f) - ¢m, (18)
where K,,(f) denotes the total number of packets for which
firewall f computes source and destination domain node IDs.

The overall workload on firewall f, denoted by H(f), is
the sum of all the workloads #i;(f) through #i5(f):
H(f) = I (f) + ha(f) + ha(f) + ha(f) + hs (). (19)
The processing power of firewalls may differ significantly.
Let the normalized workload function 7(f) be %, where
C(f) is the processing capacity of firewall f. We then mini-
mize the maximum normalized workload over all the firewalls

and formulate it as a minimax optimization problem:

a7

min max n(f), (20)
M feF
subject to: (9), (2), (3), (4), (5), and (8). (21

VI. TRACTABILITY ANALYSIS

Optimizing the order of rules with precedence relationships
on a single firewall is NP-hard [11]. As the optimal rule
ordering problem on a single firewall is a special case of our
problem, our problem must also be NP-hard. However, if no
precedence relationship exists between rules, the optimal rule
ordering problem on a single firewall is solvable in polynomial
time. The solution is similar to that of the single-machine
job scheduling problem without precedence constraints [16].
One may wonder whether our problem in the distributed
setting is still solvable in polynomial time if no precedence
constraints happen to exist among rules or if we eliminate
all precedence relationships by arduously rewriting policy
rules. In this section, we show that even if no precedence
constraints exist, the minimax problem (20) is still strongly
NP-complete. The theory of NP-completeness requires us to
recast our problem to a decision problem. Hence, we define the
optimal non-precedence rule distribution problem as follows:

Definition 1: Optimal non-precedence rule distribution
problem. Let & denote an empty set. Given are an undirected
graph G(V, E), a firewall set F, a feasible pair (®, &), a(r),
B(r), and D(r) for each r € ®, P(a,b) foreacha € V — F
and each b € V — F, ¢(a,b, f) for each a € V — F, each
beV —F andeach f € F, C(f) for each f € F, vectors w
and U, ¢;(r) and ¢ (r) for each rule r € ®U{rI4}, cdef | cfwd,
Cm»> K (f) for each firewall f € F', and a given number Y.
We ask: does there exist a rule distribution matrix M subject
to Constraints (9), (2), (3), and (8) such that for every firewall
fin F, n(f) is no greater than Y'?

Our proof of strong NP-completeness of the optimal non-
precedence rule distribution problem involves the reduction of
the 3-Partition problem, which is strongly NP-complete [8].
We establish the following theorem (proof given in [17]):

Theorem 1: The optimal non-precedence rule distribution
problem is strongly NP-complete.

Given the difficulty in finding an optimal solution to the rule
distribution problem, we resort to heuristic-based algorithms.
To reduce the solution space, we establish two guidelines.
First, if no traffic matching rule r can possibly traverse firewall
f, or any traffic matching rule r, if traversing firewall f, must
also match a higher priority rule 7/, then r should not be
placed on firewall f. The second guideline avoids redundant
rule deployment as much as possible: if on every possible path
of rule r that traverses firewall f, there exists an upstream
firewall deploying rule r, it is unnecessary to place rule r on
firewall f. These two guidelines are formalized as follows:

Vred VfeF:

—(3a,b) € T(r) —D(r) : f € P(a,b)) — MIr][f] = 0.
(22)
Vre ® VfeF:
(V(a,b) € Y(r) : f € P(a,b) —
(3f" € P(a,b) : p(a,b, f') < ¢(a,b,) N M[r][f'] > 0))
— MIr][f] = 0. (23)

213

VII. SINGLE-FIREWALL RULE ORDERING

From a high level perspective, a rule distribution scheme
has two phases: rule placement phase and rule ordering phase.
The first phase decides how to place rules on firewalls,
and the second one decides how to order the rules placed
on each firewall. Once the first phase finishes, the second
phase changes only workload function A (f) in Eq. (19).
More specifically, the rule ordering scheme only affects the
following component in Eq. (19):

Hf) =) >

Vre®:M[r][f]>0 V{a,b)eY(r):Q1(a,b,r,f)

wi® oy 5. (24)

Obviously, H(f) includes neither action overheads associated
with the regular rules nor the processing costs associated
with the IATP rule. The problem of finding a rule ordering
scheme to minimize H(f) can be reduced to the classi-
cal 1|prec|Xw;C; single-machine job scheduling problem.
This problem is known to be strongly NP-hard, and a 2-
approximation algorithm for it is provided in [10]. As this
algorithm is based on an LP (Linear Programming) relaxation
technique, we call it the LP-based algorithm.

