
Packet Reordering Metrics:

Some Methodological Considerations

Gabriel Istrate, Anders Hansson, and Guanhua Yan
Discrete Simulation Science (CCS-5), Los Alamos National Laboratory

P.O. Box 1663, MS M997; Los Alamos, NM 87545
Email: gabrielistrate@acm.org, {hansson, ghyan}@lanl.gov

Abstract

Characterizing what makes a packet reordering met-
ric meaningful is a problem that has attracted signif-
icant interest, but it still lacks a universally accepted
solution. We contribute to this discussion by investi-
gating some theoretical concepts that make the follow-
ing simple intuitions precise:

– A metric that is inconsistent, i.e., gives different
values on two similar TCP traces, should not be re-
garded as useful.

– We formalize the notion of two traces being “iden-
tical modulo unimportant details” using similarity rela-
tions.

– If “real-life” traces differ from random sequences
by always satisfying certain reorder invariants, then we
should only use traces satisfying these invariants when
investigating the consistency of a reordering metric.

We illustrate these concepts in the context of Re-

stored, an approach to semantic compression of TCP
traces [10]. In particular, we discuss the consistency of
two metrics defined by Jayasumana et al. [1, 12] with
respect to the similarity notions defined in [8, 9, 10].

1 Introduction

Research on network traffic modeling has recently
highlighted the central role packet reordering plays in
the overall dynamics of TCP traffic [2, 3, 13]. New
measures of reordering have been introduced [17], and a
variety of measures have been reviewed [14, 18]. While
several criteria for the usefulness of reordering metrics
have been proposed, we are still far from agreeing on a
universal methodology for defining and employing re-
ordering metrics.

Packet reordering presents a number of interesting
challenges for both applied and theoretical researchers.
Indeed, there exists a rich set of concepts and results in
the Theoretical Computer Science literature (e.g., see

[4]) that deal with reordering metrics, mostly in the
context of sorting algorithms. Two of the problems this
theory addresses are: (i) Given a reordering measure
M , can one find a sorting algorithm that is optimal
with respect to M? (ii) Given two reordering measures
M1 and M2, is M1 finer than M2, in the sense that any
M1-optimal sorting algorithm is also M2-optimal?

In contrast, in the network traffic context we are
given an “on-line sorting” algorithm—in the form of
the TCP protocol—and we are interested in gauging
the relevance of the various reordering metrics for this
particular algorithm. This problem is further compli-
cated by the fact that a complete specification of the
“sorting algorithm” is practically impossible, as it in-
cludes features such as network topology or background
traffic that cannot be determined with complete accu-
racy. Nevertheless, by taking a (pre)theoretical per-
spective,1 we hope to advance the characterization of
what makes a reordering metric meaningful. In partic-
ular, we sketch the the following systematic approach:

(i) We advocate the use of similarity relations as
a formal way to specify all the information we deem
important in a given measurement context.

(ii) We define the notion of consistency of a reorder-
ing metric with respect to a similarity relation, and
argue that, provided all the important information has
been encoded in the similarity relation, useful metrics
should be consistent. We further discuss the consis-
tency of some of the metrics from [14] with respect to
various equivalence notions.

(iii) We highlight the concept of a reorder invariant,
and illustrate this notion by a metric called SUS from
the literature on sorting algorithms [4].

The concepts in this paper were motivated by an
approach, called Restored [10], for receiver-oriented
modeling and compression of large TCP traces, in a

1That is, we are primarily concerned with modeling and
(when possible) defining precise mathematical concepts, rather
than proving theorems.

0-7695-2622-5/06/$20.00 (c) 2006 IEEE

manner that preserves some of the semantics of the
TCP protocol and incorporates information on packet
dynamics. To make the paper self-contained, a brief
introduction to Restored is given next.

2 An Introduction to RESTORED

Restored is a receiver-oriented model of large TCP
traffic that incorporates information on the dynamics
of packet IDs. It can be used to estimate QoS mea-
sures offline. Rather than running a large number of
such measurements in an on-line fashion, we first “com-
press” the trace into a small “sketch.” If needed we can
perform a large number of measurements on the regen-
erated trace.

