
SciBlock: A Blockchain-Based Tamper-Proof Non-Repudiable Storage
for Scientific Workflow Provenance

Dinuni Fernando 1, Siddharth Kulshrestha 1, J. Dinal Herath 1, Nitin Mahadik 1, Yanzhe Ma 1, Changxin Bai 2

Ping Yang 1, Guanhua Yan 1, Shiyong Lu 2

1Department of Computer Science, State University of New York at Binghamton
2Department of Computer Science, Wayne State University

Abstract—Modern scientific workflow systems lack strong
support for protecting the scientific data and their provenance
from being forged or altered. As a result, scientists may be misled
into believing that they have found a specific result, but only to
discover later that the data they used have been altered and
should not be trusted. To address this limitation, we develop
a new system called SciBlock that leverages recent advances
in blockchain technology to provide a tamper-proof and non-
repudiable storage for scientific workflow provenance. SciBlock
provides primitives that allow users to query scientific work-
flow provenance data efficiently. Moreover, SciBlock offers the
capability of invalidating wrong or outdated scientific workflow
provenance data without removing them from the blockchain.
We conducted extensive experiments to evaluate the performance
and scalability of SciBlock. Our experimental results show that
SciBlock offers a promising approach to enhancing scientific
research integrity in a distributed collaborative environment.

I. INTRODUCTION

Scientific workflows are developed for collaborative re-

search projects that involve multiple geographically distributed

organizations. Sharing of large datasets and computational

methods across different administrative domains is critical for

scientific collaborations in many areas such as high energy

physics and bioinformatics.

The trustworthiness of scientific discoveries relies on the

integrity of the data processed by scientific workflows and their

underlying cyberinfrastructure. The lack of effective mecha-

nisms for protecting the data integrity in modern scientific

workflow systems may lead to undesirable scientific frauds

or disputes: a scientist or a graduate student may forge/alter

datasets, results, or computation to get papers published; a

disgruntled member of a research group may forge data or

modify the specification of the group’s workflow to distort the

output of the workflow; a malicious user may also forge a

piece of data, post the data on a website, and claim that the

data is produced by a scientific workflow. As a result, scientists

may be misled into believing that they have found a specific

result, but only to discover later that the data they used has

been altered and should not be trusted.

In this work we develop a new system called SciBlock to

provide a tamper-proof and non-repudiable storage for scien-

tific workflow provenance data in a distributed collaborative

environment. The provenance of a scientific workflow captures

the derivation history of a data product and is hence essential

to the reproducibility of scientific discovery [44]. To over-

come the difficulty of establishing trust relationships in dis-

tributed environments, SciBlock leverages recent advances in

blockchain technology to ensure the data processing integrity

of scientific workflows. Built upon the distributed consensus,

transaction verification, and record immutability features of

blockchain, SciBlock offers the capabilities of verifying that a

data product was generated by a specific workflow, querying

how a data product is derived from a scientific workflow, and

checking whether a specific scientific result is still valid.
The application of blockchain in SciBlock entails transfor-

mation from logs produced by scientific workflows that contain

provenance information to transactions that are amenable

to blockchain processing. We, however, cannot process sci-

entific workflow provenance as blockchain transactions in

a straightforward manner due to the following challenges.

Firstly, once a provenance record is added to a blockchain,

it is impossible to revoke the change, assuming that at least

51% of the participating peers would not collude to subvert

its operation [10]. However, a scientific workflow may be

modified frequently to fix bugs or add new features, and hence

some of the data products generated previously may become

invalid later. As a result, it is necessary to invalidate such data

products in the blockchain. In this work, we propose a new

mechanism to invalidate data products without deleting them

from the blockchain. Secondly, blockchain allows users to

verify the existence of a transaction efficiently, but offers no or

limited capabilities for querying transactions by specific fields.

Computing the derivation history of a data product in a large

scientific workflow requires efficient queries of provenance

records by their output fields. SciBlock addresses this issue

by an off-chain approach that uses a combination of query

on unencrypted database and blockchain verification to speed

up the query process, while ensuring the trustworthiness of

the query results. SciBlock’s off-chain approach differs from

the existing off-chain approaches in that SciBlock not only

verifies the off-chain provenance records, but also the deriva-

tion history computed from the off-chain records. Because the

database may be modified or deleted by unauthorized users

and multiple derivation graphs may be computed for a specific

scientific result (due to the execution of a scientific workflow

multiple times), it is non-trivial to verify the correctness of the

derivation history computed from the database.
In summary, our main contributions are as follows:

• We propose an off-chain approach that augments the

blockchain-based transaction verification with queries of

local auxiliary databases to expedite blockchain queries

and data derivation history computation, and formally

81

2019 IEEE 5th International Conference on Collaboration and Internet Computing (CIC)

978-1-7281-6739-8/19/$31.00 ©2019 IEEE
DOI 10.1109/CIC48465.2019.00019

prove the correctness of this approach.

• We propose an efficient mechanism to invalidate wrong

or outdated provenance records without removing them

from the blockchain. Because our invalidation mechanism

enables SciBlock to keep a complete history of workflow

modifications, it can be used to prevent dishonest re-

searchers’ attempts of altering or forging scientific results.

• We have implemented SciBlock on top of the private

Ethereum blockchain, a popular generic open-source

blockchain platform, and conducted extensive experi-

ments to evaluate the performance and scalability of

SciBlock. Our experimental results show that our off-

chain approach significantly reduces the query time and

the time taken to compute the derivation history.

The rest of the paper is organized as follows. Section II

presents related work. Section III provides an overview of

scientific workflows, provenance, and blockchain. The design

of SciBlock is given in Section IV. Sections V and VI

present techniques for data derivation history computation and

provenance invalidation, respectively. Section VII provides the

implementation details of SciBlock. Our experimental results

are given in Section VIII. Section IX concludes the paper.

