IoTInfer: Automated Blackbox Fuzz Testing of IoT Network Protocols
Guided by Finite State Machine Inference

Zhan Shu, Guanhua Yan, Member, IEEE

Abstract—The popularity of IoT (Internet-of-Things) devices
calls for effective yet efficient methods to assess the security
and resilience of IoT devices. In this work we explore a new
heuristic based on FSM (Finite State Machine) inference to guide
generation of test cases for blackbox fuzzing tests of IoT network
protocol implementations. Our method, which is called IoTInfer,
balances exploration and exploitation by continuously monitoring
how likely mutation of an input message leads to counterexamples
conflicting with the prediction by the current FSM. IoTInfer
also applies clustering techniques to coarsen the FSM inferred
when there are limited computational resources provisioned for
fuzzing tests. We implement IoTInfer for both Bluetooth and
Telnet protocols, which are widely used by existing IoT devices.
Our experimental results with a variety of IoT devices reveal
that IoTInfer is efficient at generating meaningful test cases,
some of which can expose previously unknown vulnerabilities or
implementation deviations from protocol specifications. We also
compare IoTInfer with two other state-of-the-art blackbox IoT
device fuzzing tools and find that IoTInfer is better at eliciting
different types of responses from the fuzzing targets.

Index Terms—Device Security, Security and Privacy

I. INTRODUCTION

Recent analysis of the cyber threat landscape has suggested
that vulnerable IoT devices have become a primary attack
target. Among the 1.2 million IoT devices analyzed by Palo
Alto Networks, 57% of them were vulnerable to medium- or
or high-severity attacks [37]. These vulnerable IoT devices
are low hanging fruits for cyber attackers, as evidenced by
F-Secure’s recent report that the increase in attack activities
captured by its global honeynet in the first half of 2019 from
a year ago was largely driven by IoT-related traffic [32].

There is thus an urgent need for techniques that can
assess the security and resilience of IoT devices effectively
yet efficiently. Since IoT devices are essentially computing
devices with networking capabilities, they are not immune
to attacks from the Internet as long as they are externally
accessible through some network protocols. This motivates us
to explore how to perform fuzzing tests for network protocols
implemented by IoT devices. As these devices are commonly
shipped to the market with few implementation details (e.g.,
lack of source code or difficulty in extracting firmware),
blackbox fuzz testing is often the only practical approach to
understanding their security and resilience issues.

However, blackbox fuzzing can be extremely inefficient
for vulnerability discovery because the test cases randomly
generated from blackbox fuzzing often fail to pass validation
tests by the fuzzing targets [31], [19]. Against this backdrop,
this work explores a new heuristic based on FSM (Finite

Z. Shu and G. Yan are with the Department of Computer Science,
Binghamton University, State University of New York, Binghamton, NY,
13902 USA email {zshul, ghyan}binghamton.edu.

State Machine) inference to guide generation of test cases
for blackbox fuzzing of IoT network protocols. Our intuition
behind this new approach builds upon the observation that
implementations of network protocols usually follow FSMs
defined in their specifications. In contrast to random mutations
of message fields values widely used in network protocol
fuzzing, blackbox fuzzing guided by FSM inference aims
to prioritize test cases that are more likely to cause state
transitions in the fuzzing targets.

There has been a large body of research dedicated to
FSM inference of network protocols [34]. Many protocol
FSM inference algorithms, such as the L* algorithm [11],
gradually approach the correct FSM of a target protocol
through a sequence of membership queries and equivalence
queries. Our hypothesis is that, when feeding new inputs to
the target protocol in hope of eliciting counterexamples for
FSM improvement, some of them may be unexpected by a
specific implementation of the target protocol, thus exposing
its abnormal behaviors with potential security risks. After the
fuzzing tests, the FSM inferred can also be compared against
the protocol’s standard specifications, if they exist, to find
questionable deviations.

Straightforward applications of existing FSM inference
methods such as the L* algorithm [11] usually require pre-
defined abstractions for input alphabets (i.e., sets of input
messages accepted by the target protocols) and output alpha-
bets (i.e., sets of output messages observed from the target
protocols). However, ad-hoc workarounds of these issues can
lead to undesirable results. For example, using a small set of
valid seed input messages may undershoot the input alphabet,
while random generation of input messages according to pre-
defined message formats is likely to produce a large fraction
of invalid ones immediately rejected by the target. Moreover,
if the output alphabet is assumed to include all possible output
messages from the target protocol, its size may be too large,
making fuzz testing guided by FSM inference intractable.

Inspired by multi-armed bandit reinforcement learning [42],
we propose a new method called loTInfer to strike a balance
between exploration and exploitation in generation of fuzzing
tests. It mutates the fields in an input message randomly
chosen from the current input alphabet (exploration) and
monitors the responses from the target protocol. If the new
message variants lead to counterexamples that conflict against
the predictions by the current FSM, IoTInfer increases the
likelihood of choosing the same message for mutation in the
future; otherwise, if mutation of an existing valid message
does not aid FSM improvement, IoTInfer lowers its chance of
getting selected for future mutation (exploitation). Moreover,
when there are only limited computational resources provi-
sioned for fuzzing tests, loTInfer can cluster both the input

and output alphabets to coarsen the FSM inferred.
In a nutshell, our key contributions include the following:

o We develop a new heuristic based on FSM inference to
improve efficiency of blackbox fuzzing tests of network
protocol implementations by COTS IoT devices.

e We propose to dynamically adjust both the input and
output alphabets with clustering methods in FSM infer-
ence to address lack of prior knowledge about acceptable
input messages by the target IoT devices and also reduce
the complexity of FSMs inferred due to various output
messages observed from them.

o We implement IoTInfer as a generic blackbox fuzzing
tool and evaluate its performance on the implementations
of Bluetooth and Telnet protocols in various IoT devices.
Our experiments show that IoTInfer is not only efficient
at generating meaningful fuzzing test cases but also able
to find previously unknown security issues in some of
them.

e We compare the performance of IoTInfer against those
of two other state-of-the-art blackbox IoT device fuzzing
tools and find that IoTInfer is better at eliciting different
types of responses from the fuzzing targets.

The remaining of this paper is organized as follows. Sec-
tion II discusses related work. Section III presents the problem
formulation and explains the key methodology of this work.
Section IV introduces the general methodology applied by this
work. Section V presents the key data structures and workflow
of IoTInfer and Section VI discusses the algorithm details of
its key components. Section VII elaborates on the implemen-
tation details. We show experimental results in Section VIII.
We discuss the limitations of our work in Section IX and draw
concluding remarks in Section X.

II. RELATED WORK

In this section we review related works in the literature.

A. Generic loT security

Many techniques have been developed to enhance IoT
security due to its rising importance. They include, among
many others, SDN (Software Defined Networking)-assisted
hardening of IoT architecture [29], IoT security enforcement
through wireless context analysis [28], secure configurations
for 10T [41], secure thing-centered IoT communications [22],
conflict detection in IoT systems based on formal methods [8],
behavioral fingerprinting of IoT devices [13], graph-based IoT
malware detection [10], record and replay that facilitate secu-
rity testing of IoT devices [20], sensitive information tracking
for commodity IoT devices [15], and context-aware security
hardening for smart home systems [40]. These techniques
have been summarized within multiple comprehensive surveys
on the topic of IoT security, including potential solution to
IoT security [39], IoT security from CISCO’s seven-level
reference model [33], legal aspects of IoT security [43],
access control for IoT [36], IoT security taxonomy in the
contexts of application, architecture, and communication [9],
IoT vulnerabilities [35], and IoT fuzzing [19]. IoTInfer adopts
a proactive approach to IoT security, which aims to discover

and patch vulnerabilities in IoT devices before they are shipped
to the market.

B. Fuzzing methodology

Existing fuzzing test methods can be classified into three
types: blackbox fuzzing, whitebox fuzzing, and graybox
fuzzing. A blackbox fuzzer like zzuf [1] does not need to
access the source code or know the internal implementation
details of the fuzzing target. Although it is easy to perform
blackbox fuzzing through random generation of test cases,
it can be extremely inefficient if most of these test cases
cover only a small fraction of code branches in the target
(e.g., rejection due to wrong formats). Whitebox fuzzing
techniques [26], [24], [25] take advantage of the source code
of the fuzzing target and use dynamic symbolic execution
techniques to optimize test case generation. Graybox fuzzing
does not require the source code, which makes it more
practical than whitebox fuzzing in many real-world scenarios;
balancing practicality and efficiency, graybox fuzzing tools
such as AFL [4] often instrument the fuzzing targets and
collect useful information such as code coverage to guide
generation of new test cases dynamically.

For many COTS IoT devices whose internal implementation
details are unavailable, it is difficult to perform whitebox
or even graybox fuzzing tests on them. However blackbox
fuzzing through random generation of test cases can be ineffi-
cient at discovering their vulnerabilities. This work explores a
new heuristic based on FSM inference to guide generation of
test cases for blackbox fuzzing of IoT devices. As the nature
of IoT devices suggests that they must communicate with the
external world through some network protocols, IoTInfer aims
to find the sequences of network packets that allow the fuzzing
target to enter previously unexplored states.