In a nutshell, Restored is a multi-scale model that
uses a Markov chain to model the dynamics of traffic at
large scales. This is consistent with results that show
that all the correlations in the temporal structure of
network traffic disappear above a certain time scale
[7]. To describe this approach, we make the simplify-
ing assumption that all packets have identical payload.
This allows a bijective mapping from TCP sequence
numbers to packet ID numbers, with the convention
that the smallest sequence number is mapped to ID
1. In the present exposition, a connection consists of
a sequence of packet IDs, together with positive real
numbers corresponding to packet arrival times (this is
the only information in a real trace that we attempt to
capture). Suppose the receiver observes the following
packet stream (where we only display the ID numbers
of the packets, and not their arrival times)2

1 2 3
︸ ︷︷ ︸

O

5 6 7 4
︸ ︷︷ ︸

U

8 9 10
︸ ︷︷ ︸

O

12 13 14 11
︸ ︷︷ ︸

U

(1)

The order of the IDs corresponds to the order in which
packets arrive at the destination, and in our example,
we see that packets 4 and 11 arrive out of order. Since
TCP guarantees to deliver an ordered packet stream
to the application layer, it follows that there is a need
for buffering of certain packets. One can, consequently,
classify the received packets into two types: those that
can be immediately passed to the application layer,
and those that are temporarily buffered before deliv-
ery. In our example, packets 5, 6, and 7 are temporarily
buffered, and the buffer cannot be flushed until packet
4 is received. Likewise, packets 12, 13, and 14 are tem-
porarily buffered, and the buffer is flushed at the arrival
of packet 11. A packet that marks the end of a sequence
of consecutively buffered packets will be called a pivot
packet. Also, packets that are immediately delivered to
the application layer are trivially pivots. In our exam-
ple, packets 1, 2, 3, 4, 8, 9, 10 and 11 are thus all pivots.

2We omit the slow start phase from our discussions.

This definition suggests a coarsened view of TCP with
two states: An ordered state O , in which packets arrive
in order, and an unordered state U in which there is re-
ordering and buffering. Each occurrence of State O is
followed by one or more occurrences of State U . Now,
explicitly incorporating time as well, one can thus de-
fine a sequence of triples (s1, p1, t1) , (s2, p2, t2) , . . . ,
where sn ∈ {O,U} is the state descriptor, pn > 0 is the
number of packets received in state sn, and tn > 0 is
the time spent in state sn. In [10] we have provided sta-
tistical evidence that a Markov chain is often sufficient
for capturing the dynamics of this sequence of triplets.
The sequence of packet IDs in the ordered state is triv-
ial by definition. In the unordered state we obtained
further compression by a many-to-one mapping M of
sequences of IDs into “sketches.” The mapping M can
be inverted in polynomial time. This is used in the re-
generation algorithm, where we regenerate a trace by
simulating the macroscopic Markov chain; when in the
unordered state we first sample a sketch S from the
definition of such sketches and then reconstruct a se-
quence of IDs that maps to S. The many-to-one map-
ping needs to be defined with respect to the particular
reordering metrics we want preserved. In [8] and [9] we
provide two such variants (discussed below). The out-
lined mechanism can be completed to generate arrival
times in order to reconstruct a full trace.

3 Modeling Context with Similarity

Relations

One problem raised by TCP models such as Re-

stored is that we want a formal way to guarantee
that the reconstructed sequences are “similar” to the
original one. Of course, one could simply try to solve
this problem empirically by comparing original and re-
constructed sequences with respect to a few reordering
metrics (paper [10] reports such results for three such
metrics, RD and RBD from [17] as well as a metric
called inversion spectrum, defined as the distribution of
inversion displacements). However, the choice of met-
rics for such a comparison is somewhat ad-hoc, and
there seems to be no principled way to choose “good
benchmark measures.”

