
Computer Networks 57 (2013) 540–555
Contents lists available at SciVerse ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet
Peri-Watchdog: Hunting for hidden botnets in the periphery
of online social networks

Guanhua Yan ⇑,1

Information Sciences (CCS-3), Los Alamos National Laboratory, United States
a r t i c l e i n f o

Article history:
Received 28 November 2011
Received in revised form 21 June 2012
Accepted 9 July 2012
Available online 30 August 2012

Keywords:
Twitter
Botnet
Anomaly detection
Graph theory
Centrality measure
1389-1286/$ - see front matter � 2012 Elsevier B.V
http://dx.doi.org/10.1016/j.comnet.2012.07.016

⇑ Tel.: +1 505 6670176; fax: +1 505 6679137.
E-mail address: ghyan@lanl.gov

1 Los Alamos National Laboratory Publication No.
a b s t r a c t

In order to evade detection of ever-improving defense techniques, modern botnet masters
are constantly looking for new communication platforms for delivering C&C (Command
and Control) information. Attracting their attention is the emergence of online social net-
works such as Twitter, as the information dissemination mechanism provided by these
networks can naturally be exploited for spreading botnet C&C information, and the enor-
mous amount of normal communications co-existing in these networks makes it a daunt-
ing task to tease out botnet C&C messages.

Against this backdrop, we explore graph-theoretic techniques that aid effective monitor-
ing of potential botnet activities in large open online social networks. Our work is based on
extensive analysis of a Twitter dataset that contains more than 40 million users and 1.4 bil-
lion following relationships, and mine patterns from the Twitter network structure that can
be leveraged for improving efficiency of botnet monitoring. Our analysis reveals that the
static Twitter topology contains a small-sized core subgraph, after removing which, the
Twitter network breaks down into small connected components, each of which can be
handily monitored for potential botnet activities. Based on this observation, we propose
a method called Peri-Watchdog, which computes the core of a large online social network
and derives the set of nodes that are likely to pass botnet C&C information in the periphery
of online social network. We analyze the time complexity of Peri-Watchdog under its nor-
mal operations. We further apply Peri-Watchdog on the Twitter graph injected with syn-
thetic botnet structures and investigate the effectiveness of Peri-Watchdog in detecting
potential C&C information from these botnets.

To verify whether patterns observed from the static Twitter graph are common to other
online social networks, we analyze another online social network dataset, BrightKite,
which contains evolution of social graphs formed by its users in half a year. We show
not only that there exists a similarly relatively small core in the BrightKite network, but
also this core remains stable over the course of BrightKite evolution. We also find that to
accommodate the dynamic growth of BrightKite, the core has to be updated about every
18 days under a constrained monitoring capacity.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Botnets, which are armies of compromised zombie ma-
chines sharing the same C&C (Command and Control)
. All rights reserved.

11-02621.
channels, have become a severe threat in cyberspace. The
current portfolio of botnets that are familiar to cyber-secu-
rity researchers span from traditional IRC and HTTP bot-
nets to those that use self-organized peer-to-peer (P2P)
networks for C&C channels. While a plethora of botnet
detection and mitigation techniques have been proposed
to defend against these botnets, some bot herders have
shift their attention to online social networks, a new
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frontier of communication infrastructures with a rapidly
growing population. For instance, currently Facebook has
more than 500 million active users, half of which log into
the website every day [10], and the number of Twitter
users is going to reach 200 million by the end of 2011 [32].

The popularity of online social networks has opened a
door for a number of malicious activities, such as spam-
ming [13,37], malware and misinformation propagation
[36,25], and link farming [11]. In this work, we consider
a new type of attacks, which leverages the communication
platforms provided by online social networks to dissemi-
nate C&C information for botnet operations. The reasons
that online social networks are attractive for botnet opera-
tions are manifold. First, the numerous computers that use
online social networks can be potentially recruited as bots
by spreading malicious links through the messaging infra-
structure provided by online social networks. The Koobface
botnet, for instance, expands itself by sending obfuscated,
malicious URLs to victims’ friends when they visit Face-
book or Twitter [29]. Second, the communication infra-
structure of online social networks can be exploited as
botnet C&C channels. Due to the huge number of messages
that are delivered in online social networks, it is a daunting
task to catch those that are used for botnet C&C. Mean-
while, many enterprise networks allow employees to visit
online social networks during their work time but block
P2P traffic at the enterprise gateways. Under such circum-
stance, botnets that use online social networks as their C&C
channels can easily penetrate enterprise firewalls.

Botnets that took advantage of the Twitter network for
their C&C have already been spotted in the wild [31]. For
this first generation of Twitter-based botnets, individual
bots visit the public profile page of a Twitter account con-
trolled by the botmaster to obtain C&C information. As of
this writing, automatic tools for disseminating C&C on
Twitter have already been available [30]. The Achilles’ heel
of such botnets is, however, that all C&C information is
made public and is thus subject to scrutiny by independent
cyber-security researchers. Also, such botnets are essen-
tially traditional HTTP-based botnets and the repeated
pulling activities by individual bots to obtain C&C informa-
tion expose them to local bot detectors [20,1,14]. We thus
envision that some future botnets would circumvent these
weakness by leveraging private messaging capabilities of
Twitter-like open online social networks to organize indi-
vidual bots, as suggested in [30]. In such botnets, C&C
information is not exposed on public profile pages any
more; rather it is delivered through private messages along
following relationships among individual bots. Moreover,
individual bots do not need to visit the public profile page
repeatedly, as C&C information is pushed to them auto-
matically through the communication infrastructures
provided by online social networks.

This work is aimed at discovering this new type of bot-
nets hidden in open online social networks such as Twitter.
Given the sheer number of users and voluminous messages
in Twitter-like open online social networks, detecting hid-
den botnets poses significant computational challenges. In
this study, we conduct an in-depth graph-theoretic analy-
sis of the Twitter network topology, and look for insights
into how to efficiently monitor the Twitter network for
potential botnet activities. We analyze a Twitter dataset
that contains more than 40 million users and 1.4 billion
following relationships [19], and mine patterns from the
Twitter network structure that can be leveraged for effi-
cient botnet monitoring. Our analysis reveals that the
static Twitter topology contains a relatively small-sized
core sugraph, after removing which, the Twitter network
breaks down into small connected components, each of
which can be handily monitored for potential botnet activ-
ities. Based on this observation, we propose a method
called Peri-Watchdog, which computes the core of a large
online social network and derives the set of nodes that
are likely to pass botnet C&C information in the periphery
of online social networks. We analyze the time complexity
of Peri-Watchdog under normal operations. We further ap-
ply Peri-Watchdog to the Twitter graph injected with syn-
thetic botnet structures and investigate the effectiveness of
Peri-Watchdog in detecting potential C&C information
from these botnets.

To verify whether patterns observed from the static
Twitter graph can be extended to other open online social
networks, we study another dataset, which was collected
from a location-based online social network, BrightKite,
and contains evolution of social graphs formed by its users
almost half a year. Using the evolution data of the BrightK-
ite network, we show that not only does there exist a sim-
ilarly small-sized core in the BrightKite network, but also
this core remains stable over the course of BrightKite evo-
lution. We also find that to accommodate the dynamic
growth of BrightKite, the core has to be updated about
every 18 days under a constrained monitoring capacity.

