
A Bayesian Cognitive Approach to Quantifying
Software Exploitability Based on Reachability Testing

(Extended Version)

Guanhua Yan1, Yunus Kucuk12, Max Slocum1, and David C. Last3

1 Department of Computer Science, Binghamton University, State University of New York
{ghyan,ykucuk1,mslocum1}@binghamton.edu

2 Defense Sciences Institute, Turkish Military Academy, Turkey
ykucuk@kho.edu.tr

3 Resilient Synchronized Systems Branch, Air Force Research Laboratory, USA
david.last.1@us.af.mil

Abstract. Computer hackers or their malware surrogates constantly look for
software vulnerabilities in the cyberspace to perform various online crimes, such
as identity theft, cyber espionage, and denial of service attacks. It is thus crucial
to assess accurately the likelihood that a software can be exploited before it is
put into practical use. In this work, we propose a cognitive framework that uses
Bayesian reasoning as its first principle to quantify software exploitability. Using
the Bayes’ rule, our framework combines in an organic manner the evaluator’s
prior beliefs with her empirical observations from software tests that check if the
security-critical components of a software are reachable from its attack surface.
We rigorously analyze this framework as a system of nonlinear equations, and
henceforth perform extensive numerical simulations to gain insights into issues
such as convergence of parameter estimation and the effects of the evaluator’s
cognitive characteristics.

1 Introduction

Software flaws are difficult, if not impossible, to avoid, either due to the limited cog-
nitive capacities of the programmers to test all corner cases, or the fundamental weak-
nesses of the programming languages used. Software defects enable cybercriminals or
their malware surrogates to perform a wide spectrum of malicious online activities,
such as identity theft, cyber espionage, and denial of service attacks. As evidenced by
numerous hacks that have occurred in the past, vulnerable software can result in sig-
nificant economic losses and reputation damages. For instance, it was estimated that
the revelation of the Shellshock vulnerability had led to one billion attacks [2], and an
announced software vulnerability costs a firm an average loss of 0.5 percent value in
stock price [33].

When a software system is put into practical use, its operator is concerned with
the likelihood that it can be exploited maliciously. For security-critical applications,
a software system can only be trusted for operational use if its operator’s confidence
level in its unexploitability exceeds a certain threshold, say, 99%. The challenge, then,

is: how can we derive such confidence levels to assist human operators with decision-
making? This problem is largely unexplored in the literature. There are some publicly
available sources to find known software vulnerabilities, such as National Vulnera-
bility Database [4], Exploit Database [5], and OSVDB (Open Sourced Vulnerability
Database) [6]. However, these sources contain only known vulnerabilities in typically
popular software, and thus cannot be solely relied upon to evaluate the security of a
software system. Moreover, containing vulnerabilities does not necessarily mean that
the software is exploitable in a certain running environment, as a successful software
exploitation requires the existence of a realizable execution path from the attack surface
of the program to its vulnerable software components [24, 27, 35].

Quantifiable measures of software exploitability can guide human operators in de-
ciding whether it is sufficiently secure to put a software into operation. The Com-
mon Vulnerability Scoring System (CVSS) [28] is widely used in the industry, but
its design is more of an art rather than a science. For example, it assesses the se-
curity of a vulnerable software with an overly simplistic equation: BaseScore =
1.176× (3I/5 + 2E/5− 3/2), where impact factor I and exploitability factor E take
circumstance-specific values. Although this equation has surely been thoroughly medi-
tated, there lack rigorous scientific arguments on why its parameters are so chosen.

In this work, we model the evaluation of software exploitability as a dynamic pro-
cess done by an evaluator, who has her prior belief in software exploitability based upon
some of its static features (e.g., its size, type, or some other metrics). Henceforth, she
uses reachability testing tools to check whether there exists an injection vector from
its attack surface that enables reachability of its security-critical components, such as a
system call capable of privilege escalation or a potential buffer overflow vulnerability.
The exploitability of the software is then characterized as the evaluator’s subjective be-
lief dynamically adjusted with the reachability testing results presented to her. During
this process, the evaluator also continuously updates her perceptions about the perfor-
mances of the tools used.

To model human cognition, we adopt a first-principled approach that integrates an
evaluator’s prior belief in software exploitability with her empirical observations from
the reachability tests in a Bayesian manner. Bayesian reasoning is performed in a prob-
abilistic paradigm, where given a hypothesis H and the evidence E, the posterior prob-
ability, or the probability of hypothesis H after seeing evidence E is calculated based
upon the Bayes’ rule: P{H|E} = P{E|H}·P{H}

P{E} . Although there lacks evidence that
humans reason in a Bayesian way at the neural level, psychological experiments show
that humans behave consistently with the model at a functional level in a number of
scenarios [17, 20, 29].

In a nutshell, our contributions can be summarized as follows:

– We propose a Bayesian cognitive framework that quantifies software exploitability
as the evaluator’s belief in whether an injection vector can be found from the attack
surface of a software to enable the execution of a sensitive code block (e.g., one
invoking a system call that leads to privilege escalation). The evaluator’s belief is
dynamically updated with the Bayes’ rule, which uses the past performances of the
reachability testing tools to calculate the likelihood functions for each hypothesis.

– We represent the Bayesian cognitive framework for quantifying software exploitabil-
ity with a system of nonlinear equations, and rigorously analyze its time and space
complexity, its sensitivity to the order of reachability tests, and the conditions under
which the evaluator’s belief in software exploitability improves or deteriorates.

– We use numerical simulations to analyze the Bayesian cognitive framework, includ-
ing the convergence of the evaluator’s beliefs, convergence of estimated parameters,
effects of the evaluator’s prior beliefs, effects of the ordering of software reachabil-
ity tests, effects of dependency among different reachability testing tools, effects of
short memory in parameter estimation, and effects of lazy evaluation. Our analysis
shows that the nature of nonlinear equations leads to interesting observations that
are not so intuitive.

From a high level, our work suggests a continuous and adaptive methodology for
quantifiable cybersecurity, which is hard for an environment like the Internet that is
open, dynamic and adversarial [34]. Although put in the context of software exploitabil-
ity evaluation, the proposed Bayesian cognitive framework can be applied to various
cybersecurity problems, such as malware detection and anomaly detection. Moreover,
such cognitive frameworks allow us to further design autonomous systems that mimic
the decision-making process of human defenders, thus preventing human errors.

2 Related Work

A large body of research has been dedicated to identifying security-sensitive software
bugs in an efficient manner. One of the most widely used methods for finding software
bugs in practice is black-box fuzzing, which generates malformed inputs in a brute-
force manner to force crashes. The key challenge facing black-box fuzzing is lack of
efficiency when dealing with large software systems, and there have been some recent
works aimed at improving its performance [30, 16]. In contrast to black-box fuzzing,
white-box fuzzing takes advantage of knowledge of the internal structures of the pro-
gram to find software bugs. The key enabling technology behind effective white-box
fuzzing is the so-called concolic execution or dynamic symbolic execution [13], which
allows systematic exploration of program branches for whole-program security testing.
Notable white-box fuzzing tools include EXE [12], KLEE [11] and SAGE [19, 18]. One
step further, a few tools have been developed to automate the process of finding software
exploits, such as APEG [10], AEG [8] and MAYHEM [15]. Many aforementioned tools
can be used, directly or indirectly, for software reachability testing. Black-box fuzzing
tools, for instance, can be used to test software reachability in an opportunistic manner.
Symbolic or concolic execution tools can be adapted to find satisfiable paths reaching
security-critical code blocks of interest.

Our work on quantifying software exploitability intersects with existing efforts on
security metrics, which are valuable to strategic support, quality assurance, and tactical
oversight in cyber security operations [22]. Although security metrics are important for
cyber security to progress as a scientific field [25], it is hard to develop practically useful
security metrics due to the dynamic and adversarial nature of the cyberspace [9, 22, 34].
As desirable properties of security metrics include objectivity and repeatability, soft-
ware exploitability quantified by our proposed scheme does not qualify as a security

metric. However, useful metrics indicative of software exploitability can be incorpo-
rated into our cognitive framework as the evaluator’s prior belief. As the landscape of
software exploitation is changing over time [26], these metrics may gradually lose their
predictive power. Our cognitive framework allows the evaluator to adjust her beliefs
with observations from new exploitation tests.

Our work finds inspirations from recent advances in modeling human cognition. A
number of psychological experiments have shown that humans tend to behave consis-
tently with the Bayesian cognitive model at the functional level [17, 20, 29]. Cognition-
inspired methods have found a few applications in cyber security, such as malware fam-
ily identification [23] and cyber-attack analysis [36]. Such cognition-based methods can
be used in autonomous cyber defense systems to mimic the decision-making process of
human operators and prevent human mistakes or their intrinsic cognitive biases [32].