In general, as discussed in [17], the quality of a mea-
sure of reordering can only be evaluated in the con-
text of an application: for instance, if the applica-
tion is able to tolerate a certain amount of reordering
then the exact amount of reordering is not essential, as
long as it is within those bounds.

We propose a (somewhat more) principled approach.
In a nutshell, it can be briefly described as follows: one
should attempt to formally specify the “context
of a certain application” (and the trace prop-

0-7695-2622-5/06/$20.00 (c) 2006 IEEE

erties we deem important) by a similarity re-

lation R on traces. For instance, notions such as
“the throughput (number of inversions, etc.) of the
two traces differs by no more than 5%” provides natu-
ral examples of similarity relations.

But what is a similarity relation (of objects) in gen-
eral? It is hard to give an all-encompassing definition,
and we will not attempt to do so, though definitions
of this type arise in several areas of science, such as
economics [19], rough set theory [15], fuzzy set the-
ory (e.g., [21]), clustering in linguistics and biology
[20], etc. A similarity relation needs to be reflexive
[i.e. for all A, R(A, A)], though it is not necessarily
symmetric. Nevertheless, some natural similarity rela-
tions are equivalence relations, that is reflexive, sym-
metric [R(A, B) ⇒ R(B, A) for all A, B] and transitive
[R(A, B) ∧ R(B, C) ⇒ R(A, C) for all A, B, C].

To motivate the notion of trace similarity that is
most relevant for results in [10], consider the follow-
ing two hypothetical sequences of packet IDs: A =
(1 2 3 4 5 6 10 9 8 7), and B = (1 2 3 4 5 6 10 8 9 7).
Assume that the TCP implementation uses simple
ACKs (as opposed to SACK), and acknowledges every
single packet. Then the two sequences will generate on
the receiver side the same sequence of ACKs, namely
2 3 4 5 6 7 7 7 7 11. Since in TCP applications it is
the receiver ACK sequence that drives the dynamics
of the congestion window, assuming identical net-
work conditions for the two ACK sequences, the
two traces can be regarded as “equivalent,” from
a receiver-oriented standpoint. We thus arrive at the
following definition:

Definition 1 Two sequences of packets A, B are be-
haviorally equivalent if they yield the same sequences
of ACKs.

It is easy to see that behavioral equivalence is indeed
an equivalence relation on TCP traces. Of course, in
a different scenario the requirements of the applica-
tion at the top of the protocol stack (e.g., how much
loss/packet reordering the application is willing to tol-
erate), the particular details of the TCP implementa-
tion, etc., might impose a different notion of “semantic
equivalence” of TCP traces. For instance, none of the
aspects related to the arrival times of packets is cap-
tured by behavioral equivalence. If we employ mech-
anisms for keeping track on the receiver side of the
RTT (as provided by [11]), then packet arrival times
can convey semantic information about the TCP flow.
This example, however, provides a blueprint for a sys-
tematic approach:

(1) Precisely specify a similarity relation ≡ on
the set of possible TCP traces. The relation ≡

should capture all the aspects we deem impor-
tant. It can incorporate features of the semantics of
the TCP protocol, as well as features of the specific ap-
plication (video, etc.) at the top of the protocol stack.

(2) A model M of TCP traffic should come
together with a similarity notion R and should
provide a guarantee that R(A, M(A)) for any real
TCP trace A (where M(A) is the trace regenerated
by M from input A).

4 Consistency of Reordering Metrics

Not all reordering metrics are expected to be cap-
tured by an approach such as Restored. In what fol-
lows we introduce a useful restriction on the reordering
metrics. To motivate this restriction, consider the fol-
lowing metric, called n-reordering, proposed in [14] and
defined as follows:

Definition 2 Let s[1], s[2], . . . s[l] be a stream of packet
IDs as received at a destination. For n ≥ 1 a packet
s[i] is n-reordered if for all i − n ≤ j < i we have
s[j] > s[i]. The degree of n-reordering of a connection
is

S(n) =
number of n-reordered packets

number of received packets

Also define R(n) = S(n) − S(n + 1). The reordering
distribution is the probability distribution R(n), n ≥ 1.