The remainder of the paper is organized as follows. In
Section 2, we present related work. In Section 3, we pro-
vide background information regarding the Twitter dataset
we analyze in this work and discuss three different types of
botnets that may hide in an online social network. In Sec-
tions 4–6, we present graph-theoretic analysis of the Twit-
ter graph to show how to detect three different types of
botnets, respectively. In Section 7, we provide the design
of Peri-Watchdog, a framework that assists detection of
botnets hidden in Twitter-like networks. In Section 8, we
study the effectiveness of Peri-Watchdog using the Twitter
graph injected with synthetic botnet structures. In Section
9, we further validate the observation made from the
graph-theoretic analysis of the Twitter graph with a data-
set collected from another online social network, BrightK-
ite, and show how Peri-Watchdog performs on the
dynamic graphs during BrightKite’s evolution. Finally, we
discuss the weakness of Peri-Watchdog in Section 10 and
draw concluding remarks in Section 11.
2. Related work

Due to the severe threats posed by botnets to the cyber
space, they have gained a lot of attention from researchers
recently. A plethora of measurement work has been dedi-
cated to understanding the nature of real-world botnets.
These efforts include analysis of a variety of existing bot-
nets, including IRC botnets [8,2], peer-to-peer based bot-
nets [17,27], and HTTP-based botnets [28]. Botnets that
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exploit online social networks as their C&C channels have
already been spotted in the wild [31], but study of such
botnets by the research community is still in its infancy.
This work considers potential strategies of C&C informa-
tion dissemination by the herders of such botnets, and
accordingly, proposes a method to monitor efficiently
C&C messages of these botnets in a large online social
network.

In addition to botnet measurement studies, a number of
botnet detection methods have been proposed previously
[15,16,14,12,39,35]. Gu et al. developed detection tech-
niques that are based on strong correlation among ob-
served activities of bots belonging to the same botnet
[15,16,14]. TAMD is another network-level tool that identi-
fies bot traffic by mining communication aggregates in
which traffic flows share common characteristics [39].
Liu et al. proposed a host-based bot detection method that
relies on a separate virtual machine to expose hidden bot
activities [21]. Some other methods detect botnets by look-
ing for suspicious flow-level communications in tier-1 ISP
networks [18] or passively monitoring bot-generated DNS
traffic [26]. Signature-based botnet detection techniques
have also been proposed, including Rishi [12] and AutoRE
[35]. Recently, Zeng et al. studied the effectiveness of
detecting large botnets at the infrastructure level [43].
Most of these existing botnet detection methods are de-
ployed in an enterprise network environment or at the
ISP level. Peri-Watchdog, however, is developed specifi-
cally to assist detection of suspicious botnet activities in
open online social networks such as Twitter.

Previously, researchers have also worked on detecting
anomalous activities based on social networks. Grier
et al. analyzed a large number of URLs posted on Twitter
and observed that blacklists respond to spamming URLs
too slowly [13]. Many other related efforts are dedicated
to detecting sybil nodes in these networks [42,41,9,22].
Although similar in nature from a graph-theoretic stand-
point, sybils and bots serve different purposes. A sybil node
is introduced into a distributed system by the attacker to
perform activities that are illegitimate relative to the nor-
mal functionality of the system. For instance, in a peer-
to-peer system, the attacker can introduce sybil nodes to
monitor other users’ traffic, or launch collusion attacks.
Hence, the goal of sybil attacks is usually related to the
functionality provided by the distributed system where
those sybil nodes reside. By contrast, botnet herders are
only interested in using the communication platform pro-
vided by online social networks to deliver C&C informa-
tion. The existence of hidden botnets thus does not pose
a threat to the normal functionality of online social
networks.

From a detection point of view, sybils and bots can both
be treated as anomalies introduced into the normal net-
work by attackers. Recent analysis [33] shows existing Sy-
bil defense schemes largely fall into the detection of local
communities, where nodes inside the community are more
tightly knit together than they with those outside the com-
munity. Such an assumption, however, does not necessar-
ily hold for botnet operation. On one hand, as long as there
exists a bot-only path from the master node to each indi-
vidual bot, the botmaster is able to broadcast his C&C
information. On the other hand, for open online social net-
works such as Twitter, bots can follow a large number of
normal users. Hence, the subgraph containing all the bots
does not necessarily form a local community. Based on this
observation, Peri-Watchdog does not make the assumption
that bots form a local community as most existing Sybil de-
fense techniques do.

Graph-theoretic analysis has been applied to identify
bots in large networks. Zhao et al. developed BotGraph
[44] to detect large-scale spamming botnets. They analyzed
2 months of Hotmail log and constructed a user-user graph
in which a node represents a Hotmail account and two
nodes are connected by an edge when they shared the same
IP address. Recently, Nagaraja et al. developed a framework
called BotGrep [24] to find P2P botnets at the ISP level.
Their method leverages fast mixing times of P2P network
structures to separate P2P flows from other types of net-
work flows. Although under the same umbrella of graph-
theoretic analysis as these previous methods, our approach
concerns relative ranking of nodes in a graph and addresses
botnet detection in a different network environment.
3. Threat model and Twitter dataset

3.1. Threat model

In this work we are interested in monitoring hidden
botnet activities in open online social networks, which
have the following two distinguishing features: (1) The
freedom to open a new account in the network. Although
many online social networks perform CAPTCHA test when
a new user registers, numerous instances in the past have
shown that it is not a bullet-proof technology that prevents
attackers from circumventing its protection [3]. In this
work, we assume that the attacker has the capability of
creating a large number of fake accounts in an open online
social network. (2) The freedom to establish a uni-directional
friendship with any other user. Hence, LinkedIn cannot be
treated as an open online social network because a rela-
tionship between two users is bidirectional and thus re-
quires confirmation from both sides. In an open online
social network, a directional relationship dictates how
information flows. For example, when user A follows user
B in Twitter, information flows from B to A. Depending
on who initiates such a directional relationship, there are
two types of online open social networks: pull-mode and
push-mode. In a pull-mode open online social network, a
user decides whose information she is willing to receive
(i.e., who she follows). Obviously, Twitter is a pull-mode
online social network. By contrast, in a push-mode open
online social network, a user decides who can receive her
information (i.e., who can follow her). An example of this
type of online social network is BrightKite [5,6], which
we will use later for cross validation.

For clarity, we assume a bot to be a bot-controlled ac-
count, rather than a compromised machine, in an open on-
line social network. When a botherder wants to hide a
botnet inside an open online social network, he can create
the following relationships among bots at will. However, as
the botmaster needs to spread C&C information through
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these following relationships created among bots, we as-
sume that there exists a master bot (i.e., the ‘‘snakehead’’
of the botnet) from which C&C information can flow to
every individual bots in the botnet. In the simplest form,
the botnet can be a star topology where the master bot is
located at the center. Moreover, if the online social net-
work is a pull-mode one, the botmaster can let a bot follow
any normal user; otherwise, if it is a push-mode online so-
cial network, the botmaster can let a bot be followed by
any normal user. In the following discussion, we focus on
pull-based online social networks unless explicitly men-
tioned otherwise.

In this work, we will focus on three types of botnets that
attempt to hide themselves in open online social networks.
The first type is standalone botnets, which are isolated from
the normal online social network. The second type is
appendix botnets. If it is a pull-mode online social network,
appendix botnets have nodes following users in the normal
online social network but not vice versa; if it is a push-
mode one, appendix botnets have nodes followed by users
in the normal online social network but not vice versa. The
third type of botnets, which we call crossover botnets, have
following relationships in both directions between bots
and normal users. Supposing that the normal online social
network is the original Twitter network, the three types of
botnets are illustrated in Fig. 1.