3 Software Exploitation Based on Reachability Testing
An experienced hacker would narrow down the attack target to a few security-sensitive
code blocks, a technique called red pointing [21]. Software exploitation can be char-
acterized as the conjunction of both the existence of a bug and the possibility of the
attacker hijacking the control flow [8]. With a software bug as the target, if there exists
an execution path from the attack surface (which is controllable by the attacker) to in-
voke the software bug, the bug becomes exploitable. Consider the following C program
with a buffer overflow bug:

#include <stdio.h>
#include <fcntl.h>
void innocent() { return; }
void vulnerable() { char buf[8]; gets(buf); }
int main(int argc, char** argv) {

if (argc != 2) { return -1; }
int fn = open(argv[1], O_RDONLY);
char c, d = 0;
int i;
for (i = 0; i < 10; i++) {

if(read(fn, &c, 1) == 1) d = dˆc; else break;
}
if (d == 0) vulnerable(); else innocent();
close(fn);

}

To reach vulnerable() with a buffer overflow bug, we need to find an input file
the XOR of whose first 10 bytes is 0. We tried the following on a commodity PC:

Black-box fuzzing: A black-box fuzzer randomly generates input files to force pro-
gram crashes. We add assert(0); at the beginning of function vulnerable()
to cause a crash when it is called, and then use BFF [14] to fuzz against the program.
Using a single seed file of size 1,805 bytes, BFF can find the first crash within a second.

Symbolic execution: Symbolic execution does not need to execute the program
concretely. Rather, it relies upon symbolic evaluation to find an input that causes a part
of the program to be executed. We use the Z3 tool developed by Microsoft Research [31]

to find a satisfiable condition that enables the execution of function vulnerable().
As Z3 does not support the char type explicitly, we use bit-vectors of size 8 (in
Z3 parlance, they are defined with: Z3 sort bv sort = Z3 mk bv sort(ctx,
8) where ctx is a Z3 context) to perform bit-wise XOR operations. With 10 symbolic
variables of type bv sort defined, Z3 can find within a few milliseconds their assign-
ments such that the condition for entering function vulnerable() is satisfied.

Concolic execution: Concolic execution combines symbolic execution with con-
crete execution to speed up code exploration. We first try the CREST tool [1] to find
solutions to the 10 symbolic variables of type CREST char, each corresponding to a
byte read from a file. However, as CREST uses Yices 1 as its SMT solver for satisfi-
ability of formulas [7], which does not support bit-vector operations, it does not find
a condition that leads to the execution of function vulnerable(). Another popular
concolic execution tool is KLEE [11], which works on object files in the LLVM bit-
code format and uses the STP solver supporting bit-vectors and arrays [3]. Similarly,
by defining 10 symbolic variables using klee make symbolic, each corresponding
to a byte read from the input file, we are able to use KLEE to find quickly their proper
assignments that enable the execution of function vulnerable().

For a large and complex software, some of the tools may not find exploits enabling
reachability of its security-critical components. A security evaluator may need multiple
tools for a software exploitation task, and intuitively, her memory of the past perfor-
mances of these tools affects her evaluation of software exploitability.

4 A Bayesian Cognitive Framework
Motivated by the example in the previous section, we model software exploitation as
a process of finding a proper injection vector in the attack surface of a software that
enables its execution to reach one of its security-critical code blocks, using some reach-
ability testing tools. Our goal is to quantify software exploitability as the likelihood
that, given a security-critical target in the software, there exists such an injection vector
that successfully leads to its execution. We assume that the evaluation of software ex-
ploitability is performed by an evaluator. Intuitively, if she has already found such an in-
jection vector, her perception of the exploitability of this software is certain. Otherwise,
she is uncertain about the exploitability of the software: there may exist an execution
path that reaches the target from the attack surface but she just cannot find it at the mo-
ment. The evaluator may proceed to use some other tools to check the existence of such
an injection vector, and with more failed attempts, she should be increasingly confident
in the notion that the security-critical target of the software system is not exploitable.

Some notations are needed to describe the probabilistic model characterizing this
cognitive process. We define the software-target pair (s, x) as an exploitation task,
whose goal is to find whether target x is reachable in software s from its attack sur-
face. We consider a null hypothesis H0(s, x), which simply states that target x is un-
reachable in software s from its attack surface. Hence, the unexploitability of target
x in software s is quantified by the probability with which the null hypothesis is true,
i.e., P{H0(s, x) is true}, or simply P{H0(s, x)}. For ease of presentation, we let the
null hypothesis H0(s, x) be the evaluator’s belief in the unreachability of target x in
software s and P{H0(s, x)} her belief level.

Available to the evaluator is also a list of reachability testing tools, as discussed
in Section 3, which can be used to find an injection vector from a software’s attack
surface to reach a given security-critical target in a software. Let Z denote such a list of
tools, each of which works as follows: given target x in software s, tool z ∈ Z either
outputs that x is not reachable in s from its attack surface, or an injection vector that it
detects to be able to reach target x. Given an injection vector v by a tool, the evaluator
can execute the software with the injection vector v to validate whether target x can be
reached. Like any other security detector, a reachability testing tool may wrongly report
that target x is unreachable in software s, or misdetect a wrong injection vector as being
able to reach target x.

Table 1. Tool parameters (IV: injection vector)

Truth / Result Unreachable Reachable, Reachable,
correct IV wrong IV

Unreachable α 0 1− α
Reachable β γ 1− β − γ

We thus model the performance of a reachability testing tool as probabilities in Ta-
ble 1. For each reachability testing tool, three parameters, α, β, and γ, are used to model
its performance: (1) The truth is that the target is unreachable. A binomial process is
used to characterize the output of the tool, which returns a result of being unreachable
with probability α, and a result of being reachable with probability 1−α. (2) The truth
is that the target is reachable. The tool behaves as a multinomial process: it classifies
the target as being unreachable with probability β, as being reachable with a correct in-
jection vector with probability γ, and as being reachable with a wrong injection vector
with probability 1− β − γ.

The rationale behind choosing the binomial and multinomial processes in our model
is two-fold: they not only lead to a parsimonious model of human recognition of tool
performances (by simple counting), but also provide algebraic convenience as their
conjugate priors are well known. In a more fine-grained model, for the same tool z, the
evaluator may associate different parameter values with some properties of the software
(e.g., its size, type, or some other metrics). To deal with such subtleties, for each tool
z, the evaluator can associate different values of parameters α(z,k), β(z,k), and γ(z,k)

when it is applied on software of type k. Moreover, to reflect the dynamics of these
parameters, we use subscript t to indicate their values at time t. For example, α(z,k[s])

t

gives the value of parameter α at time t when tool z is used on the type of software k[s].
Next we discuss how the evaluator, after using tool z for a new reachability test,

updates her posterior belief in the reachability of target x in software s. Let the new
observation made at time t be Ot, which falls into one of the following types:

– Type E0: The tool detects target x to be unreachable in software s.
– Type E1: The tool detects that target x is reachable in software s, and also returns

an injection vector v, which is verified to be true by the evaluator.
– Type E2: The tool detects that the target x is reachable in software s, and also

returns an injection vector v, which is verified to be false by the evaluator.

After performing a reachability test with tool z and observing Ot from the test at
time t, her belief level in the unreachability of target x in software s is updated to be
the posterior probability P{H0(s, x)|Ot} according to Eqs. (1-3) in Figure 1.

P{H0(s, x)|Ot = E0} =
P{H0(s, x)} · α(z,k[s])

t

P{H0(s, x)} · α(z,k[s])
t + (1− P{H0(s, x)}) · β(z,k[s])

t

(1)

P{H0(s, x)|Ot = E1} = 0 (2)

P{H0(s, x)|Ot = E2} = P{H0(s,x)}·(1−α
(z,k[s])
t)

P{H0(s,x)}·(1−α
(z,k[s])
t)+(1−P{H0(s,x)})·(1−β

(z,k[s])
t −γ(z,k[s])

t)
(3)

Fig. 1. Calculation of posterior probability after seeing the result from a reachability test

The calculation of Eqs. (1-3) is based upon the Bayes’ rule and the performance
of the reachability testing tool in Table 1. In Eq. (1), the observation is that the tool
detects the target to be unreachable. As the hypothesis H0(s, x) states that the target is
unreachable, the probability that the observation results from the hypothesis being true
is α(z,k[s])

t . If the opposite hypothesis holds (the target is reachable), the observation
occurs with probability β(z,k[s])

t . Hence, Eq. (1) naturally follows based on the Bayes’
rule. Moreover, when it is observed that the tool classifies the target to be reachable
with a correct injection vector, it is certain that hypothesis H0(s, x) must not hold any
more. This can be confirmed by Eq. (2) as P{E1|H0(s, x)} equals 0. Similarly, we can
reason about the case when the tool classifies the target as being reachable but provides
a wrong injection vector, and derive Eq. (3).