C. IoT device fuzzing tools

More related to IoTInfer are those tools that also apply
fuzz testing to improve IoT device security. IoTFuzzer finds
memory corruption vulnerabilities in an IoT device by modi-
fying the program logic in its companion mobile application to
mutate messages sent to the device [16]. Snipuzz is a recent
blackbox fuzzing technique that infers the message snippets
accepted by the target IoT devices and mutates message fields
based on these snippets to generate test messages for vul-
nerability discovery [21]. Firm-AFL uses augmented process
emulation, which leverages the high-fidelity of full-system
emulation and high-performance of user-mode emulation, to
achieve high-throughput greybox fuzzing of IoT firmware [45].
SweynTooth is a fuzzing platform for testing BLE (Bluetooth
Low Energy) device security [23]; it adopts a mutation strategy
based on particle swarming to generate test cases and depends
upon manually constructed protocol state machines to capture
invalid responses. IoTInfer differs from these previous efforts
as it is applicable to IoT devices without companion mobile
apps and guides generation of fuzzing tests through FSM
inference. As IoTFuzzer and Snipuzz are two other state-of-
the-art generic blackbox fuzzing tools for IoT devices, we shall
compare the performances of their fuzzing strategies against
that of IoTInfer later in Section VIIIL.

III. PROBLEM FORMULATION AND ASSUMPTIONS

This work considers the following problem: given the target
protocol of an IoT device, how can we identify its security
vulnerabilities or questionable implementation deviations from
protocol specifications? We assume that the inputs include
authentication credentials to interact with the target protocol,
request message formats, and a set of seed request messages.
Each message format is abstracted as a list of tuples; each
element in the list can be represented as a tuple (field-name,
field-len, field-type), meaning the name, length, and type of the
field, respectively. All the message formats from the input are
abstracted as an ordered list F' = { f;}, where f; is a particular
message format represented as a list of tuples described above.
The inputs also include a set of seed request messages, M,
each of which instantiates one of the message formats in F'

We assume that the network protocol in the target IoT
device can be modeled as a reactive system which processes
incoming requests from an external party and then sends back
its responses, if there are any. Like other protocol fuzzers [12],
[27], the 10T protocol fuzzer continuously performs the fol-
lowing steps: generate a new request message, send the request
message to the IoT device, and wait for the response message
from the IoT device (or time out if there is no response from
the IoT deivce after a certain period of time).

Sometimes the network protocol in the IoT device needs
to authenticate the requesting party in order to continue the
protocol. The availability of such an authentication credential
to the fuzzer affects the exploitability of the vulnerabilities
exposed by fuzzing tests. When configuring the fuzzer, the
authentication credential provided to the fuzzer should mirror
the threat model taken to exploit the vulnerabilities exposed
from the fuzzing tests.

We assume that some prior knowledge is available to speed
up fuzzing tests. First, the request message formats should
be known to the fuzzer. Such formats usually can be found
from the protocol specifications if the IoT device implements
a standard protocol, or through reverse engineering efforts
(e.g., Discoverer [18] and Polyglot [14]) when proprietary
protocols are used. Second, some seed request messages
should also be available to bootstrap the fuzzing tests. The seed
request messages can be obtained by passively monitoring the
traffic destined to an operational IoT device. Third, sometimes
knowing the meaning of a specific field in the request message
can be instrumental in speeding up fuzzing tests.

Regarding the response messages from the IoT device, our
work does not assume any prior knowledge because different
IoT devices may implement the same network protocol in
different manners, including what responses should be sent
back to the fuzzer.

IV. METHODOLOGY

We propose a new heuristic to guide blackbox fuzzing
tests of IoT network protocols based on FSM inference. In
our method, fuzzing test cases are continuously generated
to explore the unknown behaviors of an IoT device through
its network protocols, in hope of finding abnormal ones. As
FSMs are widely used to design and implement network

protocols, our method uses FSM inference to assist with test
case generation. Moreover, the FSM inferred can be compared
against the standard protocol specifications, if they exist, to
expose questionable deviations implemented by the device.
For reactive systems such as network protocols, which
do not have accepting or rejecting states, it is desirable to
represent their FSMs as Mealy machines [17]. A Mealy
machine is a sextuple (Q, qo, 2, A, d,\), where @ is a finite
set of states, qo represents the initial state of the system, >
is the input alphabet, A is the output alphabet, the transition
relation J : @) X 3 — @ maps the pair of a current state and an
input symbol to the corresponding next state, and the output
relationship A : @ x ¥ — A maps the pair of a current state
and an input symbol to the corresponding output symbol.

A. L* algorithm

The classical L* algorithm proposed by Angluin [11],
[38] can be used to learn the Mealy machine of a reactive
system. The L* algorithm operates on a data structure called
an observation table. Assuming set concatenation A - B =
{abla € A,b € B}, the observation table is a tuple (S, E,T)
with function 7' : ((SU S -X) - E) — AT, where S denotes
a prefix-closed set of strings from ¥* and E a non-empty
suffix-closed set of strings from YX*. Note that ¥* is the
set of all possible strings over the input alphabet X while
¥t = 3* — {e} where € is the empty string.

The FSM can be constructed from the observation table
(S, E,T) as follows. Each unique row in S represents a state.
A transition from state g; to go due to input symbol a exists
if and only if for the row representing ¢; in S, denoted by
51, we have a row in the bottom part of the table, s; - a, that
equals the row representing state gs in S.

The L* algorithm relies on two operations offered by an
imaginary teacher to infer the FSM of a target protocol P:
(1) Membership query: Given a sequence of requests, denoted
by R (i.e., each r € R is a request message in), a
membership query returns a sequence of outputs from protocol
P, denoted by O, where each o € O is an output symbol
in A. (2) Equivalence query: Given a hypothesis model H,
an equivalence query either acknowledges that H and P are
equivalent or returns a counterexample C'. Due to limited space
we refer the readers to [11] for the details of the L* algorithm.

B. IoTInfer methodology

Before we can apply the L* algorithm to infer the Mealy
machine of an IoT network protocol, we need to define the
input alphabet > and the output alphabet A. Based on the
algorithm inputs discussed in Section III, there are two ways of
initializing X: we can treat M, the list of seed input messages,
as X, or randomly generate a list of input messages based on
message formats in F'. If M is small with respect to the entire
set of valid input messages accepted by the target protocol,
the first method explores only a small portion of the FSM. On
the other hand, random generation of input messages based on
message formats in F' produces many invalid input messages
that are immediately rejected by the target IoT device, making

them useless to explore their protocol behaviors from deep
program branches.

To overcome these challenges, IoTInfer strikes a balance
between exploitation and exploration. It mutates fields in
an existing message, monitors the responses from the target
during a fuzzing campaign, evaluates the reward based on
counterexamples conflicting with the current FSM inferred,
and uses it to further improve the FSM. Applying a similar idea
as multi-armed bandit reinforcement learning [42], IoTInfer
uses these reward signals to adjust the likelihood of choosing
the same message for mutation in the future.

As we do not assume any prior knowledge about output
messages from the IoT device, we can let the output alphabet
A of the L* algorithm include all possible message values.
This naive approach, however, may incur high computational
burden when the output message space is large. To make the
problem tractable, IoTInfer uses clustering schemes to coarsen
the FSM inferred. It groups similar output messages from
the IoT device into the same output symbol; when necessary,
it also merges multiple input messages into the same input
symbol if they cause identical state transitions in the FSM.

V. DATA STRUCTURES AND WORKFLOW

IoTInfer operates on two key data structures, STree (Struc-
ture Tree) and VTree (Value Tree), which are defined below.
An illustrating example will be given in Section VI.

STree: The STree is derived from user inputs. Each node
in the STree is called an SNode. In addition to the structural
information (e.g., node ID, parent node, and children nodes),
each SNode also stores the following: (1) length: the length
of the field represented by this node. (2) type: the type of the
node, which is used to decide how the field should be mutated.

VTree: The VTree stores intermediate state information
during the fuzzing process. Each node in the VTree is called a
VNode. In addition to the structural information (e.g., node ID,
parent node, and children nodes), each VNode stores the fol-
lowing information: (1) snode: the pointer to the corresponding
SNode in the STree. Hence each VNode also corresponds to
a field in the request message. (2) ranges: the value ranges
represented by this VNode. Each range should be continuous
but there may be multiple ranges stored in the same VNode.
(3) futility: a performance counter characterizing how futile
fuzzing this node is for improving the FSM.

Each leaf node of the VTree also stores the following:
(4) sample: a representative request message. (5) cleader: the
cluster leader. If the cleader field points to this VNode itself,
it means that the node represents a list of other leaf VNodes;
otherwise, it points to another VNode, which is a cluster leader
representing this node. (6) (init_pos, init_neg, freshness): these
performance counters, along with futility, are used by a Beta
distribution to determine the likelihood of picking this leaf
node for mutation.

For ease of presentation we define the following functions
related to the VTree: PATH(VTree,u), which returns the
list of nodes from the root to node w in the VTree, and
LEAV ES(VTree), which returns the entire set of leaf nodes
whose cleader fields point to themselves in the VTree.

