A Bayesian Cogntive Approach to Quantifying
Software Exploitability Based
on Reachability Testing

Guanhua Yan'®) | Yunus Kucuk'2, Max Slocum', and David C. Last?

! Department of Computer Science,

Binghamton University, State University of New York, Binghamton, USA

{ghyan, ykucuk1,mslocuml}@binghamton.edu
2 Defense Sciences Institute, Turkish Military Academy, Ankara, Turkey

ykucuk@kho.edu.tr
3 Resilient Synchronized Systems Branch,
Air Force Research Laboratory, Rome, USA
david.last.1@us.af.mil

Abstract. Computer hackers or their malware surrogates constantly
look for software vulnerabilities in the cyberspace to perform various
online crimes, such as identity theft, cyber espionage, and denial of ser-
vice attacks. It is thus crucial to assess accurately the likelihood that
a software can be exploited before it is put into practical use. In this
work, we propose a cognitive framework that uses Bayesian reasoning
as its first principle to quantify software exploitability. Using the Bayes’
rule, our framework combines in an organic manner the evaluator’s prior
beliefs with her empirical observations from software tests that check
if the security-critical components of a software are reachable from its
attack surface. We rigorously analyze this framework as a system of non-
linear equations, and henceforth perform extensive numerical simulations
to gain insights into issues such as convergence of parameter estimation
and the effects of the evaluator’s cognitive characteristics.

1 Introduction

Software flaws are difficult, if not impossible, to avoid, either due to the lim-
ited cognitive capacities of the programmers to test all corner cases, or the
fundamental weaknesses of the programming languages used. Software defects
enable cybercriminals or their malware surrogates to perform a wide spectrum
of malicious online activities, such as identity theft, cyber espionage, and denial
of service attacks. As evidenced by numerous hacks that have occurred in the
past, vulnerable software can result in significant economic losses and reputa-
tion damages. For instance, it was estimated that the revelation of the Shellshock
vulnerability had led to one billion attacks [2], and an announced software vul-
nerability costs a firm an average loss of 0.5 % value in stock price [33].

When a software system is put into practical use, its operator is concerned
with the likelihood that it can be exploited maliciously. For security-critical

© Springer International Publishing Switzerland 2016
M. Bishop and A.C.A. Nascimento (Eds.): ISC 2016, LNCS 9866, pp. 343-365, 2016.
DOI: 10.1007/978-3-319-45871-7_21

344 G. Yan et al.

applications, a software system can only be trusted for operational use if its
operator’s confidence level in its unexploitability exceeds a certain threshold,
say, 99 %. The challenge, then, is: how can we derive such confidence levels to
assist human operators with decision-making? This problem is largely unex-
plored in the literature. There are some publicly available sources to find known
software vulnerabilities, such as National Vulnerability Database [4], Exploit
Database [5], and OSVDB (Open Sourced Vulnerability Database) [6]. However,
these sources contain only known vulnerabilities in typically popular software,
and thus cannot be solely relied upon to evaluate the security of a software
system. Moreover, containing vulnerabilities does not necessarily mean that the
software is exploitable in a certain running environment, as a successful software
exploitation requires the existence of a realizable execution path from the attack
surface of the program to its vulnerable software components [24,27,36].

Quantifiable measures of software exploitability can guide human operators
in deciding whether it is sufficiently secure to put a software into operation.
The Common Vulnerability Scoring System (CVSS) [28] is widely used in the
industry, but its design is more of an art rather than a science. For example, it
assesses the security of a vulnerable software with an overly simplistic equation:
BaseScore = 1.176 x (31 /5+2E/5—3/2), where impact factor I and exploitabil-
ity factor F take circumstance-specific values. Although this equation has surely
been thoroughly meditated, there lack rigorous scientific arguments on why its
parameters are so chosen.

In this work, we model the evaluation of software exploitability as a dynamic
process done by an evaluator, who has her prior belief in software exploitability
based upon some of its static features (e.g., its size, type, or some other metrics).
Henceforth, she uses reachability testing tools to check whether there exists an
injection vector from its attack surface that enables reachability of its security-
critical components, such as a system call capable of privilege escalation or a
potential buffer overflow vulnerability. The exploitability of the software is then
characterized as the evaluator’s subjective belief dynamically adjusted with the
reachability testing results presented to her. During this process, the evaluator
also continuously updates her perceptions about the performances of the tools
used.

To model human cognition, we adopt a first-principled approach that inte-
grates an evaluator’s prior belief in software exploitability with her empirical
observations from the reachability tests in a Bayesian manner. Bayesian reason-
ing is performed in a probabilistic paradigm, where given a hypothesis H and the
evidence E, the posterior probability, or the probability of hypothesis H after see-
ing evidence E is calculated based upon the Bayes’ rule: P{H|E} = %.
Although there lacks evidence that humans reason in a Bayesian way at the
neural level, psychological experiments show that humans behave consistently
with the model at a functional level in a number of scenarios [17,20,29)].

In a nutshell, our contributions can be summarized as follows:

— We propose a Bayesian cognitive framework that quantifies software
exploitability as the evaluator’s belief in whether an injection vector can be

A Bayesian Cogntive Approach to Quantifying Software Exploitability 345

found from the attack surface of a software to enable the execution of a sen-
sitive code block (e.g., one invoking a system call that leads to privilege esca-
lation). The evaluator’s belief is dynamically updated with the Bayes’ rule,
which uses the past performances of the reachability testing tools to calculate
the likelihood functions for each hypothesis.

— We represent the Bayesian cognitive framework for quantifying software
exploitability with a system of nonlinear equations, and rigorously analyze
its time and space complexity, its sensitivity to the order of reachability tests,
and the conditions under which the evaluator’s belief in software exploitability
improves or deteriorates.

— We use numerical simulations to analyze the Bayesian cognitive framework,
including the convergence of the evaluator’s beliefs, convergence of estimated
parameters, effects of the evaluator’s prior beliefs, effects of the ordering of
software reachability tests, effects of dependency among different reachability
testing tools, effects of short memory in parameter estimation, and effects of
lazy evaluation. Our analysis shows that the nature of nonlinear equations
leads to interesting observations that are not so intuitive.

From a high level, our work suggests a continuous and adaptive methodology
for quantifiable cybersecurity, which is hard for an environment like the Inter-
net that is open, dynamic and adversarial [34]. Although put in the context of
software exploitability evaluation, the proposed Bayesian cognitive framework
can be applied to various cybersecurity problems, such as malware detection
and anomaly detection. Moreover, such cognitive frameworks allow us to further
design autonomous systems that mimic the decision-making process of human
defenders, thus preventing human errors.

2 Related Work

A large body of research has been dedicated to identifying security-sensitive
software bugs in an efficient manner. One of the most widely used methods for
finding software bugs in practice is black-box fuzzing, which generates malformed
inputs in a brute-force manner to force crashes. The key challenge facing black-
box fuzzing is lack of efficiency when dealing with large software systems, and
there have been some recent works aimed at improving its performance [16,30].
In contrast to black-box fuzzing, white-box fuzzing takes advantage of knowledge
of the internal structures of the program to find software bugs. The key enabling
technology behind effective white-box fuzzing is the so-called concolic execution
or dynamic symbolic execution [13], which allows systematic exploration of pro-
gram branches for whole-program security testing. Notable white-box fuzzing
tools include EXE [12], KLEE [11] and SAGE [18,19]. One step further, a few
tools have been developed to automate the process of finding software exploits,
such as APEG [10], AEG [8] and MAYHEM [15]. Many aforementioned tools
can be used, directly or indirectly, for software reachability testing. Black-box
fuzzing tools, for instance, can be used to test software reachability in an oppor-
tunistic manner. Symbolic or concolic execution tools can be adapted to find
satisfiable paths reaching security-critical code blocks of interest.