5 Parameter updating
In this section, we discuss how the evaluator dynamically updates the values of the
performance parameters (i.e., α, β, and γ) associated with each reachability testing tool
based on the Bayes’ rule. To evaluate the performance of a reachability testing tool, it
would help if the ground truth is known to the evaluator. For example, if it is known that
target x is surely reachable from the attack surface of software s, any tool that reports
it being unreachable has a false negative error. One important observation, however, is
that if it is true that target x is unreachable in software s, it may never be verifiable by
the evaluator for a large software, although the opposite is not true: as long as a single
injection vector is found to reach target x, it is certain that the target must be reachable.
Hence, when no verifiable injection vector has been found yet to reach target x from the
attack surface of software s, a “relative fact” reflecting whether a target has been found
reachable is used to replace the truth in Table 1. Therefore, for each reachability testing
tool z ∈ Z used on software of type k, the evaluator keeps a performance counting
table, or PCT (z,k), which contains five performance counters c(z,k)0 , ..., c(z,k)4 as in
Table 2. When the context is clear, we drop the superscript (z, k).

The evaluator performs a sequence of software reachability tests,Q = {q0, q1, ..., qt, ...},
where in qt = (st, xt, zt, ot), tool zt is used to test the reachability of xt in software

Table 2. The performance counting table for tool z used on software of type k, i.e., PCT (z,k).

“Relative fact” / Result Unreachable Reachable, Reachable,
correct IV wrong IV

Unreachable c
(z,k)
0 N/A c

(z,k)
1

Reachable c
(z,k)
2 c

(z,k)
3 c

(z,k)
4

st at time step t with observed test result ot. For ease of explanation, we further define
subsequences of software exploitation tests, each corresponding to a specific software
exploitation task (s, x):

Qs,x = {qt | st = s ∧ xt = x}, (4)

and the first element in Qs,x is given as Qs,x[0].
For exploitation task (s, x), parameters are updated based upon its mode m(s, x):

pre-exploitation and post-exploitation. In the pre-exploitation mode, the evaluator has
not found any injection vector that enables reachability of target x in software s, and
by contrast, in the post-exploitation mode, such an injection vector has already been
found. Initially, for every software exploitation task (s, x) its mode m(s, x) is set to be
pre-exploitation.

Consider the software reachability tests inQ sequentially. Given a new test (s, x, z, o)
in Q, which corresponds to the i-th one in Qs,x (i.e., Qs,x[i] = (s, x, z, o)), the evalu-
ator uses the following rules to update the performance counters in table PCT (z,k[s]),
where k[s] is the type of software s:

– Rule I applies to the case when o = E0. If m(s, x) is pre-exploitation, c(z,k[s])0

increases by 1; otherwise, c(z,k[s])2 increases by 1.
– Rule II applies to the case when o = E1. Ifm(s, x) is post-exploitation, c(z,k[s])3 in-

creases by 1. Otherwise, if m(s, x) is pre-exploitation, the evaluator has just found
an injection vector to reach target x in software s. After increasing c(z,k[s])3 by 1,
mode m(s, x) is changed from pre-exploitation to post-exploitation. During this
change of mode, the evaluator also needs to update the performance counters for
those tools that have been previously used to test the software, as the “relative fact”
that has been used to update these counters previously turns out to be false. Hence,
for every j with 0 ≤ j < i, supposing that Qs,x[j] = (s, x, z′, o′), the following
revision steps are applied: (1) if o′ = E0, then decrease c(z

′,k[s])
0 by 1 and increase

c
(z′,k[s])
2 by 1; (2) if o′ = E2, then decrease c(z

′,k[s])
1 by 1 and increase c(z

′,k[s])
4

by 1. Note that it is impossible to have o′ = E1 (otherwise, the mode must have
already been changed to post-exploitation after o′ is seen). Hence, the evaluator
needs to revise the performance counts based on the newly found truth that target
x is reachable from the attack surface of software s.

– Rule III applies to the case when o = E2. If m(s, x) is pre-exploitation, c(z,k[s])1

increases by 1; otherwise, c(z,k[s])4 increases by 1.

The performance counters in table PCT (z,k) can be used to estimate the parame-
ters α(z,k)

t , β(z,k)
t , and γ(z,k)t at the current time t. We let the values of the performance

counters in table PCT (z,k) at time t be c(z,k)i (t), for i = 0, ..., 4. Using a frequentist’s
view, parameters α(z,k)

t , β(z,k)
t , and γ(z,k)t could be estimated as their relative frequen-

cies. When few tests have been done, however, the estimated values of α(z,k)
t , β(z,k)

t ,
and γ(z,k)t as derived may not be sufficiently reliable to characterize the performance
of the reachability testing tool. This resembles the scenario that a person, whose prior
belief is that any coin is fair, would not believe that the coin will always produce head
even after seeing three heads in a row.

Our model, again, takes the evaluator’s prior belief into account when estimating
these parameters. After tool z is used to test whether target x is reachable in software
s, which is of type k, if m(s, x) is still pre-exploitation, the truth may not be known to
the evaluator. Without knowing the truth, the evaluator relies on the “relative fact” that
target x is not reachable from the attack surface of software s. Therefore, depending on
the current mode of exploitation task (s, x), she updates the parameters as follows:

– If m(s, x) is pre-exploitation, tool z works as a Binomial process where it returns
a result of being unreachable with probability α(z,k). As the conjugate prior for
a Binomial process is a Beta distribution, we assume that the prior for parameter
α(z,k) takes aBeta(d(z,k)0 +1, d

(z,k)
1 +1) distribution. We use the MAP (Maximum

A Posteriori) estimate to update α(z,k):

α
(z,k)
t =

d
(z,k)
0 +c

(z,k)
0 (t)

d
(z,k)
0 +c

(z,k)
0 (t)+d

(z,k)
1 +c

(z,k)
1 (t)

(5)

– If m(s, x) is post-exploitation, tool z behaves as a multinomial process where
it returns being unreachable with probability β(z,k), being reachable with a cor-
rect injection vector γ(z,k), and being reachable with a wrong injection vector
1 − β(z,k) − γ(z,k). Similarly, as the conjugate prior for a multinomial process
is the Dirichlet distribution, we assume that the prior for parameter (β(z,k), γ(z,k))

follows a Dirichlet distribution Dir(d(z,k)2 +1, d
(z,k)
3 +1, d

(z,k)
4 +1). We again use

the MAP estimate to update β(z,k) and γ(z,k):

β
(z,k)
t =

d
(z,k)
2 +c

(z,k)
2 (t)∑4

i=2 d
(z,k)
i +

∑4
i=2 c

(z,k)
i (t)

(6)

γ
(z,k)
t =

d
(z,k)
3 +c

(z,k)
3 (t)∑4

i=2 d
(z,k)
i +

∑4
i=2 c

(z,k)
i (t)

(7)

The evaluator assumes target x to be unreachable from the attack surface of software
s if mode m(s, x) is pre-exploitation, and this assumption is used as the relative fact
to update the performance counters in related PCTs. However, when a later test finds
an exploitation for the task (s, x), which invalidates the assumption, the parameters of
those tools whose values have been previously estimated based upon this relative fact
should be updated to reflect this change of mode. Mechanically, however, the evaluator
can simply maintain PCTs like Table 2, and whenever it is necessary to use parameters
α, β, and γ in Equations (1-3), the tables are used to calculate their latest values based
on Equations (5-7).

6 Model Analysis
Space complexity. The space used in the cognitive model includes those PCTs that the
evaluator uses to keep the aggregate results from previous software reachability tests.

It is noted that the prior information for parameter updating (i.e., d0-d4) can be put in
the tables as initial values; hence, each entry in the table represents c(z,k)i (t) + d

(z,k)
i

where 0 ≤ i ≤ 4. Supposing that there are |Z| reachability testing tools and |K|
software types, as each PCT contains 5 entries (see Table 2), it requires 5|Z||K| to store
the tables. Clearly, as the space is linear with |K|, more fine-grained categorization of
software would bring more cognitive burden to the evaluator unless auxiliary methods
are used to help remember these tables.