Suppose we already have an ordering solution X that
minimizes H (f) given a set of rules placed on firewall f. If we
apply the LP-based algorithm whenever we want to add a new
rule onto firewall f, the computation cost will be very high, as
demonstrated in later experiments. We thus use a light-weight
alternative, which is called the fast rule insertion algorithm.

Fast rule insertion algorithm. We use a linked list to
maintain rules placed on a firewall. Let £(f) denote such a
list kept for firewall f and the rules on L(f) be 7o, 71, ..., and
7. Note that 7y is the IATP rule. For ease of presentation,
we add a virtual rule 7 at the tail. Suppose that we want
to insert rule 7 onto list £(f). The precondition is that rule
r is not on list £(f). We traverse the linked list, looking for
r, the last rule that precedes over rule r, and 7, the first rule
that is preceded by rule r. If such rule r cannot be found,
we let it be 7(; similarly, if such rule 7 cannot be found,
we let it be 7;4;. Obviously, 7 now cannot be the same as
rule r. We thus distinguish two cases: rule r appears before
rule 7 (Case A) and rule r appears after rule 7 (Case B). In
either case, we let the rules between r and 7 are 7;, 7jt1, ...,
and 7;. Let set R* contain all these rules. Let @(r’) denote
Zwa BYET(1):Q1 (b, f) wi/’). We also number the position
before rule 7; as ¢ — 1, the one immediately after it as ¢, ...,
the one immediately before rule 7; as j — 1, and the one
immediately after it as j. The fast rule insertion algorithm
inserts rule r only at one of these positions.

In Case A, rule r can be inserted in any place among
positions ¢ — 1, 7, ..., and j. We note that where to insert
rule r does not affect the inspection costs of the rules before
rule 7; and those of rules after rule 7;. Hence, we only need to
minimize the total inspection cost associated with rule r and
rules 7; through 7; that is induced by the traffic matching only
these rules. We use C;y,p, (k) to denote this cost when rule r is
inserted at position k. Let Ay 11 be Cinp(k + 1) — Cinp(k).

We then have: Ay 41 = W(r) - ¢;(Frt1) —W(Fry1) -ci(r). We
can use one pass on rules 7; through 7; to compute the value
of Cinp when rule r is placed at position ¢ — 1, and then use
the iterative formula Ay ;41 to find the position where C;pp
has the lowest value with another pass. Thereafter, we insert
rule r at that position.

Case B is more complicated than the first one. For each
rule 7/ on list £(f), we keep both sets of rules on L(f)
that precede rule r’ and are preceded by rule 7/, and they
are denoted by S(r’) and S(r), respectively. Then, we use
BFS (Breadth First Search) or DFS (Depth First Search) to
traverse the rules according to their precedence relationships
and obtain a sequence of rules R that satisfy the following
conditions: (a.1) Vi’ € R: 1’ € R*, @.2)Vr' € S(r) : 7' € R,
@3)r € R — (W € 8(r') : v € R), and (a4) the
relative ordering of rules in R remains the same as they are
on list £(f). Similarly, we derive a sequence of rules R that
satisfy the following conditions: (b.1) V' € R : r' € R*, (b.2)
vr'e S(r):r" € R, 03)r" € R— (V" € S(r'): " € R),
and (b.4) the relative ordering of rules in R remains the
same as they are on list £(f). Finally, we obtain a sequence
of rules R’ that satisfy: (c.1) V' € R' : v € R* (c.2)
Vr' € R* —R—R:r' € R and (c.3) the relative ordering of
rules in R’ remains the same as they are on list £(f).

Let the numbers of rules in R, R, and R’ be n, 7, and n’.
We also use Z[k] and Z[k] to denote the number of rules in R
and R that appear before rule R'[k] on list £(f), respectively.
We further define vectors W, W, W', C, C, C' as follows:

k Hit-counts Costs
Loon W =X o@RF) Ck =X/, &[]
L.,m Wkl=Yi,9R[t]) Ckl =Y, c(R[)
Lo,n' W =F wR[]) CK=Sr, R

With a constant number of passes on the rules 7; through 7;,
we can obtain the values of all these vectors.

Our algorithm dealing with Case B guarantees that after
rule insertion, (1) rules in R appear before rule r and rules
in R appear after rule r, (2) all rules appearing before rule
conform to the same order on the original list and the same
to the rules that appear after rule r, and (3) all the rules in
R’ appear in the same order as before the insertion. Similar
to Case A, we only need to minimize the total inspection cost
associated with rule r and rules 7; through 7; that is induced
by the traffic matching only these rules. We use Ci(s; to denote
this cost when there are k rules in R’ that are placed before rule
r. The baseline ordering scheme is putting all rules in R’ after
rule r. Under this scheme We use another pass on the rules 7;
through 7; to compute C(*) . Let A(F++1) pe C(’€+1 Ci(:z)).
We compute AF-F+1) by

AR = (R [k + 1]) x
(WIR]) ~ W[Z[k+1]] +
— @R[k +1]) x
(CIR[] - CZ[k + 1] + ci(r) + C[Z[k +1])),

where |X| is the number of rules in X. With Cmp and

w(r) + W(Z[k +1]))

(25)

214

(1) o

np’ Yinp’
be the smallest one among them and Ci(gi).
solution, there are k* rules in R’ before r.

Given the description of the fast rule insertion algorithm,
we can establish its performance with the following lemma:

Lemma 1: Given that there are n rules that are already
ordered, the number of precedence relationships among them
is m, and the time to check the existence of a precedence
relationship between two rules in ® is ¢, the time complexity
of the fast rule insertion algorithm is O(n -t + m).

The time complexity of ¢t~ depends on the implementation:
if we use a matrix to store the pairwise precedence relationship
between rules, ¢t~ is constant (this can be true even if the
matrix is sparse [6]); if we instead use a two-level trie to
store the precedence relationships, ¢ is O(log(|®|)).

AFE+D e can compute C ..., and CZ.(LIZ/D. Let Ci(:;)

Then, in the final

VIII. RULE DISTRIBUTION ALGORITHM

In this section, we introduce a rule distribution algorithm,
which works in a centralized fashion once hit counts per rule
have been collected from all firewalls. Using our algorithm,
a dedicated machine computes a new rule distribution matrix
and then uses it to reconfigure the rules on each firewall. The
process repeats as new rule hitting counts are collected and
sent to the dedicated machine.

PHASE I: INITIAL SETUP

We place each rule r as follows: for every node pair
(a,by € Y(r) — D(r), we place rule r on the first firewall
along the path from domain node a to domain node b. The
intuition behind it is as follows: if we put a rule whose primary
action is drop on firewalls close to its source domain nodes,
traffic matching this rule can be dropped early, imposing no
workload on downstream firewalls; if we put a rule whose
primary action is accept on firewalls close to its source domain
nodes, packets matching this rule can have their ATP fields set
early and downstream firewalls can thus immediately forward
such traffic due to the IATP rule. The initial rule placement
scheme as described must satisfy the following proposition:

Vred VfeF: Mr][f]>0

— (Ha,b) € T(r) = D(r) : p(a,b, f)=1) (26)

It is easy to see that the rule distribution matrix M from
the initial rule placement scheme must satisfy Constraints (9),
2), (4), (8), (3) and (5), and Guidelines (22) and (23).

Before entering Phase II, our algorithm initializes a few data
structures. For each rule r placed on firewall f, we keep the
set of domain node pairs between which the rule is effective.
Let Z(r, f) be this set and initialize it as follows:

Z(r, f) = {{a,b) | {a,b) € T(r) = D(r) Ap(a,b, f) = 1},

Given Z(r, f), we can derive the total hit count of rule r on
firewall f as 3=, ez f) w{™” This is used to compute the
total workload on firewall f or order the rules on firewall f by
the fast rule insertion algorithm. Moreover, for each firewall f
in ®, we also keep a set of domain node pairs for every rule

7 that used to be on list £(f); we use Z(r, f) to denote this
set and initialize it to be empty.

PHASE II: RULE MIGRATION

In this phase, we migrate rules between firewalls such
that the maximum normalized workload among all firewalls
monotonically decreases. The rule migration algorithm always
tries to migrate rules away from the firewall with the highest
normalized workload. Suppose that this firewall is fy and its
normalized workload is 7°/¢ . One input parameter to this
algorithm is its resolution € (¢ > 0). The resolution parameter
means each successful attempt on reducing the workload on
firewall fy should make its new normalized workload at most
nold —e. We define color(f) as the color of firewall f, which
has three possible values: white, red, and black. Initially, we set
the color of firewall f* as red and that of any other firewall as
white. We put firewall f* on the red firewall list, which keeps
all the firewalls with the red color. Moreover, we define the
state of a firewall f as a collection of information regarding
it, including £(f), Z(r, f) for each r € L(f), and Z(r, f) for
each rule r that used to be on L£(f); we use s(f) to denote
the current state of firewall f. We also let set II contain all
the firewalls whose states have been changed when the current
red firewall is processed. By slightly abusing notation II, we
use II(f) to denote the state information kept for firewall f.

Algorithm 1 Aggressively migrate rules to reduce the highest
normalized workload among all firewalls

1: loop
2 f* <= argmax ;. pn(f), and ninG, < n(f*)

3: color(f*) < red, and put f* onto the red firewall list
4: while the red firewall list is not empty do

5: extract a firewall f from the red firewall list

6: add f onto IT and keep s(f) in II(f)

7: if MigrateRules(f, vertical) returns false then

8: if MigrateRules(f, horizontal) returns false then
9: for each f € II, rollback s(f) to II(f)

10: the algorithm terminates

11: end if

12: end if

13: end while
14: clear II(f) for each f € II, and then clear II
15: end loop

The main body of the algorithm is shown in Algorithm 1.
Note that it calls twice function MigrationRules(f, mode)
in Algorithm 2. The two modes are vertical and horizontal.
Both modes start from the tail of the firewall list, and it-
eratively test whether the rule can be migrated onto the all
immediate downstream firewalls. The difference between them
is that in the vertical mode, a rule is migrated to downstream
firewalls only if it does not make any of them overloaded, that
is, all downstream firewalls after rule migration must have
a normalized workload at least € below the current highest
normalized workload 7°/¢ . By contrast, in the vertical mode,
we migrate a rule away from firewall f’ even if it makes the
normalized workload on some downstream firewalls higher

than 724 — e. In this mode, we change the colors of such

215

Algorithm 2 MigrateRules(f, mode)

Require: f € F and mode € {vertical, horizontal}
: {/* INITIALIZATION */}
: To< 0, Ty < 0, r < last rule on L(f)
: PROCESS_RULE:
- if (3(a,b) € Z(r, f)
r’) then
if 7 is the first rule on £(f), return false
r <= the next rule on £(f) in reverse order
goto PROCESS_RULE;
: end if
9: for all (a,b) € Z(r, f) do
10: f’ <= next firewall on the path from a to b
1: To<ToUu{f'}
12: end for
13: for each f’ € Ty, initialize W[r][f’] to be 0
14: for all {(a,b) € Z(r, f) do
15: f' < the next firewall on the path from a to b
16: WIrl[f] < Wrlf'] + w”
17: end for
18:
19: {/* TRY MOVING RULE DOWNSTREAM */}
20: for each f’ in Ty do
21: Ty <= Ty U{f'}, keep s(f’) (state of f') in w(f”)
22: if f' ¢ 11, add f’ onto IT and keep s(f’) in II(f’)
23 for each (a,b) in Z(r, f'), W[r][f'] < W[r][f'] + w®"
24: add rule r onto £(f') with fast rule insertion algo.
25: recompute n(f’)
26 i n(f’) > n3td, — e then

AW N =

c(a, b, f) = |F|)or (3" € L(f) :7 <

AN

27: if mode is vertical then

28: for each firewall f, € T1, rollback s(fz) to 7(fz)
29: if 7 is the first rule on L£(f), return false

30: r <= the next rule on £(f) in reverse order

31: goto PROCESS_RULE;

32: else if mode is horizontal then

33: if color(f') is white then

34: color(f') <= red, put f’ on the red firewall list
35: else if color(f’) is black then

36: for each f, € T1, rollback s(fz) to m(fz)

37: if r is the first rule on £(f), return false

38: r <= the next rule on £(f) in reverse order

39: goto PROCESS_RULE;

40: end if

41: end if

42: end if

43: end for

44:

45: {/* RULE REVOCATION PROCESS */}

46: for each [in Ty do_

47: for each (a,b) € Z(r, f) do R

48: add (a,b) onto Z(r, f'), and remove it from Z(r, f')

49: find firewall f” in P(a,b) with r € L(f") and {a,b) €
I(r, f"), remove {a,b) from Z(r, f"), and if Z(r, f"")

becomes empty, remove r from L£(f")

50: for each f"’ € P(a,b) between f’ and f” do
51: remove {(a, b) from Z(r, ")

52: end for

53: end for

54: end for

55:

56: {/* RULE REMOVAL */}

57: remove 7 from L(f) R

58: for each (a,b) € Z(r, f) , move it from Z(r, f) to Z(r, f)
59: if r is the first rule on L(f), return false

60: r < the next rule on £(f) in reverse order

61: goto PROCESS_RULE

firewalls to red and put them onto the red firewall list. As
the algorithm iteratively migrates rules from firewalls with
red color until it becomes empty, the horizontal mode tries
to reduce the workload of a firewall by involving firewalls
that are multiple hops away. To ensure the convergence of the
algorithm, we do not allow a firewall with a black color to
turn red again. Hence, if a rule added to a black downstream
firewall makes its normalized workload higher than n%'¢ — e,
we do not migrate this rule. This is the reason why we try the
vertical mode before trying the horizontal mode: the former
does not increase the number of red firewalls in the system.

Function MigrationRules(f, mode) uses the fast rule in-
sertion algorithm to add a rule onto a downstream firewall. It
is worthy mentioning some special cases when a rule is being
migrated onto a firewall f’. First, if the rule is already on that
firewall, we remove it from the firewall list and reapply the fast
rule insertion algorithm to adjust its position. Second, if the
rule used to be on that firewall but now has been migrated
onto further downstream firewalls, we need to activate the
rule revocation process. This is because if we place rule
r on firewall f’, these downstream firewalls also deploying
rule r will not see any traffic that matches rule r and also
traverses firewall f’. The rule revocation process updates the
corresponding states along the path from firewall f to these
downstream firewalls.

The algorithm requires recomputing the workload of a
firewall in several places. To reduce the computation cost, we
let each rule on a firewall carry a list of domain node pairs. We
compute the workload of each firewall after the initial setup,
and in the course of the algorithm, we incrementally update it
based on the information carried along with the domain node
pairs. The algorithm terminates after polynomial time and the
proof is given in [17].

IX. EXPERIMENTS

EXPERIMENTAL SETUP

Topology. In our experiments, we use two different topolo-
gies: full d-ary trees and random graphs. In the experiments
with tree topologies, we let d be 4 and vary the height of the
tree h between 3 and 4. In a tree topology, we assume that all
leaf nodes are domain nodes; hence, there are either 16 or 64
domain nodes in total. The random graphs are generated using
the Doar-Leslie model [5]; this model has the nice feature that
the total number of edges in the graph can be controlled by the
mean degree of an node. In a random graph, we assume every
node is a domain node. For both tree topologies and random
graphs, we add an extra node ¢ that represents the outside
Internet. In tree topologies, we connect node ¢ to the root
node; in random graphs, we randomly pick a node connecting
to node 7. In each of these topologies generated, we put a
firewall on every edge.

Rules. In all experiments, the primary action of a rule is
randomly chosen between accept and drop. The inspection
cost of a rule is uniformly distributed between 0.0001 and
0.0009. If the primary action of a rule is accept, its action
cost is 0.0006; otherwise, its action cost is 0.0004. The total

216

ID Topology #Firewalls #Domains #Rules TD

X1 Tree 21 17 2100 TD,

Xo RG 20.4 17 2040 TD,

X3 Tree 85 65 4250 TDy

Xy RG 82.3 65 4115 TDy

X5 Tree 85 65 4250 TDs
TABLE I

SIMULATION SCENARIOS (RG STANDS FOR RANDOM GRAPH AND TD
STANDS FOR THE SETTING OF RULES’ TRAFFIC DEMAND SPACES).

number of rules is k times the number of firewalls in the
topology. We choose k between 50 and 100 in our experiments.
Let p be the number of rules that regulate traffic from or to
the outside Internet. We call such rules external rules. The
probability that an external rule regulates inbound traffic is
0.5 in all experiments. We vary p between 0.25, 0.5, and 0.75
and assume that for each rule r, D(r) is empty.

Traffic demand space. We consider two cases here. In Case
TD;, we assume that each rule’s traffic demand space only
has one domain node pair. Hence, if a rule is an external
rule, we choose the internal domain node randomly; otherwise,
we choose two different internal domain nodes randomly.
Case T'Dy applies only to the tree topology. If a rule is an
external rule, we choose a node in the tree (not node 7, but not
necessarily leaf nodes) randomly; otherwise, we choose two
different nodes in the same way. If an internal node in the tree
is chosen, then all the leaf domain nodes in the subtree rooted
at it are covered by the rule.

Hit counts. We generate k - |F'| rules sequentially. If a
new rule’s traffic demand space overlaps with that of a rule
that has already been generated, the probability that the latter
precedes the new rule is 0.5. Note that overlapping traffic
demand spaces of two rules do not mean that their matching
spaces also overlap. We apply the Zipf’s law to generate the
hit count of each rule, based on the observation in [4]. In all
experiments, we assume that the total hit counts for all the
rules is 10000, and the exponent in the Zipfian distribution is
1. Between each pair of domain nodes, the hit count for the
traffic that does not match any rule on the path is uniformly
drawn between 0 and 100.

Miscellaneous. c;(r’4) = 0.0001; c,(r'4) = 0.0005; ¢/*?
= cdef =0.001. ¢,, = 0.0005. € = 0.1%. We set ¢/“? and cdef
higher than the average rule action cost because if a firewall
cannot find a rule on it to match a packet, it needs to check
whether it is the last firewall on the packet’s path.

The scenarios considered in our experiments are summa-
rized in Table 1. The capacity of each firewall is 2000 in
Scenarios X; and X5, and 4000 in the remaining ones. For
each scenario we simulate 10 sample runs.

EXPERIMENTAL RESULTS

Effect. First, we show how effectively our algorithm helps
reduce the highest normalized workload among all fire-
walls. We compare our algorithm against two straightforward
schemes: first-firewall scheme and last-firewall scheme. In the
first scheme, for each rule generated, we deploy it on the first
firewall on the path between every domain node pair in its
traffic demand space, and in the second one, we put it on the

first-firewall scheme —+—
last-firewall scheme -

2 3
rule migration scheme M-

[T

R - S
R

first-firewall scheme —— |
last-firewall scheme —¥—
rule migration scheme - A

© o o o

Highest normalized workload

Highest normalized workload

ML naN® o R RN

oo oooooo

0.25 0.5 0.75 0.25 0.5 0.75

Fraction of external rules Fraction of external rules

(1) Scenario X,

first-firewall scheme ——
last-firewall scheme —3-
rule migration scheme --Mll--

(2) Scenario X

first-firewall scheme —+—
last-firewall scheme -
rule migration scheme -l

B e e

SN N)
B e e

0.25 0.5

Highest normalized workload
Highest normalized workload
O I Y

o o o o
o o o o

0.25 0.5 0.75 0.75

Fraction of external rules

(4) Scenario X4

Fraction of external rules
(3) Scenario X3

first-firewall scheme —+—
last-firewall scheme -
rule migration scheme —f— ¥

Highest normalized workload
bR e e
I S N Y

o o o o

0.25 0.5 0.75

Fraction of external rules

(5) Scenario X5

Fig. 2. Highest normalized workloads (conf. interval 95%)