Algorithm 1: Fuzzing test guided by FSM inference

2

N S e W

10
11
12

13
14
15
16
17

18
19
20
21
22

23

24
25

26
27
28
29

30
31

32
33
34
35
36
37
38
39

40

Input: F': request message formats, M: seed

messages, P: target protocol

Output: FSM
1 function IoTInfer(F, M)

Initialize STree, VI'ree, and F'SM based on
inputs F' and M

X+0 > X: masking rule set

tries <0

while tries < 6 do

failures < 0

f < aleaf node randomly chosen from
LEAVES(VTree) based on a Beta sampling
scheme using leaf nodes’ init_pos, init_neg,
freshness, and futility fields

fanit_neg++

f.-freshness < 0

for each node w e LEAVES(VTree) do

if uw # f then

L ‘ u. freshness++

L+ PATH (VTree, f)

while L is not empty do

v < head node extracted from list L

if v is mutable then

R < set of request messages generated
by mutating v in message sample
stored in leaf node f

Z+0

while R is not empty do

7 <— a message extracted from R

for each state q in FSM do

Send message r to target
protocol P to obtain o(q,)

Use F'SM to predict output
0o'(g,r)

if o(q,r) # 0o'(q,r) then
| Z«Z20{(¢.r)

if Z # () then

failures ++

for each tuple (q,7) € Z do
| Cluster output o(q,)

Update output masking rule set X
Update VTree

if failures > 0 then

Rebuild F'SM with the L* algorithm
tries < 0

Perform input clustering if necessary

else

tries++

for each node w e PATH (VTree, f) do
L u. futility++

return F'SM

Workflow. The workflow of IoTInfer is illustrated in Al-
gorithm 1. From inputs F' (request message formats) and
M (seed messages), loTInfer first initializes STree, VTree,
and FSM (Line 2). The termination criterion of IoTInfer is
decided by global variable fries. A fuzzing experiment is
finished if there are at least 6 rounds of fuzzing tests without
any counterexample found against the current FSM inferred.
IoTInfer performs fuzzing tests in an iterative fashion. In each
iteration, it randomly picks one leaf node from the VTree
using a Beta sample scheme and gets a representative request
message from its sample field (Line 7). Let list L denote
the sequence of nodes on the path from the root to the leaf
node picked. Note that each node in the VTree (except the
root node) represents a specific field in a request message.
For every node v on list L, if its type suggests that the
corresponding field is mutable, a set of request messages,
denoted by R, is randomly generated by mutating the message
field represented by v while keeping the other fields in the
sample request message intact (Line 17).

For every request messages r in set R, [oTInfer tests what is
the output from protocol P if r is sent to the protocol at every
state ¢ in the FSM learned so far (Lines 19-25). Towards this
goal, for state ¢, the FSM is first used to derive a sequence of
request messages that can trigger the target protocol to reach
state ¢ from its initial state gg. During the test, all these request
messages are first sent to protocol P sequentially, followed by
message r. [oTInfer further checks whether the output, o(g, 7),
received from protocol P at state g, is the same as what is
predicted by the FSM, o'(gq, 7). If the output differs, meaning
that this input is a counterexample, the correct output o(q,)
is added to list Z (Line 25), which is initialized to be empty
after the mutation step (Line 18).

If for all the request messages created in set R and all the
states in the FSM, the prediction is always correct by the FSM
(i.e., Z = (), then another set of request messages is generated
by mutating the next node on list L (Line 15). Otherwise,
the failures variable is increased by one (Line 27). Next,
given the new outputs from the tests, IoTInfer performs output
clustering to simplify the output alphabet and then updates the
VTree accordingly (Lines 28-31).

After all the nodes on List L have been considered to
generate mutated request messages, loTInfer checks whether
there have been failures in predicting the output by the current
FSM (Line 32). If there are, the FSM is retrained with the
new observations, using the standard L* algorithm (Line 33),
and the tries variable is reset to be 0 (Line 34); if the new
FSM is too large, the input symbols are clustered to reduce
the complexity (Line 35). Otherwise, the tries variable is
increased by one (Line 37). If the number of tries without
any failures exceeds a given threshold 6, the current FSM is
returned by IoTInfer (Line 40). Otherwise, IoTInfer chooses
another leaf node and the whole process stated above repeats.

VI. ALGORITHM DETAILS

In this section we explain some key steps of the algorithm
shown in Algorithm 1 through a walking example.

A. Initialization (Line 2)

STree. The conversion from input F' (the list of message
formats) to an STree is straightforward. We first create a root
node for the STree, whose length and type fields are set to
be 0 and ROOT, respectively. Next for each format f € F,
we add a new path from the root node. The i-th node on the
path is created based on the i-th tuple in f: its length and
type fields are set to be the same as field-len and field-type in
the tuple, respectively. Figure 1(1) shows a simplified STree
derived from three message formats of the Bluetooth L2CAP
protocol (more details will be given in Section VIL.A).

VTree. The VTree is initialized to have the same structure as
the STree, except that each VNode in it has different fields. In
a VNode, its snode field points to the corresponding SNode
in the STree. The ranges field of a VNode is initialized to
cover the complete range for a given length. For each leaf
VNode, its cleader field is initialized to be the node itself
and its sample message is randomly chosen from the seed
request messages of the same format (if there is no such seed
message, the sample message is created by setting each of
its fields with a random value uniformly chosen from the
corresponding range). The init_pos, init_neg, freshness, and
futility fields of each VNode are initialized to be 1, 1, 0, and O,
respectively. Following the same example, Figure 1(2) presents
the VTree after initialization, whose VNodes have one-to-one
correspondences with those in the STree.

FSM. The initial FSM is learned using the standard L*
algorithm [11], assuming that the input alphabet is M which
contains all the input seed request messages and the output
alphabet includes all the raw outputs from the target protocol.

B. Leaf node selection (Line 7)

A leaf node is randomly chosen from the VTree at Line
7 based on Beta sampling scheme. The representative request
message given by its sample field is mutated into a number
of variants to test the prediction accuracy of the current FSM
in each of its states. As such tests may be time consuming,
it is desirable to select a leaf node that feeding its mutated
messages to the target protocol is likely to produce coun-
terexamples for further FSM refinement. Motivated by this
intuition, we sample each leaf node in the VTree with a Beta
distribution and the one with the highest Beta score is picked
for mutation.

The Beta score of each leaf node is derived by sampling the
Beta distribution whose PDF (Probability Density Function) is:

— F(a + 6) xoz—l
I(a)L(B)

where « = init_pos + freshness, 3 = init_neg + futility, and
function I'(n) = (n — 1)\

The four performance counters used to compute the Beta
score are updated as follows: (1) init_pos: it is initialized to
be 1 and does not change. (2) init_neg: it is initialized to be
1 and if the leaf node has been selected at Line 7, it increases
by one (Line 8). (3) freshness: it is initialized to be 0. If the
leaf node has been selected at Line 7, it is reset to O (Line 9);
otherwise, it increases by one (Lines 10-12). (4) futility: it is

f(z;a, B) (1—x)P~1, (1)

initialized to be 0. If the leaf node has been selected at Line 7
and the check result at Line 32 shows that variable failures is
0, the futility field of every VNode on the path from the root
to the leaf node increases by one (Lines 34-35).

The intuition of the Beta score for leaf node selection can be
explained as follows. If a leaf node has not been selected for
a long time, it should be given a higher priority to be selected
(increasing freshness and thus o). On the other hand, if the
leaf node has been selected but mutation based on this leaf
node does not improve the FSM through counterexamples, it
should be given a lower priority to be selected (increasing both
init_neg and futility and thus also). For the Beta distribution,
when o > [, the sampled value tends to have a higher
value, thus increasing the chance of selecting the leaf node;
otherwise, the sampled value tends to be smaller, thus lowering
the chance of choosing the leaf node for future mutation.

Following the previous example, the three leaf nodes shown
in Figure 1(2) (i.e., vs, vg, and v1g) have the same « and 3
parameter values in Eq. (1), both of which are 1. Hence, they
have an equal chance to be selected for mutation. Supposing
that vy is chosen, its init_neg field is updated to be 2 and
its freshness field is reset to be 0. For both vs and wvg, their
freshness fields increase by 1.

C. Mutation (Line 17)

After a leaf node has been chosen at Line 7 in Algo-
rithm 1, the representative message stored in its sample field
is mutated to create variants for fuzzing tests. For each field
in this message, if it is mutable, it is randomly mutated by
At/ (1+-futility) times to generate that many variants, where
A, 18 @ configurable parameter for the maximum number of
mutations per field, while keeping the other fields intact. The
futility value used here is the one stored in the futility field of
the corresponding VNode. Hence, if selection of a leaf node
at Line 7 does not help improve the FSM, the number of
mutations is reduced for all the nodes on its path. The ranges
field stores the current value ranges for the VNode. When
this node is under mutation, a variant is created by uniformly
choosing a value from all the ranges stored at the VNode.

The type stored in the SNode determines whether the
corresponding field is mutable. In the current implementation
we rule out the following types for mutation: IDENTIFIER,
ROOT, PORT, and ECHO. The reason for the first two is
straightforward. Fuzzing the destination port number loses the
network connection, and fuzzing an ECHO field (the same
contents are returned from the target protocol) expands the
FSM rapidly without new useful information.

Following the previous example, only nodes vg and vg on
the path from the root to the chosen leaf node v;g are mutable.