Despite being behaviorally equivalent, the
two sequences A and B defined in the previous
section have different reordering distributions,
RA(0) = 0.7, RA(1) = 0.1, RA(2) = 0.1, RA(3) =
0.1, RA(i) = 0, i ≥ 4 , and RB(0) = 0.8, RB(1) =
0.1, RB(3) = 0.1, RB(i) = 0 for all other i, respec-
tively. Thus a reconstruction method that only guar-
antees that the reconstructed sequence is behaviorally
equivalent to the original one cannot be expected to
recover the reordering distribution. This motivates the
following definition:

Definition 3 A reordering metric M is consistent
with respect to a similarity relation R if for all se-
quences A, B R(A, B) ⇒ (M(A) = M(B)).

Conclusion 1 If all the relevant information
about a connection is encapsulated in a simi-
larity relation R then, obviously, a metric that
is inconsistent with respect to R is not an ade-
quate reordering metric.

Definition 4 Similarity relation R2 refines relation
R1 (R2 ⊆ R1) if ∀A, B [R2(A, B) ⇒ R1(A, B)].

The following is now a simple observation:

0-7695-2622-5/06/$20.00 (c) 2006 IEEE

Theorem 1 Let M be a reordering metric and R1 and
R2 similarity relations such that R2 ⊆ R1. If M is
consistent with respect to R1 then M is consistent with
respect to R2.

Proof. Let A and B be traces and suppose R2(A, B).
Then R1(A, B) since M is consistent w.r.t. R1,
M(A) = M(B). But this means that M is consistent
w.r.t. R2. �

Theorem 1 highlights the trade-off between the
tightness of similarity measures and the consistency
of reordering metrics: the tighter the metric, the
more measures are consistent. A general lesson is

Conclusion 2 When defining the similarity rela-
tion we should attempt to define it in the most
restrictive way possible that is compatible with
the requirements of the scenario at hand.

The number of metrics consistent under ≡beh is
rather limited. We have therefore studied two other
similarity relations. The first one [9] is defined as:

Definition 5 Let A = {A1, A2, . . . , An} be a sequence
of packet IDs. We define an operator B that after re-
ceiving a packet Ai at time index i outputs the size of
the buffer needed to store all out-of-order packets up to
stage i (we assume that packets that are in-order are
immediately evicted from the buffer). Two sequences of
packets P and Q are buffer equivalent (P ≡buf Q) if
Buf(P) = Buf(Q).

Our last equivalence notion is [8]:

Definition 6 Let A = {A1, A2, . . . , An} be a sequence
of packet IDs. We define the FB as an operator that
after receiving a packet Ai at time index i, outputs the
difference between the highest ID (Hi) seen so far and
the highest ID (Li) that could be uploaded, FB(Ai) =
Hi −Li. In other words, FB is the size of the smallest
buffer big enough to store all packets that arrive out
of order, where the definition of size accounts for re-
serving space for unreceived packets with intermediate
IDs as well. Full Buffer sequence FB(P) associated
with a sequence P of packet IDs is the time-series of
FB values computed after each packet has been received.
Sequences P and Q are FB equivalent (P ≡FB Q) if
FB(P) = FB(Q).

Equivalences we have defined so far are sensitive
to losing packets. Their definitions can be, however,
modified to take into account losing packets as well.

This is not important for our application, since in Re-

stored we only consider completed occurrences of the
unordered state. Maps FB and Buf can be inverted
in polynomial time ([8, 9]). Therefore, when employed
in Restored, the reconstructed sequences of packet
IDs corresponding to one unordered state are equiva-
lent (w.r.t. the respective equivalence notions) to some
sequence of IDs corresponding to an unordered state of
the original sequence. Therefore, all reordering metrics
that are consistent with respect to these equivalences
are going to be closely estimated with high probabil-
ity by the reconstruction process. Equivalence ≡FB is
indeed a refinement of ≡beh:

Proposition 1 ([8]) Suppose that the receiver uses
simple ACKs and acknowledges every packet. Then
any FB equivalent sequences A and B are also behav-
iorally equivalent.