346 G. Yan et al.

Our work on quantifying software exploitability intersects with existing
efforts on security metrics, which are valuable to strategic support, quality assur-
ance, and tactical oversight in cyber security operations [22]. Although security
metrics are important for cyber security to progress as a scientific field [25],
it is hard to develop practically useful security metrics due to the dynamic and
adversarial nature of the cyberspace [9,22,34]. As desirable properties of security
metrics include objectivity and repeatability, software exploitability quantified
by our proposed scheme does not qualify as a security metric. However, useful
metrics indicative of software exploitability can be incorporated into our cog-
nitive framework as the evaluator’s prior belief. As the landscape of software
exploitation is changing over time [26], these metrics may gradually lose their
predictive power. Our cognitive framework allows the evaluator to adjust her
beliefs with observations from new exploitation tests.

Our work finds inspirations from recent advances in modeling human cog-
nition. A number of psychological experiments have shown that humans tend
to behave consistently with the Bayesian cognitive model at the functional
level [17,20,29]. Cognition-inspired methods have found a few applications in
cyber security, such as malware family identification [23] and cyber-attack analy-
sis [37]. Such cognition-based methods can be used in autonomous cyber defense
systems to mimic the decision-making process of human operators and prevent
human mistakes or their intrinsic cognitive biases [32].

3 Software Exploitation Based on Reachability Testing

An experienced hacker would narrow down the attack target to a few security-
sensitive code blocks, a technique called red pointing [21]. Successful software
exploitation requires both the existence of a software defect and the ability of
the attacker to exploit it to achieve his attack goal [8]. With a software bug as
the target, if there exists an execution path from the attack surface (which is
controllable by the attacker) to invoke the software bug, the bug is deemed as
exploitable. Note that our definition of software exploitability is different from
that in [8], where a software bug is considered to be exploitable only if it is
reachable from the attack surface of the program and the runtime environment
satisfies the user-defined exploitation predicate after the control flow is hijacked
(e.g., the shellcode is well-formed in memory and will be eventually executed).
Consider the following C program with a buffer overflow bug:

#include <stdio.h>
#include <fcntl.h>
void innocent() { return; }
void vulnerable() { char buf[8]; gets(buf); }
int main(int argc, char** argv) {
if (argc !'= 2) { return -1; }
int fn = open(argv[1], O_RDONLY);
char c, d = 0;
int i;

A Bayesian Cogntive Approach to Quantifying Software Exploitability 347

for (i = 0; i < 10; i++) {

if(read(fn, &c, 1) == 1) d = d"c; else break;
}
if (d == 0) vulnerable(); else innocent();
close(fn);

To reach vulnerable () with a buffer overflow bug, we need to find an input
file the XOR, of whose first 10 bytes is 0. We tried the following on a commod-
ity PC:

Black-box Fuzzing: A black-box fuzzer randomly generates input files to
force program crashes. We add assert(0); at the beginning of function
vulnerable() to cause a crash when it is called, and then use BFF [14] to
fuzz against the program. Using a single seed file of size 1,805 bytes, BFF can
find the first crash within a second.

Symbolic Execution: Symbolic execution does not need to execute the pro-
gram concretely. Rather, it relies upon symbolic evaluation to find an input that
causes a part of the program to be executed. We use the Z3 tool developed by
Microsoft Research [31] to find a satisfiable condition that enables the execution
of function vulnerable(). As Z3 does not support the char type explicitly, we
use bit-vectors of size 8 (in Z3 parlance, they are defined with: Z3_sort bv_sort
= Z3.mk bv_sort(ctx, 8) where ctx is a Z3 context) to perform bit-wise XOR
operations. With 10 symbolic variables of type bv_sort defined, Z3 can find within
a few milliseconds their assignments such that the condition for entering function
vulnerable() is satisfied.

Concolic Execution: Concolic execution combines symbolic execution with
concrete execution to speed up code exploration. We first try the CREST tool [1]
to find solutions to the 10 symbolic variables of type CREST_char, each corre-
sponding to a byte read from a file. However, as CREST uses Yices 1 as its
SMT solver for satisfiability of formulas [7], which does not support bit-vector
operations, it does not find a condition that leads to the execution of function
vulnerable(). Another popular concolic execution tool is KLEE [11], which
works on object files in the LLVM bitcode format and uses the STP solver sup-
porting bit-vectors and arrays [3]. Similarly, by defining 10 symbolic variables
using klee make_symbolic, each corresponding to a byte read from the input
file, we are able to use KLEE to find quickly their proper assignments that enable
the execution of function vulnerable().

For a large and complex software, some of the tools may not find exploits
enabling reachability of its security-critical components. A security evaluator
may need multiple tools for a software exploitation task, and intuitively, her
memory of the past performances of these tools affects her evaluation of software
exploitability.

348 G. Yan et al.

4 A Bayesian Cognitive Framework

Motivated by the example in the previous section, we model software exploitation
as a process of finding a proper injection vector in the attack surface of a soft-
ware that enables its execution to reach one of its security-critical code blocks,
using some reachability testing tools. Our goal is to quantify software exploitabil-
ity as the likelihood that, given a security-critical target in the software, there
exists such an injection vector that successfully leads to its execution. We assume
that the evaluation of software exploitability is performed by an evaluator. Intu-
itively, if she has already found such an injection vector, her perception of the
exploitability of this software is certain. Otherwise, she is uncertain about the
exploitability of the software: there may exist an execution path that reaches the
target from the attack surface but she just cannot find it at the moment. The
evaluator may proceed to use some other tools to check the existence of such
an injection vector, and with more failed attempts, she should be increasingly
confident in the notion that the security-critical target of the software system is
not exploitable.

Some notations are needed to describe the probabilistic model characterizing
this cognitive process. We define the software-target pair (s, x) as an exploitation
task, whose goal is to find whether target = is reachable in software s from
its attack surface. We consider a null hypothesis Hy(s,), which simply states
that target x is unreachable in software s from its attack surface. Hence, the
unexploitability of target x in software s is quantified by the probability with
which the null hypothesis is true, i.e., P{Hy(s, z) is true}, or simply P{Hy(s, z)}.
For ease of presentation, we let the null hypothesis Hy(s,z) be the evaluator’s
belief in the unreachability of target z in software s and P{Hy(s,xz)} her belief
level.

Available to the evaluator is also a list of reachability testing tools, as dis-
cussed in Sect. 3, for finding an injection vector from a software’s attack surface
to reach a security-critical target of interest. Let Z denote such a list of tools,
each of which works as follows: given target = in software s, tool z € Z either
outputs that x is not reachable in s from its attack surface, or an injection vector
that it detects to be able to reach target x. Given an injection vector v by a tool,
the evaluator can execute the software with the injection vector v to validate
whether target x can be reached. Like any other security detector, a reachability
testing tool may wrongly report that target x is unreachable in software s, or
misdetect a wrong injection vector as being able to reach target x.