When a pull-mode online social network is considered,
the key challenge for the attacker is to find normal users
who are willing to follow bots. This usually can be done
through phishing attacks, in which a bot impersonates as
a legitimate user (sometimes, a celebrity) to attract inter-
ested normal users to follow it. In this context, it is more
difficult to launch spearphishing attacks, which target spe-
cific normal users and allure them to follow a bot.
3.2. Twitter dataset

We start this work by analyzing the structure of the
graph formed by following relationships of Twitter users.
Our goal is to use graph-theoretic analysis to identify
important characteristics of this graph, which are further
utilized to assist detection of malicious botnet activities.
The Twitter dataset we use in this study is collected by
Kwak et al. [19], and contains 41,652,230 user profiles
and 1,468,365,182 following relationships. The dataset
was obtained by crawling the Twitter network between
June 31 and September 24 in 2009. The giant component
was crawled by seeding from Perez Hilton who has more
Original Twitter Network Standalone Botnet Original Twitter Network

(1) Standalone botnet (2) Appendix

Fig. 1. Illustration of thre
than one million followers, and the remaining user profiles
were discovered through the trending topics their tweets
referred to. In total, there were 1,838,934,111 tweets sent
by the users. We refer interested readers to the article
[19] for more details on the dataset. For clarity, Table 1
summarizes the notations used throughout this paper. In
this table, a directed edge (u,v) in a graph means that user
v follows user u. Here, the direction of an edge indicates
the direction of information flow between two socially
connected online users. In graph theory parlance, the giant
weakly (strongly) connected component of a graph means
the largest weakly (strongly) connected component of this
graph.

In the following sections, we will analyze the Twitter
graph and look for features that can be used for efficient
monitoring of botnet activities in open online social net-
works. These features will form the foundation of a generic
botnet monitoring framework, Peri-Watchdog, which com-
putes a list of user accounts that can potentially pass C&C
information in a hidden botnet.
4. Twitter analysis: standalone botnets

A standalone botnet does not have any bot that has fol-
lowing relationships with a normal user. Assuming that
bots in a standalone botnet are weakly connected so that
the master node can deliver C&C information to all individ-
ual bots, the botnet introduces a new weakly connected
component (WCC) into the Twitter graph. We thus investi-
gate the distribution of the sizes of WCCs in Gt. The results
are depicted in Fig. 2. Clearly, the sizes of WCCs in Gt are
highly skewed: the giant weakly connected component of
Gt, i.e., WðGtÞ, has 41,652,156 users, which leaves out only
74 nodes and 112 edges in the entire Twitter graph. The
second largest WCC has only three nodes. Moreover, the
users outside the giant WCC seem to be dormant during
the data collection period, as they did not produce any
tweets. Hence, if a large standalone botnet, say, with thou-
sands of bots, is formed in the Twitter network, it would
stand out as a second largest WCC and can thus easily be
monitored for malicious activities.

We, however, should cautiously interpret this observa-
tion in practice. This is because user profiles outside the
giant WCC of the Twitter graph were discovered through
those that mentioned trending topics in Twitter. As not
all Twitter users refer to trending topics in their tweets,
the dataset we obtained may not have complete informa-
tion about those users outside the giant component. Even
Appendix Botnet Original Twitter Network Crossover Botnet

 botnet (3) Crossover botnet

e types of botnets.



Table 1
Notations.

Notation Meaning

Gt(Vt, Et) Original Twitter graph
WðGÞ Giant weakly connected component of graph G
SðGÞ Giant strongly connected component of graph G
VðGÞ Vertex set of graph G
T ðGÞ Transpose graph of G
RðG;VÞ Set of nodes in graph G reachable from V
HðG;VÞ Subgraph of graph G induced on nodes in set V
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Fig. 2. Weakly connected components of Gt.
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so, the Twitter server is still at an advantageous position to
discover standalone botnets because it knows the full
Twitter graph, rather than relying on crawling by a third
party. Computing the set of nodes outside the giant WCC
takes O(jVtj + jEtj) time.

5. Twitter analysis: appendix botnets

An easy extension to standalone botnets is having some
of the bots follow users in the giant WCC of Gt ;WðGtÞ. As
Twitter does not require the followee to agree with any fol-
lowing relationship initiated from another user, the attack-
er can easily turn a standalone botnet into an appendix
botnet. We, however, note that as normal users do not fol-
low bot nodes in an appendix botnet, normal nodes and
bots cannot coexist in the same strongly connected compo-
nent (SCC) of the Twitter graph. The sizes of the SCCs in
WðGtÞ are depicted in Fig. 3.
SðWðGtÞÞ, the giant SCC ofWðGtÞ, has 33,479,727 nodes

in it, comprising 80.4% of the nodes in WðGtÞ. As there are
still a significant portion of nodes that are inWðGtÞ but not
in SðWðGtÞÞ, we further sort out nodes that cannot be in an
appendix botnet. Note that no normal users follow bots in
an appendix botnet. If we assume that the majority of the
nodes in WðGtÞ are not bots, then no nodes in SðWðGtÞÞ
should belong to an appendix botnet. Also, nodes that are
followed by any of those in SðWðGtÞÞ, either directly or
indirectly, should also not belong to an appendix botnet.

Hence, we compute the entire set of nodes, denoted by
R, that are reachable in the transpose graph of WðGtÞ from
the nodes in SðWðGtÞÞ, i.e.,RðT ðWðGtÞÞ;VðSðWðGtÞÞÞÞ. Note
that in a directed graph G, the set of nodes reachable from a
vertex v contains all the nodes that have a directed path
from v in G. Note that VðSðWðGtÞÞÞ# R #VðWðGtÞÞ. Clearly,
bot nodes belonging to an appendix botnet must not be
contained in set R, so a bot node in an appendix botnet
must belong to set VðWðGtÞÞ n R. We thus analyze the
structure of the subgraph induced on the nodes in this
set, which is HðWðGtÞ;VðWðGtÞÞ n RÞ. For clarity, let Happ

denote this subgraph. Fig. 4 depicts the sizes of WCCs with
at least 10 nodes in Happ in non-increasing order. The giant
component has only 159 nodes.