On the other hand buffer equivalence, though seem-
ingly more natural, is incomparable with ≡beh:

Theorem 2 There exist sequences A, B, C and D with
A ≡buf B but A
≡beh B, C ≡beh D but C
≡buf D.

Proof. An example is A = 2 3 3 1 and B = 3 4 1 2.
They both map via Buf to sequence 1 2 2 0, hence
they are buffer equivalent, but they are not behav-
iorally equivalent, since they yield ACK sequences
1 1 1 4 and 1 1 2 5, respectively. Also, let C =
2 2 3 4 1 and D = 2 3 2 4 1. They both yield
ACK sequence 1 1 1 1 5, but different buffer sequences
1 1 2 3 0 and 1 2 2 3 0, respectively. �

Buffer equivalence is only guaranteed (see [9]) to be a
refinement of behavioral equivalence for permutations
(i.e. sequences with no repeats and no lost packets).
Finally, equivalences ≡buf and ≡FB are incomparable:

Theorem 3 There exist sequences of IDs A, B, C and
D with A ≡buf B but A
≡FB B, C ≡FB D but C
≡buf

D.

Proof. Sequences A = 2 4 3 1 and B = 2 3 4 1 yield
the same buffer sequence 1 2 3 0, but different FB se-
quences 2 4 4 0 and 2 3 4 0, respectively. Sequences
C = 4 2 2 3 1 and D = 4 2 3 2 1 yield the same
FB sequence 4 4 4 4 0, but different buffer sequences
1 2 2 3 0 and 1 2 3 3 0, respectively. �

5 Consistency of Reordering Metrics:

Some Examples

The first objective of this section is to provide natu-
ral illustrations for the concept of consistency, by pro-

0-7695-2622-5/06/$20.00 (c) 2006 IEEE

viding examples of reordering metrics consistent un-
der one of the two equivalence metrics ≡FB and ≡buf .
These examples show that the incomparability of these
equivalence metrics also translates into the incompara-
bility of the sets of consistent reordering metrics.

Observe that when all packets have the same pay-
load p, FB is linearly related to the size of the adver-
tised window by the following relation ([16], p. 385)

AdvertisedWindow = MaxRcvBuffer − p · FB. (2)

Therefore the following result is true:

Theorem 4 Define AdvertisedWindow(W) to be the
operator that maps packet sequence W into the time
series consisting of the values of the parameter Adver-
tisedWindow when receiving packet sequence W . Then
any reordering metric M that can be expressed as
M(W) = f(AdvertisedWindow(W)) for some func-
tion f (e.g., the average advertised window) is consis-
tent under ≡FB. This latter measure is not consistent
under ≡buf .

Proof. The first statement follows directly from
equation (2) since if FB(P) = FB(Q) then
AdvertisedWindow(P) = AdvertisedWindow(Q). For
the second statement take R = (2 3 4 5 1)
and S = (5 4 3 2 1). Then Buf(R) =
Buf(S) = (1 2 3 4 0) but FB(R) = (2 3 4 5 0),
and FB(S) = (5 5 5 5 0). The last two
equalities immediately imply the fact that aver-
age values of parameter AdvertisedWindow(R) and
AdvertisedWindow(S) are equal to MaxRcvBuffer −
14p/5 and MaxRcvBuffer− 4p, respectively, which are
different for p
= 0. �

On the other hand, we have

Theorem 5 Any reordering metric M that can be ex-
pressed as M(W) = f(Buf(W)) for some function f
(e.g., the average value of the buffer size) is consistent
under ≡buf equivalence, This latter measure is incon-
sistent under ≡FB equivalence.