D. Prediction (Lines 28-29)

The message variants created from mutation (stored in set R
in Algorithm 1) are used to find counterexamples with outputs
contradicting with the predictions made by the current FSM.
For each message r € R, it is used to test every state in
the FSM. That is to say, for every pair (s,r) where s is a
state in the FSM and r € R, if the output observed from the

S2 S3
Iength 8 length: 16 length: 16
type 1D type: GENERIC type: GENERIC
So Ss Se
Iength: 8 length: 16
type: ID type: PORT
Sy Sg Sg S10
length: 8 length: 16 || length: 16 length: 16
type: ID type: GENERIC type: GENERIC type: PORT

length: 0

length: 16 ‘
type: ROOT

type: PORT

(1) STree
Vi V2 V3
snode: s; snode: s, snode: s3 0A:02:00:01:00,
ranges: [10,10] |-»| ranges: [0,65535] | »| ranges: [0,65535] | this,
futility: 0 futility: 0 futility: 0 (1,1,0)
Vg \2 Vs Ve
snode: so snode: s, snode: ss snode: sg 06:04:00:40:00:40:00,
ranges:- —»| ranges: [6,6] | | ranges: [0,65535] [-» ranges: [0,65535] | this,
futility: 0 futility: 0 futility: 0 futility: 0 (1,1,0)
\ V5 Vg Vg V1o
snode: s, snode: sg snode: sy snode: s, 02:04:00:01:00:40:00,
ranges: [2,2] ¥ ranges: [0,65535]*|ranges: [0,65535] | *| ranges: [0,65535] | this,
futility: 0 futility: 0 futility: 0 futility: 0 (1,1,0)
(2) VTree after initialization
Vi V2 V3
snode: s, snode: s, snode: s3 0A:02:00:01:00,
ranges: [10,10] |—>{ ranges: [0,65535] || ranges: [0,65535] | self,
futility: 0 futility: 0 futility: 0 (1,1,1)
Vo Vg Vg Vg
snode: s, snode: s5 snode: sg 06:04:00:40:00:40:00,
snode: s ranges: [6,6] | ranges: [0,65535] [—*{ ranges: [0,65535] [v”;,
ranges: - futility: 0 futility: 0 futility: 0 (1,1,1)
futility: 0
l Vg Vo Vio
Vz snode: s snode: s snode: s;o 02:04:00:01:00:40:00,
snode:s; |, |ranges: [4,4] [~”|ranges:[1,1] || ranges:[0,65535]| self,
ranges: [2,2]| |futility: 0 futility: 0 futility: 0 (1,2,0)
futility: 0 ’ ’
Y Vg Viio
snode: s snode: sy 02:04:00:02:00:40:00,
ranges: [0,0,[2,2], =+ 300s: [0,65535] | self,
14,141, [16,65535] | | ytility: 0 (1,1,0)
futility: 0
2 "
V' V10
snode: sq snode: syo 02:04:00:03:00:40:00,
ranges: [3,3],[15,15] [”| ranges: [0,65535] | self,
futility: 0 futility: 0 (1,1,0
y n "y
Vg Vi V10
snode: sg snode: sq snode: 530 02:02:00:01:00:40:00,
ranges: [0,0],[2,3] || ranges: [0,65535] |—*| ranges: [0,65535] | self,
futility: 0 futility: 0 futility: 0 (1,1, 0)
VII8 VIIII VIIII
9 10
snode: sg snode: sq snode: sy 02:AB:07:01:00:40:00,
ranges: [1,1],[5,65535][| ranges: [0,65535] |—*|ranges: [0,65535] | v3,
futility: 0 futility: 0 futility: 0 (1,1,0)
(3) VTree after one interation
Fig. 1. An illustrating example. The right box of each leaf node includes

fields sample, cleader, and (init_pos, init_neg, freshness) in order.

target protocol o(s, r) differs from that predicted by the FSM,
o'(s,r), we add (s, r) to list Z. If list Z is empty, meaning that
message variants created from mutation of the current VNode
do not yield any counterexample, the next VNode on the path
is considered to generate new fuzzing test cases.

It is noted that for the observation table of the L* algorithm,
a state is represented as a prefix string in input alphabet
S. Each input symbol in a prefix string corresponds to an
instantiated request message. Hence, to derive o(s,r), we can
append message r to the prefix string, which is sent to the
target protocol sequentially to get its output. This output is
compared against the FSM’s prediction o' (s,) to see if they

are the same. However, we may not be able to find o'(s,r)
directly from the observation table, because it is possible that
the new message r, which is a variant of the sample message
stored at the chosen leaf node at Line 7, may not belong to
the input alphabet ¥ for the FSM learned. Recall that the
FSM is initialized only with input symbols representing seed
messages from the input. Therefore, for output prediction, we
always use the sample message stored at the chosen leaf node,
0, to look up the observation table and find the corresponding
output o' (s, 7o) for comparison.

In our example, if no counterexamples are found after
mutating either vg or wvg, the futility fields of both vg and
vg should increase by 1. Supposing that this is not the case,
we do not need to update the futility values.

E. Output clustering (Lines 28-29)

A fine-grained FSM trained with all the raw request mes-
sages as the input alphabet and all possible outputs from the
target protocol as the output alphabet may be large and dense,
incurring high computational overhead. Therefore, IoTInfer
coarsens the resolution of the FSM with a clustering approach,
which groups similar outputs and input messages to reduce the
output alphabet A and the input alphabet X, respectively.

IoTInfer uses a simple method to cluster outputs based on
set Z. loTInfer decides to merge some outputs of the same
length together when the number of distinct outputs exceeds
threshold Agytpus, Where Agyipy: is a configurable parameter.
It is noted that all the outputs in set Z are observed by mutating
a single field in the same sample message stored at the leaf
node selected at Line 7. The algorithm for output clustering
is given as below. For each distinct length [of outputs in Z,
if the number of distinct outputs exceeds threshold A,y¢pus,
we search k continuous bytes replacing which with wildcard
* can reduce the number of distinct outputs the most. We start
with single byte replacement (i.e., £k = 1). If replacing none
of any k continuous bytes with wildcard * makes the number
of distinct outputs below threshold A,,ip,:, We consider
replacement of k+1 continuous bytes with wildcard * that can
reduce the number of distinct outputs the most. The process
repeats until the number of distinct outputs is reduced to below
threshold A,utput.

The result of output clustering is a set of masking rules,
each of which is represented as a tuple (I,x) where [is the
length of an output message and z a regular expression with
k continuous bytes masked with wildcard *. IoTInfer keeps
a global rule set X, which contains all the masking rules
discovered. Set X is accumulative: for each output observed
from the target protocol (Line 22 or 33), it is first matched
against each masking rule in X. If it matches rule (I, z), the
output is replaced with x for comparison at Line 24 or used
by the L* algorithm at Line 33.

FE. Updating VTree (Line 31)

After output clustering, the VTree is updated as follows.
Based on the masked outputs, we can partition the original
ranges stored at the VNode under mutation into continuous
ranges, each producing the same output regardless of the state.

For each input cluster derived, we create a sibling VNode,
whose ranges field is assigned to the ranges covered by the
input cluster. We also remove these ranges from the ranges
field of the VNode under mutation. The new node’s snode
is the same as that of the current one. Moreover, from this
sibling VNode, new descendant VNodes are also created to
mirror the path to the leaf node chosen at Line 7; for each
of these descendant VNodes, its ranges field is set to cover
the full range dictated by its length and its snode field points
to the same one stored in the corresponding VNode. For
the newly created leaf node, its sample field can store any
message variant leading to the input cluster and its cleader
field points to this new leaf node itself. For each VNode
created, its init_pos, init_neg, freshness and futility fields are
always initialized to be 1, 1, 0, and 0, respectively.

In our example, mutation of node vg leads to two counterex-
amples with conflicting observations from the sample stored in
node v1g. As seen in Figure 1(3), we create two sibling paths
starting at node v{ and vy, respectively, move value ranges
with different observations from node v} to either v§ or v§, and
choose a representative mutated message as the sample stored
for each of the new leaf nodes (i.e., v}, and v{y). Similarly,
mutation of node vg also causes different observations and
correspondingly, two respective sibling paths starting at node
vg and vf are added to the VTree.

G. Rebuilding the FSM (Line 33)

We rebuild the FSM using the L* algorithm [11]. The
input alphabet X includes all the sample messages stored at
those leaf nodes of the VTree whose cleader fields point to
themselves. The output alphabet includes all the masked output
messages from the target protocol.

H. Input clustering (Line 35)

When the FSM trained at Line 33 is so complex that further
fuzzing tests based on it become computationally prohibitive,
IoTInfer applies input clustering, which merges multiple input
symbols in X into a single one to coarsen the FSM. Note
that the input alphabet of the FSM consists of those sample
messages at the leaf nodes in the VTree whose cleader fields
point to themselves. Hence, the effect of input clustering is to
make the cleader fields of some leaf nodes point to others.

The precondition for performing input clustering is that
the number of input symbols > exceeds a user-configurable
threshold, Ajy,p,:. Two input symbols a and b are merged
together if the following two conditions are satisfied: (1) The
two columns corresponding to suffix string a and b are exactly
the same in the observation table, which means that at any
state, the target protocol returns the same output, no matter
whether request message a or b is received. (2) For any row
corresponding to prefix s in the upper part of the observation
table (i.e., s € S), the two rows corresponding to s-a and s-b
in the observation table must be exactly the same; that is to
say, the target at any state must go to the same next state if a
or b is received. When two input symbols represented by two
leaf nodes are merged together in the VTree, the cleader field
of one leaf node is modified to be the other.

In the same example, suppose that input clustering merges
leaf node vg with v, and v} with vs. Their cleader fields are
updated accordingly as seen in Figure 1(3). Hence, the FSM
constructed after this iteration includes five sample messages
stored at those leaf nodes with their cleader fields being self;

they are used as the input alphabet in the next round.

VII. IMPLEMENTATIONS

This section presents implementation details for the Blue-
tooth and Telnet network protocols widely used in IoT devices.

A. Bluetooth

L2CAP fuzzing. For Bluetooth, IoTInfer currently focuses
on fuzzing its L2CAP (Logical Link Control and Adaptation
Protocol) on the target device. L2CAP deals with data mul-
tiplexing, segmentation and reassembly of packets, and QoS
(Quality of Service) control for upper layer protocols. The
operation of L2CAP is based on channels, whose endpoints
are identified with Channel IDs (CIDs). According to the
Bluetooth Specification [5], a few fixed CIDs should be sup-
ported by each Bluetooth device, including L2CAP Signaling
channel (CID = 0x0001) and L2CAP LE Signaling channel
(CID = 0x0005). The L2CAP signaling packets transmitted
in C-frames (control frames) over these two channels, whose
formats are shown in Figure 2. A signaling packet includes
a basic L2CAP header and an information payload. The code
field of the information payload decides the command type and
its id field is used to match request and response commands
transmitted between two L2CAP entities.