For every exploitation task (s, x), it is necessary to remember the evaluator’s belief
level P{H0(s, x)} and its current mode m(s, x). When an exploitation task is in the
pre-exploitation mode, the evaluator also needs to remember the tools that have been
previously used for the task, so if later an exploit is found, the evaluator can take the
revision steps to correct the performance counters associated with these tools (Rule II
of parameter updating). Therefore, if no specific ordering scheme on the exploitation
tools is used, the amount of tests that the evaluator has to remember may be large, and
in the worse case, it is |Q|.

To alleviate her cognitive burden, the evaluator may use auxiliary devices (e.g.,
papers) for remembering the information needed in the model, or simplify the model.
For example, all the tools are numbered, and for every exploitation task, these tools are
always used in an increasing order. Rules can be used to check if a tool is applicable
for an exploitation task. Hence, when the mode of an exploitation task changes from
pre-exploitation to post-exploitation, the evaluator can simply revise the PCTs of those
applicable tools that are numbered lower than the one finding the exploitation.

Time complexity. Given the input Q, it is assumed that executing each of Equa-
tions (1-3) takes a constant amount of time. For an exploitation task (s, x), changing
its mode from pre-exploitation to post-exploitation requires updating the performance
counters of those tools that have previously been used on them. However, for each
reachability test in Q, revision of its result occurs at most once. Therefore, the time
complexity of the model is O(|Q|).

We can thus establish the following theorem regarding the complexity of the model:

Theorem 1. The space and time complexity of the cognitive model is O(|Z||K|+ n+
|Q|) and O(|Q|), respectively, where |Z| is the number of reachability testing tools,
|K| is the number of software types, n is the number of exploitation tasks, and |Q| is
the total number of reachability tests done by the evaluator.

6.1 Order Sensitivity
Equations (1-3) and (5-7) form a complex nonlinear system, whose input is comprised
of sequence Q, the initial states of the PCTs for all tools in Z, and the prior values
of P{s, x} for every exploitation task (s, x). We say that the cognitive model is order
insensitive if no matter how we change the order of tests in Q, the following conditions
are satisfied after all tests: (1) the evaluator’s final belief level for every exploitation
task is the same, and (2) the states of all the PCTs are the same. It is noted that the
mode of each exploitation task must not change with the order of tests in Q: For any
exploitation task (s, x), if its mode is post-exploitation before tests in Q, its mode re-
mains the same after all tests in Q; otherwise, if there exists any test in Q for this task
that leads to observation E1, regardless of its order in Q, the mode of the task must

be changed to post-exploitation, or otherwise if no such test exists, its mode should be
pre-exploitation.

To understand under what circumstances the cognitive model is order insensitive,
we first start with a simple case where there are only two reachability tests in Q. We
can establish the following lemma (proof in Appendix A):

Lemma 1. For anyQ = [(s0, x0, z0, o0), (s1, x1, z1, o1)] andQ′ = [(s1, x1, z1, o1), (s0,
x0, z0, o0)], if (s0, x0) = (s1, x1) or z0 6= z1, the cognitive model is order insensitive.

Now we consider the general case of array Q which may have more than two tests.
According to Lemma 1, for any two consecutive reachability tests in a sequence, as long
as they do not use the same reachability testing tool on two different exploitation tasks,
we can swap their order. We call such a swapping of consecutive reachability tests a
safe swapping. Given a sequence of reachability tests in Q, we can freely perform safe
swappings on two consecutive tests without affecting the evaluator’s final beliefs. We
can thus establish the following theorem (proof in Appendix B):

Theorem 2. For any sequenceQ of software exploitation tests andQ′ one of its permu-
tations, assume that for every reachability testing tool, the relative order of reachability
tests using this tool is the same in Q and Q′. Then the evaluator’s final belief in every
exploitation task must be the same after finishing Q and Q′.

6.2 Exploitability Analysis

We now consider under what conditions a new reachability test, (s, x, z, o), improves
the posterior probability P{H0(s, x)}. We consider the following cases. Without loss
of generality, we drop the subscripts of the parameters.

Observation o = E0: Given Eq. (1), in order to have P{H0(s, x) | Ot = E0} >
P{H0(s, x)}, we must have both α > β and 0 < P{H0(s, x)} < 1. If P{H0(s, x)} =
1, the evaluator is certain that the target is not reachable a priori and thus any new evi-
dence does not improve the posterior probability. On the other hand, if P{H0(s, x)} =
0, the Bayes’ rule tells us that the posterior probability is also 0. With α > β, it means
that an unreachable target is detected to be unreachable with a higher probability than
a reachable target being mistakenly classified as unreachable. Therefore, when a new
test shows that the target is unreachable, it is better to use the former as the explanation
than the latter, which suggests that the posterior probability P{H0(s, x)|E0} becomes
higher after the test.

Observation o = E1: Given Eq. (2), if the mode is still pre-exploitation, then seeing
the test result lowers the evaluator’s belief; otherwise, her belief level remains to be 0.

Observation o = E2: Given Eq. (1), in order to have P{H0(s, x) | Ot = E2} >
P{H0(s, x)}, we must have: α < β+γ and 0 < P{H0(s, x)} < 1. The same argument
holds when P{H0(s, x)} = 0 or 1 as in the case when o = E0. With α < β + γ or
equivalently 1−α > 1− (β+γ), it is more likely that an unreachable target is detected
by the tool to be reachable with a wrong injection vector than a reachable target being
detected as reachable but with a wrong input vector; hence, given the same observation
E2, it is better to use the former than the latter to explain the observation.

The above analysis leads to the following theorem:

Table 3. Parameter settings in baseline cases

Parameter Value Parameter Value
Number of tools 100 Initial counts in PCTs All 1’s

Number of software 100 Parameter α [0.2, 0.4, 0.6, 0.8]
Prior belief level 0.5 Parameters β, γ [0.1, 0.2, 0.3, 0.4, 0.5]

Parameter φ 0.3 Test ordering Order by software then tools

Theorem 3. For an exploitation task in a pre-exploitation mode, with a reachability
testing tool of parameters α, β, and γ for the type of software in the task, the test result
by this tool boosts the evaluator’s belief level if and only if the evaluator’s prior belief
is in (0, 1) and we have α > β if E0 is observed or α < β + γ if E2 is observed.

7 Numerical Results
We perform experiments that simulate the Bayesian cognitive model, a system of non-
linear equations. The baseline configuration of an experiment is shown in Table 3. The
reachability testing tools are those discussed in Section 3. As a reachability testing soft-
ware may behave differently under different configurations, they are treated as different
tools in our experiments. Parameter φ denotes the true probability that an exploitation
task is achievable. For the test ordering, the tests are first ordered by the software to be
exploited and then for each software, it is tested with the tools in the same order. The
experiments mentioned in this section use parameter settings in Table 3 unless stated
otherwise. We assume that the tests performed by all the tools are independent. For each
tool, as the initial counts in its PCTs are all 1’s, the evaluator’s prior estimations of α,
β, and γ are 1/2, 1/3, and 1/3, respectively.

Convergence of estimated parameters α, β, γ. In this set of experiments, we study
how the estimated parameters converge over time. We consider 10 reachability testing
tools, which are used to test 10,000 software. For each tool, its parameters α, β, and γ
have true values, 0.75, 0.1, and 0.5, respectively. The others are the same as in Table 3.

Figure 2 shows the convergence of the parameters estimated by the evaluator. We
observe that the estimation of each parameter eventually converges towards its true
value, but the convergence occurs slowly. For instance, even after performing reacha-
bility tests for 1000 software (i.e., after time step 10000 as each software uses 10 time
steps, one by each tool), the estimated value of each parameter is still not very sta-
ble. Also, although the 10 tools have the same true values for their parameters, there is
significant variation among these tools after 10000 reachability tests.

Convergence of belief levels. In this set of experiments, we study the convergence
of the evaluator’s belief levels. Figure 3 presents, for each combination of parameter
settings, the average number of tests the evaluator needs to reach a belief level of 99%
for a truly unexploitable software (left), along with the average number of tests to find
an exploit for a truly exploitable software (right).