Table 1. Tool parameters (IV: injection vector)

Truth/Result | Unreachable | Reachable, correct IV | Reachable, wrong IV
Unreachable |« 0 l-«a
Reachable I6] 0% 1-8—v

A Bayesian Cogntive Approach to Quantifying Software Exploitability 349

We thus model the performance of a reachability testing tool as probabilities
in Table 1. Each tool has three performance parameters, «, 8, and 7: (1) The
truth is that the target is unreachable. A binomial process is used to characterize
the output of the tool, which returns a result of being unreachable with probabil-
ity «, and a result of being reachable with probability 1—«. (2) The truth is that
the target is reachable. The tool behaves as a multinomial process: it classifies
the target as being unreachable with probability 3, as being reachable with a
correct injection vector with probability v, and as being reachable with a wrong
injection vector with probability 1 — 3 — ~.

The rationale behind choosing the binomial and multinomial processes in
our model is two-fold: they not only lead to a parsimonious model of human
recognition of tool performances (by simple counting), but also provide algebraic
convenience as their conjugate priors are well known. In a more fine-grained
model, for the same tool z, the evaluator may associate different parameter
values with some properties of the software (e.g., its size, type, or some other
metrics). To deal with such subtleties, for each tool z, the evaluator can associate
different values of parameters a(**), 3(=%) and ~(*%) when it is applied on
software of type k. Moreover, to reflect the dynamics of these parameters, we
use subscript t to indicate their values at time ¢. For example, aﬁz’k[s]) gives the
value of parameter « at time ¢ when tool z is used on the type of software k[s].

Next we discuss how the evaluator, after using tool z for a new reachability
test, updates her posterior belief in the reachability of target = in software s. Let
the new observation made at time ¢ be Oy, which falls into one of the following

types:

— Type Ejy: The tool detects target x to be unreachable in software s.

— Type FE;: The tool detects that target x is reachable in software s, and also
returns an injection vector v, which is verified to be true by the evaluator.

— Type FE5: The tool detects that the target = is reachable in software s, and
also returns an injection vector v, which is verified to be false by the evaluator.

After performing a reachability test with tool z and observing O; from the
test at time ¢, her belief level in the unreachability of target z in software s is
updated to be the posterior probability P{Hy(s,z)|O;} according to Egs. (1-3)
in Fig. 1.

P{Ho(s,z)} - a1

]P){HQ(S,CE”Ot = Eo} = > Rls = ks (1)
P{Ho(s,z)} - a1V 4 (1 — P{Ho(s,2)}) - B7HD
P{Ho(s,2)|O¢ = E1} =0)
)b (1—a(Z kLD
P{HO(S,?L’)'Ot _ EQ} _ (zkaFS{HO(H)1 t) (3)
t

P{Ho(s,2)}-(1—al® D) 4 (1—P{Ho (s,2)})-(1— 7 FIED (2 FlD)y

Fig. 1. Calculation of posterior probability after seeing the result from a reachability
test

350 G. Yan et al.

The calculation of Egs. (1-3) is based upon the Bayes’ rule and the perfor-
mance of the reachability testing tool in Table 1. In Eq. (1), the observation is
that the tool detects the target to be unreachable. As the hypothesis Hy(s, x)
states that the target is unreachable, the probability that the observation results

from the hypothesis being true is agz’k[s]). If the opposite hypothesis holds (the

target is reachable), the observation occurs with probability ﬂt(z’k[s]). Hence,
Eq. (1) naturally follows based on the Bayes’ rule. Moreover, when it is observed
that the tool classifies the target to be reachable with a correct injection vector,
it is certain that hypothesis Hy(s,2) must not hold any more. This can be con-
firmed by Eq. (2) as P{E1|Ho(s,)} equals 0. Similarly, we can reason about the
case when the tool classifies the target as being reachable but provides a wrong
injection vector, and derive Eq. (3).

5 Parameter Updating

In this section, we discuss how the evaluator dynamically updates the values of
the performance parameters (i.e., «, 3, and 7) associated with each reachability
testing tool based on the Bayes’ rule. To evaluate the performance of a reacha-
bility testing tool, it would help if the ground truth is known to the evaluator.
For example, if it is known that target x is surely reachable from the attack
surface of software s, any tool that reports it being unreachable has a false neg-
ative error. One important observation, however, is that if it is true that target
x is unreachable in software s, it may never be verifiable by the evaluator for
a large software, although the opposite is not true: as long as a single injection
vector is found to reach target x, it is certain that the target must be reachable.
Hence, when no verifiable injection vector has been found yet to reach target
z from the attack surface of software s, a “relative fact” reflecting whether a
target has been found reachable is used to replace the truth in Table 1. There-
fore, for each reachability testing tool z € Z used on software of type k, the
evaluator keeps a performance counting table, or PCT(**) which contains five

(z,k) ci@k)

performance counters ¢) as in Table2. When the context is clear,

we drop the superscript (z, k).

Table 2. The performance counting table for tool z used on software of type k, i.e.,
PCTER),

“Relative fact” /Result | Unreachable | Reachable, correct IV | Reachable, wrong IV
Unreachable e N/A =R

Reachable Céz,k) ng,k) Ciz,k)

The evaluator performs a sequence of software reachability tests, Q =
{qo0,q1, - qt, ...}, where in q: = (8¢, @, 2¢,0¢), tool z; is used to test the reacha-
bility of x; in software s; at time step ¢ with observed test result o;. For ease of

A Bayesian Cogntive Approach to Quantifying Software Exploitability 351

explanation, we further define subsequences of software exploitation tests, each
corresponding to a specific software exploitation task (s, x):

Qse ={a | st =s Ny =z}, (4)

and the first element in Q; , is given as Qs [0].

For exploitation task (s,z), parameters are updated based upon its mode
m(s,x): pre-exploitation and post-exploitation. In the pre-exploitation mode, the
evaluator has not found any injection vector that enables reachability of target =
in software s, and by contrast, in the post-exploitation mode, such an injection
vector has already been found. Initially, for every software exploitation task (s, x)
its mode m(s, z) is set to be pre-exploitation.

Consider the software reachability tests in) sequentially. Given a new test
(s,x,z,0) in Q, which corresponds to the i-th one in Q,, (ie., Qs.i] =
(s,z,2,0)), the evaluator uses the following rules to update the performance
counters in table PCT**5D) where k[s] is the type of software s:

— Rule I applies to the case when o = Ey. If m(s, x) is pre-exploitation, coz’k[s])
: . : (2,k[s]) -
increases by 1; otherwise, ¢, increases by 1.

— Rule II applies to the case when o = FEj. If m(s,z) is post-exploitation,
céz’k[s]) increases by 1. Otherwise, if m(s,x) is pre-exploitation, the evalua-
tor has just found an injection vector to reach target = in software s. After
increasing cgz’k[s]) by 1, mode m(s, z) is changed from pre-exploitation to post-
exploitation. During this change of mode, the evaluator also needs to update
the performance counters for those tools that have been previously used to test
the software, as the “relative fact” that has been used to update these counters
previously turns out to be false. Hence, for every j with 0 < j < 4, suppos-
ing that Qs.[j] = (s,z,7',0"), the following revision steps are applied: (1) if
o' = Ey, then decrease cgz,’k[sl) by 1 and increase cézl’k[s]) by 1; (2) if o' = Es,
then decrease cgz/’k[s]) by 1 and increase cff/7k[s]) by 1. Note that it is impos-
sible to have o' = E; (otherwise, the mode must have already been changed
to post-exploitation after o’ is seen). Hence, the evaluator needs to revise the
performance counts based on the newly found truth that target x is reachable
from the attack surface of software s.

— Rule IITI applies to the case when o = FEy. If m(s,z) is pre-exploitation,
AFFED dnereases by 15 otherwise, c*) increases by 1.