IoTInfer performs fuzzing tests on seven types of L2CAP
signaling commands shown in Figure 2. Only request com-
mands are considered because they can trigger internal state
changes in the other L2CAP entity on the target Bluetooth
device. Moreover, the ECHO request command is not included
because it causes state explosion in FSM inference without
producing meaningful results for security analysis. For the
configuration request command, the Bluetooth Specification
Version 4.0 includes seven options, one or more of which can
be packed into the same command [5].

Implementation details. IoTInfer, which is implemented
as a C library with Python binding, builds upon the HCI
(Host-Controller Interface) and L2CAP sockets provided by
BlueZ, the official Linux Bluetooth protocol stack [6]. To
initiate fuzzing tests on a Bluetooth device, IoTInfer first
establishes a Bluetooth L2ZCAP socket provided by BlueZ with
the target. This is done by providing PF_ BLUETOOTH and
BTPROTO_L2CAP as the domain and protocol parameters,
respectively, to the standard C socket function. Using this
L2CAP socket, a sequence of request messages chosen from
the seven types of signaling commands shown in Figure 2
is sent to the target device. Between any two consecutive
request messages, there is a delay of 0.5 seconds for receiving
the response messages, which is implemented by -calling
the setsocketopt function to set a delay value for option
SO_RCVTIMEQ. If the corresponding response does not arrive
within 0.5 seconds, it is assumed that there is no response
from the target protocol. For each response message received,

C-frame (Control frame)

— |

Basic L2CAP header Information payload

.
Payload | Channel Data
Length D Code | Id Length Data
S—— —
___________ 2octets loctet N

! 1. Command reject (Code = 0x01)

|
3 eason (optional) :
6. Create channel request (Code = OxOC)i

i 2. Connection request (Code = 0x02)
; Source | Ctrl

Source

7. Move channel request (Code = OxOE)
‘ Initiator |
CID

5. Information request (Code = Ox0A)

InfoType

3. Configuration request (Code = 0x04)

i | Destination
CID

| DCID |

Flags | Configuration options |

! 4. Disconnection request (Code = 0x06)
f
| CID CID

CID: Channel ID, Ctrl: Controller,
PSM: Protocol service multiplexer,
DCID: Destination controller ID,
InfoType: Information type

Fig. 2. L2CAP signaling commands

User loTinfer APP
space s
---------- -
Kernel € tos,
Other HCl L2CAP ¢
space rotocols | | socket layer
_ _p_ _______ ﬁ ________ Y@ — __ Protocol \ LZCAR)
Interface Ha
BlueZ BlueZ Core
---{[—----ﬂ _____ ﬂ ______ I:E — Driver CONTROLLER
Interface
VHCI || UART || USB || Other
driver || driver || driver || drivers Host
_________ H_ - _H_ I iE ---- Controller
Interface Q y
—
Bluetooth Hardware Bluetooth loT device

Fig. 3. IoTInfer implementation for Bluetooth L2ZCAP fuzzing

IoTInfer uses its Id field (see Figure 2) to match the request
message; everything after Id is deemed as the output of the
target protocol.

After finishing each test case, IoTInfer resets the L2CAP
socket with the target device. This should not be done by
using the disconnect request command because this command,
which shuts down only the channel instead of the L2CAP
connection, can be part of a test case (see Figure 2). Therefore,
IoTInfer resets the HCI connection as follows. First, IoTInfer
calls hci_open_dev(HCIO) to establish an HCI socket con-
nection with the microcontroller on the only local Bluetooth
adapter, which is identified as HCIO, of the machine where
IoTInfer runs. Next, using function ioct/, IoTInfer extracts
low-level connection information associated with the adapter.
Finally, IoTInfer calls function hci_disconnect to terminate the
low-level connection with the target device.

When malformed input messages freeze or crash the target
device, we need to reboot the device so fuzzing tests can
continue. Towards this end, we use a smart plug to control
the power of the target device. In our current implementation,
if IoTInfer fails to establish an HCI connection with the target
three times in a row, it sends a control message to the smart
plug to reboot the device.

TABLE I
LIST OF TELNET COMMANDS FUZZED BY IOTINFER WHERE FIELD * IS
MARKED AS MUTABLE.

TABLE II
LIST OF DEVICES TESTED

Protocol Device Type Vendor Device Model
Command Command Format: (field name, field length | RFC Bluetooth Laptop Dell Inspiron 15 7000
Type (octet)) Raspberry Pi CanaKit Raspberry Pi 3b+
WILL [(TAC, 1), (WILL, 1), (x, D] 854 Keyboard ARTECK HB030B
WON'T [(IAC, 1), (WON'T, 1), (%, 1)] 854 Android phone Samsung Galaxy 10
DO [dAC, 1), (DO, 1), (%, 1)] 854 Speaker Sony SRS-XB12
DON'T [OAC, 1), (DON'T, 1), (%, 1)] 854 Telnet Laptop Dell Inspiron 15 7000
Data entry [(TAC, 1), (SB, D), (DET, 1), (s, 1), (IAC, | 732 Router NETGEAR | R6230 (flashed with
terminal 1), (SE ,2)] a PandoraBox firmware)
Negotiate win- | [(IAC, 1), (SB, 1), (NEG, 1), (*, 1), (x, 1), | 1073
dow size (IAC, 1), (SE,1)]
Terminal [TIAC, 1), (SB, 1), (TERMINAL-SPEED, 1), | 1079 input messages based on the message formats should be used
speed (1), AAG, 1), (SE.L)] as the input alphabet. To support this argument, we perform
X display | [GAC, 1), (SB, 1), (X-DISPLAY- | 1096 put alp : pp g » We p
location LOCATION, 1), (%, 1), (IAC, 1), (SE, two experiments on the Bluetooth protocol of the Dell laptop.
DI In the first experiment, we use the seed messages provided
New [(IAC, 1), (SB, 1), (NEW-ENVIRON, 1), (x, | 1572 : . *
Environment 1. (IAC. 1), (SE. 1] from.the .1nput as the input alghabet and execqte the L
Terminal type | [UAC, 1), (SB, 1), (TERMINAL-TYPE, 1), | 884 algorithm implemented by LearnLib, a comprehensive tool for
(- 1), JAC, 1), (SE, D] automata learning [7]. The FSM inferred includes only two

B. Telnet

Telnet, which is widely used for remote administration
of IoT devices, has caused severe security damages in the
past [2], [3]. The implementation of IoTInfer for Telnet builds
upon a TCP socket connection to port 23 on the target. We
consider only Telnet commands, each of which starts with
an IAC (Interpret As Command) character, OxFF. Table I
summarizes the list of Telnet commands fuzzed by IoTInfer.

The meaning of each command can be found in the corre-
sponding RFC (Request for Comments), which is given in the
last column of Table I. The first four command types are used
to negotiate options: the sender indicates its intention about
the option given in the ensuing field as WILL (willing to do),
WON’T (unwilling to do), DO (agree to accept), and DON’T
(refuse to accept). The final six command types are used for
particular subnegotiations, each of which is enclosed between
TIAC+SB (Subnegotiation Begin) and IAC+SE (Subnegotiation
End). For each Telnet command, IoTInfer only mutates the
option/suboption value fields, which are marked as x in Table I.

VIII. EXPERIMENTS

This section presents our experimental results. Table II
summarizes the devices used. In all our experiments, we have
0 = 5, Amut = 100, Aoutput = 5, and Ainput = 20. When
testing each Bluetooth device, for each L2CAP signaling
command shown in Figure 2, the inputs fed to IoTInfer include
its format as well as one example as the seed. When testing
the Telnet protocol, we perform fuzzing experiments on the
Telnet commands listed in Table I with a seed example for each
command. For both Bluetooth and Telnet, IoTInfer does not
know any credentials for remote connections with the target
devices. We run IoTInfer on a Lenovo ThinkPad P50 laptop
with 2.6GHz Intel i7-6700HQ CPU and 32GB RAM.

A. Input alphabet

In Section IV-B we argued that when applying the L*
algorithm, neither the seed messages nor randomly generated

states, corresponding to the CLOSE and CONFIG states in
the Bluetooth specification [5], eight outputs, and 10 edges.
By contrast, IoTInfer obtains a much larger FSM, which
includes five states, 121 edges, 25 input symbols, and 27
output symbols after running the algorithm for 25 iterations.
The difference is because although LearnLib can try different
combinations of input symbols (i.e., seed messages) from the
input alphabet to infer the FSM, it does not mutate the fields
of these seed messages to generate new input symbols.

In the second experiment, we randomly generate 6000
L2CAP signaling commands, each using a message format
uniformly chosen from the seven ones shown in Figure 2 and
with values at mutable message fields uniformly chosen from
their corresponding ranges. We monitor the response from the
Dell laptop for each of these 6000 messages and find that
only three of them have triggered observable output messages
from the target. If we use these 6000 input messages as the
input alphabet and apply the L* algorithm, a great amount of
computation would be wasted on membership queries that do
not generate any responses from the target. If the W-method
or the partial W-method is used for equivalence testing, the
number of tests needed can also be affected because it includes
a factor of |¥|4(4+1)/2 where d is the difference in the number
of states between the FSM inferred and the target [30].