In practice, in order to discover large appendix botnets
in the Twitter network, we can analyze the Twitter graph
as described above to obtain Happ and then get its weakly
connected components. If there are such components
whose sizes are sufficient to contain a large appendix bot-
net, we monitor the tweets generated by the nodes in it for
potential malicious activities. The computational complex-
ity of the aforementioned graph analysis is O(jVtj + jEtj).
6. Twitter analysis: crossover botnets

In a crossover botnet, there exist following relationships
in both directions between bot accounts and normal users.
Recent measurement studies revealed that finding normal
users willing to follow sybil accounts in an open online so-
cial network such as Twitter is not difficult due to exis-
tence of so-called social capitalists [11] or social butterflies
[37], who follow back anyone that follows him or her. Since
a crossover botnet in Twitter can be treated as a collection
of sybil nodes that are connected to the main network in
both directions, one would wonder whether a plethora of
techniques that have already been proposed to detect sybil
nodes [40,42,41,9,34,7] can be leveraged to detect cross-
over botnets. Common to these sybil detection techniques
is a fundamental assumption that sybil nodes form a com-
munity in which nodes are tightly connected among each
other but are only loosely connected to outside nodes
[33]. Hence, if the density of connections inside a crossover
botnet is higher, statistically speaking, than that of edges
that connect the botnet to the main network, it is possible
for us to identify the botnet structurally. This assumption,
however, severely limits the application of existing sybil
detection methods to finding crossover botnets, as for a
botnet to function properly, bots do not have to connect
closely to each other. Rather, as long as each bot can re-
ceive C&C from a master node along a bot-controlled path,
bots can perform tasks designated by the botmaster. More-
over, in an open online social network like Twitter, it is not
difficult for the botmaster to manipulate the topology of
the botnet and recruit normal users to follow bot accounts.
Consider, for instance, a botnet that has 100 bots, which
form a line graph. Each bot is assumed to be seamlessly
integrated into a separate community formed by normal
users. Any community structure detection algorithm will
likely reveal these communities, each containing a single
bot, but the knowledge of these communities does not help
us identify the botnet. This simple example suggests that
the assumption of bots forming a closely knitted community
is too strong for detecting crossover botnets. Interestingly, a
recent work by Yang et al. reveals that the assumption of
sybil communities does not necessarily hold in real-world
online social networks [38].
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On another note, even though bots in a crossover botnet
form a local community that is detectable by existing com-
munity detection algorithms, we still need to tease it out as
a ‘‘bad’’ community by inspecting traffic circulating in it.
The problem of finding communities suspicious of operat-
ing a botnet still poses another significant computational
challenge in addition to community detection. Moreover,
given the dynamics of open online social networks like
Twitter and the fact that users commonly belong to multi-
ple communities (for example, a user may be both a music
and sport fan), structures of communities may change over
time, making it difficult to reach stable knowledge whether
a community is indeed ‘‘bad’’.

Given the above observations, we take a different direc-
tion in this work to detect crossover botnets. Our goal is to
detect crossover botnets of decent sizes, and thus we will
not consider those botnets that consist of only a small
number of nodes. The key idea is to identify a set of suspi-
cious nodes which are able to pass C&C information to a large
number of individual bots, either directly or indirectly. Based
on this intuition, we first introduce another metric that is
more indicative of its potential attack capability as a botnet
than the component size. This is the capacity of a compo-
nent, which is defined as follows. Let H(V, E) be a directed
graph. The number of nodes that are reachable from node
v 2 V in H is denoted a(v). The capacity of graph H, which is
denoted b(H), is given by: b(H) = maxv2Va(v). Supposing
that a WCC of Twitter is used as a botnet, its capacity pro-
vides an upper bound on the number of nodes that can re-
ceive C&C messages sent from any single source in the
graph. Therefore, it can be reasonably assumed that a large
crossover botnet of interest has a large capacity; that is to
say, there exists a single source in it from which C&C infor-
mation can be delivered to a large number of individual
bots.

6.1. Ranking of Twitter users

To find suspicious nodes that are able to pass C&C infor-
mation to a large number of bots, we experiment with the
following heuristic: we aim to find a small-sized core of the
large online social network that comprises only nodes
trusted not to be bots. Ideally, the core should be stable
over the evolution course of the online social network so
that we can focus on monitoring nodes in the periphery,
i.e., those outside the core, for potential botnet activities,
or those nodes that are newly admitted into the core. From
the perspective of computational complexity, a good core
should also render it much easier to monitor potential
bot nodes in the periphery.

In the following, we shall show how to obtain such a
core of a large online social network based on the ‘‘impor-
tance’’ of individual nodes. In the parlance of graph theory,
the ‘‘importance’’ of a node in a graph is its centrality
measure. In the following, we rank nodes in HðWðGtÞ;
RðT ðWðGtÞÞ;VðSðWðGtÞÞÞÞÞ, i.e., the subgraph induced by
the nodes reachable from the giant SCC of the giant WCC
of the Twitter graph on its transpose graph.

6.1.1. Pagerank centrality
The pagerank of a node v, denoted Cp(v), in a connected

graph G(V, E) is defined as follows:



Table 2
Overlapping ratio among the top 15,000,000 nodes.

Pagerank Outdegree Betweenness Closeness

Pagerank X 65.2% 67.3% 66.6%
Outdegree 65.2% X 72.1% 70.0%
Betweenness 67.3% 72.1% X 64.6%
Closeness 66.6% 70.0% 64.6% X
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CpðvÞ ¼ 1� dþ d�
X

8u2OutðvÞ
CpðuÞ=iðuÞ; ð1Þ

where Out(v) is the set of nodes that have edges pointing
from node v, i(u) is the outdegree of node u, and d is the
damping factor. Usually d is set to be 0.85.
6.1.2. Outdegree centrality
The outdegree centrality of node v, denoted by Co(v), is

the same as its outdegree.
6.1.3. Betweenness centrality
Let rst denote the number of shortest paths from s to t

where s – t. Also let rst(v) be the number of shortest paths
from s to t that have node v on them, where s – v – t. Then,
the betweenness centrality of node v in graph G(V, E) is de-
fined as: CbðvÞ ¼

P
s–v–t2V

rst ðvÞ
rst

. To calculate the between-
ness centrality of each node in the Twitter graph
efficiently, we implemented Brandes’ algorithm [4], whose
computational complexity is O(nm), where n and m are the
number of vertices and edges in an unweighted graph,
respectively. This algorithm iteratively chooses each node
as a source, and from this source, computes the shortest
paths to all other nodes and accordingly updates their
betweenness centrality measures.

Even with the faster implementation of the between-
ness calculation algorithm, a full computation of it on a
graph as large as the Twitter network is still computation-
ally prohibitive. To speed up the computation, we ran-
domly draw k nodes from the graph as the source nodes,
rather than considering all possible n sources, and use
Brandes’ algorithm to compute the betweenness centrality
measure of each node based on only these k source nodes.
Hence, the time complexity is now reduced to only O(km).

Fig. 5(1) depicts the convergence of the computation
when k grows. The overlapping ratio is defined as the frac-
tion of overlapping nodes among the top n ones between
cases when k = i and i + 100. We observe that for the top
n nodes when n is sufficiently large (say, above 1 million),
the computation converges well after k reaches 1000.
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6.1.4. Closeness centrality
Let d(s, t) denote the length of the shortest paths from

node s to t. The closeness centrality measure of node v in
graph G(V, E) is given by: CcðvÞ ¼ 1P

t2V
dðv ;tÞ

. We have a sim-

ilar scalability problem, and thus randomly draw k nodes
as the destination node set V 0k. The closeness centrality
measure of node v in graph G(V, E) is simplified as
CcðvÞ ¼ 1P

t2V 0
k

dðv ;tÞ
. The convergence of the computation is

depicted in Fig. 5(2). For the top n nodes when n is suffi-
ciently large, the computation converges well when k hits
900.

6.1.5. Differences among centrality measures
Table 2 presents the overlapping ratios for the top

15,000,000 nodes among different centrality measures.
We note that the distinctions among different centrality
measures are significant, suggesting that the four central-
ity measures evaluate the importance of nodes in the Twit-
ter graph differently.