We first examine the results for truly unexploitable software. From Figure 3(1), we
observe that for a truly unexploitable software, the average number of tests required to
reach a belief level of 99% ranges from 3.6 to 27.2, showing a wide variation across
different combinations of parameter settings. We also observe that given the same pa-
rameters α and β, increasing γ reduces the number of tests needed. This is because

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0

 1
0

0
0

0

 2
0

0
0

0

 3
0

0
0

0

 4
0

0
0

0

 5
0

0
0

0

 6
0

0
0

0

 7
0

0
0

0

 8
0

0
0

0

 9
0

0
0

0

 1
0

0
0

0
0

P
a

ra
m

e
te

r
α

Time step

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0

 1
0

0
0

0

 2
0

0
0

0

 3
0

0
0

0

 4
0

0
0

0

 5
0

0
0

0

 6
0

0
0

0

 7
0

0
0

0

 8
0

0
0

0

 9
0

0
0

0

 1
0

0
0

0
0

P
a

ra
m

e
te

r
β

Time step

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0

 1
0

0
0

0

 2
0

0
0

0

 3
0

0
0

0

 4
0

0
0

0

 5
0

0
0

0

 6
0

0
0

0

 7
0

0
0

0

 8
0

0
0

0

 9
0

0
0

0

 1
0

0
0

0
0

P
a

ra
m

e
te

r
α

Time step

(1) Parameter α (2) Parameter β (3) Parameter γ

Fig. 2. Convergence of parameters α, β, and γ. The true values of these parameters are 0.75,
0.1, and 0.5, respectively. In each time step, a reachability test is performed. The ranges of these
estimated parameters among the 10 tools in the last time step are 0.0152, 0.0248, and 0.0292,
which are 2.0%, 24.8%, and 5.8% of their true values, respectively.

α = 0.2

 0.1 0.2 0.3 0.4 0.5

β

 0.1

 0.2

 0.3

 0.4

 0.5

γ

 0

 5

 10

 15

 20

 25

 30
α = 0.4

 0.1 0.2 0.3 0.4 0.5

β

 0.1

 0.2

 0.3

 0.4

 0.5

γ

 0

 5

 10

 15

 20

 25

 30

α = 0.6

 0.1 0.2 0.3 0.4 0.5

β

 0.1

 0.2

 0.3

 0.4

 0.5

γ

 0

 5

 10

 15

 20

 25

 30
α = 0.8

 0.1 0.2 0.3 0.4 0.5

β

 0.1

 0.2

 0.3

 0.4

 0.5

γ

 0

 5

 10

 15

 20

 25

 30

α = 0.2

 0.1 0.2 0.3 0.4 0.5

β

 0.1

 0.2

 0.3

 0.4

 0.5

γ
 0

 2

 4

 6

 8

 10

 12
α = 0.4

 0.1 0.2 0.3 0.4 0.5

β

 0.1

 0.2

 0.3

 0.4

 0.5

γ

 0

 2

 4

 6

 8

 10

 12

α = 0.6

 0.1 0.2 0.3 0.4 0.5

β

 0.1

 0.2

 0.3

 0.4

 0.5

γ

 0

 2

 4

 6

 8

 10

 12
α = 0.8

 0.1 0.2 0.3 0.4 0.5

β

 0.1

 0.2

 0.3

 0.4

 0.5

γ

 0

 2

 4

 6

 8

 10

 12

(1) Left case: unexploitable software (2) Right case: exploitable software

Fig. 3. Convergence of belief levels. The left case gives the average number of tests before the
evaluator’s belief level reaches 99% for a truly unexplotable software, and the right one the aver-
age number of tests before the evaluator’s belief level reaches 0% for a truly exploitable software.

that the evaluator’s belief level is affected by γ only through Eq. (3), where a higher γ
boosts her belief level. The observation also agrees well with Theorem 3,

The effects of parameter β, however, are not as straightforward with the same α and
γ. We observe that when α is small, a higher β reduces the number of tests required,
but when α is large, increasing β would also increase the number of tests. This can
be explained as follows. Note that both observations E0 and E2 allow β to affect the
evaluator’s belief. When α is higher, the number of observations of type E0 increases,
and the importance of Eq. (1) becomes higher, where a higher β decreases the evalu-
ator’s belief level; by contrast, when α is smaller, the number of observations of type
E2 increases, which increases the importance of Eq. (3), where a higher β increases the
evaluator’s belief level.

We next study the results for truly exploitable software. From Figure 3(2), we ob-
serve that the range of tests required for the subject to find a successful exploit is from
1.9 to 11.0. The dominating factor is γ, where a higher γ reduces the number of tests
needed. This agrees well with our intuition that with tools that are more capable of
finding exploits, the evaluator needs fewer tests to find exploits.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
es

ts
 to

 r
ea

ch
 b

el
ie

f o
f 9

9%

 fo
r

un
ex

pl
oi

ta
bl

e
so

ftw
ar

e

Prior belief

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
es

ts
 to

 fi
nd

 e
xp

lo
ita

tio
n

 fo
r

ex
pl

oi
ta

bl
e

so
ftw

ar
e

Prior belief

(1) Unexploitable software (2) Exploitable software

Fig. 4. Effects of prior beliefs

Effects of prior beliefs. In this set of experiments, we vary the evaluator’s prior
belief levels to study their effects. Figure 4 presents the average number of tests for the
evaluator to reach a belief level of 99% for a truly unexploitable software and the aver-
age number of tests to find an exploit for a truly exploitable software. For the former,
it is observed that a higher prior belief reduces the number of tests to reach a certain
belief level. This is because regardless of the observation types (E0 or E2), the pos-
terior belief increases monotonically with the prior belief as seen in both Eqs. (1) and
(3). At one extreme, if the evaluator holds her prior belief firmly that the target must
be reachable, any observation that no exploitation has been found against the software
does not change that belief at all. That is to say, the number of tests for her to reach a
belief of 99% would be infinity. At the other extreme, if the evaluator is certain that the
software is not exploitable, obviously it does not need any test for her to reach a belief
level of at least 99%.

Furthermore, as reachability tests are performed independently, the average number
of tests to find an exploit for a truly exploitable software is always 1/γ, irrespective of
the evalutor’s prior belief level. This is confirmed by Figure 4(2), where the evaluator’s
belief level does not change with the average number of tests needed to find an exploit.

Effects of test ordering on belief convergence. We now study how changing the
order of software reachability tests affects the evaluator’s belief convergence. We per-
form three groups of experiments: In the first group (order-by-software-then-tools), the
tests are first ordered by the software to be exploited and then for each software, we test
it using 100 tools in the same order. In the second group (order-by-tools-then-software),
the tools are first ordered, and then for each tool, it is used to exploit the 100 software
consecutively in the same order. In the third group order-randomly, the reachability
tests are ordered randomly. Figure 5 again shows the average number of tests needed
to reach a belief level of 99% for a truly unexploitable software (left) and the average
number of tests to find an exploit for a truly exploitable software (right).

Interestingly, we observe that given a truly unexploitable software, on average it
takes more tests to reach a certain belief level in the group of order-by-software-then-
tools than those in the group of order-by-tools-then-software. The key difference is
illustrated by a simple example shown in Figure 5(3), where three tools, 1, 2, and 3,
are used to test software A, B, and C. The test results of applying tools 1, 2, and 3 on
software A are E0, E2, and E1, respectively. For ease of explanation, we assume that
before the tests, the performance counters c0, c1, c2, c3, and c4 of all the tools are all
initialized to be 1. If the tests are first ordered by software and then tools (the upper
row), then the first three tests are performed with the three tools on software A. After

 0

 5

 10

 15

 20

 25

 30

 35

 40

_ = 0.2 _ = 0.4 _ = 0.6 _ = 0.8

N
um

be
r o

f t
es

ts

Parameter setting

Software-then-tools
Tools-then-software

Randomly

 0

 3

 6

 9

 12

 15

_ = 0.2 _ = 0.4 _ = 0.6 _ = 0.8

N
um

be
r o

f t
es

ts

Parameter setting

Software-then-tools
Tools-then-software

Randomly

(1) Unexploitable software (2) Exploitable software (3) Illustration of effects of ordering

Fig. 5. Effects of test ordering on belief convergence. The left case gives the average number of
tests needed to reach a belief level of 99% for a truly unexploitable software, and the right one
the average number of tests to find an exploit for a truly exploitable software. For each α setting,
the tests are sorted by the increasing order of tuple (β, γ).

these three tests, because tool 3 finds an exploitable path, the performance counters of
the three tools are: (1,1,2,1,1), (1,1,1,1,2), and (1,1,1,2,1). These counts will be used
to update the posterior belief levels of software B and C later. By contrast, if the tests
are first ordered by tools and then software (the bottom row), after the first test (tool
1 used on software A), the performance counters of tool 1 becomes (2,1,1,1,1) and
these counts are used to update the posterior belief levels on software B and C in the
second and third tests. Similarly, after the fourth test (tool 2 used on software A), the
performance counters of tool 2 becomes (1,2,1,1,1), which will be used to update the
posterior beliefs on software B and C next.

Hence, when the tests are first ordered by software and then tools, if any tool can find
an exploitable path of software, this fact can change the mode of the software from pre-
exploitation to post-exploitation and the performance counters of the tools previously
used to test this software are updated to reflect this fact before they are used for testing
other software. In contrast, if the tests are first ordered by the tools and then software,
when the mode of the software is changed from pre-exploitation to post-exploitation,
the performance counters of the tools previously used to test this software were updated
assuming that the software is unexploitable, and then used to update the posterior beliefs
of those software that were tested with these tools before the mode change.