B. Effectiveness results

1) Bluetooth: The Mealy machines inferred from the five
Bluetooth devices are shown in Figure 4.

DoS (Denial of Service) attacks. We have found three
types of DoS attacks against the Bluetooth devices, which are
summarized in Table III. The details are explained below.

(1) Temporary disconnection: Bluetooth is temporarily un-
available on the target system through command hciconfig
HCIO, which prints the basic information about the given
Bluetooth adapter (HCIO). We have found an L2CAP move
channel request message (e.g., “0e:19:01:00:40:00:01”) that
can disable Bluetooth for about half a second on both the Dell
laptop and the Raspberry Pi. As we cannot run the hciconfig
command on the other three Bluetooth devices, it is unclear
whether the same attack holds against them.

@@

I

(1) Dell laptop (2) Raspberry Pi

TABLE III
POSSIBLE DOS ATTACKS AGAINST THE FIVE BLUETOOTH DEVICES FOUND
FROM THE FUZZING EXPERIMENTS

Device Temporary Permanent System
Disconnection | Disconnection | Freezing
Dell Laptop v v 4
Raspberry Pi 4 X v
Keyboard ? X X
Android phone ? X X
Sony Speaker ? v X

(2) Permanent disconnection: It is possible to disable Blue-
tooth permanently on the target device through some L2CAP
command sequences unless the device is rebooted. For the Dell
laptop with kernel 4.14.97, if the fuzzer first connects with
and then disconnects from it, the target machine allocates a
new USB number for the Bluetooth adapter; this operation is
repeated for multiple times to make the new number allocated
exceed a maximum value so Bluetooth is disabled unless the
target machine is rebooted. When a newer kernel version is
used on the Dell laptop, this problem does not exist.

For the Sony speaker, the attack involves a sequence of oper-
ations: (a) set up a Bluetooth socket connection to the speaker;
(b) send L2CAP command “02:06:04:00:01:00:40:00” to the
speaker, which means an L2CAP connection request with
the identifier to be 0x06 and the PSM (Protocol and Service
Multiplexer) field to be 0x0001 (Service Discovery Protocol);
(c) send L2CAP command “02:07:04:00:03:00:40:00” to the
speaker, which means a L2CAP connection request with
the identifier to be 0x07 and the PSM field to be 0x0003
(Radio Frequency Communication); (d) call hci_disconnect to
disconnect from the speaker. If this sequence is repeated by
at least 16 times within a short period of time (around 40
seconds in our experiments), it exhausts all the 16 channel
IDs available to the speaker and therefore no other device can
connect to it (although the speaker can still be discovered).

(3) System freezing: We have observed two types of system
freezing scenarios for both the Dell laptop and the Raspberry
Pi. (a) CPU fully loaded: The CPU usage becomes 100%,

(3) Keyboard

Fig. 4. Mealy machines inferred from the five Bluetooth devices. We have removed the input/output label on each edge for readability.

(4) Android phone (5) Sony Speaker

and all USB devices are frozen. On the Dell laptop, the touch
screen does not work but the keyboard is still functional, which
allows us to use the rop utility to check the system usage; for
the Raspberry Pi, the system’s CPU is fully loaded for about
10 minutes before it becomes totally unresponsive. Tracing the
root cause of this issue, we have found that the error occurs
inside function bt-sock-poll of file af-bluetooth.c, which is
called repeatedly on the target machine. To establish a normal
L2CAP socket connection, both entities expect to get the
configuration response from the other side. In one test case, the
fuzzer does not send any configuration response to the target
machine so the socket is never established completely. Hence,
the L2CAP entity on the target is always in a listening state
when calling function bt-sock-poll; when a certain condition
is satisfied, the target machine gets into a freezing situation
as mentioned above. (b) CPU is not fully loaded but the
system is freezing: This happens only to the Dell laptop. The
system becomes totally frozen unless it is rebooted. From
the system logs, we have found that the CPU was not fully
loaded before it became frozen. Before the system became
unresponsive, it called printk to print out a large buffer of
unprintable characters to the log file.

Deviation from Bluetooth specification. (1) The Blue-
tooth specification states that a device receiving an
L2CAP_ConfigReq message in a CLOSE state should go to
the CLOSE state again [5]. For the Dell laptop, however, if the
message’s length field is 0 and continuation flag is 1, the target
goes to an unspecified state where it rejects any new packets.
We have to disconnect the device from the HCI layer to reset
the L2CAP connection. (2) In the Bluetooth specification,
there are many substates for a device in a CONFIG state.
When state transitions are only driven by input messages
from the fuzzer, the device can only be in a substate of
either WAIT_CONFIG_REQ_RSP or WAIT_CONFIG_RSP.
Regardless of which substate the device is in, it should respond
to an L2ZCAP_ConfigReq message with an L2ZCAP_ConfigRsp
message of either success or rejection. However, for both
the Dell laptop and the Raspberry Pi, if the target receives

an L2CAP_ConfigReq message with a large non-matching
length in its configuration options, it can enter a weird state
where it responds to some L2CAP_ConfigReq messages but
not others. (3) The Bluetooth specification states that a device
receiving an L2CAP_ConnectReq message in a CLOSE state
should reply with an L2ZCAP_ConnectRsp message indicating
success, pending, or refused. For the Android phone, however,
if the connection request is for BNEP (Bluetooth Network
Encapsulation Protocol) where the PSM value is OxOF, the
target device does not send back any response; at this time,
the target cannot be in a CONFIG state because it does not
respond to any further L2CAP_ConfigReq messages or in a
CLOSE state because the channel ID is still occupied by the
current L2CAP connection.

Fig. 5. Mealy machines inferred from the two devices running Telnet. Labels
are removed for readability.

2) Telnet: The Mealy machines inferred from the two
devices running Telnet are shown in Figure 5. Although our
fuzzing experiments did not reveal any externally observable
failures (e.g., crashes) of the two devices, we observe some
implementation deviations from the Telnet specifications.

The Telnet server on the Dell laptop performs as expected
according to the specifications. When an IAC command is re-
ceived, it either replies with another IAC command or does not
respond. For example, the target responds to command “TAC
DO 0x00”/“IAC WILL 0x00” with “IAC WILL 0x00”/“IAC
DO 0x00” because the target can support binary transmission
(option 0x00), but for command “TAC WILL 0x2e”/“TAC
DO 0x2e”, it replies with “IAC DON’T 0x2e”/“IAC WON’T
0x2e” because it does not support TLS (option 0x2e).

In contrast, the FSM inferred from the NETGEAR router is
much denser than that of the Dell laptop. For each received
command, the router’s reply, if there is any, may not be
another valid IAC command. The FSM includes four types
of states: starting state, negotiation state, user name state
where the router is expecting a user name for login, and
password state where the router is expecting a password. When
the first command is received, the router always sends back
command “IAC DO ECHO IAC DO WINDOWSIZE IAC
WILL ECHO TAC WILL SGA”, which may or may not be
followed by a prompt for user name. From the starting state,
the target may transition to a user name state with a prompt for

user name, or a negotiation state where the target’s behaviors
vary with the commands further received. Based on the FSM
inferred, it is clear that the implementation of the Telnet server
on the NETGEAR router does not follow strictly the Telnet
specifications listed in Table 1.

C. Efficiency results

1) Benefits of input/output clustering: We measure the
execution time in seconds per iteration with and without
input/output clustering when IoTInfer is used to perform
fuzzing tests on the Bluetooth L2CAP protocol of the Dell
laptop and the Samsung Android phone. For the laptop, we
run each experiment for ten iterations and for the Android
phone, we stop each experiment after five iterations.

From Table IV we observe the following. (1) The execution
time per iteration shows high variation across different runs.
This results from the randomness in selecting a command
stored in a leaf node of the VTree at Line 7 in Algorithm 1:
it takes much longer time to fuzz test some commands
(e.g., configuration request) than the others. (2) On average
an iteration of fuzzing tests on the Android phone takes
longer time to finish than the Dell laptop, suggesting that
the execution time of fuzzing tests varies with the IoT device
under evaluation. (3) Most importantly, input/ouput clustering
significantly accelerates the fuzzing tests. When clustering is
disabled, none of the five runs has finished ten iterations for
the Dell laptop and only one run has finished all five iterations
for the Samsung Android phone, because an experiment stops
when an iteration takes more than 10 hours to finish. By
contrast, when input/output clustering is enabled, all the five
runs in our experiments have successfully finished ten (five)
iterations for the Dell laptop (the Samsung Android phone).

Uniform selection —&—
40 | Beta selection —e@—

35 2 + -
30 | Tl as
% @
20 | , % }“}% |
15 |
10

Number of leaf nodes in V-Tree

0O 2 4 6 8 10 12 14 16 18
Iteration Id
Fig. 6. Performance comparison between uniform selection and Beta selection

2) Benefits of Beta sampling for leaf node selection:
IoTInfer uses a Beta sampling scheme to select a leaf node.
For brevity, we call it a Beta selection scheme. To understand
its benefits, we compare the numbers of leaf nodes in the
VTree at the end of each iteration against those when a uniform
selection scheme is used. As a new leaf node is created only if
there are mispredictions by the current FSM (i.e., Lines 26-31
in Algorithm 1), having more leaf nodes in the VTree implies
better effectiveness in generating meaningful test cases.