II. RELATED WORK

Blockchain technology has been applied in a number of

domains, including finance [47], banking [50], insurance [37],

healthcare [9], etc.

A number of researchers have proposed techniques to secure

provenance systems with centralized storage (e.g.[48], [41],

[17], [34], [14], [51], [33]). In such systems, if the central

server is compromised, then the entire data trail cannot be

trusted anymore.

There is limited work in the investigation of the blockchain

as a platform to secure scientific workflow provenance. Works

in [13], [20], [27], [29] emphasize the importance of protecting

provenance in scientific research and point out the potential

applicability of blockchain as an enabler for creating such

a platform. Ramachandran et al. [40] proposed a blockchain

based scientific system called SmartProvenance, which auto-

matically verifies the provenance records by utilizing a voting

mechanism. DataProv [39] is a distributed system that securely

captures the scientific data, which again uses a voting based

mechanism to obtain the approval before storing data entries

to the platform. ProvChain [31], [42] is a blockchain based

data provenance system that provides assurance for cloud

storage applications. DroneChain [32] is a public blockchain

platform for securing data with the limited battery and process

capability of drones. Tosh et al. [46] described design chal-

lenges and opportunities in developing proof-of-stake for data

provenance in cloud platform. [38] uses a private blockchain

based network to support data accountability and provenance

tracking for European union residents’ data. Brooks et al. [49]

presented a blockchain system that can be used to secure data

provenance outside users control. BlockFlow [18] is a work-

flow provenance system built on top of E-Science ECOsystem

and ProvHL [19] is a provenance metadata storage system built

on top of Hyper-ledger Fabric [8]. The above works neither use

off-chain approaches to improve the efficiency of blockchain

query nor consider the invalidation of provenance data.

Chen et al. [15] proposed CertChain, a public audit scheme

for TLS connections based on the blockchain technology. The

work in [16] uses blockchain to share scientific workflow

provenance. The above works store the data products, but not

the provenance, off-chain. MultiChain [24] uses an off-chain

hashing solution to improve the scalability of the blockchain.

[21] describes two ways to extend the smart contracts with

off-chain logic and [22] discusses five off-chain patterns.

In [26], the authors investigated the potential of increasing

the scalability of the blockchain through off-chain storage

and computation. Bitcoin lightning network [28] is an in-

stant, high-volume micro-payment system operating outside

the blockchain. SciBlock’s off-chain approach differs from

the above approaches in that SciBlock not only verifies the

off-chain provenance records, but also the derivation history

computed from the off-chain records.

Sigurjonsson et al. [43] propose to use blockchain and hash

to protect the integrity of the workflow provenance and use

InterPlanetary File System protocol for provenance version

control. Although they also store the provenance both off-chain

and on-chain, the execution time is stored only in the local

database. Thus, if the local database is tampered, the database

cannot be recovered from the blockchain. They also propose to

use hash to protect the integrity of workflow provenance stored

in the local database once the workflow completes the execu-

tion. This approach, however, does not prevent the provenance

from being modified before a workflow finishes the execution.

In addition, their version control prevents provenance records

from being sent to other nodes in blockchain, but SciBlock’s

invalidation mechanism does not.

III. BACKGROUND

This section provides an overview of scientific workflows

and workflow provenance. As blockchain is the main method-

ology used in this work to ensure the integrity of workflow

provenance, we also present a brief introduction to it.

A. Scientific Workflows and Provenance
Scientific workflow is a popular cyberinfrastructure

paradigm to accelerate scientific discoveries and facilitate col-

laboration between geographically distributed organizations.

Figure 1 shows a scientific workflow for performing in-

tragenomic gene conversion analysis [7]. Each workflow task

(T1 − T7) represents an individual computational step. The

workflow takes as its input the protein sequences of a given

genome and identifies all its multi-gene families (task T1).

A multi-gene family is then selected by the user and its

associated DNA sequences are retrieved (task T2). Next, a re-

combination analysis is performed on the retrieved sequences

(task T3) in two steps: a multiple DNA sequence alignment

step (task T4) and a gene conversion detection step (task T5).

The latter is implemented by GENECONV, an off-the-shelf

program (task T7), with an input data file preparation step

(task T6). A scientific workflow may be executed by multiple

82

T1: Identify
Gene

Protein
Sequence

T2: Select
DNAs

T3: Recombination
Analysis

Report

DNA
Sequence

T4: DNA
Alignment

T5: Gene Conversion
Detection

T6: Prepare
Input files T7: GENECONV

Fig. 1. A Gene Conversion Analysis Workflow.

T1d1 T2d2 T4d3 T6d4 d5

Joe Jane Joe Bob

T7 d6

Jane

T5
T3

Fig. 2. A sample workflow provenance.

geographically distributed organizations. For example, tasks

T1 and T2 may be executed by organization O1 at location L1

while task T3 by organization O2 at location L2.

The provenance of a scientific workflow captures the deriva-

tion steps of a data product over a set of computational tasks.

Figure 2 gives a sample provenance for the workflow in

Figure 1, which is represented in a notation similar to the

Open Provenance Model [4]. Circles represent data products,

rectangles represent tasks, octagons represent users performing

the tasks, and edges represent dependency relationships. Edge

di ← Tj specifies that data product di is the input to task Tj

and edge Tj ← di specifies that di is the output of task Tj .

Edge u⇐Tj specifies that task Tj was executed by user u.

B. Blockchain

Blockchain was first proposed in Bitcoin [36] to protect

against double spending and modification of transactions.

A blockchain consists of one or more blocks. Each block

contains a block header and a number of Bitcoin transactions.

To prevent unauthorized modification or forgery of blocks,

each block in the blockchain is linked to its previous blocks

by storing the hash of its parent block header. The Bitcoin

blockchain uses Merkle trees [11] to efficiently verify whether

a Bitcoin transaction exists in a block. The Merkle tree is

created by repeatedly hashing pairs of transactions until it

reaches the Merkle Root (i.e., the root hash). A Merkle tree

generated from four transactions A, B, C, and D is given

in Figure 3. When a Bitcoin transaction is added to the

blockchain, the user receives a receipt from the blockchain

which consists of the Merkle root and all hashes needed to

verify the transaction. For example, to verify that transaction

B exists in the Merkle tree in Figure 3, the receipt would

contain the Merkle root (i.e. Hash ABCD), Hash A, and Hash

CD. If Hash(Hash(Hash A, Hash(B)), Hash CD) is equal to

the Merkle root, then the transaction exists in the blockchain.

The blockchain is a distributed ledger, in which the data

is distributed across peer-to-peer networks to avoid a center

point for attackers to corrupt the blockchain. Each peer in the

peer-to-peer network has its own copy of a blockchain and all

copies of the blockchain are synchonized across the network.

Fig. 3. An example Merkle tree.

IV. DESIGN OF SCIBLOCK

This section presents the design of SciBlock. As mentioned

in Section III.A, scientific workflow tasks may be executed by

multiple organizations. Therefore, the integrity of a scientific

workflow is ensured collectively by the integrity of all indi-

vidual computational tasks, assuming that the communication

channels among all the tasks are tamper resilient, e.g. protected

by network security protocols such as SSL/TLS and IPSec.

SciBlock is designed as a cyberinfrastructure shared by

geographically distributed organizations that collaboratively

execute a scientific workflow, to provide integrity assurance

of scientific workflow provenance. It is suitable for loosely

connected collaborative research environments where there

lacks a universally trusted authority to validate the integrity

of scientific workflows (which is often the case in practice).

Towards this end, SciBlock includes key functionalities to

verify that a data product was generated from a specific

workflow, examine the derivation history of scientific results,

and verify that a scientific result is valid.

The architecture of SciBlock is illustrated in Figure 4.

SciBlock is built upon a permissioned blockchain network

with proof of authority (POA) consensus whose nodes are

distributed across multiple sites. The pre-authenticated nodes

in this permissioned blockchain network are contributed by

various scientific organizations, such as universities and na-

tional laboratories, who have the incentive to ensure that their

research is credible. Although pre-authentication introduces

additional operational overhead, it circumvents the difficulty

of designing both the costs for researchers to submit their

provenance records and the incentives for miners who validate

these records if we use a public permissionless blockchain to

build SciBlock.

To prevent researchers from cheating, SciBlock stores sci-

entific workflow provenance data represented as provenance
records in blockchain. As shown in Table I, each provenance

record contains a subset of provenance information related to a

workflow task, including the task ID, the input to the task, the

output generated by the task, the execution time, and the user

who executed the task. We store the hash and the path of the

input and output data in provenance records, instead of the real

data, to reduce the size of provenance records. By computing

the hash of a piece of data and comparing it against the hash

stored in the corresponding provenance record, we can verify

the integrity of the data.

The current prototype of SciBlock uses the DATAVIEW,

83

Provenance generator Provenance generator Provenance generator

Fig. 4. The architecture of SciBlock.

Field Description
task The ID of the workflow task executed
input Input to the workflow task (path and hash)
output Output generated by the workflow task (path and hash)
time Execution time
user The person who executed the workflow task

TABLE I
THE PROVENANCE RECORD.

Fig. 5. Derivation graph.

a big data workflow management system [30], to execute

scientific workflows. The provenance record generator gen-

erates provenance records during the execution of a workflow,

and adds provenance records to the blockchain to prevent the

records from being altered or deleted. The provenance records

are also added to locally maintained databases, which are used

for improving the efficiency of blockchain query (discussed

in Section V). Although each peer in a private network has

its own copy of the blockchain, any of its modification to

the blockchain is synchronized automatically among all peers.

When a data product generated by a workflow is not valid any

more (e.g. the workflow task that generated the data has bugs),

SciBlock adds an invalidation transaction to the blockchain

and the invalidation module invalidates the corresponding

provenance records. Users query the derivation history of sci-

entific results through an HTML web interface. The derivation

history generator computes the derivation history and returns

a derivation graph to the user. The derivation history generator

also informs the user if any data in the graph is invalid.

In a nutshell, the characteristics of SciBlock as described

above can be summarized as follows:

• Distributed consensus: There is no centralized entity in

SciBlock to synchronize the efforts of collecting prove-

nance records submitted by different entities. Instead,

the blockchain allows these geographically distributed

entities to agree upon what provenance records have

already taken place at any time point.

• Tamper-proof: Once a provenance record has been val-

idated and added to the blockchain, it is impossible to

revoke the change, assuming that at least 51% of the

participating nodes in SciBlock would not collude to

subvert its operation [10].

• Non-repudiation: SciBlock is built upon a permissioned

Ethereum network with POA consensus, inside which

each participating peer has a private-public key pair. Each

individual provenance record is signed by the private

key of the entity who has executed the corresponding

workflow task. Hence, the execution of a workflow task

cannot be repudiated by this entity later, assuming that

its private key is secure.

• Efficiency: Due to the inefficiency of querying prove-

nance records by their fields within a large blockchain,

SciBlock augments the blockchain with locally main-

tained databases to expedite transaction queries while still

ensuring the aforementioned properties.

Our threat model assumes that the provenance generator

and data transmission channels, from the place where the

workflow tasks are executed to the place where the provenance

records are submitted, are protected using the existing security

mechanisms (i.e., the provenance information is not tampered

before it is submitted to SciBlock). Using the provenance

information contained within provenance records, we can

develop a variety of high-level functionalities that can help

scientists to verify the integrity of scientific findings or revise

existing ones. In this work we focus on two useful operations:

• Computation of derivation history: A scientist can use

SciBlock to figure out how a data product – which can

be an interesting scientific finding – is derived from the

raw data available to the scientific community.

• Invalidation of provenance records: Modification of a

workflow task would invalidate all the provenance records

it has produced.

Sections V and VI elaborate on the above two functionali-

ties, respectively.

V. COMPUTING DERIVATION HISTORY

SciBlock offers scientists the capability of querying the

derivation history of a scientific result, which enables scientists

to verify the correctness of the result and to reproduce the

result. The derivation history of a data product is represented

as a derivation graph. Let pr be a provenance record. We

use pr.task, pr.input, pr.output, pr.user, and pr.time to

represent the task, input, output, user, and time stamp fields

in pr, respectively. Below, we define the derivation graph.

Definition 1 (Derivation/Derivation Graph): Let pr1 and

pr2 be two provenance records. pr2 is derived from pr1,

denoted as pr1 → pr2, if there exists in ∈ pr2.input such

that in ∈ pr1.output. A derivation graph G = 〈V,E〉 is a

directed acyclic graph (DAG), where each node pr ∈ V is a

provenance record and each edge e ∈ E is a derivation of the

form pr1 → pr2. �

84

An example derivation graph is given in Figure 5. In this

graph, pr2 is derived from pr1 because d1 ∈ pr1.output and

d1 ∈ pr2.input.

Computing the derivation history of a data product in a large

scientific workflow requires efficient queries of transactions

by their output fields. We implemented two primitives for

querying provenance records by fields – one uses the brute

force search and the other is based on the Bloom filter [1], a

probabilistic data structure developed to improve the efficiency

of search (details are given in Section VII). Our experimental

results show that it takes 23− 30ms and 20− 27ms to query

one transaction with the brute force search and the Bloom-

filter based search, respectively.

In this section, we propose to use database query combined

with blockchain verification to expedite the query process,

while ensuring the trustworthiness of the query result. The

provenance records are stored in both blockchain and lo-

cally maintained databases (called provenance database). Each

provenance record stored in the database consists of all fields

in Table I, as well as a “valid” field, which specifies whether

the output data in the record is valid. The provenance database

is protected by existing authentication and access control

mechanisms, but is neither encrypted nor hashed in order

to enable efficient query. Therefore, the provenance records

stored in the database may be deleted or altered. As a result,

for every provenance record returned from a database query,

we verify that the record exists in the blockchain (using

Ethereum API getTransaction). In the rest of the paper, we

use the term blockchain verification to represent the process

of checking whether a provenance record returned from a

database query exists in the blockchain. Our current prototype

of SciBlock uses SQLite and MySQL as provenance databases.

Our experimental results show that querying SQLite (MySQL)

combined with blockchain verification is about 7× (3.5×)

faster than querying the Ethereum blockchain directly.

A derivation graph is either a complete or a partial graph,

as defined below. We use the term workflow input to represent

the data that is an input to a workflow task, but not an output

of any workflow task (i.e. raw data or data generated from

another workflow).

Definition 2 (Complete/Partial Node): A node v in a deriva-

tion graph G = 〈V,E〉 is a complete node if for every

in ∈ v.input, in is either a workflow input or there exists

u ∈ V such that in ∈ u.output. A node v is a partial node if

v is not a complete node. �

Definition 3 (Complete/Partial Derivation Graph): A deriva-

tion graph G is a complete derivation graph iff all nodes

in G are complete nodes. A derivation graph G is a partial
derivation graph iff G is not a complete derivation graph. �

A partial derivation node/graph is computed either be-

cause not all provenance records generated are added to the

blockchain/database or because some provenance records in

the database were deleted/altered by unauthorized users.

Algorithm 1 gives the pseudocode for computing the deriva-

tion history of a provenance record pr. The algorithm first

Algorithm 1 Computing the derivation graph

1: procedure derive history(pr)
2: if pr does not exist in the blockchain then
3: print “error: pr does not exist in the blockchain”; return;

4: if all inputs in pr are workflow inputs then
5: return 〈{pr}, ∅〉;
6: V = workset = {pr}; E = list = ∅
7: while workset �= ∅ do
8: remove w from workset;
9: for every in ∈ w.input do

10: if there exists pr1 such that in ∈ pr1.output then
11: if pr1 exists in the blockchain then
12: E = E ∪ {pr1 → w};
13: if pr1 �∈ V then
14: workset = workset ∪ {pr1};
15: V = V ∪ {pr1};

16: else
17: Print “error: database and blockchain are incon-

sistent”; return

18: else
19: if in is not a workflow input then
20: add in to list; � partial graph

21: if list == ∅ then return 〈V,E〉;
22: for every provenance record pr in blockchain do
23: if there exists out ∈ pr.output such that out ∈ list then
24: Print “error: database and blockchain are inconsistent”;

return;

25: return 〈V,E〉;

checks whether pr is present in the blockchain, and if not,

the algorithm reports error (lines 2– 3). If pr is present

in the blockchain and all inputs in pr are workflow inputs

(which means that tr is not derived from any other provenance

records), then the algorithm returns a graph containing one

node pr (lines 4–5). Otherwise, the algorithm computes the

derivation graph for pr from the provenance database (lines

6 - 15). If a complete derivation graph is computed and all

nodes in the graph are present in the blockchain, then the

algorithm returns the graph (line 21). Otherwise, for each input

of partial nodes that has no derivation (stored in list), the

algorithm checks whether a derivation can be computed for

the input in the blockchain (line 23). This is used to ensure

that the database is not modified. If such a derivation exists,

then the algorithm reports inconsistency between the database

and the blockchain (lines 24); otherwise, the algorithm returns

the graph computed (line 25).

We use G(pr) to represent the derivation graph computed

for provenance record pr. Theorems 1 and 2 prove the

soundness and the completeness of Algorithm 1, respectively.

Theorem 1 (Soundness): Let pr be a provenance record. If

Algorithm 1 returns a derivation graph G(pr), then G(pr) can

be computed from the blockchain.

Proof: If Algorithm 1 returns a derivation graph G(pr),
then for every edge pr1 → pr2 in G(pr), there exists

in ∈ pr2.input such that in ∈ pr1.output. Because the

algorithm returns G(pr), according to line 11 of the algorithm,

pr1 and pr2 are present in the blockchain. As there exists

in ∈ pr2.input such that in ∈ pr1.output, pr1 → pr2 can

85

be computed from the blockchain as well. The theorem holds.

�

Theorem 2 proves the completeness of Algorithm 1, which

states that for every derivation graph G(pr) computed from the

blockchain, Algorithm 1 either returns an equivalent derivation

graph (defined below) or reports inconsistency between the

database and the blockchain. Note that Theorem 2 does not

guarantee that for every derivation graph computed from

the blockchain, the same graph can be computed from the

provenance database. As a workflow task may be executed

multiple times, multiple provenance records may have the

same input, task, and output fields but different execution

times. Therefore, multiple derivation graphs may be computed

for a provenance record. Algorithm 1 returns only one of

the derivation graphs. It is possible that some provenance

records have been deleted from the database, but the deleted

records do not affect the derivation graph returned from the

database. Below, we define equivalent derivation graphs and

proves Theorem 2.

Definition 4 (Equivalent Provenance Records/Derivation
Graphs): Two provenance records pr1 and pr2 are equiv-

alent, denoted as pr1 ≡ pr2, iff pr1.input = pr2.input,
pr1.output = pr2.output, and pr1.task = pr2.task. Two

derivation graphs G(pr) and G′(pr) are equivalent, denoted

as G(pr) ≡ G′(pr), iff for every edge pr1 → pr2 in G(pr),
there exists an edge pr′1 → pr′2 in G′(pr) such that pr1 ≡ pr′1
and pr2 ≡ pr′2, and vice versa. �

As each workflow task is deterministic, two provenance

records have the same output only if they were generated from

the same workflow task with the same input. Therefore, all

derivation graphs computed for a specific provenance record

are equivalent.

Theorem 2 (Completeness): Let pr be a provenance record.

If a derivation graph G(pr) can be computed from the

blockchain, then Algorithm 1 either returns a graph G′(pr)
such that G′(pr) ≡ G(pr) or reports error.

Proof: The theorem is proved by induction on the number

of nodes in the derivation graph.

Base case: Assume that G(pr) consists of one node pr.

Then either (1) all inputs in pr are workflow inputs, or (2) for

all in ∈ pr.input that are not workflow inputs, there does not

exist pr′ in the blockchain such that in ∈ pr′.output. In case

(1), Algorithm 1 returns G(pr). In Case (2), if the database

is consistent with the blockchain, then Algorithm 1 returns

G(pr). Otherwise, if there exists in ∈ pr.input and pr′ in

the database such that in ∈ pr′.output, then because pr′ does

not exist in the blockchain, Algorithm 1 returns an error (lines

16–17). The theorem holds.

Induction: Assume that the theorem holds for all derivation

graphs that have ≤ k nodes. We now prove that the theorem

holds for derivation graphs that have k+1 nodes. Let G(pr) be

a derivation graph computed from the blockchain that contains

k+1 nodes and pr2 be the last node computed in this graph.

We now prove that if pr2 → pr1 can be computed from the

blockchain, then there exist pr′2 and pr′1 such that pr′2 → pr′1
can be computed from the database and pr1 ≡ pr′1 and

pr2 ≡ pr′2. We prove the theorem by contradiction. Assume

that such an edge cannot be computed from the database. By

induction hypothesis, there exists pr′1 in the database such

that pr′1 ≡ pr1. Because the edge cannot be computed from

the database, there does not exist a provenance record pr′2 in

the database such that pr′2 ≡ pr2. Therefore, pr′1 is a partial

node in the derivation graph computed from the database.

Let d ∈ (pr2.out ∩ pr1.in). Line 23 of Algorithm 1 would

check whether there exists a provenance record pr in the

blockchain such that pr.out = d. Because pr2.out = d and

pr2 is in the blockchain, the algorithm reports an error (line

24) instead of returning a derivation graph. This contradicts to

the assumption. Therefore, the theorem holds. �

VI. PROVENANCE INVALIDATION

Once a provenance record is added to the blockchain, it

is impossible to revoke the change, assuming that the honest

nodes together possess more than half of the mining power.

A workflow task may be modified to fix bugs or add new

functionalities. When a workflow task is modified, the data

previously generated from this task and all data derived from

it are not valid any more and hence need to be invalidated.

To address this issue, this section presents a novel technique

to enable users to invalidate wrong or outdated provenance

records without removing them from the blockchain. SciBlock

currently supports the invalidation of provenance records gen-

erated prior to specific time. For example, if a workflow task

is modified, then the scientists can re-run the workflow and

invalidate all previous provenance records.

We use invalidation transactions to invalidate provenance

records. The invalidation transaction contains one field time;

provenance records with an execution time prior to time
will be invalidated. When an invalidation transaction is added

to a blockchain, the invalidation module adds the hash of

all provenance records invalidated by this transaction to the

blockchain. As an invalidation transaction is often submitted

after a task is modified to generate new data, to prevent users

from mistakenly adding an invalidation transaction, we provide

an option for the user to check whether a corresponding new

data product has been generated for each invalidated data

product. If the invalidation condition does not hold, then the

user decides whether he/she wants to proceed.

Algorithm 2 gives the pseudocode for invalidating prove-

nance records. Procedure check invalidate returns the task

field (tasklist) of all provenance records that have an execu-

tion time later than time. Procedure invalidation invalidates

transactions. If the invalidation condition is turned off, then the

algorithm invalidates the corresponding provenance records

(lines 2–5). Otherwise, for every provenance record whose

execution time is earlier than time, the algorithm checks

whether its task field is in tasklist and if so (i.e. the

invalidation condition holds), invalidates the record (lines 8

– 11); otherwise, the algorithm asks the user whether she

wants to invalidate the record. To improve the efficiency, the

algorithm first checks whether the invalidation condition holds

86

in the provenance database and then verifies the result in the

blockchain.

Algorithm 2 Transaction Invalidation

1: procedure invalidation(time, opt)
2: if opt == 0 then
3: for every pr in blockchain where pr.time < time do
4: invalidate pr in blockchain;
5: set pr.valid to be 0 in DB;

6: else
7: tasklist = check invalidate(time);
8: for every valid record pr ∈ blockchain do
9: if (pr.time < time and pr.task ∈ tasklist) then

10: invalidate pr in blockchain;
11: set pr.valid to be 0 in DB;
12: else
13: if pr.time < time and there exists pr1 ∈

blockchain such that pr1.task = pr.task and pr1.time >
time then

14: print “Inconsistency between database and
blockchain”; return error;

15:

16: procedure check invalidate(time)
17: tasklist = ∅;
18: for every pr in DB such that pr.time > time and pr ∈

blockchain do
19: if pr.task �∈ tasklist then tasklist = tasklist∪{pr.task};

20: return tasklist;

Restoring the provenance database: If any of the algo-

rithms reports an error, or if there are signs that the provenance

database has been compromised, then the provenance database

needs to be restored from the blockchain. The provenance

database is restored as follows. For every provenance record

in the blockchain, we check whether the record is valid.

We then add the record and the validation status to the

provenance database. The above approach requires to traverse

the blockchain only once.

VII. IMPLEMENTATION OF SCIBLOCK

A number of blockchain platforms were developed in-

cluding Ethereum [23], Tierion [45], Hyperledger [25],

Bigchain [12], and MultiChain [35], etc. We chose to imple-

ment SciBlock on top of the Ethereum Parity [2] blockchain,

because Parity is a permissioned blockchain with POA con-

sensus that provides both authentication and tamper proof, and

Parity has better performance than Ethereum Geth.

Adding provenance records/invalidation transactions to
blockchain: The format of the provenance records is specified

using smart contracts in Ethereum and the provenance record

is created using the buildTransaction API. The provenance

records are submitted to private blockchains via a python

web RPC interface called web3.py. When a user submits

a provenance record, web3.py invokes the sendTransaction()
RPC call to add the record to the blockchain. The information

related to the provenance record is then anchored to the

Merkle tree and a transaction receipt is returned to the user.

Invalidation transactions are authenticated and added to the

blockchain similarly.

Querying provenance records by fields: We implemented

two primitives for querying the provenance records by fields.

(1) a naive primitive that uses brute-force search to locate

a specific provenance record and (2) a primitive based on

the Bloom filter [1], which is a probabilistic data structure

developed to improve the efficiency of search. In the Bloom

filter-based implementation, when a user submits a provenance

record, the event/log mechanism in Ethereum captures and

anchors the data as logs in the blockchain. The logs are

stored in the logsBloom data structure in the block header

of the Bloom filter, which consists of indexable information

that utilizes storage efficiently. Ethereum Bloom filter has

the following limitations. First, the index field can contain

maximum of 32 bytes. However, each field of a provenance

record is a string that can have arbitrary length. To counter

this limitation, we converted the field that needs to be indexed

into type Bytes32 that represents 32-byte strings. Secondly,

up to three fields can be indexed in the Bloom filter. Thirdly,

the Bloom filter produces false positives and hence the result

returned from the Bloom filter needs to be verified.

Presence of a provenance record in the blockchain: Authen-

tication is not required to verify the existence of a provenance

record in the blockchain. External users can submit query

requests through web interface. SciBlock uses the getTransac-
tionReceipt() RPC call to check whether a provenance record

exists in the blockchain, which takes as input the hash of a

provenance record and returns the corresponding receipt if the

record exists in the blockchain.

Provenance invalidation: When an invalidation transaction

is added to a blockchain, Sciblock computes all provenance

records that are not previously invalidated and are invalidated

by this transaction. Sciblock then stores the hash of each

invalidated provenance record as a new transaction in the

blockchain and indexes the hash field. This enables users

to check if a provenance record is valid efficiently using

the Bloom filter. Alternatively, instead of storing the hash

of each invalidated provenance record, we can just store the

invalidation transaction in the blockchain. When a user queries

whether a provenance record is valid, we check whether the

record is invalidated by any of the invalidation transactions

in the blockchain. Compared to the approach used in our

implementation, this approach has less invalidation time, but

imposes higher performance overhead on checking whether a

provenance record is valid.

Provenance database: SciBlock uses SQLite [5] and

MySQL [3], two widely used database management systems,

as our provenance databases. SQLite is an embedded database

management system that has superior performance for single

machine access, but is not intended to be used as client-server

applications. As a result, SQLite is installed on each local

machine and all copies of a SQLite database on different ma-

chines are synchronized through the network. MySQL is much

slower than SQLite for single machine access, but is good

for concurrent access by a large number of users/machines

through the network.

To synchronize the SQLite databases on different ma-

87

(a) (b)

Fig. 6. Average time for adding one transaction from 1-3 peers on a single
machine: (a)blockchain (b)databases.

chines, a separate client program executes on each node

connects and synchronizes with its locally cached blockchain

using the web3 interface. When a new provenance record

is added to the blockchain, the client obtains the corre-

sponding block number using web3.eth.blockNumber() and

compares it against the last synchronized block number.

The client then uses web3.eth.getTransactionFromBlock() and

web3.eth.getTransactionReceipt() to get the corresponding

transaction receipt. The provenance logs are stored in the trans-

action receipt in an hex encoded format. The client program

then decodes the logs to obtain the provenance record and

adds the record to the provenance database. The above process

synchronizes SQLite databases and the blockchain within a

time frame of approximately 70ms for each provenance record.

VIII. EVALUATION

We evaluate the performance of SciBlock using a real

workflow provenance generated by the DATAVIEW workflow

management system [30] and synthetic benchmarks generated

by a workflow provenance generator written by us. All ex-

perimental results were obtained on dual two-core 3.30 GHz

Intel Xeon machines with 8GB memory connected through a

Gigabit Ethernet switch with 1 Gbps full-duplex ports.

A. Experimental Results: Single Machine
In Ethereum, users can create multiple peers on a single

machine. Each peer takes users’ input and performs the func-

tionality defined in the smart contracts. This section presents

the performance results of SciBlock on a single machine

with 1-3 peers. We installed Ethereum parity, SQLite, and

MySQL on each of the machines used in our experiments.

The blockchain is not synchronized among different machines

in our single-machine experiments. We have also installed

MySQL on an external machine in the same local-area network

to enable remote access to MySQL through the network.

Average time taken to add one transaction: Figure 6(a)

gives the average time taken for adding one provenance record

to the blockchain and databases from 1-3 peers on a single

machine. The number of provenance records added varies

between 2000 and 10000. Each node added total record/x
provenance records to the blockchain/databases simultane-

ously, where total record is the total number of records added

(2000−10000) and x is the number of peers (1−3). The figure

shows that the time taken for adding one provenance record to

the blockchain increases when the number of peers increases.

In addition, with the same number of peers, the time taken

for adding one provenance record is constant, irrespective to

the size of the blockchain. Adding one provenance record to

databases is 1000−10000 times faster than adding one record

to the blockchain (as shown in Figure 6(b)).

Average query time: Figure 7 gives the average time

taken for querying one provenance record by the output

field from a single peer on a single machine. The x-axis

in the figure represents the size of the blockchain/databases

(2000 – 10000 provenance records) and the y-axis represents

the average query time, which was calculated as an aver-

age over ten randomly generated outputs. MySQL(L) and

MySQL(G) in the figure represent querying MySQL on the

local and remote machines, respectively. blockchain-Naive and

blockchain-Bloom represent our brute-force query primitive

and Bloom-filter based query primitive, respectively. Figure 7

shows that blockchain-Bloom is 10.7% faster than blockchain-

Naive, and querying SQLite and MySQL databases is signifi-

cantly faster than querying the blockchain in all experiments.

We have also measured the average time taken to query

one provenance record from 2-3 peers on a single machine

simultaneously. Our experimental results show that the average

query time with 2 and 3 peers is 10 − 14% higher than that

with a single peer for both blockchain and databases.

Average blockchain verification time: The average time

taken to check whether a provenance record is present in a

blockchain is constant (3ms) for blockchains with 2000-10000

provenance records. This result and Figure 7 together show

that, querying SQLite (MySQL) combined with blockchain

verification is about 7 times and 3 − 3.5 times faster than

querying the blockchain directly.

Computing Derivation History: Figure 8 gives the time

taken to compute the derivation graphs that contain a sequence

of 2000-10000 nodes, from a single peer on a single ma-

chine. SQLite/MySQL+verify represents our implementation

of Algorithm 1, which uses database query combined with

blockchain verification to compute derivation graphs. The

figure shows that the time taken to compute a derivation

graphs increases when the graph size increases for both

blockchain and databases. The figure also shows that SQLite

performs best, followed by SQLite+verify. Blockchain-Bloom

has the worst performance, which is 5.3 times worse than

SQLite+verify and 1.9 times worse than MySQL+verify.

Figure 9 gives the time taken to compute the derivation

graph for provenance records containing two inputs. The in-

puts to each record are randomly chosen from the outputs that

have already been generated. Figure 10 gives the number of

nodes and edges in the graphs computed. Similar to Figure 8,

SQLite performs best and Blockchain-Bloom performs worst.

We have also collected provenance records produced from

a diagnosis recommendation workflow [6] in DATAVIEW and

computed the derivation graph for the output of the workflow.

The derivation graph consists of 8 nodes and 9 transitions.

The time spent in computing derivation graph is 1ms for

SQLite+verification, 0.39 seconds for MySQL+verification,

and 0.51 seconds for Blockchain-Bloom.

In addition, we have measured the time taken to compute

88

Fig. 7. Average time for querying one provenance
record.

Fig. 8. Time for computing derivation graphs that
contain 2000-10000 nodes.

Fig. 9. Time for computing derivation graphs from
provenance records with 2 inputs.

the derivation graph simultaneously from 2 and 3 peers. The

experiments conducted are the same as those conducted for

a single peer. Our experimental results show that the average

time taken to compute the derivation graph is about the same

for different number of peers.

Invalidation time: We have measured the average time

taken to invalidate 2000-10000 provenance records in the

blockchain. The time is constant (1 second), irrespective to

the blockchain size. This is because every time a provenance

record is invalidated, the hash of the record is added to the

blockchain, which takes about 1 second. Adding hashes of

invalidated records enables users to query whether a record is

valid efficiently. Our experimental results show that, it takes

about 16ms (18ms) to check whether a record is valid, when

all records in the blockchain are valid (invalid). The average

time taken to invalidate one provenance record from multiple

peers is the same as that taken to add one record to the

blockchain from multiple peers (shown in Figure 6).