How does such a difference affect the evaluator’s posterior belief levels? For the
same observation E0, the performance counter c0 increases by 1 if the mode is pre-
exploitation, or c2 increases 1 if the mode is post-exploitation. As we have:

β
α = c2/(c2+c3+c4)

c0/(c0+c1)
= 1+c1/c0

1+(c3+c4)/c2
, (8)

post-exploitation updating increases β
α compared to pre-exploitation updating, which

further decreases the evaluator’s belief level after she sees E0 according to Eq. (1).
Similarly, for the same observationE2, the performance counter c1 increases by 1 in

the mode of pre-exploitation, or c4 increases 1 in the mode of post-exploitation. Since

1−β−γ
1−α = c4/(c2+c3+c4)

c1/(c0+c1)
= 1+c0/c1

1+(c2+c3)/c4
, (9)

post-exploitation updating increases 1−β−γ
1−α compared to pre-exploitation updating, which

further decreases the evaluator’s belief level after E2 is observed according to Eq. (3).

In summary, post-exploitation updating always reduces the evaluator’s belief level
for the software exploitation task at hand. This explains why more tests are needed for
the evaluator to reach a certain belief level when tests are first ordered by software and
then tools than when they are first ordered by the tools and then software, because the
former case has more post-exploitation updatings than the latter, as seen in Figure 5(1).
To confirm this, we did the experiments without any observations of type E1 and then
the differences in Figure 5(1) between order-by-software-then-tools and order-by-tools-
then-software disappeared. Hence, there seems to be an irony: postponing knowing that
some software are exploitable helps improve the evaluator’s belief level in the unex-
ploitability of the others!

In Figure 5(2), we present the average number of tests for the evaluator to find a
successful exploit for a truly exploitable software. It is seen that the effect of the order
of the reachability tests is little. This is because the test results by different reachability
testing tools are assumed to be independent. With a probability of γ for any tool to
find the proper injection vector for an exploitable software, the average number of tests
needed is thus 1/γ.

Effects of short memory. Recall that in the basic cognitive model, the evaluator has
to remember the test results for each software exploitation task that is still in the pre-
exploitation mode. According to Theorem 1, this may cause high cognitive burden to
the evaluator. Hence, in a new set of experiments, we study the effects of short memory,
with which the evaluator omits the revision steps in Rule II of parameter updating.

 0

 5

 10

 15

 20

 25

 30

 35

_ = 0.2 _ = 0.4 _ = 0.6 _ = 0.8

Te
sts

 to
 re

ac
h b

eli
ef

lev
el

of
99

%

 fo
r u

ne
xp

loi
tab

le
so

ftw
ar

e

Parameter setting

Full memory
Short memory

 0

 2

 4

 6

 8

 10

 12

 14

_ = 0.2 _ = 0.4 _ = 0.6 _ = 0.8

Te
sts

 to
 fin

d a
n e

xp
loi

tat
ion

 fo

r e
xp

loi
tab

le
so

ftw
ar

e

Parameter setting

Full memory
Short memory

(1) Left case (2) Right case

Fig. 6. Effects of short memory. The left case shows the average number of tests needed to reach
a belief level of 99% for an unexploitable software, and the right case the average number of tests
needed to find an exploit for an exploitable software.

Figure 6 shows the effects of having a short memory in parameter updating on the
evaluator’s belief convergence. We observe that due to a shorter memory, the evaluator
needs fewer tests for her to reach a belief level of 99% for a truly unexploitable software,
but the average number of tests for her to find a proper injection vector for a truly ex-
ploitable software changes little. Equations (8) and (9) can be used again to explain the
smaller number of tests needed to reach a certain belief level for a truly unexploitable
software. When the mode of an exploitation task changes from pre-exploitation to post-
exploitation, having a short memory has the following effect for any tool that is previ-
ously used for this task:

– If the observation in that test was E0, having a short memory omits moving 1 from
c0 to c2. This makes β/α smaller based on Eq. (8), which increases the evaluator’s

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

T
es

ts
 to

 r
ea

ch
 b

el
ie

f o
f 9

9%

 fo
r

un
ex

pl
oi

ta
bl

e
so

ftw
ar

e

Dependency

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

T
es

ts
 to

 fi
nd

 e
xp

lo
ita

tio
n

 fo
r

ex
pl

oi
ta

bl
e

so
ftw

ar
e

Dependency

(1) Left case (2) Right case

Fig. 7. Effects of dependency. The left case shows the average number of tests needed to reach a
belief level of 99% for a truly unexploitable software, and the right case the average number of
tests needed to find an exploit for a truly exploitable software.

belief level with a new observation E0 according to Eq. (1), but makes (1 − β −
γ)/(1 − α) larger due to Eq. (9), which decreases the evaluator’s belief level with
a new observation E2 according to Eq. (3).

– If E2 was observed in that test, having a short memory omits moving 1 from c1 to
c4. This makes β/α larger based on Eq. (8), which decreases the evaluator’s belief
level with a new observation E0 due to Eq. (1), but makes (1 − β − γ)/(1 − α)
smaller due to Eq. (9), which improves the evaluator’s belief level with observation
E2 due to Eq. (3).

At first glance, having a short memory has mixed effects on a latter observation, be it
E0 orE2. However, the key observation here is that the impact of having a short memory
on improving the evaluator’s belief level is positive if the same type of observation
is made later, and is negative otherwise. Hence, if the distribution of observations is
stationary over time as assumed in the experiments, the positive impact outweighs the
negative one. This resembles the positive externality in economics. Therefore, having
a short memory helps improve the convergence of the evaluator’s belief level when
the software is truly unexploitable. On the other hand, as having a short memory does
not affect the estimation of parameter γ, the average number of tests to find a proper
injection vector for a truly exploitable software, which is 1/γ, is not affected by a short
memory in parameter updating.

Effects of dependency. In another set of experiments, we evaluate effects of depen-
dency on the evaluator’s belief convergence. To model the dependency among the test
results, we use the first tool to test a software independently. For any other tool, with
probability p the test result is exactly the same as that done by the first one, and with
probability 1− p the result is independent of those from the other tests. We vary depen-
dence parameter p among 0.0, 0.2, and 0.4. Figure 7 gives how the average number of
tests needed to reach a belief level of 99% for a truly unexploitable software (left) and
the average number of tests needed to find an exploit for a truly exploitable software
(right) change with parameter p.

Clearly, when the test results by the tools become more similar, the evaluator needs
to perform more tests to reach the same belief level for a truly unexploitable software,
and also more tests to find an exploit for a truly exploitable software. To explain this
phenomenon, we examine the distribution of observations per software when α = 0.4,
β = 0.2, and γ = 0.2. As the parameter setting is the same for all the tools, we find
that the total number of observations of each type (E0, E1, or E2) over all software is

 0

 5

 10

 15

 20

 25

 30

 35

_ = 0.2 _ = 0.4 _ = 0.6 _ = 0.8

Te
st

s
to

 re
ac

h
be

lie
f o

f 9
9%

 fo

r u
ne

xp
lo

ita
bl

e
so

ftw
ar

e

Parameter setting

Full evaluation
Lazy evaluation

 0

 2

 4

 6

 8

 10

 12

 14

_ = 0.2 _ = 0.4 _ = 0.6 _ = 0.8

Te
st

s
to

 fi
nd

 a
n

ex
pl

oi
ta

tio
n

 fo
r e

xp
lo

ita
bl

e
so

ftw
ar

e

Parameter setting

Full evaluation
Lazy evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

Es
tim

at
ed

 `

Tool

Full evaluation
Lazy evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

Es
tim

at
ed

 a

Tool

Full evaluation
Lazy evaluation

(1) Left Case (2) Right Case (3) β (4) γ

Fig. 8. Comparison of lazy evaluation with full evaluation (1,2) and estimation of parameters β
and γ (3,4). In lazy evaluation, the evaluator stops testing a software after an exploit has been
found. In contrast, full evaluation tests a software with all the tools.

similar. However, when p = 0.4, the distribution of these observations per software is
more bursty than that when p = 0.0. That is to say, when p = 0.4, the variation of the
numbers of the same type of observations is higher across different software than that
when p = 0.0.

Different types of observations increases (or decreases) the evaluator’s posterior be-
lief to different degrees. For example, when β/α > (1−β−γ)/(1−α) or equivalently,
β > α(1 − γ), the evaluator’s posterior belief after seeing E0 is lower than that after
seeing E2. As the rule of updating posterior beliefs is nonlinear, the average number of
tests required to reach a certain belief level on a truly unexploitable software, or to find
an exploit for a truly exploitable software, is not the same if we skew the distribution of
different types of observations among different software even though the total numbers
of observations for the same types of observations remain the same among all software.