TABLE IV
COMPARISON OF EXECUTION TIME IN SECONDS WITH AND WITHOUT INPUT/OUTPUT CLUSTERING. ITERATION -1 MEANS THE INITIALIZATION STEP. AN
ENTRY MARKED WITH ’—’ MEANS THAT THE TIME IS NOT MEASURED ANY MORE BECAUSE THIS ITERATION OR ANY OF ITS PREVIOUS ONES TAKES

MORE THAN 10 HOURS TO FINISH, AND AN ENTRY MARKED WITH ’ X’ MEANS THAT THE TIME IS NOT MEASURED AFTER FIVE ITERATIONS. THE TWO
COLUMNS WITH CLUSTERING ENABLED SHOW THE MEAN EXECUTION TIME AND THE STANDARD DEVIATION OVER FIVE RUNS.

Iteration Dell laptop (Bluetooth) Samsung Android Phone (Bluetooth)
Id With clustering Without clustering With clustering Without clustering
(mean/std) Runl | Run2 [Run3 | Run4 | Run 5 (mean/std) Run 1 Run 2 Run 3 Run 4 Run 5
-1 (init) 221.4/106.2 170.7 427.2 171.7 448.1 172.1 11824/ 58.4 1080.3 1160.9 | 1328.3 | 1305.1 12214
0 222.3 / 80.5 — 182.2 202.7 — 254.7 878.2 / 110.9 757.6 — 834.5 944.9 1164.7
1 127.1 /7 122.8 - - 355.4 - 307.8 1839.6 / 1692.0 | 12909.7 - — 48.6
2 230.4 / 130.5 — - 43.7 - — 4792.5 / 5888.9 — — — — 1055.0
3 186.3 /90.8 — — 184.7 — — 2280.7 / 2006.8 — 39.5
4 3565.3 / 2943.6 - - 91.1 - - 3039.0 / 4192.7 - — — — 21605.8
5 2465.9 / 2303.5 — — 262.7 - — X X X X X X
6 1360.6 / 1356.1 — - — - - X X X X X X
7 2509.5 / 3858.2 - — — - — X X X X X X
8 881.9 /752.9 — — — - — X X X X X X
9 1030.0 / 1238.1 — — — - — X X X X X X

The performance comparisons are observed from fuzzing
tests on the Bluetooth L2CAP protocol of the Dell laptop.
Figure 6 depicts the mean and standard deviation of the
number of leaf nodes over five runs at the end of each iteration
for both uniform selection and Beta selection schemes. Clearly,
the Beta selection scheme enhances the chance of finding
conflicts between predictions by the FSM inferred and the
observations from the target protocol. After 19 iterations of
the algorithm, due to the Beta selection scheme, the average
number of leaf nodes in the VTree has increased from 29.4 to
35.4, an improvement of 20.4%.

D. Comparison results

In another set of experiments we compare the fuzzing
performance of IoTInfer with those of two state-of-the-art
fuzzers for IoT devices, IoTFuzzer [16] and Snipuzz [21],
using the five Bluetooth devices shown in Table II. In our
experiments, we use our own implementations of IoTFuzzer
and Snipuzz in Python based on BlueZ [6], the official
Bluetooth implementation in Linux:

e IoTFuzzer: As its code is not publicly available, we
derive our best knowledge about its implementation
details from the paper [16]. IoTFuzzer requires static
analysis of companion mobile apps to infer the formats of
packets sent to the target IoT device. In our experiments
we assume that such packet formats are known to the
mutation algorithm of IoTFuzzer a priori.

e Snipuzz: The code of Snipuzz released by its authors
was written in C# for Windows machines. As BlueZ has
not been ported to run on Windows systems yet, we re-
implement Snipuzz based on our understanding of its
mutation algorithm presented in the paper [21] as well
as its C# implementation code. For Snipuzz, the packet
formats are inferred from the communication packets and
are thus not given as its input in a fuzzing experiment.

We run each fuzzing experiment for an hour, using IoT-
Fuzzer, Snipuzz, or IoTInfer. Based on the Bluetooth pro-
tocol specification [5], we classify each Bluetooth device’s
responses into the following categories:

o R1: The target device becomes frozen during the fuzzing

tests.

e R2: The target device sends back a command reject
packet with the reason to be “Command not understood.”

e R3: The target device sends back a command reject
packet with the reason to be “Signaling MTU exceeded.”

o R4: The target device sends back a command reject
packet with the reason to be “Invalid CID in request.”

e RS: The target device sends back a connection response
packet indicating “Connection successful.”

e R6: The target device sends back a connection response
packet indicating “Connection pending.”

o R7: The target device sends back a connection response
packet indicating “Connection refused — PSM not sup-
ported.”

o R8: The target device sends back a connection response
packet indicating “Connection refused — security block.”

o R9: The target device sends back a connection response
packet indicating “Connection refused — no resources
available.”

e R10: The target device sends back a configuration re-
sponse packet that indicates “Success” and includes an
empty list of configuration parameters.

o R11: The target device sends back a configuration re-
sponse packet that indicates “Success” and includes a
nonempty list of configuration parameters.

o R12: The target device sends back a configuration re-
sponse packet that indicates “Failure — unacceptable
parameters.”

o R13: The target device sends back a configuration re-
sponse packet that indicates “Failure — unknown options.”

e R14: The target device sends back a disconnection re-
sponse packet.

o R15: The target device sends back an information re-
sponse packet indicating ”Success.”

e R16: The target device sends back an echo response
packet.

It is noted that the 16 categories are not exhaustive, but they
cover the different types of responses we have seen from the
five Bluetooth devices. Intuitively speaking, a good fuzzing
strategy should elicit as diverse responses from the target
IoT device as possible. More importantly, these responses
may include unexpected ones with security consequences,

such as device crashes. Therefore, we use a diversity metric,
which is the total number of response types seen in a fuzzing
experiment, to compare fuzzing performances.

Table V summarizes the observations about the different
types of responses seen from the target Bluetooth devices
with the three fuzzers used. We observe that for all the
five Bluetooth devices, IoTInfer leads to the highest diversity
measurements among the three fuzzers used. Moreover, target
devices are seen frozen (i.e., response type R1) only in those
fuzzing tests where IoTInfer is used. These observations result
from IoTInfer’s fuzzing strategy guided by FSM inference,
which enables it to explore deep state transitions of the target
IoT devices with different sequences of input packets. In
contrast, both lIoTFuzzer and Snipuzz consider only stateless
fuzzing, which does not optimize generation of test packets to
trigger new state changes in the target devices.

From Table V it is also observed that none of the response
packets include echo responses (i.e., R16) when IoTInfer is
used. This is because the input packet formats provided to
IoTInfer do not include echo requests. L2ZCAP echo packets
are used to test the link between two Bluetooth devices without
any mutual authentication. As the echo response packet con-
tains the same data from the echo request packet, mutating
these data in IoTInfer creates a large number of different
output observations from the target device, thus causing a state
explosion problem for the FSM inferred. It is noted that even
with echo request packets excluded from the input formats fed
to IoTInfer, it still evokes more response types than loTFuzzer
and Snipuzz in all the fuzzing experiments.

Our implementations of IoTFuzzer, Snipuzz, and IoTInfer
have comparable memory usages in the experiments. For
instance, when used to fuzz-test the Galaxy Android phone for
an hour, their peak memory usages are 26.6MB, 38.2MB, and
30.0MB, respectively. Snipuzz uses the most memory because
our implementation uses the scipy.spatial.distance module
to calculate cluster distances, which requires approximately
10.0MB memory. Compared with loTFuzzer, extra memory is
needed by IoTInfer to maintain the FSMs inferred.

IX. LIMITATIONS

In this work we have only considered two network proto-
cols, Bluetooth and Telnet. However, IoT devices are usually
immersed within an IoT ecosystem with various other proto-
cols deployed at different layers, such as point-to-point com-
munication layer (e.g., NFC and NB-IoT), multi-hop routing
layer (e.g., ZigBee and 6LowPAN), and application layer (e.g.,
MQTT and XMPP). Although in principle these protocols can
also be tested with input messages generated with guidance of
FSM inference, we have to extend the current implementation
of IoTInfer to further improve fuzzing efficiency, such as
dealing with messages sent in the flexible JSON format and
inferring input message formats when protocol specifications
are unavailable.

With the protocol FSMs inferred from the target device,
manual analysis is required by IoTInfer currently to assess
whether they comply with the corresponding protocol specifi-
cations. Our own experiences with both the Bluetooth L2CAP
and Telnet protocols suggest that manual verification can be

ad-hoc and error-prone. It remains an interesting research
direction to automate verification of protocol FSMs inferred
from IoT devices against their specifications — if they are
available — or compare FSMs of the same protocol inferred
from different IoT devices.

In Section VIII, we have empirically evaluated the effec-
tiveness of IoTInfer in finding potential implementation-level
vulnerabilities in different IoT devices and also compared
its performance against those of IoTFuzzer and Snipuzz.
However, for blackbox fuzz testing which does not have access
to the source code or firmware of the target IoT device, it
is difficult to theoretically quantify the effectiveness of any
fuzzing strategy. The heuristic adopted by IoTInfer, which
uses FSM inference to guide generation of test messages in
blackbox fuzzing, may also suffer the limitations implied by
the no free lunch theorem for optimization [44].

X. CONCLUSIONS

The growing popularity of IoT devices has raised concerns
about their security and resilience in adversarial environments.
In this work we have developed a new method called IoTInfer,
which leverages FSM inference to guide fuzzing tests of
IoT network protocols. We have applied IoTInfer to evaluate
the Bluetooth and Telnet protocols implemented by various
IoT devices. Our experimental results have demonstrated both
its efficiency in generating meaningful test cases for IoT
devices and its effectiveness in finding previously unknown
security issues and implementation deviations from protocol
specifications. The comparison results with two other state-
of-the-art blackbox IoT device fuzzing tools have also shown
that ToTInfer is better at eliciting diverse responses from the
fuzzing targets.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive
comments. This work is partially supported by the US National
Science Foundation under award CNS-1943079.