(seconds)
(seconds)

Execution time of Phase I
Execution time of Phase I

0.25 0.5 0.75 0.25 0.5 0.75

Fraction of external rules

(2) Phase II

Execution times of Phases I and II

Fraction of external rules

(1) Phase I
Fig. 3.

last firewall on the path between every domain node pair in
its traffic demand space. Fig. 2 depicts the highest normalized
workload under Scenarios X; through X5 as we vary p, the
fraction of external rules. Regardless of what rule distribution
scheme is applied, the highest normalized workload increases
with p. This is because as we increase u, the workload of
the frontier firewall becomes heavier. When p is 0.75, the
highest normalized workloads in Scenarios X3, X4, and X5
reach about 160%, suggesting that 60% of the incoming traffic
has to be dropped. From the attacker’s view, this is desirable
because legitimate traffic is dropped as well.

Our algorithm lessens such damage by rule migration. In all
five scenarios, the rule migration scheme reduces the highest
normalized workload by about 40% on average, compared
against the other two straightforward schemes. It is noted
that rule migration may not eliminate firewall overloading
completely in some cases. For example, in Scenarios X3 and
X5, when pis 0.75, the scheme reduces the highest normalized
workload from 160% to 120%. Although some legitimate
traffic inevitably has to be dropped, the damage caused by the

217

attack significantly decreases. However, in Scenarios X7, Xo,
X4, when p is 0.75, our rule migration scheme can completely
absorb the attack effects.

Performance. We evaluate our approach on a machine with
a 1.4GHz CPU and 3G memory. It installs Redhat Enterprise
Linux kernel version 2.4.18. The implementation of the LP-
based rule ordering algorithm in Phase I uses GLPK version
4.16, an open source linear programming module [9]. Fig. 3
depicts the execution times of both phases in our algorithm
under different scenarios. In all the cases, our algorithm ter-
minates within five minutes. Moreover, although the machine
we used has a large memory, the runtime memory usage is
less than 2% in all the sample runs.

Moreover, we note that the execution time of Phase I is one
order of magnitude longer than that of Phase II, regardless
of the simulation scenario. In all the scenarios, Phase II takes
less than 20 seconds to finish rule migration. This suggests that
to further improve the efficiency of our algorithm, we should
focus on shortening the time needed to produce an ordered rule
list for each firewall in Phase I. The rule ordering time by the
LP-based algorithm grows super-linearly with the number of
rules on a firewall. This is confirmed by the observation that
the execution time of Phase I increases monotonically with the
fraction of external rules, even though the total number of rules
in the system does not change. A higher fraction of external
rules leads to a longer rule list at the frontier firewall in the
initial setup and thus a longer time to order these rules by
the LP-based algorithm. There are two approaches to further
reduce the execution time of Phase I. First, the execution
workload in Phase I is parallelizable. We can split firewalls
into groups and let a processor to order the firewall rule lists
in each group. Second, as observed in [4], the frequency at
which a rule is found to match an incoming packet is skewed
in normal conditions. So we can use the LP-based algorithm
to order only rules with high hit counts and those preceding
them, and for the remaining rules, any ordering solution that
does not violate precedence relationships is acceptable.

X. RELATED WORK

Most existing work on improving performance of firewalls
focuses on rule organization on individual firewalls. Hamed
and Al-Shaer suggest that firewall rule ordering should take
traffic characteristics into consideration [11] and they later
propose using alphabetic trees to accelerate packet filtering
on individual firewalls [12]. OPTWALL accelerates packet
filtering by partitioning the original list of firewall rules into
a hierarchical set of mutually disjoint rule subsets [1]. Our
work aims to optimize rule distribution among distributed
firewalls; we assume list-based firewalls in our work due to
their popularity. The idea of rule migration for load balancing
discussed in Section VIII is still applicable if other types of
data structures are used on individual firewalls, although the
workload functions presented in Section V need be revisited.