Effects of lazy evaluation. In this set of experiments, the reachability tests are first
ordered by software and then by tools. There are 100 tools and 100 software to be
exploited. We model a “lazy” evaluator who, after observing the software is exploitable
(i.e., seeing E1), stops using the remaining tools to test it.

Figure 8(1,2) shows the average number of tests needed for the evaluator to reach a
belief level of 99% for a truly unexploitable software and the average number of tests to
find an exploit for a truly exploitable software. The parameters in the plots are ordered
first by α, then β, and lastly γ. According to Figure 8(2), lazy evaluation does not affect
the number of tests to find an exploitation, which is obvious as reachability tests are
omitted only after the first exploit has been found for each software.

The effects of lazy evaluation on the number of tests for the evaluator to reach a
belief level of 99% for a truly unexploitable software are mixed: in some cases, more
tests are needed, and in others fewer are necessary. We examine the estimated values of
parameters α, β and γ when their true values are 0.2, 0.1, and 0.5, respectively. Lazy
evaluation does not affect much the estimation of parameter α, but it only estimates the
values of parameters β and γ for a few tools, as seen in Figure 8(3,4)! That is to say,
for the majority of the tools, parameters β and γ remain to be their initial values, which
are 1/3 and 1/3, respectively.

The differences between lazy evaluation and full evaluation as seen in Figure 8 boil
down to the differences in the estimated values of parameters β and γ. If an observation
of type E0 is seen, a larger β reduces the evaluator’s posterior belief level (see Eq. (1)).
On the other hand, if the new observation is of type E2, then a larger β or γ helps
improve the evaluator’s posterior belief level (see Eq. (3)). With these observations, we

can explain some cases where lazy evaluation requires more tests for belief convergence
than full evaluation in Figure 8(1). First, when α is small, there are more observations
of type E2; as the majority of the tools in lazy evaluation have parameters β and γ
set to be both 1/3, if their true values are higher than 1/3, lazy evaluation tends to
underestimate their true values and thus reduces the evaluator’s posterior belief level,
which leads to more tests needed compared to full evaluation. The effect of parameter
γ is more prominent than that of β as the latter is mixed in Eqs. (1) and (2). On the
other hand, when α is large, there are more observations of type E0. If the true value
of β is smaller than 1/3, lazy evaluation always overestimates it and thus reduces the
evaluator’s posterior belief level according to Eq. (1), which leads to more tests needed
for belief convergence than full evaluation.

8 Concluding Remarks
In this work, we propose a new cognitive framework using Bayesian reasoning as its
first principle to quantify software exploitability. We rigorously analyze this framework,
and also use intensive numerical simulations to study the convergence of parameter es-
timation and the effects of the evaluator’s cognitive characteristics. In our future work,
we plan to extend this work by integrating into this framework some real-world tools
(e.g., software fuzzers and concolic execution tools) that can be used to exploit vulner-
able software. We also plan to enrich the cognitive model used in this work.

Acknowledgment

We acknowledge the support of the Air Force Research Laboratory Visiting Faculty
Research Program for this work.

References

1. Crest: Concolic test generation tool for c. In https://jburnim.github.io/
crest/.

2. http://www.securityweek.com/shellshock-attacks-could-already-top-1-billion-report.
3. Stp constraint solver. In http://stp.github.io/.
4. https://nvd.nist.gov/.
5. https://www.exploit-db.com/.
6. http://www.osvdb.org/.
7. The Yices SMT Solver. In http://yices.csl.sri.com.
8. T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley. AEG: Automatic exploit generation.

In NDSS, volume 11, pages 59–66, 2011.
9. S. M. Bellovin. On the brittleness of software and the infeasibility of security metrics. IEEE

Security & Privacy, (4):96, 2006.
10. D. Brumley, P. Poosankam, D. Song, and J. Zheng. Automatic patch-based exploit generation

is possible: Techniques and implications. In IEEE Symposium on Security and Privacy, 2008.
11. C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted and automatic generation of high-

coverage tests for complex systems programs. In OSDI, volume 8, pages 209–224, 2008.
12. C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. Exe: automatically

generating inputs of death. ACM Transactions on Information and System Security (TISSEC),
12(2):10, 2008.

13. C. Cadar and K. Sen. Symbolic execution for software testing: three decades later. Commu-
nications of the ACM, 56(2):82–90, 2013.

14. CERT. Basic fuzzing framework (bff). In https://www.cert.org/
vulnerability-analysis/tools/bff.cfm?

15. S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing mayhem on binary code.
In IEEE Symposium on Security and Privacy (SP), pages 380–394. IEEE, 2012.

16. S. K. Cha, M. Woo, and D. Brumley. Program-adaptive mutational fuzzing. In Proceedings
of the IEEE Symposium on Security & Privacy, 2015.

17. G. F. Cooper. The computational complexity of probabilistic inference using bayesian belief
networks. Artificial intelligence, 42(2):393–405, 1990.

18. P. Godefroid, M. Y. Levin, and D. Molnar. Sage: whitebox fuzzing for security testing.
Queue, 10(1):20, 2012.

19. P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated whitebox fuzz testing.
20. T. L. Griffiths, C. Kemp, and J. B. Tenenbaum. Bayesian models of cognition. 2008.
21. G. Hoglund and G. McGraw. Exploiting software: How to break code. Addison-Wesley,

2004.
22. W. Jansen. Directions in security metrics research. DIANE Publishing, 2010.
23. C. Lebiere, S. Bennati, R. Thomson, P. Shakarian, and E. Nunes. Functional cognitive models

of malware identification. In Proc. of International Conference on Cognitive Modeling, 2015.
24. P. K. Manadhata and J. M. Wing. An attack surface metric. IEEE Transactions on Software

Engineering, 37(3):371–386, 2011.
25. D. McMorrow. Science of cyber-security. Technical report, JASON Program Office, 2010.
26. S. Nagaraju, C. Craioveanu, E. Florio, and M. Miller. Software vulnerability exploitation

trends, 2013.
27. K. Nayak, D. Marino, P. Efstathopoulos, and T. Dumitraş. Some vulnerabilities are different

than others. In Research in Attacks, Intrusions and Defenses, pages 426–446. Springer, 2014.
28. Forum of Incident Response and Security Teams (FIRST). Common vulnerabilities scoring

system (cvss). http://www.first.org/cvss/.
29. A. Perfors, J. B. Tenenbaum, T. L. Griffiths, and F. Xu. A tutorial introduction to bayesian

models of cognitive development. Cognition, 120(3):302–321, 2011.
30. A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco, and D. Brumley. Op-

timizing seed selection for fuzzing. In Proceedings of the USENIX Security Symposium,
2014.

31. Microsoft Research. Z3. In https://github.com/Z3Prover/z3.
32. S. W. Smith. Security and cognitive bias: Exploring the role of the mind. IEEE Security &

Privacy, (5):75–78, 2012.
33. R. Telang and S. Wattal. An empirical analysis of the impact of software vulnerability an-

nouncements on firm stock price. IEEE Transactions on Software Engineering, 33(8):544–
557, 2007.

34. V. Verendel. Quantified security is a weak hypothesis: a critical survey of results and as-
sumptions. In Proceedings of the 2009 workshop on New security paradigms workshop.
ACM, 2009.

35. A. Younis, Y. K. Malaiya, and I. Ray. Assessing vulnerability exploitability risk using soft-
ware properties. Software Quality Journal, pages 1–44.

36. C. Zhong, J. Yen, P. Liu, R. Erbacher, R. Etoty, and C. Garneau. An integrated computer-
aided cognitive task analysis method for tracing cyber-attack analysis processes. In Proceed-
ings of the 2015 Symposium and Bootcamp on the Science of Security. ACM, 2015.