REFERENCES

[1]1 https://github.com/samhocevar/zzuf.

[2] https://www.zdnet.com/article/critical-vulnerabilities-impact-over-a-
million-iot-radio-devices/.

[3] https://www.zdnet.com/article/hacker-leaks-passwords-for-more-than-
500000-servers-routers-and-iot-devices/.

[4] American Fuzzy Lop. https://lcamtuf.coredump.cx/afl/.

[5] Bluetooth Specification Version 4.0.
https://www.bluetooth.com/specifications/protocol-specifications/.

[6] BlueZ: Official Linux Bluetooth protocol stack. http://www.bluez.org/.

[7]1 LearnLib. https://learnlib.de/.

[8] A. Al Farooq, E. Al-Shaer, T. Moyer, and K. Kant. T0TC2: A formal
method approach for detecting conflicts in large scale IoT systems. In
IFIP/IEEE Symposium on Integrated Network and Service Management
(IM), pages 442-447. 1IEEE, 2019.

[9] F. A. Alaba, M. Othman, I. A. T. Hashem, and F. Alotaibi.

of Things security: A survey.

Applications, 88:10-28, 2017.

H. Alasmary, A. Khormali, A. Anwar, J. Park, J. Choi, A. Abusnaina,

A. Awad, D. Nyang, and A. Mohaisen. Analyzing and detecting

emerging Internet of Things malware: A graph-based approach. [EEE

Internet of Things Journal, 6(5):8977-8988, 2019.

D. Angluin. Learning regular sets from queries and counterexamples.

Information and computation, 75(2):87-106, 1987.

Internet
Journal of Network and Computer

[10]

[11]

TABLE V
COMPARISON OF THREE FUZZERS FOR 10T DEVICES, IOTFUZZER, SNIPUZZ, AND IOTINFER. DIVERSITY MEASURES THE TOTAL NUMBER OF DIFFERENT
RESPONSE TYPES SEEN FROM THE TARGET IOT DEVICE IN A FUZZING EXPERIMENT.

Device Fuzzer Response Type Diversity
RI JRZJR3I[JRATRS[R6 [R7T [RE]TRO [RIO [RII [RIZ | RI3 | R14 | RI5 | RI6
Dell IoTFuzzer | X v X v v X v X v X v X v v v v 10
Laptop Snipuzz X v X v v X X X X X X X X X v X 4
ToTInfer v v X v v X v v v v v v v v v X 13
Raspberry | IoTFuzzer | X v X v v X v X v X v X v v v v 10
Pi Snipuzz X v X v v X X X X X X X X X v X 4
ToTInfer v v X v v X v v v v v v v v v X 13
Keyboard | IoTFuzzer | X v X v v X v X v v v X X v v X 9
Snipuzz X v X v v X X X X X X X X v v X 5
IoTInfer X v X v v X v v v v v X X v v X 10
Android TIoTFuzzer | X v X v v X v X X X X X v v v v 8
Phone Snipuzz X v 4 X 4 X X X X X X X X 4 4 X 5
ToTInfer X v v v v v v X X v X v v v v X 11
Sony IoTFuzzer | X v X v v X v X X X X X X X v X 5
Speaker Snipuzz X v X v v X X X X X X X X X v v 5
ToTInfer X v X v v X v X v X v X v v v X 9
[12] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmerer, and [30] F. B. Khendek. Test selection based on finite state models. IEEE

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

G. Vigna. Snooze: toward a stateful network protocol fuzzer. In
International Conference on Information Security. Springer, 2006.

B. Bezawada, M. Bachani, J. Peterson, H. Shirazi, I. Ray, and 1. Ray.
IoTSense: Behavioral fingerprinting of IoT devices. arXiv preprint
arXiv:1804.03852, 2018.

J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot: Automatic
extraction of protocol message format using dynamic binary analysis.
In ACM conference on Computer and Communications Security, 2007.
Z. B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan, P. McDaniel,
and A. S. Uluagac. Sensitive information tracking in commodity IoT.
In USENIX Security Symposium, 2018.

J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun,
R. Yang, and K. Zhang. IoTFuzzer: Discovering memory corruptions
in IoT through app-based fuzzing. In Network and Distributed System
Security Symposium, 2018.

C. Y. Cho, D. Babi ¢, E. C. R. Shin, and D. Song. Inference and analysis
of formal models of botnet command and control protocols. In ACM
Conference on Computer and Communications Security, 2010.

W. Cui, J. Kannan, and H. J. Wang. Discoverer: Automatic protocol
reverse engineering from network traces. In Proceedings of the USENIX
Security Symposium, 2007.

M. Eceiza, J. L. Flores, and M. Iturbe. Fuzzing the Internet of Things:
A review on the techniques and challenges for efficient vulnerability
discovery in embedded systems. IEEE Internet of Things Journal, 2021.
K. Fang and G. Yan. IoTReplay: Troubleshooting COTS IoT devices
with record and replay. In IEEE/ACM Symposium on Edge Computing,
2020.

X. Feng, R. Sun, X. Zhu, M. Xue, S. Wen, D. Liu, S. Nepal, and
Y. Xiang. Snipuzz: Black-box fuzzing of IoT firmware via message
snippet inference. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, pages 337-350, 2021.

C. Gao, Z. Ling, B. Chen, X. Fu, and W. Zhao. SecT: A lightweight
secure thing-centered IoT communication system. In International
Conference on Mobile Ad Hoc and Sensor Systems. IEEE, 2018.

M. E. Garbelini, C. Wang, S. Chattopadhyay, S. Sumei, and E. Kurni-
awan. SweynTooth: Unleashing mayhem over Bluetooth Low Energy.
In USENIX Annual Technical Conference, 2020.

P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based whitebox
fuzzing. In Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2008.

P. Godefroid, M. Y. Levin, and D. Molnar. Sage: whitebox fuzzing for
security testing. Communications of the ACM, 55(3):40-44, 2012.

P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated whitebox fuzz
testing. In Network and Distributed System Security Symposium, 2008.
S. Gorbunov and A. Rosenbloom. Autofuzz: Automated network
protocol fuzzing framework. International Journal of Computer Science
and Network Security, 10(8):239, 2010.

T. Gu, Z. Fang, A. Abhishek, H. Fu, P. Hu, and P. Mohapatra. [oTGAZE:
IoT security enforcement via wireless context analysis. In IEEE
Conference on Computer Communications, 2020.

K. K. Karmakar, V. Varadharajan, S. Nepal, and U. Tupakula. SDN
enabled secure IoT architecture. IEEE Internet of Things Journal, 2020.

[31]

[32]

[33]

[34]

[35]

[36]

[37]
(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Transactions on software engineering, 17(591-603):10-1109, 1991.

J. Li, B. Zhao, and C. Zhang. Fuzzing: a survey. Cybersecurity, 1(1):1-
13, 2018.

M. Michael. Attack Landscape H1 2019: IoT, SMB traffic
abound. https://blog.f-secure.com/attack-landscape-h1-2019-iot-smb-
traffic-abound/, 2019.

A. Mosenia and N. K. Jha. A comprehensive study of security of
Internet-of-Things. IEEE Transactions on emerging topics in computing,
5(4):586-602, 2016.

J. Narayan, S. K. Shukla, and T. C. Clancy. A survey of automatic
protocol reverse engineering tools. ACM Computing Surveys (CSUR),
48(3):1-26, 2015.

N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani.
Demystifying IoT security: An exhaustive survey on IoT vulnerabilities
and a first empirical look on Internet-scale IoT exploitations. [EEE
Communications Surveys & Tutorials, 21(3):2702-2733, 2019.

A. Ouaddah, H. Mousannif, A. Abou Elkalam, and A. A. Ouahman.
Access control in the Internet of Things: Big challenges and new
opportunities. Computer Networks, 112:237-262, 2017.

Palo Alto Networks. 2020 Unit 42 IoT Threat Report.
https://unit42.paloaltonetworks.com/iot-threat-report-2020/, 2020.

M. Shahbaz and R. Groz. Inferring mealy machines. In International
Symposium on Formal Methods, pages 207-222. Springer, 2009.

S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini. Security,
privacy and trust in Internet of Things: The road ahead. Computer
Networks, 76:146-164, 2015.

A. K. Sikder, L. Babun, H. Aksu, and A. S. Uluagac. Aegis: a context-
aware security framework for smart home systems. In Proceedings of
the 35th Annual Computer Security Applications Conference, 2019.

H. Soroush, M. Albanese, M. A. Mehrabadi, I. Iganibo, M. Mosko, J. H.
Gao, D. J. Fritz, S. Rane, and E. Bier. SCIBORG: Secure configurations
for the IoT based on optimization and reasoning on graphs. In IEEE
Conference on Communications and Network Security, 2020.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.
MIT press, 2018.

R. H. Weber and E. Studer. Cybersecurity in the Internet of Things:
Legal aspects. Computer Law & Security Review, 32(5):715-728, 2016.
D. H. Wolpert and W. G. Macready. No free lunch theorems for
optimization. IEEE transactions on Evolutionary Computation, 1(1):67—
82, 1997.

Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun. FIRM-
AFL: high-throughput greybox fuzzing of IoT firmware via augmented
process emulation. In USENIX Security Symposium, 2019.