The performance counters in table PCT(**) can be used to estimate the

parameters agz’k), t(z’k)7 and q/t(z’k) at the current time ¢. We let the values

l(-z’k)(t), for i =
0,...,4. Using a frequentist’s view, parameters aiz’k), 5,5””, and %Sz’k) could be
estimated as their relative frequencies. When few tests have been done, however,
the estimated values of agz’k), t(z’k), and %(z,k) as derived may not be sufficiently
reliable to characterize the performance of the reachability testing tool. This
resembles the scenario that a person, whose prior belief is that any coin is fair,

of the performance counters in table PCT**) at time t be ¢

352 G. Yan et al.

would not believe that the coin will always produce head even after seeing three
heads in a row.

Our model, again, takes the evaluator’s prior belief into account when esti-
mating these parameters. After tool z is used to test whether target x is reachable
in software s, which is of type k, if m(s,) is still pre-exploitation, the truth may
not be known to the evaluator. Without knowing the truth, the evaluator relies
on the “relative fact” that target x is not reachable from the attack surface of
software s. Therefore, depending on the current mode of exploitation task (s,),
she updates the parameters as follows:

— If m(s,z) is pre-exploitation, tool z works as a Binomial process where it
returns a result of being unreachable with probability a(**¥). As the conjugate
prior for a Binomial process is a Beta distribution, we assume that the prior
for parameter a(**) takes a Beta(déz’k) +1, dgz’k) + 1) distribution. We use
the MAP (Maximum A Posteriori) estimate to update a/(**):

a(z,k) _ déz’k)+céz’k)(t) (5)
t déz,k)+C[()z,k)(t)+d§z,k)+c(lz,k)(t)

— If m(s,x) is post-exploitation, tool z behaves as a multinomial process where
it returns being unreachable with probability 5(*¥), being reachable with a
correct injection vector (¥ and being reachable with a wrong injection
vector 1 — 3=k — »(=K) Similarly, as the conjugate prior for a multinomial
process is the Dirichlet distribution, we assume that the prior for parameter
(3= k) ~(=k)) follows a Dirichlet distribution Dir(dgz’k) +1, dgz’k) +1, diz’k) +
1). We again use the MAP estimate to update Bk and ~4(=k).

(z.k) _ s S O) (6)
t 2 dEzYk)"‘Z?:z ng’k)(t)
t 2 dgz’k)"'zngz ng’k)(t)

The evaluator assumes target z to be unreachable from the attack surface
of software s if mode m(s,x) is pre-exploitation, and this assumption is used as
the relative fact to update the performance counters in related PCTs. However,
when a later test finds an exploitation for the task (s,), which invalidates the
assumption, the parameters of those tools whose values have been previously
estimated based upon this relative fact should be updated to reflect this change
of mode. Mechanically, however, the evaluator can simply maintain PCTs like
Table 2, and whenever it is necessary to use parameters «, 3, and 7 in Eq. (1-3),
the tables are used to calculate their latest values based on Eq. (5-7).

6 Model Analysis

Space Complexity. The space used in the cognitive model includes those PCTs
that the evaluator uses to keep the aggregate results from previous software
reachability tests. It is noted that the prior information for parameter updating

A Bayesian Cogntive Approach to Quantifying Software Exploitability 353

(i.e., do-d4) can be put in the tables as initial values; hence, each entry in the
table represents cgz’k) (t) + dgz’k) where 0 < 7 < 4. Supposing that there are
|Z]| reachability testing tools and | K| software types, as each PCT contains 5
entries (see Table 2), it requires 5|Z|| K| to store the tables. Clearly, as the space
is linear with | K|, more fine-grained categorization of software would bring more
cognitive burden to the evaluator unless auxiliary methods are used to help
remember these tables.

For every exploitation task (s, z), it is necessary to remember the evaluator’s
belief level P{Hy(s,x)} and its current mode m(s,z). When an exploitation
task is in the pre-exploitation mode, the evaluator also needs to remember the
tools that have been previously used for the task, so if later an exploit is found,
the evaluator can take the revision steps to correct the performance counters
associated with these tools (Rule II of parameter updating). Therefore, if no
specific ordering scheme on the exploitation tools is used, the amount of tests
that the evaluator has to remember may be large, and in the worse case, it is | Q).

To alleviate her cognitive burden, the evaluator may use auxiliary devices
(e.g., papers) for remembering the information needed in the model, or simplify
the model. For example, all the tools are numbered, and for every exploitation
task, these tools are always used in an increasing order. Rules can be used to
check if a tool is applicable for an exploitation task. Hence, when the mode
of an exploitation task changes from pre-exploitation to post-exploitation, the
evaluator can simply revise the PCTs of those applicable tools that are numbered
lower than the one finding the exploitation.

Time Complexity. Given the input @, it is assumed that executing each of
Egs. (1-3) takes a constant amount of time. For an exploitation task (s, z), chang-
ing its mode from pre-exploitation to post-exploitation requires updating the
performance counters of those tools that have previously been used on them.
However, for each reachability test in @, revision of its result occurs at most
once. Therefore, the time complexity of the model is O(|Q]).

We can thus establish the following theorem regarding the complexity of the
model:

Theorem 1. The space and time complezity of the cognitive model is O(|Z||K |+
n+|Q|) and O(|Q)|), respectively, where |Z| is the number of reachability testing
tools, | K| is the number of software types, n is the number of exploitation tasks,
and |Q| is the total number of reachability tests done by the evaluator.

6.1 Order Sensitivity

Equations (1-3) and (5-7) form a complex nonlinear system, whose input is
comprised of sequence @, the initial states of the PCTs for all tools in Z, and
the prior values of P{s,z} for every exploitation task (s,z). We say that the
cognitive model is order insensitive if no matter how we change the order of
tests in @, the following conditions are satisfied after all tests: (1) the evaluator’s
final belief level for every exploitation task is the same, and (2) the states of all

354 G. Yan et al.

the PCTs are the same. It is noted that the mode of each exploitation task must
not change with the order of tests in @Q: For any exploitation task (s,x), if its
mode is post-exploitation before tests in @, its mode remains the same after
all tests in @); otherwise, if there exists any test in @ for this task that leads
to observation E7, regardless of its order in @, the mode of the task must be
changed to post-exploitation, or otherwise if no such test exists, its mode should
be pre-exploitation.

To understand under what circumstances the cognitive model is order insen-
sitive, we first start with a simple case where there are only two reachability
tests in Q. We can establish the following lemma (proof in [35]):

Lemma 1. For any Q = [(so,%0,20,00),(81,21,21,01)] and Q =
[(s1,21,21,01), (S0, To,20,00)], if (S0,%0) = (s1,21) or 29 # z1, the cognitive
model is order insensitive.

Now we consider the general case of array) which may have more than
two tests. According to Lemma 1, for any two consecutive reachability tests in
a sequence, as long as they do not use the same reachability testing tool on two
different exploitation tasks, we can swap their order. We call such a swapping of
consecutive reachability tests a safe swapping. Given a sequence of reachability
tests in), we can freely perform safe swappings on two consecutive tests without
affecting the evaluator’s final beliefs. We can thus establish the following theorem
(proof in [35]):

Theorem 2. For any sequence QQ of software exploitation tests and Q' one of its
permutations, assume that for every reachability testing tool, the relative order
of reachability tests using this tool is the same in Q and Q. Then the evaluator’s
final belief in every exploitation task must be the same after finishing Q and Q’.

6.2 Exploitability Analysis

We now consider under what conditions a new reachability test, (s,z,z,0),
improves the posterior probability P{Hy (s, z)}. We consider the following cases.
Without loss of generality, we drop the subscripts of the parameters.

Observation o = Ej: Given Eq. (1), in order to have P{Hy(s,z) | Oy =
Ep} > P{Hy(s,x)}, we must have both a > § and 0 < P{Hy(s,2)} < 1. If
P{Hy(s,x)} = 1, the evaluator is certain that the target is not reachable a priori
and thus any new evidence does not improve the posterior probability. On the
other hand, if P{H(s,z)} = 0, the Bayes’ rule tells us that the posterior proba-
bility is also 0. With a > 3, it means that an unreachable target is detected to be
unreachable with a higher probability than a reachable target being mistakenly
classified as unreachable. Therefore, when a new test shows that the target is
unreachable, it is better to use the former as the explanation than the latter,
which suggests that the posterior probability P{Hy(s,x)|Fo} becomes higher
after the test.

Observation o = Fj: Given Eq. (2), if the mode is still pre-exploitation,
then seeing the test result lowers the evaluator’s belief; otherwise, her belief
level remains to be 0.

A Bayesian Cogntive Approach to Quantifying Software Exploitability 355

Observation o = Es: Given Eq. (1), in order to have P{Hy(s,z) | O; =
Es} > P{Hy(s,z)}, we must have: « < f+ v and 0 < P{Hy(s,z)} < 1. The
same argument holds when P{Hy(s,z)} = 0 or 1 as in the case when o = Ej.
With o < § + 7 or equivalently 1 —«a > 1 — (8 +), it is more likely that
an unreachable target is detected by the tool to be reachable with a wrong
injection vector than a reachable target being detected as reachable but with a
wrong input vector; hence, given the same observation Fs, it is better to use the
former than the latter to explain the observation.

The above analysis leads to the following theorem:

Theorem 3. For an exploitation task in a pre-exploitation mode, with a reach-
ability testing tool of parameters a, 3, and ~y for the type of software in the task,
the test result by this tool boosts the evaluator’s belief level if and only if the eval-
uator’s prior belief is in (0,1) and we have o > 3 if Ey is observed or o < 4+~
if Fo is observed.

7 Numerical Results

We perform experiments that simulate the Bayesian cognitive model, a system
of non-linear equations. The baseline configuration of an experiment is shown in
Table 3. The reachability testing tools are those discussed in Sect. 3. As a reach-
ability testing software may behave differently under different configurations,
they are treated as different tools in our experiments. Parameter ¢ denotes the
true probability that an exploitation task is achievable. For the test ordering, the
tests are first ordered by the software to be exploited and then for each software,
it is tested with the tools in the same order. The experiments mentioned in this
section use parameter settings in Table3 unless stated otherwise. We assume
that the tests performed by all the tools are independent. For each tool, as the
initial counts in its PCTs are all 1’s, the evaluator’s prior estimations of «, 3,
and « are 1/2, 1/3, and 1/3, respectively.

Convergence of Estimated Parameters «, 3, 7. In this set of experiments,
we study how the estimated parameters converge over time. We consider 10
reachability testing tools, which are used to test 10,000 software. For each tool,
its parameters «, (3, and 7y have true values, 0.75, 0.1, and 0.5, respectively. The
others are the same as in Table 3.

Table 3. Parameter settings in baseline cases

Parameter Value | Parameter Value

Number of tools 100 | Initial counts in PCTs | All 1’s

Number of software | 100 | Parameter « [0.2, 0.4, 0.6, 0.8]

Prior belief level 0.5 Parameters 3, v [0.1, 0.2, 0.3, 0.4, 0.5]
Parameter ¢ 0.3 Test ordering Order by software then tools

356 G. Yan et al.

Parameter o
Parameter
Parameter o

10000
20000
30000
40000
50000
60000
70000
80000
90000
100000
10000
20000
30000
40000
50000
60000
70000
80000
90000
100000
10000
20000
30000
40000
50000
60000
70000
80000
90000
100000

Time step Time step Time step

(1) Parameter « (2) Parameter 3 (3) Parameter ~y

Fig. 2. Convergence of parameters «, 3, and 7. The true values of these parameters
are 0.75, 0.1, and 0.5, respectively. In each time step, a reachability test is performed.
The ranges of these estimated parameters among the 10 tools in the last time step
are 0.0152, 0.0248, and 0.0292, which are 2.0 %, 24.8 %, and 5.8 % of their true values,
respectively.

Figure 2 shows the convergence of the parameters estimated by the evaluator.
We observe that the estimation of each parameter eventually converges towards
its true value, but the convergence occurs slowly. For instance, even after per-
forming reachability tests for 1000 software (i.e., after time step 10000 as each
software uses 10 time steps, one by each tool), the estimated value of each para-
meter is still not very stable. Also, although the 10 tools have the same true
values for their parameters, there is significant variation among these tools after
10000 reachability tests.

Convergence of Belief Levels. In this set of experiments, we study the con-
vergence of the evaluator’s belief levels. Figure 3 presents, for each combination
of parameter settings, the average number of tests the evaluator needs to reach a
belief level of 99 % for a truly unexploitable software (left), along with the aver-
age number of tests to find an exploit for a truly exploitable software (right).

We first examine the results for truly unexploitable software. From Fig. 3(1),
we observe that for a truly unexploitable software, the average number of tests
required to reach a belief level of 99 % ranges from 3.6 to 27.2, showing a wide
variation across different combinations of parameter settings. We also observe
that given the same parameters « and 3, increasing v reduces the number of
tests needed. This is because that the evaluator’s belief level is affected by
only through Eq. (3), where a higher v boosts her belief level. The observation
also agrees well with Theorem 3,

The effects of parameter 3, however, are not as straightforward with the same
« and . We observe that when « is small, a higher 8 reduces the number of
tests required, but when « is large, increasing 3 would also increase the number
of tests. This can be explained as follows. Note that both observations Ey and
E,5 allow (§ to affect the evaluator’s belief. When « is higher, the number of
observations of type Ey increases, and the importance of Eq. (1) becomes higher,
where a higher § decreases the evaluator’s belief level; by contrast, when « is
smaller, the number of observations of type Fs increases, which increases the
importance of Eq. (3), where a higher § increases the evaluator’s belief level.

A Bayesian Cogntive Approach to Quantifying Software Exploitability 357

o =0.2 o=0.4 o =0.2 o =0.4
05 % o5 % o5 1 os It
0.4 20 0.4 20 0.4 8 0.4 8
>0.3 15 =03 15 =03 6 =03 6
02 ; 0 02 ; 0 0.2 g 0.2 ‘21
0.1 0 0.1 0 0.1 0 0.1 0
0.1 0.2 0.3 04 05 0.1 02 0.3 04 05 0.1 02 0.3 04 05 0.1 0.2 03 04 05
B i i B
o=0.6 0=0.8 o=0.6 0.=0.8
05 % os % o5 B os 3
0.4 20 0.4 20 0.4 8 0.4 8
>0.3 15 =03 15 =03 6 =03 6
0.2 ; 0 02 ; Y 02 g 0.2 g
0.1 0 0.1 0 0.1 0 0.1 0
0.1 0.2 0.3 04 05 0.1 02 0.3 04 05 0.1 02 0.3 04 05 0.1 0.2 03 04 05
B i i B
(1) Left case: unexploitable software (2) Right case: exploitable software

Fig. 3. Convergence of belief levels. The left case gives the average number of tests
before the evaluator’s belief level reaches 99 % for a truly unexplotable software, and
the right one the average number of tests before the evaluator’s belief level reaches 0 %
for a truly exploitable software.

We next study the results for truly exploitable software. From Fig. 3(2), we
observe that the range of tests required for the subject to find a successful exploit
is from 1.9 to 11.0. The dominating factor is 7, where a higher v reduces the
number of tests needed. This agrees well with our intuition that with tools that
are more capable of finding exploits, the evaluator needs fewer tests to find
exploits.

Effects of Prior Beliefs. In this set of experiments, we vary the evaluator’s
prior belief levels to study their effects. Figure 4 presents the average number of
tests for the evaluator to reach a belief level of 99 % for a truly unexploitable
software and the average number of tests to find an exploit for a truly exploitable
software. For the former, it is observed that a higher prior belief reduces the
number of tests to reach a certain belief level. This is because regardless of the
observation types (Fo or Es), the posterior belief increases monotonically with
the prior belief as seen in both Egs. (1) and (3). At one extreme, if the evaluator
holds her prior belief firmly that the target must be reachable, any observation
that no exploitation has been found against the software does not change that
belief at all. That is to say, the number of tests for her to reach a belief of
99 % would be infinity. At the other extreme, if the evaluator is certain that the
software is not exploitable, obviously it does not need any test for her to reach
a belief level of at least 99 %.

Furthermore, as reachability tests are performed independently, the average
number of tests to find an exploit for a truly exploitable software is always 1/7,
irrespective of the evalutor’s prior belief level. This is confirmed by Fig.4(2),
where the evaluator’s belief level does not change with the average number of
tests needed to find an exploit.

Effects of Test Ordering on Belief Convergence. We now study how
changing the order of software reachability tests affects the evaluator’s belief
convergence. We perform three groups of experiments: In the first group

358 G. Yan et al.

fo 10 = -%,
&g § 9
2 T
=g 2 6
o2 28 o
FE ge op
© = =
©° 2

02 03 04 05 06 07 08 09 1 10.2 03 04 05 06 07 08 09 1

Prior belief Prior belief
(1) Unexploitable software (2) Exploitable software

Fig. 4. Effects of prior beliefs

(order-by-software-then-tools), the tests are first ordered by the software to be
exploited and then for each software, we test it using 100 tools in the same order.
In the second group (order-by-tools-then-software), the tools are first ordered,
and then for each tool, it is used to exploit the 100 software consecutively in the
same order. In the third group order-randomly, the reachability tests are ordered
randomly. Figure5 again shows the average number of tests needed to reach a
belief level of 99 % for a truly unexploitable software (left) and the average num-
ber of tests to find an exploit for a truly exploitable software (right).
Interestingly, we observe that given a truly unexploitable software, on aver-
age it takes more tests to reach a certain belief level in the group of order-by-
software-then-tools than those in the group of order-by-tools-then-software. The
key difference is illustrated by a simple example shown in Fig. 5(3), where three
tools, 1, 2, and 3, are used to test software A, B, and C. The test results of
applying tools 1, 2, and 3 on software A are Fy, Es, and F1, respectively. For
ease of explanation, we assume that before the tests, the performance counters
co, €1, C2, c3, and ¢4 of all the tools are all initialized to be 1. If the tests are first
ordered by software and then tools (the upper row), then the first three tests are
performed with the three tools on software A. After these three tests, because
tool 3 finds an exploitable path, the performance counters of the three tools are:
(1,1,2,1,1), (1,1,1,1,2), and (1,1,1,2,1). These counts will be used to update the
posterior belief levels of software B and C later. By contrast, if the tests are first

40 15 Order by software then tools

Software-then-tools Software-then-tools 1 1
35 Tools-then-software 22222 Tools-then-software 22222 EO El El | J 1 ‘ J |

Randomly -~ 121 Randomly -« A AT A g Bl gl L ek [cha

@ 9 9 | "0 %@ 9D @

il

Order by tools then software

Number of tests

Number of tests
n
3
—

6 £ E

[T
% %9 o | 1o % | "9 (9 [

=0. Software to exploited A B‘ C Explatation oots (1) (2) (3)
Parameter setting

(1) Unexploitable software (2) Exploitable software (3) Illustration of effects of ordering

Parameter setting

Fig. 5. Effects of test ordering on belief convergence. The left case gives the average
number of tests needed to reach a belief level of 99 % for a truly unexploitable software,
and the right one the average number of tests to find an exploit for a truly exploitable
software. For each « setting, the tests are sorted by the increasing order of tuple (3, 7).

A Bayesian Cogntive Approach to Quantifying Software Exploitability 359

ordered by tools and then software (the bottom row), after the first test (tool
1 used on software A), the performance counters of tool 1 becomes (2,1,1,1,1)
and these counts are used to update the posterior belief levels on software B and
C in the second and third tests. Similarly, after the fourth test (tool 2 used on
software A), the performance counters of tool 2 becomes (1,2,1,1,1), which will
be used to update the posterior beliefs on software B and C next.

Hence, when the tests are first ordered by software and then tools, if any
tool can find an exploitable path of software, this fact can change the mode
of the software from pre-exploitation to post-exploitation and the performance
counters of the tools previously used to test this software are updated to reflect
this fact before they are used for testing other software. In contrast, if the tests
are first ordered by the tools and then software, when the mode of the software
is changed from pre-exploitation to post-exploitation, the performance counters
of the tools previously used to test this software were updated assuming that
the software is unexploitable, and then used to update the posterior beliefs of
those software that were tested with these tools before the mode change.

How does such a difference affect the evaluator’s posterior belief levels? For
the same observation Ej, the performance counter ¢y increases by 1 if the mode
is pre-exploitation, or ¢y increases 1 if the mode is post-exploitation. As we have:

ﬁ _ 02/(02+C3+C4) o 1+61/CO (8)
a — cof(cotcr) T 14(cztca)/c2’
B

post-exploitation updating increases = compared to pre-exploitation updating,
which further decreases the evaluator’s belief level after she sees Ey according
to Eq. (1).

Similarly, for the same observation Fs, the performance counter ¢; increases
by 1lin the mode of pre-exploitation, or ¢4 increases 1in the mode of post-
exploitation. Since

1-B—y _ caf(catcstca) _ l+co/c1 9)

1-« c1/(co+c1) — 1+(ca+tec3)/ca’

post-exploitation updating increases % compared to pre-exploitation updat-
ing, which further decreases the evaluator’s belief level after F, is observed
according to Eq. (3).

In summary, post-exploitation updating always reduces the evaluator’s belief
level for the software exploitation task at hand. This explains why more tests are
needed for the evaluator to reach a certain belief level when tests are first ordered
by software and then tools than when they are first ordered by the tools and then
software, because the former case has more post-exploitation updatings than the
latter, as seen in Fig. 5(1). To confirm this, we did the experiments without any
observations of type F; and then the differences in Fig.5(1) between order-by-
software-then-tools and order-by-tools-then-software disappeared. Hence, there
seems to be an irony: postponing knowing that some software are exploitable helps
improve the evaluator’s belief level in the unexploitability of the others!

In Fig. 5(2), we present the average number of tests for the evaluator to find a
successful exploit for a truly exploitable software. It is seen that the effect of the

360 G. Yan et al.

order of the reachability tests is little. This is because the test results by different
reachability testing tools are assumed to be independent. With a probability of
~ for any tool to find the proper injection vector for an exploitable software, the
average number of tests needed is thus 1/7.