6.2. Core of Twitter Graph

We assume that there is a core of the Twitter graph,
after removing which the graph breaks down into small
pieces. Recall that in the giant WCC of the Twitter graph,
i.e., WðGtÞ, about 80% of the nodes in it are strongly con-
nected. We now remove from WðGtÞ the top k nodes in
the ranking based on each centrality measure, and see
how the size of the giant SCC varies with k.

The results are presented in Fig. 6. From it, we observe
that nodes with the highest betweenness or outdegree
centrality measures are more likely to comprise the core
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Fig. 6. Size of the largest strongly connected component after removing the top k nodes in each ranking.
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of the Twitter graph than the other two. This is particularly
true for the betweenness centrality measure because it
measures how frequently nodes appear on the shortest
paths in the graph. For instance, in order to break the Twit-
ter graph into components where the size of the giant SCC
is smaller than 1000, for betweenness and outdegree cen-
trality measures, removing the top 36.8% and 39.4% of the
nodes in WðGtÞ, respectively, would be sufficient; but for
pagerank and closeness centrality measures, at least the
top 54.0% and 64.6% of the nodes have to be removed,
respectively.

Given this observation, we use the betweenness and
outdegree centrality measures to define the core of the
Twitter graph in this work. Among the top 36.8% of the
nodes in WðGtÞ based on betweenness centrality, we rank
them based on their outdegrees. We find that by removing
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14,121,948 nodes with the highest outdegrees (34.3% of
nodes inWðGtÞ) we are still able to break the Twitter graph
into components among which no SCCs have more than
714 nodes. Considering the subgraph induced on these
nodes, we obtain its giant SCC, which has 14,100,109 nodes
in it. After only removing these nodes from WðGtÞ, the
giant SCC in the remaining graph still has only 718 nodes.
We let this giant SCC be the core of the Twitter graph, de-
noted by Q(Gt).
6.3. Reachability of nodes outside the core

We now calculate the reachability of the nodes outside
the core, i.e., the graph WðGtÞ n QðGtÞ. Let bQ ðGtÞ be the
residual graph after removing Q(Gt) from WðGtÞ. Our goal
is to find the set of nodes in bQ ðGtÞ from which the number
of reachable nodes in the directed graph are above a cer-
tain threshold ⁄. Here, note that it is not sufficient to com-
pute the capacity of each WCC in bQ ðGtÞ. This is because in a
WCC, any node in it can be the node controlled by the bot-
master to send C&C messages.

In Fig. 7, we show the number of nodes whose reach-
ability is above a certain threshold ⁄under different set-
tings of ⁄. Clearly, the number of nodes that we need to
monitor for large cross-over botnet activities is very small
among the entire Twitter graph. For instance, to discover
cross-over botnets of size no smaller than 1000, we need
to monitor only 118,696 nodes, 0.29% of the entire Twitter
graph producing 0.7% of all the tweets; to detect cross-over
botnets of size no smaller than 10,000, we need to monitor
only 21,435 nodes, 0.05% of the entire Twitter graph pro-
ducing 0.12% of all the tweets. Hence, we can reduce the
computational cost of monitoring cross-over botnets sig-
nificantly as opposed to monitoring the entire network.
7. Design of Peri-Watchdog

Our key observations from Sections 4–6 are summa-
rized as follows: (1) Outside the giant WCC of the Twitter
graph, most nodes form only small WCCs. (2) Outside the
SCC of the Twitter graph and the nodes that those in the
SCC of the Twitter graph follow, either directly or indi-
rectly, most nodes form only small WCCs; (3) Given the
giant WCC G, we can find a core such that removing it
breaks down G, that is to say, most nodes in the residual
graph have low reachability. Given these observations,
we design Peri-Watchdog to assist detection of botnets
based on Twitter-like online social networks. The key idea
behind Peri-Watchdog is to narrow down the list of nodes
that can possibly pass C&C information of a hidden botnet.
Machine learning or watermark detection techniques can
be used to discover whether communication messages
contain C&C information, which may be hidden in stega-
nography [23]. Computationally, these techniques are usu-
ally not cheap, and it is thus impractical to apply them on
all traffic in a large online social network. By examining
only the traffic generated from suspicious nodes identified
by Peri-Watchdog, we are relieved from inspecting every
communication message in the network when searching
for potential botnet activities.
Algorithm 1. Online detection of hidden botnets given
graph G(k), and X, the set of nodes in the core that need to
be vetted

1: newcore false
2: RESTART:
3: L X
4: {Get the list of nodes that can be the master of

standalone botnets}

5: Compute WðGðkÞÞ and A ¼ GðkÞ n WðGðkÞÞ
6: for each node v in A do
7: if the reachability from v is not smaller than a,

add v to L
8: end for
9: {Get the list of nodes that can be the master of

appendix botnets}

10: R RðT ðWðGðkÞÞ;VðSðGðkÞÞÞÞ
11: B HðWðGðkÞÞ;VðWðGðkÞÞÞ n RÞ
12: for each node v in B do
13: if the reachability from v is not smaller than a,

add v to L
14: end for
15: {Get the list of nodes that can be the master of

crossover botnets}
16: if Core Q exists then

17: C  WðGðkÞÞ n Q
18: L0  ;
19: for each node v in C do
20: if the reachability from v in C is not smaller

than a, add v to L0

21: end for
22: if jLj + jL0j 6 b or newcore is true then
23: Add all nodes in L0 to L
24: Goto MONITOR
25: end if
26: end if
27: {We need to generate the core Q}
28: X ;
29: Calculate the core ofWðGðkÞÞ as Q0 using Algorithm

2
30: for each node v in Q0 but not in Q do
31: Add v to X
32: end for
33: Q Q0, newcore true
34: goto RESTART
35: MONITOR:
36: Monitor traffic of nodes in set L for potential

botnet activities

We now discuss how Peri-Watchdog operates in an on-
line fashion in a dynamic environment where new nodes
constantly join the network and following relationships
change over time in the network. Suppose that the graphs
observed in the network are represented as {G(k)}, where
k = 1, 2, . . . . Our goal is to find the list of nodes that can
potentially pass C&C information to at least a individual
bots. During the process, we maintain the core of the graph
as Q. Also, we assume that Peri-Watchdog is only capable
of monitoring b nodes for potential botnet activities.
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Algorithm 1 presents how Peri-Watchdog operates at the
kth timestep. This algorithm has three steps. First, the algo-
rithm checks all the nodes that do not belong to the giant
WCC, and for each one of them, if it has reachability no
smaller than a, its traffic is inspected for potential botnet
activities. Second, the algorithm obtains the SCC of the
graph, and the list of nodes that nodes in this component
follow either directly or indirectly. Removing all these
nodes from the graph yields a residual graph. For each
node in this residual graph, if it has reachability no smaller
than a, its traffic is inspected for potential botnet activities.
Third, the algorithm removes all nodes in the core from the
giant WCC of the graph; for each node in the residual
graph, if it has reachability no smaller than a, its traffic is
inspected for potential botnet activities. Here, as it is pos-
sible that the core is outdated, the algorithm checks
whether there are too many nodes to monitor. If so, the
core is regenerated. After a new core is generated, Peri-
Watchdog also monitors nodes that are newly admitted
to the core. Note that it is possible that the eventual list
of nodes that need to be monitored from Algorithm 1,
i.e., L, has more than b nodes. This occurs even when a
new core is computed, the size of L is still larger than b. Un-
der such a circumstance, Peri-Watchdog may not be able to
monitor all the nodes in set L in its capacity.