Current research on distributed firewalls mainly considers
rule consistency and implementation issues. In [3], Al-Shaer
et al. propose an algorithm to discover anomalies among dis-

tributed firewall rules. Yuan et al. have developed FIREMAN,
which detects not only violations of user-specified security
policies but also inconsistencies and inefficiencies among
firewall rules [18]. In [13], Ioannisdis et al. discussed some
implementation issues of distributed firewalls. Instead, our
work focuses on how to dynamically optimize placement and
ordering of policy rules on distributed firewalls according to
changing traffic characteristics. To the best of our knowledge,
this topic has not been investigated before.

XI. CONCLUSION

Firewalls are the most pervasively deployed security ap-
pliances nowadays. Due to its own resource limitation, a
firewall can become a point of failures under severely high
computational workload. In this paper, we address how to
optimize placement and ordering of distributed firewall rules
to mitigate the worst-case damage that can occur to individual
firewalls. We model the problem as a minimax optimization
problem and propose a heuristic-based algorithm to migrate
rules among distributed firewalls. Experimental results show
our solution can balance workloads on distributed firewalls
effectively and efficiently.

REFERENCES

[11 S. Acharya, M. Abliz, B. Mills, and T. Znati. Optwall: A hierarchical
traffic-ware firewall. In Proceedings of NDSS’05, Febuary 2007.

[2] S. Acharya, J. Wang, Z. Ge, T. F. Znati, and A. Greenberg. Traffic aware
firewall optimization strategies. In Proceedings of ICC’06, June 2006.

[3] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan. Conflict classifi-
cation and analysis of distributed firewall policies. IEEE JSAC, 23(10),
October 2005.

[4] E. Cohen and C. Lund. Packet classification in large ISPs: Design
and evaluation of decision tree classifiers. In Proceedings of SIGMET-
RICS’05, 2005.

[5] M. Doar and I. Leslie. How bad is naive multicast routing? In
Proceedings of IEEE INFOCOM’93.

[6] M. L. Fredman, J. Komlos, and E. Szemeredi. Storing a sparse table
with 0(1) worst case access time. Journal of the ACM, 31(3), 1984.

[71 E. W. Fulp. Parallel firewall designs for high-speed networks. In
Proceedings of High Speed Networking Workshop, INFOCOM’06, 2006.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W H Freeman & Co, 1979.

[9] Glpk (gnu linear programming kit). http://www.gnu.org/software/glpk/.
[10] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to
minimize average completion time: Off-line and on-line approximation
algorithms. Mathematics of Operations Research, 22, 1997.

H. Hamed and E. Al-Shaer. Dynamic rule-ordering optimization for
high-speed firewall filtering. In Proc. of ASIACCS’06, March 2006.

H. Hamed, A. El-Atawy, and E. Al-Shaer. Adaptive statistical optimiza-
tion techniques for firewall packet filtering. In Proceedings of IEEE
INFOCOM’06, 2006.

S. Ioannidis, A. Keromytis, S. Bellovin, and J. Smith. Implementing
a distributed firewall. In Proceedings of ACM CCS, Athens, Greece,
November 2000.

C. Kopparapu. Load Balancing Servers, Firewalls, and Caches. John
Wiley & Sons, Inc., 2002.

T. Samak, A. El-Atawy, E. Al-Shaer, and H. Li. Firewall policy
reconstruction by active probing an attacker’s view. In The 2nd Workshop
on Secure Network Protocols, 2006.

W. E. Smith. Various optimizers for single-stage production. Naval
Research Logistics Quarterly, 3(1), March 1956.

G. Yan, S. Chen, and S. Eidenbenz. Dynamic balancing of packet
filtering workloads on distributed firewalls. Technical Report LA-UR-
07-3281, Los Alamos National Laboratory, 2007.

L. Yuan, J. Mai, Z. Su, H. Chen, C. Chuah, and P. Mohapatra. Fireman:
A toolkit for firewall modeling and analysis. In Proceedings of IEEE
Symposium on Security and Privacy, May 2006.

(11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

218