Effects of Short Memory. Recall that in the basic cognitive model, the evalu-
ator has to remember the test results for each software exploitation task that is
still in the pre-exploitation mode. According to Theorem 1, this may cause high
cognitive burden to the evaluator. Hence, in a new set of experiments, we study
the effects of short memory, with which the evaluator omits the revision steps
in Rule IT of parameter updating.

Full memory =—— 14 [7 Full memory ==

30 . Short memory e Short memory e

&
3
5
K]
2
3
k]

ble software

Tests to find an exploitation
for exploitable software

Parameter setting Parameter setting

(1) Left case (2) Right case

Fig. 6. Effects of short memory. The left case shows the average number of tests needed
to reach a belief level of 99 % for an unexploitable software, and the right case the
average number of tests needed to find an exploit for an exploitable software.

Figure 6 shows the effects of having a short memory in parameter updating
on the evaluator’s belief convergence. We observe that due to a shorter mem-
ory, the evaluator needs fewer tests for her to reach a belief level of 99 % for
a truly unezxploitable software, but the average number of tests for her to find
a proper injection vector for a truly exploitable software changes little. Equa-
tions (8) and (9) can be used again to explain the smaller number of tests needed
to reach a certain belief level for a truly unexploitable software. When the mode
of an exploitation task changes from pre-exploitation to post-exploitation, hav-
ing a short memory has the following effect for any tool that is previously used
for this task:

— If the observation in that test was Fy, having a short memory omits moving 1
from ¢p to co. This makes §/a smaller based on Eq. (8), which increases the
evaluator’s belief level with a new observation E; according to Eq. (1), but
makes (1—F—7)/(1—«) larger due to Eq. (9), which decreases the evaluator’s
belief level with a new observation Es according to Eq. (3).

— If E was observed in that test, having a short memory omits moving 1 from c;
to ¢4. This makes 3/« larger based on Eq. (8), which decreases the evaluator’s
belief level with a new observation Fy due to Eq. (1), but makes (1 — 8 —
7)/(1 — a) smaller due to Eq. (9), which improves the evaluator’s belief level
with observation Fy due to Eq. (3).

A Bayesian Cogntive Approach to Quantifying Software Exploitability 361

At first glance, having a short memory has mixed effects on a latter obser-
vation, be it Fy or F,. However, the key observation here is that the impact
of having a short memory on improving the evaluator’s belief level is positive if
the same type of observation is made later, and is negative otherwise. Hence,
if the distribution of observations is stationary over time as assumed in the
experiments, the positive impact outweighs the negative one. This resembles
the positive externality in economics. Therefore, having a short memory helps
improve the convergence of the evaluator’s belief level when the software is truly
unexploitable. On the other hand, as having a short memory does not affect the
estimation of parameter -y, the average number of tests to find a proper injection
vector for a truly exploitable software, which is 1/, is not affected by a short
memory in parameter updating.

Effects of Dependency. In another set of experiments, we evaluate effects
of dependency on the evaluator’s belief convergence. To model the dependency
among the test results, we use the first tool to test a software independently.
For any other tool, with probability p the test result is exactly the same as that
done by the first one, and with probability 1 — p the result is independent of
those from the other tests. We vary dependence parameter p among 0.0, 0.2,
and 0.4. Figure 7 gives how the average number of tests needed to reach a belief
level of 99 % for a truly unexploitable software (left) and the average number
of tests needed to find an exploit for a truly exploitable software (right) change
with parameter p.

loitable software

for exploitable software

for u

Tests to reach belief of 9%

o
0 005 01 015 0.2 025 0.3 0.35 0.4 0 005 0.1 015 02 025 03 035 0.4
Dependency Dependency

(1) Left case (2) Right case

Fig. 7. Effects of dependency. The left case shows the average number of tests needed
to reach a belief level of 99 % for a truly unexploitable software, and the right case the
average number of tests needed to find an exploit for a truly exploitable software.

Clearly, when the test results by the tools become more similar, the evaluator
needs to perform more tests to reach the same belief level for a truly unexploitable
software, and also more tests to find an exploit for a truly exploitable software.
To explain this phenomenon, we examine the distribution of observations per
software when o = 0.4, 8 = 0.2, and v = 0.2. As the parameter setting is the
same for all the tools, we find that the total number of observations of each
type (Eo, E1, or Es) over all software is similar. However, when p = 0.4, the
distribution of these observations per software is more bursty than that when

362 G. Yan et al.

p = 0.0. That is to say, when p = 0.4, the variation of the numbers of the same
type of observations is higher across different software than that when p = 0.0.

Different types of observations increases (or decreases) the evaluator’s poste-
rior belief to different degrees. For example, when 5/a > (1 -8 —7)/(1 —«) or
equivalently, 8 > a(1—+), the evaluator’s posterior belief after seeing Fy is lower
than that after seeing Es. As the rule of updating posterior beliefs is nonlinear,
the average number of tests required to reach a certain belief level on a truly
unexploitable software, or to find an exploit for a truly exploitable software, is
not the same if we skew the distribution of different types of observations among
different software even though the total numbers of observations for the same
types of observations remain the same among all software.

Effects of Lazy Evaluation. In this set of experiments, the reachability tests
are first ordered by software and then by tools. There are 100 tools and 100
software to be exploited. We model a “lazy” evaluator who, after observing the
software is exploitable (i.e., seeing E1), stops using the remaining tools to test it.

Figure 8(1,2) shows the average number of tests needed for the evaluator to
reach a belief level of 99 % for a truly unexploitable software and the average
number of tests to find an exploit for a truly exploitable software. The parameters
in the plots are ordered first by «, then 3, and lastly . According to Fig. 8(2),
lazy evaluation does not affect the number of tests to find an exploitation, which
is obvious as reachability tests are omitted only after the first exploit has been
found for each software.

Estimated f
Estimated

0
0 10 20 30 40 50 60 70 80 90 100
Tool

)~

=02 =04 a=06 a=08 @=02 =04 =06 a=08
Parameter setting Parameter setting

(1) Left Case (2) Right Case

Fig. 8. Comparison of lazy evaluation with full evaluation (1,2) and estimation of
parameters 3 and v (3,4). In lazy evaluation, the evaluator stops testing a software
after an exploit has been found. In contrast, full evaluation tests a software with all
the tools.

The effects of lazy evaluation on the number of tests for the evaluator to
reach a belief level of 99 % for a truly unexploitable software are mixed: in some
cases, more tests are needed, and in others fewer are necessary. We examine
the estimated values of parameters «, 0 and vy when their true values are 0.2,
0.1, and 0.5, respectively. Lazy evaluation does not affect much the estimation
of parameter «, but it only estimates the values of parameters § and v for a
few tools, as seen in Fig.8(3,4)! That is to say, for the majority of the tools,
parameters 5 and + remain to be their initial values, which are 1/3 and 1/3,
respectively.