The method for generating the core of a graph is pre-
sented in Algorithm 2. The algorithm first ranks all the
nodes in the graph based on their betweenness centrality
measures. Note that Peri-Watchdog maintains a blacklist
of suspicious nodes that have been discovered, which is de-
noted by S in the algorithm. We assign �1 to the between-
ness centrality measure of each node in set S to ensure that
they do not appear in the core. Next, it tries to find the top
x nodes, after removing which, the size of the giant SCC is
below a certain threshold c. To do so, the algorithm uses a
binary search method and stops the search when the range
[low, high] is sufficiently small (i.e., high � low is no greater
than a predefined fraction d of the network size). Based on
the results from the betweenness centrality, the algorithm
further ranks the top x nodes according to their outdegree
centrality. Similarly, the algorithm uses a binary search
method to find the top x0 ones of those x nodes, removing
which leads to a giant SCC smaller than c. The core of the
graph is the giant SCC of the subgraph induced on these
x0 nodes.

Complementary to the online detection counterpart
shown in Algorithm 1 is a component of Peri-Watchdog
that checks the sanity of nodes in the core in an offline
fashion. The purpose of this offline component is to pre-
vent bot nodes from slipping into the core without being
caught by the online detection component, as well as com-
promised core nodes from being exploited as master bot
nodes for disseminating C&C information. To deal with
the large number of messages generated by core nodes,
the offline component can adopt efficient algorithms such
as sampling, or use anomaly detection methods based on
statistical profiles of core nodes’ behaviors. The details of
finding bot activities in an offline fashion are out of the
scope of this work, and we plan to explore along this line
in the future based on real-world message datasets.
7.1. Complexity analysis

We first consider the time complexity of core genera-
tion in Algorithm 2. Suppose that the input graph H has n
nodes and m edges. Given a single source, O(m) time is
needed for calculating the betweenness centrality mea-
sures. As mentioned in Section 6.1, we can randomly sam-
ple hundreds of sources to achieve good convergence for
graphs as large as the Twitter topology. Given the number
of sources r sampled, the overall computational cost on cal-
culating betweenness centrality measures is thus O(rm)
using Brandes’ algorithm. Given graph H, its SCC can be ob-
tained in time O(n + m). As we use a binary search method,
the overall computational cost on obtaining set F and F0 is
O(nlogn + mlogn). Hence, the overall computational cost of
Algorithm 2 is O(rm + mlogn + nlogn).

Algorithm 2. Calculate the core of directed, weakly con-
nected graph H with suspicious node set S
1: w number of nodes in H
2: Rank the nodes in H based on their betweenness

centrality as v1, v2, . . . , vw (if a node belongs to the
suspicious node set S, we change its betweenness
centrality measure to �1)

3: low 1, high w, D {(w, 0)}
4: while high � low > dw do
5: mid b(low + high)/2c
6: H0  Hn{vi}i=1,. . .,mid

7: s the size of the giant SCC in H0

8: Add (mid, s) to set D
9: If s P c then low mid else high mid
10: end while
11: Find (x, y) 2 D where y < c and x is minimized
12: F {vi}i=1,2,. . .,x

13: Rank nodes in F based on their outdegree
centrality as v 01;v 02, . . ., v 0x

14: low 1, high x, D0  {(x, y)}
15: while high � low > dw do
16: mid b(low + high)/2c
17: H0  Hn{vi}i=1,. . .,mid

18: s the size of the giant SCC in H0

19: Add (mid, s) to set D0

20: If s P c then low mid else high mid
21: end while
22: Find (x0, y0) 2 D0 where y0 < c and x0 is minimized
23: F 0  fv 0igi¼1;2;...;x0

24: Return the set of nodes in F0 as the core of H

Next, we consider the time complexity of Algorithm 1.
We abuse notations n and m slightly by letting them de-
note the number of nodes and edges in G(k), respectively.
In addition to the cost that may be needed to generate
the core, the algorithm needs O(m + na) time to check the
existence of standalone and appendix botnets, and
O(m + na) time to obtain the list of nodes to be monitored
under a given core Q. Note that when computing the reach-
ability from a node, we do not need to explore all the nodes
that are reachable from this node; instead, we count it as a
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potential node for monitoring once the number of reach-
able nodes from it goes beyond a. Hence, the computa-
tional cost of Algorithm 1 in obtaining the list of nodes to
be monitored is O(na + rm + mlogn + nlogn).
8. Detection

In this section, we apply the Peri-Watchdog to detect
synthetically generated botnets in the Twitter network.
We consider three different topologies that the botmaster
can use to organize individual bots: star, tree, and graph.

� Star: the botnet has 10,000 bots, each of which follows a
central master node.
� Tree: the botnet is organized as a tree, whose root node

is the master node. The height of the tree is 5, and each
non-leaf node has 10 children. Hence, in total there are
11,111 bot nodes including the master one. A child node
follows its parent node, but not vice versa.
� Graph: the graph botnet topology has 10,000 bots, and

the master node is randomly chosen from it. We num-
ber all these bots from 0 to 9,999. Bot i follows every
other bot j, where j = (k + i) mod 10,000 with k = ±1,
±2, . . . , ±10.

For each of these topologies, we civilize a bot (including
the master node) as follows. For a civilized bot, we let it
follow 1000 uniformly chosen normal Twitter user ac-
counts. If it is unconstrained civilization, the bot is also fol-
lowed by 10 uniformly chosen normal Twitter user
accounts. If it is constrained civilization, the bot is followed
by 10 normal Twitter accounts which are randomly chosen
among the 1000 normal users accounts the bot follows,
each with a probability proportional to its indegree. Con-
strained civilization is inspired by a recent measurement
study which shows that link farming is more successful
from a small number of popular and highly active Twitter
users than lay Twitter users with few followers [11]. Intu-
itively speaking, when bots are civilized in a constrained
manner, it limits the mixture of bot nodes and normal user
Table 3
Results of pre-new-core detection under different topologies.

Number of peripheral nodes monitored
under original core

Fraction of peripheral
under original core (%

Original 118,696 0.29

Star I 118,704 0.28
Star II 125,023 0.30
Star III 13,081,477 31.40
Star IV 118,708 0.28
Star V 133,677 0.30
Star VI 9,149,977 21.96

Tree I 123,267 0.30
Tree II 123,760 0.30
Tree III 20,823,822 50
Tree IV 118,966 0.29
Tree V 125,965 0.30
Tree VI 10,591,333 25.42

Graph I 13,216,572 31.72
Graph II 13,199,345 31.68
accounts, as a bot can be followed by only those normal ac-
counts that if follows.

In summary, we have the following scenarios:
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We apply Peri-Watchdog on these topologies. In Algo-
rithms 1 and 2, we set the parameters as follows:
c = 1000, a = 1000, and d = 0.001. b is not important here
because we apply Peri-Watchdog only on the static Twitter
graph injected with synthetic botnet structures. According
to Algorithm 1, there are two cases for bot detection with
Peri-Watchdog. In the first case (pre-new-core detection),
Peri-Watchdog sticks to the original core, and in the second
case (post-new-core detection) Peri-Watchdog recalculates
the new core and then perform bot detection.
e core) monitored
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8.1. Pre-new-core detection

The detection results are illustrated in Table 3. (1) We
observe that under the original core, the numbers of
nodes outside the core monitored by Peri-Watchdog are
comparable when only one node is civilized (Star-I, II,
IV, V; Tree-I, II, IV, V). But when the number of civilized
bot nodes increases significantly (Star-III, VI; Tree-III, VI;
Graph-I, II), they create substantial changes to the struc-
ture of the original Twitter graph, thus leading to a large
number of nodes that have to be monitored by Peri-
Watchdog. Hence, for these cases, computation of a new
core is inevitable. (2) Under each of topologies Star-I, II,
IV and V where only one master node is followed by all
other individual bots inside the botnet, only this master
node will be scrutinized by Peri-Watchdog when one
bot node is civilized. Under the tree topology, other
top-level bot nodes than the root master node can also
have high reachability, so we observe more bot nodes
are monitored by Peri-Watchdog when only one node is
civilized. (3) Moreover, we observe that under Tree III, a
substantially larger number of nodes have to be moni-
tored than in the other two cases where a large number
of nodes are civilized (Star III and Graph I). This is plau-
sible because the tree topology has more bot nodes
(11,111) than the other two topologies (10,001 for the
star topology and 10,000 for the graph topology). (4)
Whether civilization is performed in a constrained or
unconstrained fashion does not seem to affect the cases
when there is only one node civilized. However, when
all bots are civilized, we find that if bots are civilized in
a constrained fashion under the star and tree topologies,
a fewer number of bots are monitored under the original
core. This is because under constrained civilization, the
set of normal user accounts is limited to only those that
follow bot nodes, which limits the mixture of bot nodes
and normal user accounts. This does not affect the cases
under the graph topology because nodes inside the botnet
themselves are already highly mixed. Hence, civilizing
any bot node is likely to mix the botnet well into the ori-
ginal Twitter network.
Table 4
Results of post-new-core detection under different topologies. For Tree V, we had

Fraction of core nodes Core overlapping Num

Original 33.9% – –

Star I 33.8% 100.0% 1
Star II 33.8% 100.0% 1
Star III 34.5% 97.7% 9888
Star IV 33.8% 100.0% 0
Star V 33.8% 100.0% 1
Star VI 34.4% 98.0% 8600

Tree I 33.8% 100.0% 1
Tree II 33.8% 100.0% 1
Tree III 34.7% 97.1% 11,01
Tree IV 33.8% 100.0% 0
Tree V X X X
Tree VI 32.6% 98.7% 9748

Graph I 33.1% 98.4% 10,00
Graph II 32.3% 98.8% 9969
8.2. Post-new-core detection

The results of post-new-core detection are shown in Ta-
ble 4. For the moment, we assume that during the new core
computation, none of nodes admitted to the new core are
suspicious of bot activities. (1) One observation is that un-
der each scenario, the new core is very similar to the core
of the original Twitter graph. Particularly, when only one
node is civilized, the core almost remains the same except
only a few nodes. (2) We, however, also note that bots can
get into the core. This is because when a botnet is added to
the graph, nodes in the original graph have to pass some
bots in the botnet to reach other parts of the botnet, thus
boosting the betweenness centrality of these bots. For in-
stance, when only one bot node is civilized, this bot node
is likely to be added to the core (e.g., Star-I,II and Tree-
I,II). When a large number of bot nodes are civilized, the
bot nodes can serve as shortcut nodes that bridge nodes
in the original graph within shorter distances, which also
helps increase their betweenness centrality measures.
Hence, we see that when a large number of bot nodes are
civilized, the majority of them get admitted into the core.
Under Graph I, we actually see all the bot nodes become
part of the core if bots are civilized in an unconstrained
manner. (3) When bots can be civilized only in a con-
strained manner, it is more difficult for bots to slip into
the core, which is plausible because constrained civiliza-
tion limits the mixture of normal user accounts and bot
accounts.

The above analysis hinges on the assumption that no bot
nodes are found suspicious during the new core computa-
tion. It suggests the importance of scrutinizing newly added
core nodes to ensure their sanity. The process of vetting
newly admitted core nodes can be treated as part of hunt-
ing for bot activities: Peri-Watchdog keeps monitoring
these nodes for an extended period of time to make sure
that they are not suspicious of bot activities themselves.
As shown in Table 4, the majority of the nodes in the origi-
nal core appear in the new core, implying that monitoring
these newly admitted core nodes does not introduce
substantial computational burden. Close examination of
a hard disk failure and could not finish the experiment.
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the results in Table 4 also reveals that even if some bot
nodes get admitted into the core, some bot nodes in the
periphery (outside the core) will still be monitored except
three cases (Star-II,V and Graph-I). Hence, even if some
bot nodes slip into the new core, it is still possible to dis-
cover bot activities from those nodes monitored in the
periphery.

9. Cross validation

The design of Peri-Watchdog proposed in Section 7 is
based on our extensive analysis of the Twitter graph. Its
performance under a practical setting, however, still rests
on the answers to the following questions: (1) How often
does Peri-Watchdog update its core? (2) How stable is
the core of the graph over time? (3) Are observations made
from analysis of the Twitter graph common to other online
social networks? Unfortunately, we are not able to obtain
the dynamic changes of the Twitter graph to address the
first two questions. To gain insights into how Peri-Watch-
dog performs, we conduct cross validation using data col-
lected from another online social network, BrightKite [5].
BrightKite is a location-based online social network that
was launched in 2007. Due to its open nature, we were able
to collect the full social graphs formed by its users from
April 14, 2009 to October 4, 2009, almost every day. It is
noted that the friendship in BrightKite follows a different
model from that in Twitter [6]: when user A adds B as
her friend in BrightKite, all updates by A are visible to B.
In our directed graph representation, edge (A, B) means
that B is on A’s friend list. We note that there may exist
some missing data for a few days in the dataset, but we
use Peri-Watchdog on the raw dataset because in practice
noise due to measurement mistakes may be inevitable in
observed data.

Fig. 8(1) depicts the total number of BrightKite users,
the number of nodes in the giant WCC, the number of
nodes not in the giant WCC, and the number of users in
the second largest WCC in the BrightKite network. Gener-
ally speaking, both the size of the entire BrightKite graph
and that of its giant WCC grow over the measurement per-
iod, but we do observe a few drops in both metrics, which
we conjecture occurred due to some measurement errors.
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Fig. 8. WCCs and SCCs in BrightKite
Interestingly, the number of users not in the giant WCC re-
mains relatively stable, which suggests that most newly
added users joined the giant WCC. Also, nodes that do
not belong to the giant WCC do not form large compo-
nents, as evidenced by the constant size of one for the sec-
ond largest WCC. These results confirm that large
standalone botnets, if hidden in the BrightKite network,
will stand out easily.

We further show in Fig. 8(2) that the size of the giant
SCC, and the number of nodes that are reachable from
the giant SCC in the BrightKite graph, respectively, over
time. Still, generally speaking, both numbers increase over
time, but there are a few drops for a few days. Suppose that
the attacker wants to hide an appendix botnet in the
BrightKite network. As he has the freedom to add people
onto his friend list but normal users do not add bots onto
their friend lists, there are edges from the botnet to the
normal BrightKite graph but not vice versa. Hence, all
nodes that are reachable from the giant SCC of the BrightK-
ite cannot belong to an appendix botnet. After removing
these nodes from the BrightKite graph on each collection
day, we find the size of the giant WCC in the residual graph
is always 1. Hence, if the attacker wants to hide an appen-
dix botnet in the BrightKite network, it would be easy to
monitor its activities through graph-theoretic analysis by
Peri-Watchdog.

Peri-Watchdog uses Algorithms 1 and 2 to discover and
monitor crossover botnets. To apply it on the BrightKite
network, we need to change its operation slightly. Due to
the difference in how friendships are initiated in BrightKite,
we use the indegree centrality measure instead on Line 15
in Algorithm 2. The parameters in Peri-Watchdog are set as
follows: a = 100 (i.e., we monitor botnets of at least 100
nodes), b = 2000 (i.e., we monitor at most 2000 nodes),
c = 50 (i.e., the threshold for small connected components),
and d = 0.001 (i.e., the resolution to decide when to stop
searching top nodes for breaking the graph into small con-
nected components). Due to the small size of the BrightKite
network, we consider all possible source nodes when
calculating betweenness centrality measures. In the exper-
iments, we assume that no nodes are deemed as suspicious,
as we are concerned with the dynamics introduced by Peri-
Watchdog operations.
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Fig. 9(1) presents when the core is computed and also
the fraction of nodes that belong to the core. In total, the
core has been computed 10 times and thus a new core is
needed every 18 days. On average, each core contains
24.0% of the nodes in the entire BrightKite graph at the
point of computation. Recall that the core of the Twitter
graph contains 33.9% of the nodes in its giant WCC. As it
is likely to miss some nodes that do not belong to the giant
WCC for the Twitter graph due to the limitation of data col-
lection, it seems that the fractions of core nodes are com-
parable for both networks. Fig. 9(1) also shows the
fraction of previously observed nodes that are included in
a new core. Clearly, the majority of the nodes in a new core
have actually been seen in previous cores. The implication
of this observation is: Peri-Watchdog does not need to ver-
ify the sanity of each node in a newly calculated core;
rather, only a small fraction of nodes need to be checked.

We further show in Fig. 9(2) the number of nodes to be
monitored by Peri-Watchdog for potential botnet activities.
We note that this number increases as new nodes and
friendships are added into the network. In most cases, once
the number exceeds 2000 (i.e., b), a new core is generated,
bringing the number of nodes for monitoring close to 0
again. One interesting data point occurs on May 11, 2009
(Day 42 in Fig. 9). We observe the following sequence of
events: (1) the number of monitored nodes (i.e., 2040) ex-
ceeds 2000 on May 11; so a new core is calculated, which
contains 2217 new nodes. (2) On May 12, 498 nodes in
the periphery need to be monitored, which triggers another
core computation; the new core has 148 new nodes, com-
pared to the previous one. This suggests that if a new core
contains too many nodes that did not appear in the previous
one, the number of nodes that Peri-Watchdog has to moni-
tor may exceed its capacity. Close examination reveals that
the large number of new nodes admitted into the core cal-
culated on May 11, 2009 results from a long period of time
after the previous core computation, which occurred on
April 14, 2009. April 14, 2009 was the first time a core was
generated, when we assume that no new nodes were added
to the core compared to the previous one. This allowed extra
time for the number of monitored peripheral nodes to accu-
mulate before it exceeded the threshold, thus postponing
the next core computation. In practice, to prevent this from
happening, we can force a new core computation – rather
than wait for the number of monitored nodes to exceed
the threshold – after a certain period of time has elapsed
since the last core computation.

10. Discussion

In previous sections, we have presented the design of
Peri-Watchdog and studied how it performs on syntheti-
cally generated botnet structures. We also have done cross
validation with the BrightKite dataset. However, we do not
pretend that Peri-Watchdog is a panacea for botnet detec-
tion in open online social networks. In this section, we play
devil’s advocate and discuss potential weaknesses of Peri-
Watchdog.

Peri-Watchdog is not suitable for monitoring current
botnets that rely on bot-controlled Twitter accounts to
spread C&C information to individual bots that visit their
public profile pages. Fortunately, such botnets are essen-
tially traditional HTTP-based botnets, and many detection
techniques have already been proposed to monitor re-
peated pulling activities by individual bots [14,20,1]. Also,
the exposure of C&C information to the general public puts
such botnets under scrutiny by independent cyber-security
researchers.

Some online social networks such as Facebook allow a
user to accept private messages from non-friend users if
she opts to do so. As this kind of message circumvents the
social graph formed by online users, botnets operating
based on such communications can evade detection by
Peri-Watchdog. However, as these messages stand out from
those normal ones sent between socially connected users,
we can simply monitor them for potential botnet activities,
as we do on the set of suspicious nodes identified by Peri-
Watchdog.

Peri-Watchdog requires a clean core without malicious
bots to function effectively. For instance, the results in Ta-
ble 4 show that when the botnet is organized as a star
topology, the master node may slip into the core without
being caught. The challenges for the attacker to evade the
detection of Peri-Watchdog are threefold. First, after the
botnet comes into existence, there is some time before a
new core is generated. During this period of time, the mas-
ter node could expose itself as it still stays in the periphery
of the online social network, as seen from Table 3. To evade
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detection by Peri-Watchdog, the master node has to behave
as a benign node in order to get a chance to be selected into
the core in the next round of core computation. Second,
even if the master node gets admitted into the new core,
Peri-Watchdog will still monitor those nodes that are new
comers to the core before the next round of core computa-
tion. Hence, the master node still has to behave normally to
evade detection during this period. Third, Peri-Watchdog
checks the sanity of core nodes in an offline fashion.
Although this postpones the detection of the master node,
the master bot node that stealthily slips into the core
eventually will be caught by the offline component if it
has performed suspicious bot activities.

Another way to compromise core nodes is by hacking
some accounts in the core. Due to weak password protec-
tion, some celebrities’ Twitter accounts have been compro-
mised before. As these celebrities usually have a large
number of followers, they tend to belong to the core more
likely than normal users. In this case, if the abused account
uses public messages for C&C communications, it can be
spotted easily by its followers, and therefore an open online
social network that allows its users to report such suspi-
cious activities helps Peri-Watchdog remove compromised
nodes from the core quickly. If the abused account uses pri-
vate messages to deliver C&C information, Peri-Watchdog
has to rely on offline inspection to discover it. From Section
9, we have observed that the core of an open online social
network tends to be stable (i.e., the overlapping ratio of
nodes in consecutive cores is high), and the fraction of core
nodes in the entire graph does not vary significantly over
time. This suggests that offline inspection is limited to a rel-
atively stable set of nodes.

Peri-Watchdog is designed to aid detection of large bot-
nets hidden in open online social networks. Thus, the bot-
herder can divide his botnet into small isolated pieces to
evade detection by Peri-Watchdog. By doing so, however,
the botherder has to maintain a number of small-sized bot-
nets, which complicates botnet operation and management.
11. Conclusions

The increasing popularity of online social networks has
made them attractive to miscreants to hide botnet activi-
ties. In this work, we perform graph-theoretic analysis of
the Twitter graph to look for patterns useful for identifying
suspicious bot activities. Accordingly, we propose Peri-
Watchdog to narrow down the list of nodes that are likely
to pass botnet C&C information in an open online social
network. We ran Peri-Watchdog on a dataset containing
the evolution of social graphs formed by BrightKite users
and make some interesting observations such as the stabil-
ity of the core in the online social network. In our future
work, we plan to explore other methods (e.g., more effi-
cient streaming algorithms) to calculate the core of an
evolving online social network.
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