Proof. The first statement follows by the definition
of ≡buf . For the second statement take the two se-
quences C = 4 2 2 3 1 and D = 4 2 3 2 1. Then, as
we saw in Theorem 3 C ≡FB D, but M(C) = 8/5,
M(D) = 9/5. �

Finally, we discuss the consistency of two metrics
from [1, 12] (see also discussions in [18, 17]). For
brevity, we do not present definitions of these mea-
sures, but refer the reader to [12].

Reorder Density (RD) is not consistent under buffer,
behavioral, or FB equivalence: sequences of IDs 4 2 3 1
and 4 3 2 1 have different RD distributions but they
are buffer, behaviorally, and FB equivalent. Reorder
Buffer-Occupancy Density (RBD) is not consistent un-
der buffer equivalence. This is witnessed by sequences
2 3 3 1 and 3 4 1 2. On the other hand one can prove
that RBD is consistent with respect to behavioral (and
FB) equivalence. The proof of this result is slightly
more involved, and will be presented in the journal
version of this paper. This version will also contain
a classification of the consistency of metrics from [14]
with respect to the three equivalence notions consid-
ered in this paper.

Conclusion 3 The precise definition of the sim-
ilarity notion greatly impacts consistency. Dif-
ferent similarity notions can have incomparable
sets of consistent metrics.

6 Reorder Invariants

The consistency criterion in the previous section can
be discussed as being too pessimistic: a measure M is
inconsistent with respect to a similarity notion ≡ if
there exist two (hypothetical) sequences of packet IDs
that are equivalent with respect to ≡ but differ in the
value of M . This criterion does not take into account
the fact that not all possible ID sequences appear in
real-life traces. Therefore some measures that are in-
consistent in theory could be consistent “in practice.”
This is actually the case of metric RD, as shown in
[10]. One way to address this problem is to build a
set of reordering patterns arising from real traces and
investigate the consistency of the various measures on
this set of patterns. We will illustrate this approach in
an extended version of the paper. This solution, how-
ever, has the drawback that the selection of traces is
somewhat arbitrary. In the remainder of this section
we suggest a different approach: the use of reordering
invariants to reduce the set of traces considered in the
definition of consistency. In a nutshell the idea is the
following: TCP attempts to preserve packet sequence
integrity. Therefore measures of reordering of real traf-
fic data fall into two types (i) those that have values
roughly similar to those of a sorted sequence, reflecting
the order-preserving nature of the TCP protocol, and
(ii) those that can vary significantly. We call measures
of the first type reorder invariants. Reorder invariants
are interesting since they expose limits on the nature
of TCP traces (which could potentially be used for the
definition and estimation of entropy-like notions asso-
ciated to sequences of packet IDs). A reorder invariant

0-7695-2622-5/06/$20.00 (c) 2006 IEEE

D could be used as follows: if we assume that real-life
ID sequences X satisfy D(X) ≤ k then, to test for the
inconsistency of measure M : (i) Generate a set of ran-
dom sequences of IDs Y1, . . . Yr with D(Yi) ≤ k. (ii)
Test whether there exist two sequences Yi and Yj such
that Yi ≡ Yj and M(Yi)
= M(Yj).

Clearly a number of technical issues (finding exam-
ples of reorder invariants D, determining numbers k
and r, being able to randomly sample strings X with
D(X) ≤ k) need to be solved before the procedure we
outlined could work. We do not attempt to do this
now. Instead, we only present a metric that could be
a reorder invariant. The metric is called shuffled up-
sequences (SUS) [4]. It is defined as the minimum
number of ascending subsequences into which we can
partition each listed sequence of packets.