A Bayesian Cogntive Approach to Quantifying Software Exploitability 363

The differences between lazy evaluation and full evaluation as seen in Fig. 8
boil down to the differences in the estimated values of parameters § and ~. If
an observation of type Ej is seen, a larger § reduces the evaluator’s posterior
belief level (see Eq. (1)). On the other hand, if the new observation is of type
Es, then a larger [or v helps improve the evaluator’s posterior belief level (see
Eq. (3)). With these observations, we can explain some cases where lazy evalu-
ation requires more tests for belief convergence than full evaluation in Fig. 8(1).
First, when « is small, there are more observations of type Fs; as the majority of
the tools in lazy evaluation have parameters § and - set to be both 1/3, if their
true values are higher than 1/3, lazy evaluation tends to underestimate their
true values and thus reduces the evaluator’s posterior belief level, which leads
to more tests needed compared to full evaluation. The effect of parameter ~y is
more prominent than that of 5 as the latter is mixed in Egs. (1) and (2). On the
other hand, when « is large, there are more observations of type Ey. If the true
value of (3 is smaller than 1/3, lazy evaluation always overestimates it and thus
reduces the evaluator’s posterior belief level according to Eq. (1), which leads to
more tests needed for belief convergence than full evaluation.

8 Concluding Remarks

In this work, we propose a new cognitive framework using Bayesian reasoning
as its first principle to quantify software exploitability. We rigorously analyze
this framework, and also use intensive numerical simulations to study the con-
vergence of parameter estimation and the effects of the evaluator’s cognitive
characteristics. In our future work, we plan to extend this work by integrating
into this framework some real-world tools (e.g., software fuzzers and concolic
execution tools) that can be used to exploit vulnerable software. We also plan
to enrich the cognitive model used in this work.

Acknowledgment. We acknowledge the support of the Air Force Research Labora-
tory Visiting Faculty Research Program for this work.

References
1. Crest: Concolic test generation tool for c. https://jburnim.github.io/crest/
2. http://www.securityweek.com/shellshock-attacks-could-already-top- 1-billion-report
3. Stp constraint solver. http://stp.github.io/
4. https://nvd.nist.gov/
5. https://www.exploit-db.com/
6. http://www.osvdb.org/
7. The Yices SMT Solver. http://yices.csl.sri.com
8. Avgerinos, T., Cha, S.K., Hao, B.L.T., Brumley, D.: AEG: automatic exploit gen-

eration. NDSS 11, 59-66 (2011)
9. Bellovin, S.M.: On the brittleness of software and the infeasibility of security met-
rics. IEEE Secur. Priv. 4(4), 96 (2006)

https://jburnim.github.io/crest/
http://www.securityweek.com/shellshock-attacks-could-already-top-1-billion-report
http://stp.github.io/
https://nvd.nist.gov/
https://www.exploit-db.com/
http://www.osvdb.org/
http://yices.csl.sri.com

364

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

G. Yan et al.

Brumley, D., Poosankam, P., Song, D., Zheng, J.: Automatic patch-based exploit
generation is possible: techniques and implications. In: IEEE Symposium on Secu-
rity and Privacy (2008)

Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. OSDI 8, 209-224 (2008)
Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-
ically generating inputs of death. ACM Trans. Inf. Syst. Secur. (TISSEC) 12(2),
10 (2008)

Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2), 82-90 (2013)

CERT. Basic fuzzing framework (bff). https://www.cert.org/
vulnerability-analysis/tools/bff.cfm?

Cha, S.K., Avgerinos, T., Rebert, A., Brumley, D.: Unleashing mayhem on binary
code. In: IEEE Symposium on Security and Privacy (SP), pp. 380-394. IEEE
(2012)

Cha, S.K., Woo, M., Brumley, D.: Program-adaptive mutational fuzzing. In: Pro-
ceedings of the IEEE Symposium on Security and Privacy (2015)

Cooper, G.F.: The computational complexity of probabilistic inference using
Bayesian belief networks. Artif. Intell. 42(2), 393-405 (1990)

Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: whitebox fuzzing for security test-
ing. Queue 10(1), 20 (2012)

Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In:
Proceedings of Network and Distributed System Security Symposium (NDSS)
(2008)

Griffiths, T.L., Kemp, C., Tenenbaum, J.B.: Bayesian models of cognition (2008)
Hoglund, G., McGraw, G.: Exploiting Software: How to Break Code. Addison-
Wesley, Boston (2004)

Jansen, W.: Directions in Security Metrics Research. Diane Publishing, Collingdale
(2010)

Lebiere, C., Bennati, S., Thomson, R., Shakarian, P., Nunes, E.: Functional cogni-
tive models of malware identification. In: Proceedings of International Conference
on Cognitive Modeling (2015)

Manadhata, P.K., Wing, J.M.: An attack surface metric. IEEE Trans. Soft. Eng.
37(3), 371-386 (2011)

McMorrow, D.: Science of cyber-security. Technical report, JASON Program Office
(2010)

Nagaraju, S., Craioveanu, C., Florio, E., Miller, M.: Software vulnerability exploita-
tion trends (2013)

Nayak, K., Marino, D., Efstathopoulos, P., Dumitras, T.: Some vulnerabilities are
different than others. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID 2014.
LNCS, vol. 8688, pp. 426-446. Springer, Heidelberg (2014)

Forum of Incident Response and Security Teams (FIRST). Common vulnerabilities
scoring system (cvss). http://www.first.org/cvss/

Perfors, A., Tenenbaum, J.B., Griffiths, T.L., Xu, F.: A tutorial introduction to
bayesian models of cognitive development. Cognition 120(3), 302-321 (2011)
Rebert, A., Cha, S.K., Avgerinos, T., Foote, J., Warren, D., Grieco, G., Brumley,
D.: Optimizing seed selection for fuzzing. In: Proceedings of the USENIX Security
Symposium (2014)

Microsoft Research. Z3. https://github.com/Z3Prover/z3

Smith, S.W.: Security and cognitive bias: exploring the role of the mind. IEEE
Secur. Priv. 5, 75-78 (2012)

https://www.cert.org/vulnerability-analysis/tools/bff.cfm?
https://www.cert.org/vulnerability-analysis/tools/bff.cfm?
http://www.first.org/cvss/
https://github.com/Z3Prover/z3

33.

34.

35.

36.

37.

A Bayesian Cogntive Approach to Quantifying Software Exploitability 365

Telang, R., Wattal, S.: An empirical analysis of the impact of software vulnerability
announcements on firm stock price. IEEE Trans. Soft. Eng. 33(8), 544-557 (2007)
Verendel, V.: Quantified security is a weak hypothesis: a critical survey of results
and assumptions. In: Proceedings of the 2009 Workshop on New Security Para-
digms Workshop. ACM (2009)

Yan, G., Kucuk, Y., Slocum, M., Last, D.C.: A Bayesian cogntive approach to
quantifying software exploitability based on reachability testing (extended version).
http://www.cs.binghamton.edu/~ghyan/papers/extended-isc16.pdf

Younis, A., Malaiya, Y.K., Ray, I.: Assessing vulnerability exploitability risk using
software properties. Soft. Qual. J 24(1), 1-44 (2016)

Zhong, C., Yen, J., Liu, P., Erbacher, R., Etoty, R., Garneau, C.: An integrated
computer-aided cognitive task analysis method for tracing cyber-attack analysis
processes. In: Proceedings of the 2015 Symposium and Bootcamp on the Science
of Security. ACM (2015)

http://www.cs.binghamton.edu/~ghyan/papers/extended-isc16.pdf

	A Bayesian Cogntive Approach to Quantifying Software Exploitability Based on Reachability Testing
	1 Introduction
	2 Related Work
	3 Software Exploitation Based on Reachability Testing
	4 A Bayesian Cognitive Framework
	5 Parameter Updating
	6 Model Analysis
	6.1 Order Sensitivity
	6.2 Exploitability Analysis

	7 Numerical Results
	8 Concluding Remarks
	References