Appendix A: Proof of Lemma 1

We assume that before processingQ orQ′, the performance counters of z0 and z1 are (c0, c1, c2, c3, c4)
and (c′0, c

′
1, c
′
2, c
′
3, c
′
4), respectively, and the priors for P{H0(s0, x0)} and P{H0(s1, x1)} are p0

and p1, respectively. We then have the following cases:
Case A: (s0, x0) 6= (s1, x1) and z0 = z1. That is, the same tool is used for both exploitation

tasks. In this case, the evaluator’s final belief levels differ betweenQ andQ′. For instance, assume
that o0 = o1 = E0 and the mode is pre-exploitation for both tasks. ForQ, we have the following:

P{H0(s0, x0) | Q} =
p0

c0
c0+c1

p0
c0

c0+c1
+ (1− p0) c2

c2+c3+c4

P{H0(s1, x1) | Q} =
p1

c0+1
c0+1+c1

p1
c0+1

c0+1+c1
+ (1− p1) c2

c2+c3+c4

By contrast, after seeing Q′, we have the following:

P{H0(s1, x1) | Q′} =
p1

c0
c0+c1

p1
c0

c0+c1
+ (1− p1) c2

c2+c3+c4

P{H0(s0, x0) | Q′} =
p0

c0+1
c0+1+c1

p0
c0+1

c0+1+c1
+ (1− p0) c2

c2+c3+c4

Therefore, in this case, the cognitive model is not order insensitive to the tests in Q.
Case B: (s0, x0) 6= (s1, x1) and z0 6= z1. In this case, the tests are performed for different

exploitation tasks using different tools. As there are no common parameters shared by the cal-
culation of P{H0(s0, x0)} and P{H0(s1, x1)}, the cognitive model is order insensitive in this
case.

Case C: (s0, x0) = (s1, x1) and z0 6= z1. In this case, for the same exploitation task,
two different tools are used. Depending on the observations o0 and o1, we have the following
subcases.

(C.1) Either o0 or o1 is E1. This means that at least one of the tools has found a successful
exploit. Hence, both P{H0(s0, x0) | Q} and P{H0(s0, x0) | Q′} must be 0. Recall that when
a successful exploitation has been found, for all the previous tests against the same exploitation
task, their PCTs are revised accordingly as if the exploitation would have been found by the first
tool that is ever used for the exploitation task. Hence, the final states of these tables must be the
same, regardless of the order of the two tests.

(C.2) Both o0 and o1 are E0. In this subcase, neither of the tools can find a proper injection
vector for the exploitation task. If the mode of the task is pre-exploitation before the tests, we
have:

P{H0(s0, x0) | Q} = P{H0(s0, x0) | Q′}

=
p0

c0
c0+c1

· c′0
c′0+c

′
1

p0
c0

c0+c1
· c′0
c′0+c

′
1
+ (1− p0) c2

c2+c3+c4
· c′2
c′2+c

′
3+c

′
4

(10)

and after the tests, the PCTs of z0 and z1 are (c0 + 1, c1, c2, c3, c4) and (c′0 + 1, c′1, c
′
2, c
′
3, c
′
4),

respectively, for both Q and Q′. If the mode of the task is post-exploitation before the tests, the
evaluator’s final belief must be 0 for both Q and Q′, and after the tests, the PCTs of z0 and z1 are
(c0, c1, c2 + 1, c3, c4) and (c′0, c

′
1, c
′
2 + 1, c′3, c

′
4), respectively, for both Q and Q′.

(C.3) Both o0 and o1 are 2. In this subcase, both of the tools report an exploitation with a
wrong injection vector. If the mode of the task is pre-exploitation before the tests, we can verify
that:

P{H0(s0, x0) | Q} = P{H0(s0, x0) | Q′}

=
p0

c1
c0+c1

· c′1
c′0+c

′
1

p0
c1

c0+c1
· c′1
c′0+c

′
1
+ (1− p0) c4

c2+c3+c4
· c′4
c′2+c

′
3+c

′
4

(11)

and after the tests, the PCTs of z0 and z1 are (c0, c1 + 1, c2, c3, c4) and (c′0, c
′
1 + 1, c′2, c

′
3, c
′
4),

respectively, for both Q and Q′. If the mode of the task is post-exploitation before the tests, the
evaluator’s final belief must be 0 for both Q and Q′, and after the tests, the PCTs of z0 and z1 are
(c0, c1, c2, c3, c4 + 1) and (c′0, c

′
1, c
′
2, c
′
3, c
′
4 + 1), respectively, for both Q and Q′.

(C.4) o0 = 0 and o1 = 2. If the mode of the task is pre-exploitation before the tests, we have:

P{H0(s0, x0) | Q} = P{H0(s0, x0) | Q′}

=
p0

c0
c0+c1

· c′1
c′0+c

′
1

p0
c0

c0+c1
· c′1
c′0+c

′
1
+ (1− p0) c2

c2+c3+c4
· c′4
c′2+c

′
3+c

′
4

(12)

and after the tests, the PCTs of z0 and z1 are (c0 + 1, c1, c2, c3, c4) and (c′0, c
′
1 + 1, c′2, c

′
3, c
′
4),

respectively, for both Q and Q′. If the mode of the task is post-exploitation before the tests, the
evaluator’s final belief must be 0 for both Q and Q′, and after the tests, the PCTs of z0 and z1 are
(c0, c1, c2 + 1, c3, c4) and (c′0, c

′
1, c
′
2, c
′
3, c
′
4 + 1), respectively, for both Q and Q′.

(C.5) o0 = 2 and o1 = 0. If the mode of the task is pre-exploitation before the tests, we have:

P{H0(s0, x0) | Q} = P{H0(s0, x0) | Q′}

=
p0

c1
c0+c1

· c′0
c′0+c

′
1

p0
c1

c0+c1
· c′0
c′0+c

′
1
+ (1− p0) c4

c2+c3+c4
· c′2
c′2+c

′
3+c

′
4

(13)

and after the tests, the PCTs of z0 and z1 are (c0, c1 + 1, c2, c3, c4) and (c′0 + 1, c′1, c
′
2, c
′
3, c
′
4),

respectively, for both Q and Q′. If the mode of the task is post-exploitation before the tests, the
evaluator’s final belief must be 0 for both Q and Q′, and after the tests, the PCTs of z0 and z1 are
(c0, c1, c2, c3, c4 + 1) and (c′0, c

′
1, c
′
2 + 1, c′3, c

′
4), respectively, for both Q and Q′.

Combining all these subcases, we can conclude that when (s0, x0) = (s1, x1) and z0 6= z1,
the cognitive model is order insensitive.

Case D: (s0, x0) = (s1, x1) and z0 = z1. This peculiar case deals with the situation where
the same tool is used for the same exploitation task in the two tests. (1) Obviously, if o0 = o1, then
the two reachability tests are indistinguishable, and the cognitive model must be order insensitive.
(2) If o0 6= o1 and one of them is 1, then for both Q and Q′, the evaluator’s final belief is always
0, and due to revision of PCTs after the exploitation has been found, their final states must also
be the same. Hence, the cognitive model must be order insensitive. (3) If o0 6= o1 and neither of
them is 1, without loss of generality, we assume that o0 = 0 and o1 = 2. If the mode of the task

is pre-exploitation before the tests, we have:

P{H0(s0, x0) | Q} = P{H0(s0, x0) | Q′}

=
p0

c0
c0+c1

· c1
c0+c1+1

p0
c0

c0+c1
· c1
c0+c1+1

+ (1− p0) c2
c2+c3+c4

· c4
c2+c3+c4

(14)

and the PCT is (c0 + 1, c1 + 1, c2, c3, c4) for both Q and Q′. Hence, the cognitive model is also
order insensitive in this case. Otherwise, if the mode of the task is post-exploitation before the
tests, we have P{H0(s0, x0) | Q} = P{H0(s0, x0) | Q′} = 0, and the PCT is (c0, c1, c2 +
1, c3, c4 + 1) for both Q and Q′.

The lemma follows after combining all these four cases. �

Appendix B: Proof of Theorem 2

Proof: We need to prove that there exists a sequence of safe swappings that transforms Q to Q′.
This can be done iteratively as follows. First copy Q to Q′′, and during the transformation we
ensure that for every reachability testing tool, the relative order of reachability tests using this
tool is the same in Q′ and Q′′. Starting from the first element in Q′, we let its index in Q′′ be
i0. We can use safe swappings to move it to the head of Q′′. We consider the j-th element, q′j , in
Q′, which uses tool z′j , and denote its place in Q′′ as i. To use induction, we assume that the first
j − 1 elements in Q′′ and Q′ are the same. We can use safe swappings to move q′j from the i-th
place to the j-th place in Q′′, because (1) Q′′ and Q′ have the same relative order of reachability
tests that use the same tool, and (2) all the previous reachability tests that use z′j in Q′ must be
within the first j − 1 tests in Q′, and thus also within the first j − 1 tests in the current state of
Q′′ as the first j − 1 tests are the same in Q′ and Q′′. Therefore, the first j elements of Q and
Q′ are now the same, and the relative order of reachability tests using any tool must still be the
same in Q′ and Q′′ because only safe swappings are performed. By induction, after processing
the |Q′|-th element in Q′, Q′′ must be the same as Q′ and therefore Q can be transformed to Q′

through safe swappings. �

