RIGHTS

Session 9: Malware Detection

CODASPY ’20, March 1618, 2020, New Orleans, LA, USA

Deceiving Portable Executable Malware Classifiers into
Targeted Misclassification with Practical Adversarial Samples

Yunus Kucuk
Department of Computer Science
Binghamton University, State University of New York
ykucukl@binghamton.edu

ABSTRACT

Due to voluminous malware attacks in the cyberspace, machine
learning has become popular for automating malware detection and
classification. In this work we play devil’s advocate by investigating
a new type of threats aimed at deceiving multi-class Portable Exe-
cutable (PE) malware classifiers into targeted misclassification with
practical adversarial samples. Using a malware dataset with tens
of thousands of samples, we construct three types of PE malware
classifiers, the first one based on frequencies of opcodes in the dis-
assembled malware code (opcode classifier), the second one the list
of API functions imported by each PE sample (API classifier), and
the third one the list of system calls observed in dynamic execution
(system call classifier). We develop a genetic algorithm augmented
with different support functions to deceive these classifiers into
misclassifying a PE sample into any target family. Using an Rbot
malware sample whose source code is publicly available, we are
able to create practical adversarial samples that can deceive the
opcode classifier into targeted misclassification with a successful
rate of 75%, the API classifier with a successful rate of 83.3%, and
the system call classifier with a successful rate of 91.7%.

CCS CONCEPTS

+ Security and privacy — Malware and its mitigation; .
Theory of computation — Adversarial learning,.

KEYWORDS
Malware classification; adversarial machine learning

ACM Reference Format:

Yunus Kucuk and Guanhua Yan. 2020. Deceiving Portable Executable Mal-
ware Classifiers into Targeted Misclassification with Practical Adversarial
Samples. In Proceedings of the Tenth ACM Conference on Data and Application
Security and Privacy (CODASPY °20), March 16-18, 2020, New Orleans, LA,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3374664.
3375741

1 INTRODUCTION

Malware are responsible for a variety of online criminal activities.
AV-TEST, a computer security institute, has collected 137.47 million
new malware variants in 2018, an increase of 13% over the previous

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CODASPY °20, March 16—18, 2020, New Orleans, LA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7107-0/20/03....$15.00
https://doi.org/10.1145/3374664.3375741

i,

341

Guanhua Yan
Department of Computer Science
Binghamton University, State University of New York
ghyan@binghamton.edu

year [17]. To counter against voluminous malware attacks, machine
learning techniques have become popular for detecting and classi-
fying malware variants, such as Windows PE (Portable Executable)
malware [33, 40, 45, 47, 63, 65], PDF malware [43, 56, 57, 59], An-
droid malware [11, 16, 29, 50], and Linux malware [38, 55].

The increasing use of machine learning in malware defense
has raised concern about their robustness in adversarial environ-
ments [61]. There has been recent research on adversarial ma-
chine learning attacks against malware classifiers, including eva-
sion of PDF malware classifiers [18, 58, 62], PE malware classi-
fiers [14, 15, 35, 37] and Android malware classifiers [28, 64]. Most
of these previous works, however, focus on development of efficient
algorithms for finding adversarial samples instead of creation of
real adversarial samples that can work validly in practice; the few
exceptions include generation of evasive PDF malware in [58] and
[62], PE malware in [15], and Android malware in [64].

Against this backdrop, we explore a new problem in the study
of adversarial malware samples: can we generate functionality-
validated malware executables that can deceive a multi-class PE
malware classifier into targeted misclassification? Towards this end,
we need to tackle the following unique challenges. Firstly, there is
limited action space to modify PE malware features without break-
ing their functionalities. For example, when evading a malware
classifier trained on opcode frequency features extracted from dis-
assembled malware code [19, 42, 53], the attacker cannot just pad
the malware file with new instructions to match the frequency
histogram of a benign file, because the sample created may not be
a valid PE file or execute correctly. Secondly, various types of fea-
tures can be used to classify PE malware, including those from both
static and dynamic analysis [63]. Hence, it is difficult to develop
a unified methodology to evade the malware classifiers trained
from different types of malware features. For example, although the
work in [15] has considered using packing procedures or modifying
functionality-insensitive fields in PE files to create mutated samples
for evasion attacks, the adversarial malware samples created as such
cannot evade the classifiers trained from features extracted from
dynamic execution in malware sandboxes. Last but not least, our
goal in this work extends the focus of existing works on creation
of evasive malware samples to a more general malware deception
problem, which is to deceive a multi-class malware classifier into
classifying an adversarial malware sample into any target family,
including the benign class. Malware deception cannot be achieved
with widely used malware packing techniques, such as compression
and encryption, because the samples created may not fall into the
feature space of the targeted malware family.

In this work we develop a generic methodology based on genetic
algorithms to search for practical adversarial malware samples.

https://doi.org/10.1145/3374664.3375741
https://doi.org/10.1145/3374664.3375741
https://doi.org/10.1145/3374664.3375741

RIGHTS

Session 9: Malware Detection

Our technique can deceive a variety of PE malware classifiers into
targeted misclassification with customized distance functions mea-
suring similarity among malware samples in the feature space used
by these classifiers. Our work performs obfuscation at the source
code level and exploits the causality between source code modifica-
tion and changes of malware features extracted from the compiled
executables to generate adversarial samples. To ensure their practi-
cality, our method validates their functionalities in a sandbox.

In a nutshell, our main contributions are summarized as follows:

e We use a malware dataset with tens of thousands of PE sam-
ples to train three multi-class classifiers, the first one based
on frequencies of opcodes in the disassembled malware code
(opcode classifier), the second one the list of API functions
imported by each PE sample (API classifier), and the third
one the list of system calls observed in dynamic execution
(system call classifier) to classify a PE sample into its corre-
sponding family.

e Based on bogus control flow obfuscation, we study the ef-
fects on the opcode feature values due to basic block cloning
through differential analysis. To create an adversarial sample
that can deceive the opcode classifier into targeted misclas-
sification, we formulate an optimization problem that mini-
mizes the Kullback-Leibler divergence between the opcode
frequency feature vectors from the target. We develop a ge-
netic algorithm to search practical malware variants that can
deceive the opcode classifier into targeted misclassification.

o To deceive the API classifier, we use a popular API obfus-
cation technique to conceal imported API functions. We
formulate an optimization problem that minimizes the Eu-
clidean distance between the imported API function feature
vectors from the target. We adopt a similar genetic algorithm
to produce malware variants whose API feature vectors are
gradually converging towards the point with a minimal Eu-
clidean distance from the target sample in the feature space.

o As the system call classifier is trained from malware fea-
tures extracted from dynamic execution, we consider adding
dummy API calls on malware’s execution paths to influence
the list of system calls invoked. We carefully select API calls
to be added to the original malware sample with predictable
effects on the feature vectors. A similar genetic algorithm is
used to search adversarial samples based on a fitness func-
tion that uses the Jensen-Shannon divergence to measure
the distance of system call frequency feature vectors.

o The experiments reveal that our methods can mutate the
Rbot sample, whose source code has been publicly available,
into a functionable variant misclassified by the opcode clas-
sifier into any target family with a successful rate of 75%, by
the API classifier with a successful rate of 83.3%, and by the
system call classifier with a successful rate of 91.7%.

The remainder of this work is organized as follows. Section 2
presents related work. Section 3 introduces the problem formulation.
Section 4 presents the malware dataset and the three malware
classifiers considered in this work. In Sections 5, 6 and 7, we present
the algorithms for deceiving these three classifiers into targeted
misclassification, respectively. We discuss the scope of this work in
Section 8 and draw concluding remarks in Section 9.

Ay

342

CODASPY ’20, March 1618, 2020, New Orleans, LA, USA

2 RELATED WORK

Machine learning-based PE malware defense. In the literature,
a variety of features have been extracted from PE malware sam-
ples to train predictive machine learning models, including n-gram
byte sequences in the binary executables [33, 45, 52, 63], PE header
fields [46, 54, 63], opcode n-gram sequences [19, 42, 53], Windows
API calls [13, 51, 65], structural features contained within con-
trol flow graphs [23, 34], and many others. In this work, we focus
on creation of adversarial malware samples to deceive three spe-
cific multi-class PE malware classifiers, although in principle our
methodology can be extended to deceive other types of malware
classifiers. In addition to the variety of malware features used, dif-
ferent classification models have also been considered in these
previous works, including SVM [33, 53, 63, 65], decision trees or
ensemble learning based on decision trees [42, 45, 51, 53, 63, 65],
Naive Bayes [33, 42, 53, 63, 65], neural networks [42, 53]. In our
work, we consider only random forest as the malware classifier
as it has been consistently found that ensemble learning based
on decision trees tends to perform well on malware classifica-
tion [33, 42, 45, 51, 53, 63, 65].

Generation of adversarial malware samples. Existing ef-
forts dedicated to creating adversarial malware samples for evading
machine learning-based malware detection systems are summa-
rized in Table 1. The survey tells us that although it has been
successful to generate real PDF malware examples that can evade
machine learning-based malware detection [58, 62], efforts on ad-
versarial attacks against PE malware classifiers focused on creation
of hypothetical malware samples based on modification of features
extracted from the malware samples. For some features, however, it
may be difficult to modify their values while preserving malware’s
functionability. The rare exceptions include adversarial machine
learning attacks against binary malware classifiers trained on static
analysis features [15] and API call features from dynamic execu-
tion [48]. Different from our work, they do not attack a multi-class
malware classifier and are able to evade neither the opcode classifier
nor the system call classifier considered in this study.

Algorithms for searching adversarial samples. Many algo-
rithms have been proposed to generate adversarial samples for
deep learning prediction models. These methods include Fast Gra-
dient Sign Method (FGSM) [27], the Jacobian-based Saliency Map
approach (JBSM) [44], DeepFool [41], the Carlini & Wagner’s at-
tack [22], ElasticNet attacks [24], and momentum-based iterative
algorithms [26]. Among the previous works aimed at generating
adversarial malware samples, the algorithms used to find adversar-
ial examples include genetic algorithms [62], reinforcement learn-
ing [15], FGSM [35, 37], generative adversarial networks [30], gra-
dient descent algorithms [32], JBSM [28], and Carlini & Wagner’s
attack [37]. As this work uses random forest as the malware classi-
fier, those methods developed for generating adversarial samples
for deep learning models are not directly applicable.

3 PROBLEM FORMULATION

Consider a PE malware classifier Cy,,;, which classifies PE samples
into disjoint families F = {fj}; <; <|r|- Without loss of generality, all
benign samples are assumed to belong to the same family fpepn;ign €
F. To perform threat analysis of adversarial samples on classifier

RIGHTS

Session 9: Malware Detection

CODASPY ’20, March 1618, 2020, New Orleans, LA, USA

Table 1: Existing works on creation of adversarial malware samples for deceiving malware classifiers. Being Validated means
that the functionability of an adversarial sample created has been validated through dynamic analysis.

Article Malware Type | Validated? | Binary or Multi-Class? | Targeted Misclassification?
Biggio et al. [18] PDF malware X Binary Yes
Srndic and Laskov [58] PDF malware v Binary Yes
Xu et al. [62] PDF malware v Binary Yes
Grosse et al. [28] Android malware X Binary Yes
Demontis et al. [25] Android malware X Binary Yes
Yang et al. [64] Android malware v Binary Yes
Liu et al. [37] PE malware X Binary Yes
Kolosnjaji et al. [32] Unknown X Binary Yes
Kreuk et al. [35] PE malware X Binary Yes
Hu and Tan [30] Unknown X Binary Yes
Al-Dujaili et al. [14] PE malware X Binary Yes
Anderson et al. [15] PE malware v Binary Yes
Rosenberg et al. [48] PE malware v Binary Yes
Abusnaina et al. [12] Linux malware X Multi-class Yes
Our work PE malware v Multi-class Yes

Cynals We play devil’s advocate by obfuscating an existing PE sample
PE,. The true family of sample PE, is assumed to be f, € F.

Our goal is to transform PE, into a new sample PE] such that
classifier C,, 4 misclassifies PE/ as a target family f; where f; # fo.
The purpose of targeted misclassification can be:

o Malware evasion: The author of malware sample PE, may
want to obfuscate it so classifier C,,,; would misclassify
it as benign (i.e., fg = fpenign)> regardless of its original
family f,. This can effectively evade the detection of C,,,;
for malicious PE programs. As demonstrated in Table 1, the
majority of existing works on adversarial malware samples
focuses on malware evasion.

o Malware deception: In addition to malware evasion which
requires fy = fpenign, an attacker may also want to achieve
fa # foenign-Inthese cases, the attacker would like to create
PE samples that can deceive malware classifier C,,,; into
believing that they are from a specific family. For instance,
if the attacker can morph a benign PE file into a sample that
is misclassified by C,,,,; as a Stuxnet attack [8], it may cause
panic to the institutions who deploy malware classifier Cp,,]
or mislead their threat mitigation operations.

In this work we consider the malware deception problem, which
is a generalization of the malware evasion problem because no
constraint is imposed on the target family f;.

Adversary model. In this work, we make the following assump-
tions about the adversary:

o Availability of source code: Different from existing works that
directly modify malware samples (e.g., malicious PDF files)
or their features to evade detection, we instead assume that
the source code of the malware sample should be available.
The availability of source code enlarges the action space
of the attacker for deceiving malware classifier C,,,,; into
targeted misclassification.

Ay

343

o Malware classifier as a blackbox: When creating adversarial
samples, we assume that the attacker does not know any in-
ternal detail about malware classifier C,, 4, such as its model
parameters, except the type of features it uses for malware
classification. The attacker treats C,,,; as a blackbox, which
returns the classification result with an input PE sample.

Anchor samples from the target family: We assume that the
attacker has access to a set of PE samples from the target
family f;, or equivalently their features with which Cp,,4;
would classify the samples as the target family f;. We use
Ay, to denote the set of anchor samples for target family fy.

Regarding the third assumption, one may wonder why the at-
tacker would bother to create new adversarial samples pretending
to belong to the target family if he already has real examples from
it. There could be multiple reasons for this. Firstly, in practice there
may be multiple defense schemes deployed against malware at-
tacks. If the signatures of these real samples from the target family
have already been known, they may be detectable by up-to-date AV
(Anti-Virus) scanners. Secondly, depending on the attacker’s inten-
tion, directly using the real samples from the target family may not
achieve his deception goal. For example, the attacker may just want
to use a benign PE sample pretending to be a Stuxnet malware for
purpose of intimidation without causing any real harm.

4 MALWARE DATASET AND CLASSIFIERS

In this section we describe the PE malware dataset we use in this
study, three types of malware classifiers trained on this dataset, and
finally the source code of an Rbot sample used to deceive the three
classifiers into targeted misclassification.

PE malware dataset. Albeit it is easy to download a large num-
ber of malware samples from public repositories (e.g., VirusShare [9]),
itis not easy to find many labeled ones. We use a PE malware dataset
that contains 15,721 unpacked and 9,479 packed PE malware sam-
ples belonging to 12 malware families, Bagle, Bifrose, Hupigon, Koob-
face, Ldpinch, Lmir, Rbot, Sdbot, Swizzor, Vundo, Zbot, and Zlob. Our

RIGHTS LI

Session 9: Malware Detection

CODASPY ’20, March 1618, 2020, New Orleans, LA, USA

entry

Qo
& 2 O
O 3. PO
S S C LS
10000 - Unpacked > FF ENE Condition, | false
210 entry (always true)
8 . Pocked Eoo{ 0@ TS DN
? 8000 I S 08 * \ true
0.7
b3 6000 5’ 0.6 Transformation
s 0 0.5)
c ——)
- I 504 Orgnalss OriginalBg’
2 4000 g 0.3 Terminator, true
£ < 0 02 Sondtor;
g 2000 = m |] £ 8[1) always true)
T 0. -
| [| m w Malware family end false
ol = oo M ° de:1 "
~-@- opcode:1-gram
00950€ (058 g0\ (a8 o\ ¢ oot goot 770 1800t 4100) BogusBB
e85 oM o g 1 —#- api:boolean
Malware family --4&-- system call

Figure 1: Distribution of family sizes in Figure 2: Classification performance of Figure 3: Illustration of bogus flow con-

the malware dataset

malware dataset has more samples than that used in Kaggle’s Mi-
crosoft malware classification competition, which consists of 10,868
labeled malware samples belonging to nine families [5]. Moreover,
the Microsoft malware dataset is unsuitable for this study, as we
cannot find source code for any of its nine families. In addition to
our malware dataset, we use 519 Benign PE samples and as men-
tioned earlier, all these benign samples are treated as belonging to a
special Benign family. The size distribution of these 13 malware fam-
ilies is given in Figure 1. The malware dataset is imbalanced across
different malware families, which is consistent with the previous
observations [49, 53, 63].

PE malware classifiers. We extract three types of malware
features, each used to train a random forest classifier. We choose the
random forest classification model because previous reports have
consistently shown that ensemble learning based on decision trees
perform well on the three types of malware features considered
in this study [33, 42, 45, 51, 53, 63, 65]. The following discussion
elaborates on how we build these three malware classifiers.

(1) Opcode classifier CmaI(O(")): random forest classifier trained
on opcode features. Malware classifiers trained with opcode n-gram
features have been investigated in a plethora of previous works [19,
42, 53]. To obtain opcode n-gram features, we disassemble the bi-
nary executable program of each unpacked malware in our dataset
into instructions in an assembly language. Packed malware sam-
ples usually have malware instruction code obfuscated and are thus
ignored in training Cmal(0<")). An assembly instruction includes
both its opcode and operands. For example, using the IDA Pro
tool [4], we can obtain the first nine instructions at the entry point
of a Zbot malware sample:

il: push ebp
i4: push ebx
i7: call sub_41C53B

12: mov ebp, esp
i5: xor ecx, ecx
i8: test al, al

i3: sub esp, 10h
i6: xor b1, b1
i9: jzloc_41D55C

The opcode in each instruction is shown in italics in the above
table. The opcode n-gram feature uses the combination of n con-
secutive opcodes within a sliding window as its feature name and
its frequency as its feature value. In the example, there are seven
1-gram features with its feature values shown in the parentheses:
push (2/9), mov (1/9), sub (1/9), xor (2/9), call (1/9), test (1/9), and jz
(1/9); there are eight 2-gram features, each with a value of 1/8.

Ay

the three malware classifiers

344

trol obfuscation

The instructions disassembled from a PE program can be repre-
sented as a control flow graph (CFG), where each node character-
izes a basic block without instructions branching out except at its
exit and each edge a control flow transition between basic blocks
through jump instructions. In our implementation, we use the popu-
lar IDA Pro tool to reconstruct the CFG of each PE program but our
methodology can be generalized to any CFG recovery technique.

Given the CFG G;,b)(VISb), E;,h)) constructed from program p, we

obtain its opcode n-gram feature vector as follows. We use O to
denote the entire set of opcode n-gram features. For each opcode

n-gram feature x € O("), let its count in a basic block of G(b),
vE V;b), be ay(x). It is noted that superscript (b) is intentionally
added to distinguish the binary executable of program p from its
other representations, which we shall see later. The count value of
opcode n-gram feature x in program p, where x € oM is:

fpx)= Y @)

UEVlgb)

(1)

The frequency value of opcode n-gram feature x in program p is
obtained by normalizing By (xn) With 3. <o, Bp(xn). As discussed
earlier, the frequency values of opcode n-gram features are used to
train a malware classifier. We use C,,, l(O(”)) to denote the specific
malware classifier trained with opcode n-gram features in on.

(2) AP classifier C, 41(A): random forest classifier trained on im-
ported API function features. Another type of malware features
widely used for PE malware classification is the imported Windows
API functions, which can be discovered from the Import Directory
Table in the . idata section by following the second data directory
of the image optional header inside the PE file header.

We use IDA Pro [4] to extract Windows API functions imported
by unpacked PE samples in our dataset. Packed samples are ignored
because their imported API functions may be obfuscated. The union
of all imported Windows API functions is used to create the API
function feature vector, where the feature value of a Windows API
function is 1 if imported by the sample, or 0 otherwise. We train
a multi-class random forest classifier based on the API function
features. We use C,,,4;(A) to denote this malware classifier.

(3) System call classifier Cp, 41(S): random forest classifier trained
on system call features. System calls have been used for malware de-
tection and classification in a number of previous works [20, 21, 38].

RIGHTS

Session 9: Malware Detection

We use the Intel Pin tool [6] to dynamically instrument each mal-
ware sample in our dataset, either packed or unpacked, and monitor
the sequence of system calls executed in a Windows 7 malware
sandbox with Internet connections emulated by FakeNet [3]. We
find that 4255 unpacked samples cannot be dynamically instru-
mented by Intel Pin and are thus ignored in our experiments. For
all the malware sample dynamically instrumented by Intel Pin, we
observe 463 unique system calls. They are used to construct each
sample’s feature vector, whose values indicate the frequency of
each system call made by the malware. Using these system call
features, we train a multi-class random forest classifier to classify a
PE sample to its corresponding family. We use Cp,,,;(S) to denote
this malware classifier.

Classification performance. We use 5-fold cross validation on
our malware dataset to evaluate the classification performances
of the malware classifiers. For each malware family, we treat the
classification results as from a binary classifier: either belonging to
the family or not. Precision P is defined as Ty, /(T + Fp), where T,
and Fj, are the numbers of true positive and false positive samples in
the results, respectively. Similarly, recall R is defined as Ty /(T + Fp),
where Tj, and Fy, are the numbers of true positive and false negative
samples in the results, respectively. The F-measure (or F-1 score) of
the binary classifier is the harmonic mean of precision and recall,
2PR/(P + R).

The classification performance results for each family by the
three malware classifiers, Cpq;(01), Cppai(A) and C,,q;(S1)) are
shown in Figure 2. Over all the 13 families, the mean F-measures
for these three malware classifiers are 0.893, 0.878, and 0.924, re-
spectively.

Rbot source code compilation. In our work, we do not want
to use the source code of a benign program because it does not allow
us to evaluate the effectiveness of our method in malware evasion.
To deceive a malware classifier into targeted misclassification, we
also prefer working on a malware sample that belongs to one of
the output families of that classifier. We add this sample to the
training dataset so that the classifier can correctly classifies it into
the correct family. The reason behind this extra step is to ensure
that if a new variant transformed from this sample is classified into
the target family, it should not be done by a mistake of the classifier.

Due to these concerns, we use the source code of an Rbot sample
publicly available in the malware zoo on github [7]. To produce
functionable PE malware samples from the Rbot source code, we
have used two different compilation methods:

Compilation with MSVC++: We have compiled the Rbot source

code with the MSVC++ (Microsoft Visual C++) 6.0 compiler (. MSC_VER

== 1200, Visual Studio 6.0). During this process we overcame Win-
dows version-specific challenges such as installing required run-
time libraries in the system directories and installing Microsoft
SDK (Software Development Kit) in the case that existing libraries
are not compatible with the compiler, and configuring the correct
library paths and system paths. The size of the Rbot malware sam-
ple compiled with MSVC++ is 222KB in a Windows 7 VM (Virtual
Machine).

Compilation with clang++. A practical PE sample compiled with
clang++ should be able to use Windows runtime libraries, which re-
quires Visual C++ ABI (Application Binary Interface) compatibility.

Ay

345

CODASPY ’20, March 1618, 2020, New Orleans, LA, USA

We have compiled the Rbot source code with clang++ version 3.4
in a Windows VM and produced the PE sample with the MSVC++
6.0 linker. As the Visual C++ ABI changes over time, linking the
clang-produced object files with the MSVC++ linker may incur
compatibility issues. We overcame these challenges by providing
the clang compiler with multiple flags, including -fms-compatibility,
-fms-extensions, -fdelayed-template-parsing, and -fmsc-version=1200
(which indicates the Microsoft compiler version to be MSVC++ 6.0).
Successful compilation with clang++ also calls for slight modifica-
tion of the source code, such as replacing use of the new operator
with a call of the malloc function and redeclaring variables outside
the for loops. The size of the Rbot malware sample compiled with
clang++ is 265KB in a Windows 7 VM.

Malware deception goal. Our goal is to obfuscate the Rbot
malware at the source code level so that the malware executable
compiled with either MSVC++ or clang++ satisfies the following
two criteria. First, the adversarial malware sample should deceive
one of the three aforementioned classifiers into classifying it to
a targeted family. It is noted that our goal is to deceive machine
learning-based malware classifiers into targeted misclassification.
The popular VirusTotal service [10] relies on tens of AV (Anti-
Virus) scanners for malware detection. These AV scanners usually
use signature-based detection and the detection results may not
include the correct family labels of the malware samples. Therefore
our experiments do not use the detection results of the VirusTotal
service for performance evaluation.

The second criterion requires the adversarial malware example
created to be functionable. We validate the functionability of an
Rbot malware sample as follows. We set up a C&C server and con-
figure each Rbot malware sample to communicate with the server
after it infects a VM running Windows 7. To automate the whole
process, we use the Cuckoo tool [2]. The communication between
the bot and the server is done through an mIRC channel, which
the botmaster uses to control the bot-infected machine through
various commands. In our implementation, we emulate six different
commands from the botmaster, which are summarized in Table 2.
If the bot machine’s responses to these commands are the same as
expected, the malware sample is deemed as functionable.

5 DECEIVING OPCODE CLASSIFIER

. (1)
This section describes how to deceive classifier Cr?m I

5.1 Methodology

Bogus control flow. The building block of our method is bogus
control flow that adds fake basic blocks to an existing CFG. Our im-
plementation is based on bogus control flow in llvm-obfuscator [31]
illustrated in Figure 3. The bogus flow obfuscation is performed on
a basic block, Original BB, in the CFG represented at the LLVM IR
level. The last instruction of Original BB is Terminatorppgp indicat-
ing the exit of this basic block. The transformation introduces two
always-true conditions, Condition; and Conditiony, which can be
any opaque predicates used for malware obfuscation. Condition; is
added before Original BB: if it is true, Original BB is executed except
that its Terminatorppp is replaced with Conditions; otherwise, the
control flow is directed to a bogus basic block BogusBB. Moreover,
if Condition holds true, Terminatorpgp is executed; otherwise,
the control flow is also directed to the bogus basic block BogusBB.

RIGHTS

Session 9: Malware Detection

Table 2: Rbot commands and the corresponding expected re-
sponses to test the functionability of samples created

Command
login password
.status

Response
[MAIN]: Password accepted.
[MAIN]: Status: Ready.
Bot Uptime: 0d Oh Om.
[CMD]: Remote shell ready.
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation.
All rights reserved.
C:\Windows\system32>
Volume in drive C has no label.
Volume Serial Number is A48C-CF74
Directory of C:\
06/10/2009 02:42 PM 24 autoexec.bat
06/10/2009 02:42 PM 10 config.sys
07/13/2009 07:37 PM <DIR> PerfLogs
03/05/2019 03:06 PM <DIR> Program Files
10/04/2017 01:09 PM <DIR> Python27
10/04/2017 04:02 PM <DIR> Users
10/04/2017 04:22 PM <DIR> Windows

2 File(s) 34 bytes

5 Dir(s) 24,380,584,832 bytes free
[CMD]: Remote shell stopped.
(1 thread(s) stopped.)
[MAIN]: User botmaster logged out.

.opencmd

.cmd dir C:\

.cmdstop

logout

Generation of adversarial samples. With bogus flow obfusca-
tion, we can add arbitrary LLVM IR instructions inside BogusBB as
they are never executed. To obtain legitimate LLVM IR instructions,
we can clone existing basic blocks represented at the LLVM IR
level. It is noted, however, that classifier C,,,;;(0™) is trained with
the opcode features extracted from binary executables. To achieve
targeted misclassification by C,,, I(O(")), we must carefully insert
bogus basic blocks, which, after their compilation to a PE program,
can appropriately change the opcode n-gram feature values.

We use differential analysis to find an optimal combination of
bogus flow obfuscations for targeted misclassification. Given the
source code of malware p written in C/C++, we use clang++ to
compile it into a CFG represented at the LLVM IR level. For clarity
of presentation, we use G;IR)(VISIR), E;,IR)) to represent such a CFG
constructed for program p. In each iteration, we choose a basic block
in VIEIR), treat it as Original BB and then clone it into BogusBB as
seen in Figure 3. The new program p’ after adding a bogus basic
block is compiled to its corresponding binary executable.

For each basic block v/R) ¢ VISIR), the differences in the count

values of opcode n-gram features in O is given by:
@

For brevity of discussion, we use A(’U(IR), -) to denote the vector
of changes in the count values of all the opcode n-gram features
and call it the A-vector of basic block o/R)_ Tt is possible that trans-
formation of different basic blocks leads to the same A-vector. We
thus choose a subset of basic blocks from G;IR)(VISIR), ELIR)) with

(IR)
BB

A(’U(IR),X) = Ppr(x) = Pp(x) foreachx € om.

distinct A-vectors and put them into set S ,’. Similarly, we use

Ay

346

CODASPY ’20, March 1618, 2020, New Orleans, LA, USA

A(+, x) to denote the vector of count value changes for feature x
over all the basic blocks in Sgg).

In the next step, we determine how many times each basic block in

Sgg) should be transformed with bogus flow obfuscation illustrated
in Figure 3. We let vector M, indexed in the same order as A(:, x),

include the number of times that each basic block in Sgg) should
be transformed. Hence, the dot product of vectors M and A(-, x), i.e.,
M - A(+, x), gives the total change on the count value of feature x
extracted from the final PE program p’ after all the transformations
are carried out.

After transformation based on vector M, the count value of
opcode n-gram feature x in program p’, where x € 0™, becomes:

Py (x) = fp(x) + M - A, x), ©)

and the normalization factor ¥, . 5m) fpr(x) is used to derive its
frequency value.

Recall that it is assumed that the attacker has a set of anchor
samples for target family f;, denoted by Ay, . For targeted misclassi-
fication, an anchor PE sample, g, is picked from Af,. As frequencies

of opcode n-gram sequences are used to train classifier Cp,;(0™),
we aim to find such a vector M that minimizes the KL (Kullback-
Leibler) divergence between the frequency feature vectors of pro-
grams p’ and ¢, where the KL divergence between any two discrete
probability distributions P and Q is defined as follows:

Q)

Dkr(P,Q) = - Z P(X)log oL

xeX

©

However, when P(x) = 0 for some x that is in the support of
distribution Q, the KL divergence cannot be computed. We thus
calculate the middle point between the frequency feature vectors of
programs p’ and g, and then minimize the KL divergence between
it and the frequency feature vector of program g, which leads to
the following optimization problem:

min}i\}jnize Dk 1(P,Q)

where X = {x € 0™ : By (x)Bq(x) # 0}
PO = Y T)
Qo) = g1

Our modification of KL divergence to address the 0-support prob-
lem has been inspired by the Jensen-Shannon (JS) divergence [36].
As seen in Section 7, the JS divergence can also be directly used in
the search for adversarial malware samples.

Genetic algorithm. After testing a few optimization techniques
such as simulated annealing and mixed integer programming solvers,
we choose the genetic algorithm to search the solution to the afore-
mentioned optimization problem due to its easy implementation. To
use the genetic algorithm, we define a chromosome (or individual)
as an instantiation of vector M in the optimization problem. Hence,
the length of each chromosome is the number of basic blocks we
can replicate through bogus flow obfuscation.

The pseudocode is shown in Algorithm 1. It starts with a ran-
domly generated population H of size |H|, where for any h € H
each of its elements is uniformly chosen among [0, ..., 100] (recall
that h is an instantiating of vector M). The genetic algorithm runs

RIGHTS

Session 9: Malware Detection

Algorithm 1 Genetic algorithm for finding adversarial samples to
deceive classifier C,,,,; into targeted misclassification

Require: feature vector X, target family f;, feature vector Xg,
parameter n, parameter ¢
Ensure: p is misclassified by C,,,4; as family fy
H « arandomly generated population
for eachi € {1,...,n} do
J<0
for each chromosome h € H do
Xp « MoDIFY(X)p, h)
if classifier Cy,4; classifies X; as f; then
Generate sample p’ and test its functionability
if p’ is functional then
return sample p’
end if
end if
J[h] < FrTNESs(Xpr, Xq)
chromosome h in map J
end for
L « top t chromosomes with highest scores in map J
Perform full mutation on each chromosome in L and add the
results onto list L,
Perform partial mutation on each chromosome in L and add
the results onto list Ly
Perform crossover on chromosomes from L and add the results
onto list L¢o
Generate new population H <~ Ly, U Lpm U Leo

>] is a map

> Keep the fitness score of

end for

Algorithm 2 Support functions for deceiving opcode classifier

function mopIFY(X), h)
return X, + h - A-vector

end function

function FITNESS(X)y, Xq)
return D (Xp', Xq)

end function

n iterations, each creating a new generation of population. In our
implementation the population size |H| is 1,000 and n = 400.

For each individual in the current population, we use it to modify
the original sample based on Eq. (3); the modification function is
defined by mop1rY() in Algorithm 2. The modified hypothetical
sample is fed to the malware classifier to check whether it achieves
targeted misclassification. If it passes the targeted misclassification
test, we create the corresponding real sample through compilation
with LLVM and then test its functionability. If the malware sample
works as expected, the genetic algorithm returns the sample.

The fitness score of a hypothetical sample is calculated as the KL-
distance between its feature vector and that of the anchor sample
as described in Eq. (4). If none in the current population H succeeds
in achieving targeted misclassification practically, we choose the
top t chromosomes with the highest fitness scores from H and add
them onto list L. In our implementation, we choose t to be 200. We
define three types of genetic operations: (1) Full mutation: Consider

the k-th element in vector M and let its highest value be chmax) in

Ay

347

CODASPY ’20, March 1618, 2020, New Orleans, LA, USA

the current population. We iterate over every chromosome on L.
For its k-th element for each k € [1, |M|], we update it by adding a
random number r that is uniformly chosen from [_chmuX)’ imax)];
if it becomes negative, it is assigned to be 0. (2) Partial mutation:
We define three ranges in Z = {1, 10, 100}. We iterate over every
chromosome on L. For each range z € Z, we perform the follow-
ing. For each of the |M| elements of the current chromosome, it is
mutated with probability 0.5. If it is chosen to mutate, we update it
by adding a random number r, which is uniformly chosen among
[—z, z]; similarly, if the new number becomes negative, it becomes
0. As there are three ranges, for each chromosome on L we produce
three new variants. (3) Crossover: We randomly choose two chro-
mosomes hg and h; from list L and create a new variant as follows.
For each k € [1, |M]], the k-th item of the new variant is randomly
chosen from hg and h; at the same place. The crossover operation
is performed for 200 times.

If, for the current anchor sample g, the genetic algorithm fails to
find a practical adversarial example that can deceive the classifier
into targeted misclassification, we choose a different one from set

A,

-, and rerun the genetic algorithm.

5.2 Implementation

Modification of llvm-obfuscator [31]. To implement our algo-
rithm for generating adversarial malware samples, we modify the
bogus control flow module of llvm-obfuscator as follows:

e Removal of existing conflicting features: Bogus control flow
is implemented by llvm-obfuscator as an LLVM pass with
options to control the probability of obfuscating a function
(funcBCF) or a basic block (boguscf-prob). Our algorithm
is deterministic and the stochasticity feature is thus unnec-
essary. We also remove the existing feature of adding junk
instructions into a cloned basic block to control the effect
of duplicating a basic block. Moreover, the optional suffix
naming feature in the cloned basic blocks can cause a stack
overflow problem when the basic blocks in a function are
obfuscated by a large number of times, leading to excessively
long instruction names.

e Addition of per-basic block control: We add two pass options,
both as vectors. The first vector specifies the indices of the
basic blocks to be cloned and the other the number of times
each basic block should be cloned (i.e., vector M in Eq. (3)).

Consistent basic blocks. The premise of our algorithm is that
cloning a basic block by k times should lead to linear changes on
the counts of opcode affected. This, however, is not always true
for all basic blocks, as explained in Table 3. The number in each
entry of the table gives the increased count of mov instructions in
the current sample over that derived from the previous column.
For example, for basic block 86, after it is cloned by k times, where
k € {2,3,4,5}, the increase of the mov instructions in the sample
is always 5 compared to the one after it is cloned by k — 1 times;
however, after basic block 86 is cloned by 100 times, the count of
the mov instructions in the sample has increased by 478 over that
after it is cloned by five times. Therefore, it is not a consistent basic
block because if the increase is linear, the last sample should have
475 more mov instructions than that with the basic block cloned by
five times. By contrast, basic block 3 is consistent because except

Session 9: Malware Detection

Table 3: Illustration of consistent basic blocks

RIGHTS

Basic block Opcode Iteration of basic block cloning
index 1 2 3 4 5 100
3 mov 9 10 10 10 10 950
86 mov 6 5 5 5 5 478
—_ =
Ay Az

the first transformation cloning the basic block by one more time
increases the count of mov instructions by exactly 10.

It is time consuming to check consistency of each basic block by
cloning it many times. We thus use the following method to obtain
consistent basic blocks. Define an ordered list L = [1, 2, 3, 4, 5, 100],
where the index starts from 1. Let B include all the basic blocks in
the program. For each basic block b € B, we create |L| samples by
cloning it by I times where [€ L. We calculate the difference in the
count of each opcode in the basic block between the (I—1)-th sample
and the I-th sample for any [€ [2, ..., 5]. If any of these differences
is different from the others, it is not deemed as a consistent basic
block. Let this difference be §. For the last sample (I = 100) we
expect its difference from the fifth sample to be exactly 95 - . If it
is not, b is ruled out as a consistent basic block.

We do not consider the first difference between the original sam-
ple and the one with the basic block cloned once, because the first
cloning is performed on the original basic block while the others on
a cloned basic block and the first difference may not be consistent
with the others. This has implications on our implementation: as
shown in Table 3, we keep two different A-vectors, one accounting
for the difference due to the first transformation (i.e., cloning the
basic block only once) and the other for the remaining ones. Func-
tion MODIFY in Algorithm 2 updates the feature vectors based on
these two A-vectors and the number of transformation needed.

The CFG representation at the LLVM IR level compiled from
the original Rbot source code contains 4,974 basic blocks, among
which we use 194 consistent ones. In the genetic algorithm, each
chromosome thus contains 194 elements (i.e., |M| = 194).

5.3 Experiments

We have implemented the genetic algorithm in Algorithm 1 with a
single thread in Python and use multiple workstations to perform
the experiments, each having an Intel i7-4790 8-core 3.60GHz CPU,
32G RAM, and a 2T hard disk and running 64-bit Ubuntu version
16.04. One of these workstations has a Linux-based license to run
IDA Pro disassembler version 6.9. To validate the functionability of
a malware sample, we execute it in a VM running Windows 7.
Successful rate. Our results for deceiving the opcode malware
classifier 'Y into targeted misclassification are summarized in
Table 4. In total, we have mutated the original Rbot sample to suc-
cessfully deceive the classifier for nine target families, leading to a
successful rate of 75%. Even using all the available malware samples
as the anchor samples, we could not have find a practical sample to
deceive the classifier into classifying it into one of the three fami-
lies, Bagle, Ldpinch, and Lmir. Our hypothesis is that because the
samples in the three malware families are underrepresented (see
Figure 1), the task of mutating the original Rbot sample through the

i,

348

CODASPY ’20, March 1618, 2020, New Orleans, LA, USA

Table 4: Results of targeted misclassification by the opcode
classifier. In the “time per anchor” column, if multiple an-
chor samples are used, x/y means that the amount of time

spent on a failed anchor sample and a successful anchor

sample is x and y time units, respectively.

Target | Success- Anchors Time per File size
Family ful? anchor (KB)
Benign v 1 6s 1,247
Bagle X 82 24h -
Bifrose v 1 8s 1,315
Hupigon v 1 2m57s 2,044
Koobface v 1 1m40s 4,433
Ldpinch X 63 24h -
Lmir X 47 24h -
Sdbot v 9 24h/1h44m 489
Swizzor v 8 24h/5h8m 320
Vundo v 26 24h/1hOm 1,063
Zbot v 3 24h/1h20m 20,406
Zlob v 1 15m28s 2,298

genetic algorithm into the feature spaces of these families becomes
more difficult than the others. To further validate the functionability
of adversarial malware samples created, we monitor the list of API
calls made by each sample recorded by the Cuckoo sandbox [2] and
find that the number of distinct API calls made by each adversarial
malware sample is exactly the same as that of the original Rbot
sample, which is 72.

Execution performance. Table 4 also depicts the number of anchor
samples used for each target family as well as the average execution
time spent on each anchor sample. The execution time excludes
validation time through dynamic analysis, because in our experi-
ments whenever an adversarial sample was found to deceive the
classifier successfully, it always passed validation. Generally speak-
ing, if the genetic algorithm fails to find any adversarial sample
that can deceive the opcode classifier into targeted misclassifica-
tion, its execution time is approximately 24 hours. For each of the
five target families with only one anchor sample needed to find
a successful adversarial sample, the execution time of the genetic
algorithm is short, varying from a few seconds to 16 minutes. For
those target families using multiple anchors to achieve targeted
misclassification, it may take the genetic algorithm several hours
to find a successful variant.

File sizes. One side effect of cloning basic blocks to achieve tar-
geted misclassification is that it increases the malware size. Table 4
depicts the file size of each malware sample successfully created
for targeted misclassification. Compared with the sample compiled
with clang++, on average the size of each adversarial sample has
increased by 13.1 times, while the largest one, which is created to
target the Zbot family, is 77 times as large as the original one.

6 DECEIVING API CLASSIFIER

In this section, we show how to deceive classifier C,,,;(A) into
targeted misclassification.

6.1 Methodology

As API function names provide hints about malware behavior, vari-
ous API obfuscation techniques have been used to confuse malware

RIGHTS

Session 9: Malware Detection

analysts [60]. The robustness of these techniques varies, but for
the purpose of deceiving malware classifier C,,,4;(A) into targeted
misclassification, we only need an API obfuscation technique that
can prevent the API function feature extraction tool from finding a
selected list of API functions actually used by the malware.

Let Vgpi be an ordered set that includes all the API functions
that can be called by a PE program. For malware classifier Cy,, 4;(A),
the feature vector of the original malware is given as X;, which is a
vector of size |Vgp;| including binary values indicating whether the
API functions in Vgp; have been used by the original PE sample.

By abusing notation M first used in Section 5.1, we let it denote
an obfuscation vector of size |Vp;|. Each element in the obfuscation
vector M takes only binary values, indicating whether the corre-
sponding API function in the ordered set V,p; should be obfuscated
or not. Hence, the feature vector of the obfuscated sample becomes
Xp © M where operator © means element-wise multiplication.

To find an adversarial sample that can deceive malware classifier
Cjnai(4) into targeted misclassification, we use the same genetic
algorithm as shown in Algorithm 1 along with different support
functions defined in Algorithm 3. Similar to our method for deceiv-
ing the opcode classifier, each chromosome A is an instantiation
of vector M. The fitness score of a feature vector X, is defined to
be its L2 distance (i.e., Euclidean distance) from that of the anchor
sample Xg.

Algorithm 3 Support functions for deceiving API classifier

function MODIFY(XP, h)
return X, © h

end function

function FITNESS(XPI, Xq)
return Dy 2(Xpr, Xq)

end function

> Element-wise product

> Ly distance

We define a subset of API function features among Vgp; that are
allowed to be mutated in the genetic algorithm and use set I to
include their indices in Vgp;. We call I the operable set. As the chro-
mosome h takes only binary values, the three genetic operations
are slightly different from those in deceiving the opcode classifier.
Each generation contains 600 individuals. In each generation, the
best 200 chromosomes are selected onto list L. We have the fol-
lowing three types of genetic operators. (1) Full mutation: For each
element in vector M that belongs to the operable set, it is randomly
assigned to be 0 or 1. We perform full mutation for 200 times. (2)
Partial mutation: For each element in vector M that belongs to the
operable set, we choose to mutate it with probability 0.5. If it is
chosen to be mutated, its value is randomly chosen between 0 and
1. We perform partial mutation on each of the 200 chromosomes on
list L. (3) Crossover: We randomly choose two chromosomes hy and
hq from list L to create a new variant. For each element in vector
M that belongs to the operable set, we randomly choose its value
from hg and hj. For those elements not in the operable set, their
values must be the same for hy and hj, which are copied into the
new variant. The crossover operation is performed for 200 times.

An alternative greedy algorithm. It is noted that the genetic
algorithm augmented with support functions in Algorithm 3 tries
to find an optimal feature vector that has the shortest L2 distance

Ay

349

CODASPY ’20, March 1618, 2020, New Orleans, LA, USA

from that of the anchor sample. As we only obfuscate API functions
that appear in the operable set, there exists a greedy algorithm that
directly obtains the unique optimal solution: for each API function
in the operable set, we obfuscate it in the adversarial sample if and
only if its value in the anchor sample’s feature vector (e.g., Xq) is 0,
meaning that this API function is either obfuscated or not used in
the anchor sample. Later we shall demonstrate through experiments
that the genetic algorithm outperforms the greedy algorithm in
finding adversarial samples that can successfully deceive the API
classifier into targeted misclassification.

6.2 Implementation

As we use IDA Pro [4] to extract imported API functions, we use
a simple API obfuscation technique discussed in [60]. For each
Windows API function used by the Rbot source code, if it is cho-
sen for obfuscation, we apply the GetProcAddress method from
kernel32.dll to obtain its function address, which is further used
to replace every direct call to the API function in the source code.
Interestingly, the original Rbot source code has used this technique
to obfuscate a subset of the Windows API functions used by it. We
remove these obfuscations in the original source code and use this
as the baseline sample, whose size is 211KB after compilation with
MSVC++ in a Windows 7 VM. Using the baseline sample, we obfus-
cate the API functions based on the solution found by the genetic
algorithm to create adversarial samples. In addition to indirect API
function calls, we also obfuscate the DLL name strings and API
function name strings with the base-64 encoding scheme. Although
these obfuscation techniques are rudimentary, they are sufficient
to fool the IDA Pro tool [4] used for feature extraction.

From the original Rbot sample we can extract 103 API functions
directly, but its source code has obfuscated 110 others. We remove
these obfuscations and obtain a total amount of 213 imported API
functions. We observe that 50 of these API functions cannot be
obfuscated through the aforementioned technique. Hence, the op-
erable set I used by the genetic algorithm contains 163 indices.

6.3 Experiments

Successful rate. We use the same workstations as mentioned in
Section 5.3 to perform the experiments aimed at deceiving the API
classifier Cy,,41(A). The experimental results are summarized in
Table 5. Using the genetic algorithm, we have deceived malware
classifier C,,,;(A) into targeted misclassification for 10 families,
leading to a successful rate of 83.3%. The two exceptions are the
Bagle and Vundo families: even using all the samples from these
two families in the malware dataset as anchor samples, the genetic
algorithm still could not find the adversarial samples achieving
targeted misclassification.

Execution performance. Table 5 shows that for each family with
successful targeted misclassification, only a single anchor sample
is needed from the target family, and the execution time spent
by the genetic algorithm is short, varying from a few seconds to
three minutes. For the Bagle and Vundo families without successful
targeted misclassification, the execution time spent by the genetic
algorithm on each anchor sample can be as long as over three hours.

File sizes. We also compare the file sizes of the adversarial sam-
ples against that of the baseline sample in which no API function
obfuscations are used. Table 5 tells us that due to API function

RIGHTS

Session 9: Malware Detection

CODASPY ’20, March 1618, 2020, New Orleans, LA, USA

Table 5: Performance comparison of the greedy algorithm and the genetic algorithm in searching adversarial samples

Target Genetic Algorithm Greedy Algorithm
Family | Successful? Anchors Time per Anchor File size | Successful? Anchors Time per Anchor File size
Benign v 1 5s 217 KB v 2 0.05s 220 KB
Bagle X all ~3h12m - X all 0.05s -
Bifrose v 1 1m24s 217 KB X all 0.05s -
Hupigon v 1 16s 216 KB v 226 0.05s 217 KB
Koobface 4 1 5s 217 KB v 1 0.05s 221 KB
Ldpinch v 1 2m31s 217 KB X all 0.05s -
Lmir v 1 6s 217 KB v 32 0.05s 220 KB
Sdbot v 1 5s 216 KB v 3 0.05s 219 KB
Swizzor v 1 9s 217 KB v 279 0.05s 217 KB
Vundo X all ~3h14m - X all 0.05s -
Zbot v 1 15s 217 KB v 12 0.05s 218 KB
Zlob v 1 8s 216 KB X all 0.05s -

obfuscation each adversarial sample successfully created is slightly
larger than the baseline one; on average, the increase in file size is
2.9% over the 10 adversarial samples successfully created.
Comparison with the greedy algorithm. As mentioned earlier,
given the feature vector X of the anchor sample, a greedy algo-
rithm can directly find an optimal feature vector for an adversarial
sample whose L2-distance from X is minimized. Table 5 compares
the performances of the greedy algorithm and the genetic algorithm
in searching successful adversarial samples. Although, unsurpris-
ingly, the greedy algorithm spends much shorter time (less than
one second) on finding the optimal API call feature vector directly
for a given anchor sample, it finds adversarial samples that achieve
targeted misclassification successfully for only seven families, lead-
ing to a successful rate of 58.3%. Moreover, even for those families
that creation of adversarial samples is successful, more anchor sam-
ples are needed; on average 79.3 anchor samples are used to find
a successful adversarial sample for each target family. In contrast,
for the genetic algorithm its successful rate is much higher and for
those successful families only a single anchor sample was used. Our
results suggest that the evolution process in the genetic algorithm is
instrumental in finding successful adversarial examples.

7 DECEIVING SYSTEM CALL CLASSIFIER

This section describes how to deceive classifier Cp,,,4;(S).

7.1 Methodology

Different from the previous two malware classifiers, C,,,;(S) is
trained from features extracted from dynamic execution of mal-
ware samples in a sandbox. Our work assumes that the sandbox
environment can be inferred by the attacker through techniques
such as wear-and-tear artifacts [39]. Once the sandbox environment
is known, the attacker can predict the execution path of a malware
sample executed inside it. When deceiving classifier C,,,;(S) into
targeted misclassification, a major challenge is that system calls
cannot be added directly to the source code of the malware. To
circumvent this problem, we consider adding a selected set of API
calls A on the predicted execution path of the malware program.
We provide dummy inputs to these API calls so their executions
would not affect the functionality of the original malware program.
For each of these API calls, we monitor the difference in the system

i,

350

calls invoked by the malware. More specifically, for each API call
a € A, we define A(a) to denote the changes in the count of system
calls invoked by the malware if a is added to the execution path
once. Accordingly we define the A-vector to be {A(a) | Va € A}.

We use the same genetic algorithm described in Algorithm 1 to
search adversarial samples that can deceive C,,,,;(S) into targeted
misclassification. The count vector of malware program p, denoted
by Xp, includes the number of times each system call has been
invoked by the malware in the sandbox. In the genetic algorithm,
each chromosome h indicates the number of times each API should
be added to the execution path of the malware.

Algorithm 4 Support functions for deceiving system call classifier

function MoDIFY(X), h)
return X, + h - A-vector

end function

function FITNESS(X}y, Xq)
return Dys(H (X,), H(Xq))

end function

> JS divergence

The support functions for deceiving system call classifier are
given in Algorithm 4. When the MopIFY function is called with
the original count vector Xp and chromosome A, it returns a count
vector that includes the number of times each system call is expected
to be invoked by the sample mutated from malware program p with
chromosome h. Also, given the feature Xp, let H (Xp) denote its
corresponding frequency histogram of all the system calls. From the
two count vectors Xp/ and Xgq, we first obtain their corresponding
frequency histograms P’ = H(X,) and Q = H(Xg). The fitness
score is given by the Jensen-Shannon divergence between P’ and
Q, which is defined as follows:

, P40 P40
Dkr(P',—=)+D , —=
DJS(P/’ Q)= \/ KL(2)2 xL(Q 3)

In the genetic algorithm, the population size (i.e., |H[) is 1000. In
the initial population, each element in the chromosome is randomly
chosen between 0 and 1000. The maximum number of iterations
(i.e., n) is set to be 100. Parameter ¢ is set to be 200. The same

®)

RIGHTS

Session 9: Malware Detection

Table 6: Results of targeted misclassification by the system
call classifier. They use the same notations as in Table 4.

Target | Success- Anchors Time per File size
Family ful? anchor (KB)
Benign v 1 4s 216
Bagle v 1 57s 217
Bifrose v 1 1s 216
Hupigon v 1 4s 216
Koobface v 1 56s 216
Ldpinch v 2 1h58m/47s 217
Lmir v 1 8s 217
Sdbot v 1 1s 216
Swizzor v 27 1h58m/43m33s 217
Vundo X all ~2h -
Zbot v 3 1m43s 217
Zlob v 1 1m38s 216

three genetic operators (i.e., full mutation, partial mutation, and
crossover) are used as in deceiving the opcode classifier.

When the genetic algorithm finds an appropriate feature vector
X, that can deceive classifier Cp, 4/(s) successfully, we use the cor-
responding chromosome h to generate adversarial malware sample
p’. Recall that each element in h indicates how many times each
API call should be added to the execution path.

7.2 Implementation

We use the implementation of JS divergence in SciPy [1] for Eq. (5).
To choose the API calls for influencing the system calls invoked,
we start from more than 100 candidate API calls. We then elim-
inate those that do not trigger any system call or do not result
in consistent changes of system calls when invoked by multiple
times. We also exclude those API calls whose executions depend
on the presence of others. For example, in order to use the socket
API from the ws2_32.1ib library to create a socket, the Winsock
library must be initialized by calling the WSAStartup function. The
eventual set of API calls used in our experiments includes 43 ones.

7.3 Experiments

Our experimental results are summarized in Table 6. Our method
has deceived C,,,;(A) into targeted misclassification for all 12 fam-
ilies except Vundo, leading to a successful rate of 91.7%. It is also
noted that for the majority of these families, only a few anchor
samples are needed to find a successful adversarial malware sample,
suggesting that the genetic algorithm has been effective in most
cases. Compared with the results seen in Table 4, the adversarial
samples created to deceive the system call classifier does not have
the side effect of bloating the malware file sizes.

8 DISCUSSIONS

Although our work successfully creates practical samples for de-
ceiving malware classifiers, its limited scope is discussed as follows.

First, this work has considered only three malware classifiers,
each using a random forest, but many other malware classifiers
can be trained based on different malware features. In our future
work we will investigate the robustness of other types of malware
classifiers, such as those based on deep learning methods, against ad-
versarial machine learning attacks. This study shows that different

Ay

351

CODASPY ’20, March 1618, 2020, New Orleans, LA, USA

techniques are needed to achieve targeted malware misclassifica-
tion, suggesting that using an ensemble of malware classifiers can
raise the bar for adversarial machine learning attacks against them.

Second, the genetic algorithm has been shown successful in cre-
ating adversarial samples to achieve targeted misclassification for
a majority of malware families. Although our study has not found
as much success with other methods such as simulated annealing
and mixed integer programming solvers, it does not mean that
the genetic algorithm should be the optimal solution. We plan to
explore other solution searching methods in our future work.

Third, existing research on adversarial machine learning focuses
on image classification, for which similarity between original and
adversarial examples is crucial and thus used as a constraint for
finding adversarial examples. As this constraint is unnecessary for
creation of adversarial malware samples, without it the optimiza-
tion problem becomes easier to solve. In contrast, the constraint
for adversarial malware creation is keeping its functionality and
practicality, as we cannot directly modify the features upon which
malware classifiers are trained. Because such a constraint cannot be
formulated into the optimization problem directly, we have chosen
to use dynamic analysis to verify whether it is satisfied.

Fourth, underground malware authors are usually more inter-
ested in malware evasion than the generic problem of malware de-
ception. For malware evasion, malware packers are commonly used
to hide details of malware programs through encryption, compres-
sion, or code obfuscation. We are however witnessing increasing
use of malware as cyber weapons among groups, organizations, or
even nations. In such scenarios, deceptive malware samples may
be used as tactical tools to mislead the target’s malware mitigation
efforts. This study has demonstrated the possibility of creating not
only evasive but also deceptive malware samples.

9 CONCLUSIONS

In this work, we have studied a new type of threats aimed at de-
ceiving a multi-class PE malware classifiers into targeted misclassi-
fication. This study uses a malware dataset with tens of thousands
of PE samples belonging to 13 families. From this malware dataset
we extracted three types of malware features, the first one based
on frequencies of opcodes in the disassembled malware code, the
second one the list of API functions imported by a PE sample, and
the third one the list of system calls observed in dynamic execution.
We construct three random forest classifiers accordingly. Our study
has shown that using a genetic algorithm augmented with different
support functions, we can create adversarial PE samples that can
deceive the three classifiers into targeted misclassification with a
successful rate of 75%, 83.3%, and 91.7% respectively.

ACKNOWLEDGMENT
We acknowledge NSF Award CNS-1618631 for supporting this work.

REFERENCES
3!

https://scipy.github.io/devdocs/generated/scipy.spatial.distance.jensenshannon.
html.

Cuckoo Sandbox. https://cuckoosandbox.org.

FakeNet. https://github.com/fireeye/flare-fakenet-ng.

IDA Pro. https://www.hex-rays.com/.

Microsoft Malware Classification Challenge (BIG 2015). https://www.kaggle.
com/c/malware-classification.

Pin - A Dynamic Binary Instrumentation Tool. https://software.intel.com/en-
us/articles/pin-a-dynamic-binary-instrumentation-tool.

https://scipy.github.io/devdocs/generated/scipy.spatial.distance.jensenshannon.html
https://scipy.github.io/devdocs/generated/scipy.spatial.distance.jensenshannon.html
https://cuckoosandbox.org
https://github.com/fireeye/flare-fakenet-ng
https://www.hex-rays.com/
https://www.kaggle.com/c/malware-classification
https://www.kaggle.com/c/malware-classification
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

Session 9: Malware Detection

(71

(8]
[9
[10
[11]

[12]

[13]

[14]

[15]

[16]

[17

[18]

[19

[20]

[21]
[22]

[23

[24]

[25]

[26]

[27]

[28

[29

[30]

(31

[32]

[35]

[36]

RIGHTS

Rbot source code 0.0.3. https://github.com/ytisf/theZoo/tree/master/malwares/
Source/Original/rBot0.3.3_May2004.

Stuxnet. https://en.wikipedia.org/wiki/Stuxnet.

VirusShare.com - Because Sharing is Caring. https://virusshare.com/.
VirusTotal. https://www.virustotal.com/.

Y. Aafer, W. Du, and H. Yin. Droidapiminer: Mining api-level features for robust
malware detection in android. In International Conference on Security and Privacy
in Communication Systems, pages 86-103. Springer, 2013.

A. Abusnaina, A. Khormali, H. Alasmary, J. Park, A. Anwar, U. Meteriz, and
A. Mohaisen. Examining adversarial learning against graph-based iot malware
detection systems. arXiv preprint arXiv:1902.04416, 2019.

F. Ahmed, H. Hameed, M. Z. Shafiq, and M. Farooq. Using spatio-temporal
information in api calls with machine learning algorithms for malware detection.
In Proceedings of the ACM workshop on Security and artificial intelligence, 2009.
A. Al-Dujaili, A. Huang, E. Hemberg, and U.-M. O’Reilly. Adversarial deep
learning for robust detection of binary encoded malware. In 2018 IEEE Security
and Privacy Workshops (SPW), pages 76-82. IEEE, 2018.

H. Anderson, A. Kharkar, B. Filar, D. Evans, and P. Roth. Learning to evade static
PE machine learning malware models via reinforcement learning. arXiv preprint
arXiv:1801.08917, 2018.

D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck. Drebin: Effective
and explainable detection of android malware in your pocket. In Proceedings of
the Network and Distributed System Security Symposium, 2014.

AV-TEST. Malware statistics & trends report. https://www.av-test.org/en/
statistics/malware/, Accessed in March 2018.

B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndi¢, P. Laskov, G. Giacinto, and
F. Roli. Evasion attacks against machine learning at test time. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, 2013.
D. Bilar. Opcodes as predictor for malware. International Journal of Electronic
Security and Digital Forensics, 1(2):156-168, 2007.

D. Canali, A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda.
A quantitative study of accuracy in system call-based malware detection. In
International Symposium on Software Testing and Analysis. ACM, 2012.

R.]J. Canzanese Jr. Detection and Classification of Malicious Processes Using System
Call Analysis. PhD thesis, Drexel University, 2015.

N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks.
In 2017 IEEE Symposium on Security and Privacy (SP), pages 39-57. IEEE, 2017.
S. Cesare and Y. Xiang. Classification of malware using structured control flow.
In Proceedings of the Eighth Australasian Symposium on Parallel and Distributed
Computing-Volume 107, pages 61-70. Australian Computer Society, Inc., 2010.
P.-Y. Chen, Y. Sharma, H. Zhang, J. Yi, and C.-J. Hsieh. Ead: elastic-net attacks to
deep neural networks via adversarial examples. In Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck, I. Corona, G. Gi-
acinto, and F. Roli. Yes, machine learning can be more secure! a case study
on android malware detection. IEEE Transactions on Dependable and Secure
Computing, 2019.

Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li. Boosting adversarial
attacks with momentum. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 9185-9193, 2018.

L J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel. Adversarial
examples for malware detection. In European Symposium on Research in Computer
Security, pages 62-79. Springer, 2017.

S.Hou, Y. Ye, Y. Song, and M. Abdulhayoglu. Hindroid: An intelligent android
malware detection system based on structured heterogeneous information net-
work. In Proceedings of ACM Conference on Knowledge Discovery and Data Mining,
pages 1507-1515, 2017.

W. Hu and Y. Tan. Generating adversarial malware examples for black-box
attacks based on gan. arXiv preprint arXiv:1702.05983, 2017.

P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin. Obfuscator-LLVM - software
protection for the masses. In B. Wyseur, editor, Proceedings of the IEEE/ACM 1st
International Workshop on Software Protection, 2015.

B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto, C. Eckert, and F. Roli.
Adversarial malware binaries: Evading deep learning for malware detection in
executables. In European Signal Processing Conference. IEEE, 2018.

J. Z. Kolter and M. A. Maloof. Learning to detect malicious executables in the wild.
In Proceedings of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 470-478. ACM, 2004.

D. Kong and G. Yan. Discriminant malware distance learning on structural
information for automated malware classification. In Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2013.
F. Kreuk, A. Barak, S. Aviv-Reuven, M. Baruch, B. Pinkas, and J. Keshet. Deceiving
end-to-end deep learning malware detectors using adversarial examples. arXiv
preprint arXiv:1802.04528, 2018.

J. Lin. Divergence measures based on the shannon entropy. IEEE Transactions on
Information theory, 37(1):145-151, 1991.

352

(37]

[38

i~
=

=
&

N
)

(54

[55

[57

(58]
[59]
[60]

[61

(62]

[64

[65]

CODASPY ’20, March 1618, 2020, New Orleans, LA, USA

X. Liu, Y. Lin, H. Li, and J. Zhang. Adversarial examples: Attacks on ma-
chine learning-based malware visualization detection methods. arXiv preprint
arXiv:1808.01546, 2018.

S. B. Mehdi, A. K. Tanwani, and M. Farooq. Imad: in-execution malware analysis
and detection. In Proceedings of the 11th Annual conference on Genetic and
evolutionary computation, pages 1553-1560. ACM, 2009.

N. Miramirkhani, M. P. Appini, N. Nikiforakis, and M. Polychronakis. Spotless
sandboxes: Evading malware analysis systems using wear-and-tear artifacts. In
2017 IEEE Symposium on Security and Privacy (SP), pages 1009-1024. IEEE, 2017.
A. Mohaisen, O. Alrawi, and M. Mohaisen. Amal: High-fidelity, behavior-based
automated malware analysis and classification. Computers & Security, 52, 2015.
S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deepfool: a simple and accu-
rate method to fool deep neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016.

R. Moskovitch, C. Feher, N. Tzachar, E. Berger, M. Gitelman, S. Dolev, and
Y. Elovici. Unknown malcode detection using opcode representation. In European
conference on intelligence and security informatics. Springer, 2008.

N. Nissim, A. Cohen, C. Glezer, and Y. Elovici. Detection of malicious pdf files
and directions for enhancements: a state-of-the art survey. Computers & Security,
48:246-266, 2015.

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami.
The limitations of deep learning in adversarial settings. In 2016 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 2016.

R. Perdisci, A. Lanzi, and W. Lee. Mcboost: Boosting scalability in malware col-
lection and analysis using statistical classification of executables. In Proceedings
of the Annual Computer Security Applications Conference (ACSAC), 2008.

K. Raman. Selecting features to classify malware. In Proceedings of InfoSec
Southwest, 2012.

K. Rieck, T. Holz, C. Willems, P. Diissel, and P. Laskov. Learning and classification
of malware behavior. In International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 2008.

L. Rosenberg, A. Shabtai, L. Rokach, and Y. Elovici. Generic black-box end-to-end
attack against state of the art api call based malware classifiers. In International
Symposium on Research in Attacks, Intrusions, and Defenses.

C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson, N. Pohlmann, H. Bos,
and M. Van Steen. Prudent practices for designing malware experiments: Status
quo and outlook. In 2012 IEEE Symposium on Security and Privacy. IEEE, 2012.
J. Sahs and L. Khan. A machine learning approach to android malware detection.
In 2012 European Intelligence and Security Informatics Conference. IEEE, 2012.

A. Sami, B. Yadegari, H. Rahimi, N. Peiravian, S. Hashemi, and A. Hamze. Malware
detection based on mining api calls. In Proceedings of the ACM Symposium on
Applied Computing. ACM, 2010.

M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo. Data mining methods for
detection of new malicious executables. In Proceedings of the IEEE Symposium on
Security and Privacy, 2001.

A. Shabtai, R. Moskovitch, C. Feher, S. Dolev, and Y. Elovici. Detecting unknown
malicious code by applying classification techniques on opcode patterns. Security
Informatics, 1(1):1, 2012.

M. Z. Shafiq, S. M. Tabish, F. Mirza, and M. Farooq. PE-Miner: Mining struc-
tural information to detect malicious executables in realtime. In International
Symposium on Recent Advances in Intrusion Detection. Springer-Verlag, 2009.

F. Shahzad and M. Farooq. Elf-miner: Using structural knowledge and data
mining methods to detect new (linux) malicious executables. Knowledge and
information systems, 30(3):589-612, 2012.

C. Smutz and A. Stavrou. Malicious pdf detection using metadata and structural
features. In Annual Computer Security Applications Conference. ACM, 2012.

C. Smutz and A. Stavrou. When a tree falls: Using diversity in ensemble classifiers
to identify evasion in malware detectors. In Proceedings of the Network and
Distributed System Security Symposium, 2016.

N. Srndi¢ and P. Laskov. Practical evasion of a learning-based classifier: A case
study. In Proceedings of the IEEE symposium on security and privacy, 2014.

N. Srndi¢ and P. Laskov. Hidost: a static machine-learning-based detector of
malicious files. EURASIP Journal on Information Security, 2016(1):22, 2016.

M. Suenaga. A museum of API obfuscation on win32. Symantec Security Response,
2009.

Y. Vorobeychik and M. Kantarcioglu. Adversarial machine learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning, 12(3):1-169, 2018.

W. Xu, Y. Qi, and D. Evans. Automatically evading classifiers. In Proceedings of
the 2016 Network and Distributed Systems Symposium, 2016.

G. Yan, N. Brown, and D. Kong. Exploring discriminatory features for automated
malware classification. In International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 41-61. Springer, 2013.

W. Yang, D. Kong, T. Xie, and C. A. Gunter. Malware detection in adversar-
ial settings: Exploiting feature evolutions and confusions in android apps. In
Proceedings of the 33rd Annual Computer Security Applications Conference, 2017.
Y. Ye, D. Wang, T. Li, and D. Ye. IMDS: Intelligent malware detection system. In
International conference on Knowledge Discovery and Data Mining, 2007.

https://github.com/ytisf/theZoo/tree/master/malwares/Source/Original/rBot0.3.3_May2004
https://github.com/ytisf/theZoo/tree/master/malwares/Source/Original/rBot0.3.3_May2004
https://en.wikipedia.org/wiki/Stuxnet
https://virusshare.com/
https://www.virustotal.com/
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/

	Abstract
	1 Introduction
	2 Related work
	3 Problem formulation
	4 Malware dataset and classifiers
	5 Deceiving opcode classifier
	5.1 Methodology
	5.2 Implementation
	5.3 Experiments

	6 Deceiving API classifier
	6.1 Methodology
	6.2 Implementation
	6.3 Experiments

	7 Deceiving system call classifier
	7.1 Methodology
	7.2 Implementation
	7.3 Experiments

	8 Discussions
	9 Conclusions
	References