We have computed the value of the SUS metric on a
set of real packet traces collected during August 2001
at the border router of the Computer Science Depart-
ment, University of California, Los Angeles (UCLA),
CA. The set was obtained by the UCLA Network Re-
search Lab and modified for public use by the UCLA
Laboratory for Advanced Systems Research. In partic-
ular, we have used the five TCP traces, that were avail-
able on-line at the start of our work. They are labeled
Trace5, Trace7, Trace8, Trace9, and Trace10.
We parsed the traces into different connections and
found that most of the connections are very short. As
an example, Trace7 consists of 245,718 connections,
but 60% of them contain only one or two packets, 80%
contain 10 packets or less, and 98% contain at most 100
packets. This is, of course, in line with the common
observation that a small percentage of the data flows
accounts for a large percentage of the total traffic [5, 6].
Since our aim is to highlight nontrivial network dynam-
ics, we have chosen to study only connections with at
least 100 packets. Still, the traces are large enough
to allow meaningful analysis: each traces contains at
least 3399 such “long” connection. We partitioned the
connections into sequences of IDs corresponding to the
ordered/unordered state and computed the SUS metric
for all sequences corresponding to the unordered state.
Over 95% of them are of type SUS = 2. Complete
results are presented in Table 1.

To test that the SUS measure remains relatively con-
stant even when we induce significant reordering in the
network, we used the ns-2 network simulator to sim-
ulate a dumbbell topology with two routers and six
end-hosts (see Figure 1).

Each link that connects an end-host and a router is
duplex and has bandwidth 10 Mbps and propagation
delay 1 millisecond. We use two simplex links in reverse
directions to connect the two routers. Both of them

Table 1. Distribution of SUS in real data
Tr.5 Tr.7 Tr.8 Tr.9 Tr.10

SUS % % % % %

2 95.072 96.876 98.223 95.293 98.967
3 4.542 2.291 1.669 4.324 0.953
4 0.328 0.166 0.094 0.306 0.070
5 0.035 0.026 0.010 0.057 0.006
6 0.017 0.005 0.004 0.011 0.003
7 0.002 0.002 — 0.002 —
8 0.002 0.004 — 0.0009 —
9 0.003 — 0.0007 — —

10 — — — 0.002 0.001
11 — — — 0.002 —
12 — — 0.0007 — —
13 — — — 0.0009 —
14 — — — — —
15 — — — — —
16 — — — 0.0009 —

2 Mbps

10 Mbps

1 ms

s2

t3

r1 r2

s3

t2

s1 t1

10 Mbps

Figure 1. Simulated network topology.

have propagation delay 1 millisecond, but the one from
router r1 to r2 has bandwidth 2 Mbps and the other
has bandwidth 10 Mbps. The relatively low bandwidth
from r1 to r2 is intended to create congestion at r1. In
the network, we have three TCP flows that transfer
data from end-hosts s1 to t1, s2 to t2, and s3 to t3,
respectively. We perform two sets of experiments. In
the first one, every link uses a drop-tail queue, which
is a FIFO buffer dropping packets at its tail when it
overflows. In the second one, all the links use drop-
tail queues except the one from router r1 to r2. This
special link uses a queue that still drops packets at its
tail when it overflows, but on each new packet arrival,
it randomizes the order of all the packets in the buffer.

We have computed the sequences of IDs correspond-
ing to the occurrences of the unordered state in all
three connections, and computed the distribution of
SUS values of these patterns. The results are presented
in Table 2. Even though the experiment introduces a
significant amount of packet reordering, it does so by
changing the nature of reordering patterns, rather than
their overall number. In particular, the second experi-

0-7695-2622-5/06/$20.00 (c) 2006 IEEE

Table 2. Distribution of SUS in ns-2 data
Run SUS = 2 SUS = 3 SUS = 4

1st 38,757 (99.9%) 1 (0%) 2 (0%)
2nd 25,686 (67.7%) 10,416 (27.4%) 1762 (4.6%)

Run SUS=5 SUS= 6 Patterns

1st — — 38,764
2nd 83 (0.2%) 2 (0%) 37,949

ment creates a larger number of patterns. Still even in
this case the vast majority of reordering patterns have
SUS = 2. Furthermore, the largest observed value of
the SUS parameter only increases from 4 to 6. This
means that the TCP algorithm does manage to keep
the SUS parameter small even when facing significant
reordering.

7 Conclusions

Our work has highligted some concepts that we be-
lieve are useful in studying packet reordering metrics:
similarity relations, consistency of a metric, and re-
ordering invariants. We have illustrated these concepts
with natural notions of similarity and investigated the
consistency of two metrics defined by Jayasumana et
al. [12]. This work has been supported by the U.S.
Department of Energy under contract W-705-ENG-36.

References

[1] T. Banka et al. Metrics for degree of reordering in
packet sequences. In Proc. 27th IEEE LCN, pages
333–342, 2002.

[2] J. Bellardo and S. Savage. Measuring packet re-
ordering. In Proc. ACM SIGCOMM Internet Mea-
surement Workshop, pp. 97–105, 2002.

[3] J. C. R. Bennett et al. Packet reordering is
not pathological network behavior. IEEE/ACM
Transactions on Networking, 7(6):789–798, 1999.

[4] V. Estivill-Castro and D. Wood. A survey of adap-
tive sorting algorithms. ACM Computing Surveys,
24(4):441–476, 1992.

[5] W. Fang and L. Peterson. Internet-AS traffic
patterns and their implications. In Proc. IEEE
GLOBECOM Conf., pp. 1859–1868, 1999.

[6] A. Feldmann et al. Deriving traffic demands for
operational IP networks: Methodology and expe-
rience. Proc. ACM SIGCOMM, pp. 257–270, 2000.

[7] D. R. Figueiredo et al. On TCP and self-similar
traffic. Perf. Evaluation, 61(2-3):129–141, 2005.

[8] A. Hansson, G. Istrate, and S. Kasiviswanathan.
Combinatorics of TCP reordering. Journal of
Combinatorial Optimization, special issue on Net-
work Applications (to appear), 2006.

[9] G. Istrate and A. Hansson. Counting preimages of
TCP reordering patterns. submitted to Discrete
Applied Mathematics, October 2005.

[10] G. Istrate, A. Hansson, S. Thulasidasan,
M. Marathe, and C. Barrett. Semantic compres-
sion of TCP traces. In Proceedings of the IFIP
NETWORKING’06, vol. 3976 of Lecture Notes in
Computer Science, pp. 123–135. Springer, 2006.

[11] S. Jaiswal et al. Inferring TCP connection charac-
teristics through passive measurements. In Proc.
IEEE INFOCOM, 2004.

[12] A. P. Jayasumana et al. Reorder density and
reorder buffer-occupancy density - metrics
for packet reordering measurements. IETF
draft, http://cnrl.colostate.edu/Reorder/draft-
jayasumana-reorder-density-06.txt.

[13] M. Laor and L. Gendel. The effect of packet
reordering in a backbone link on application
throughput. IEEE Network, 16(5):28–36, 2002.

[14] A. Morton et al. Packet reordering met-
ric for ippm. IETF draft, available from
http://www.ietf.org/internet-drafts/draft-ietf-
ippm-reordering-09.txt. Accessed Sept. 2005.

[15] Z. Pawlak. Rough Sets. Kluwer, 1991.

[16] L. Peterson and B. S. Davie. Computer Net-
works. A Systems Approach. Morgan Kauffman,
San Francisco, CA, 2nd edition, 2000.

[17] N. M. Piratla et al. RD: A formal, comprehensive
metric for packet reordering. In Proc. IFIP Net-
working 2005, vol. 3462 of Lecture Notes in Com-
puter Science, pp. 78–89. Springer Verlag, 2005.

[18] N. M. Piratla et al. A comparative analysis
of packet reordering metrics. In Proc. COM-
SWARE’06.

[19] A. Rubinstein. Similarity and decision-making un-
der risk. J. Economic Theory, 46:145–153, 1988.

[20] D. Sankoff and J. Kruskal. Time Warps, String
Edits, and Macromolecules: The Theory and
Practice of Sequence Comparison. Addison Wes-
ley, 1983.

[21] L. Zadeh. Similarity relations and fuzzy set order-
ing. Information Sciences, 3:177–200, 1970.

0-7695-2622-5/06/$20.00 (c) 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