Memory overhead: Figure 11 gives the memory usage for

computing derivation graphs whose sizes vary between 2000 to

10000. The memory usage was captured using the TOP Linux

utility. Compared to blockchain, SQLite with verification and

MySQL with verification imposes 0.9%− 8% and 7%− 18%
overhead on memory usage, respectively.

B. Experimental Results: Multiple Machines
In Ethereum, blockchains are distributed across peer-to-peer

networks. In order to add transactions to the same blockchain

from different machines, we need to synchronize peers on

different machines. Each peer in Ethereum network is uniquely

identified with a URL scheme called an “enode”. Each enode

consists of a hexadecimal node ID encoded with a username,

an IP address, and a TCP listening port number. We maintain a

list of peers participating in the network and the peer discovery

protocol is used to connect peers in the network based on

the list. Once the peers on different machines get connected,

the peers start to synchronize with each other so that each

machine has its own copy of the same blockchain. When a

peer adds a provenance record to a blockchain, the record is

also added to all other synchronized copies. Therefore, when a

peer issues a query to the blockchain, the query is performed

on its local copy of the blockchain and hence the query time is

the same as that of a single machine. Similarly, the time spent

in computing the derivation history and checking whether a

provenance record is valid is the same as that of a single

machine. As a result, this section reports only the time taken

to add transactions from multiple machines.

Figure 12 gives the average time taken to add one prove-

nance record to the same blockchain simultaneously from 1-3

machines (one peer runs on each machine). The figure shows

that the average time increases from 1ms to 9ms, when the

number of machines increases from 1 to 3. The average time

for adding one record from two (three) machines is 1.67x
(2.25x) slower than adding one record from two (three) peers

on a single machine, due to the synchronization between

blockchain copies stored on multiple machines.

IX. CONCLUSION

This paper presents SciBlock, a system that leverages recent

advances in the blockchain technology to provide a tamper-

proof and non-repudiable storage for scientific workflow

provenance data in a distributed collaborative environment.

SciBlock enables scientists to verify the trustworthiness of

scientific data and reproduce scientific results. SciBlock

also offers the capability of invalidating wrong or outdated

scientific workflow provenance data without removing

them from the blockchain. We have conducted extensive

experiments to evaluate the performance and the scalability

of SciBlock. Our experimental results show that SciBlock

offers a promising approach to enhancing scientific research

integrity in a distributed collaborative environment.

Acknowledgement: This work is supported in part by the

National Science Foundation under grant OAC-1738929. We

thank Nikhil Raverkar and Wen Yang for their help in SciBlock

implementation.

REFERENCES

[1] Ethereum bloom filter. https://github.com/ethereum/eth-bloom.
[2] Ethereum parity. https://www.parity.io/.
[3] Mysql. https://www.mysql.com/.
[4] Open Provenance Model. http://twiki.ipaw.info/bin/view/Challenge/OPM.
[5] Sqlite. https://www.sqlite.org/index.html.
[6] I. Ahmed, S. Lu, C. Bai, and F. A. Bhuyan. Diagnosis recommendation

using machine learning scientific workflows. In IEEE International
Congress on Big Data, pages 82–90, 2018.

[7] J. Alhiyafi, C. Sabesan, S. Lu, and J. L. Ram. RECOMBFLOW:
A scientific workflow environment for intragenomic gene conversion
analysis in bacterial genomes. International Journal of Bioinformatics
Research and Applications, 5(1):1–19, 2009.

89

No. of No. of No. of

transactions nodes edges

2000 1531 1533

4000 3175 3177

6000 4794 4796

8000 6303 6305

10000 8093 8095

Fig. 10. The size of derivation graphs
for provenance records with two inputs

Fig. 11. Memory usage for computing derivation graphs
from transactions with single inputs.

Fig. 12. Average time taken to add one transaction
to the same blockchain from multiple machines.

[8] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al.
Hyperledger fabric: a distributed operating system for permissioned
blockchains. In EuroSys, 2018.

[9] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman. Medrec: Using
blockchain for medical data access and permission management. In
International Conference on Open and Big Data, pages 25–30, 2016.

[10] A. Baliga. Understanding blockchain consensus models. Persistent,
2017.

[11] G. Becker and R. universitt Bochum. Merkle signature schemes, merkle
trees and their cryptanalysis, 2008.

[12] BigchainDB : The Blockchain Database. https://www.bigchaindb.com
/whitepaper/bigchaindb-whitepaper.pdf.

[13] J. J. Billings. Applying distributed ledgers to manage workflow prove-
nance. arXiv preprint arXiv:1804.05395, 2018.

[14] A. Chebotko, S. Lu, S. Chang, F. Fotouhi, and P. Yang. Secure scientific
workflow provenance querying with security views. IEEE Transactions
on Services Computing, 3(4):322–337, 2010.

[15] J. Chen, S. Yao, Q. Yuan, K. He, S. Ji, and R. Du. Certchain: Public
and efficient certificate audit based on blockchain for tls connections.
In IEEE INFOCOM, pages 2060–2068, 2018.

[16] W. Chen, X. Liang, J. Li, H. Qin, Y. Mu, and J. Wang. Blockchain based
provenance sharing of scientific workflows. In 2018 IEEE International
Conference on Big Data (Big Data), pages 3814–3820. IEEE, 2018.

[17] J. Cheney. A formal framework for provenance security. In 24th
Computer Security Foundations Symposium, pages 281–293, 2011.

[18] R. Coelho, R. Braga, J. David, F. Campos, and V. Stroele. Blockflow:
Trust in scientific provenance data. In Anais do XIII Brazilian e-Science
Workshop, pages 56–63, Porto Alegre, RS, Brasil, 2019. SBC.

[19] A. Demichev, J. Dubenskaya, E. Fedotova, A. Kryukov, S. Polyakov, and
N. Prikhodko. Provenance metadata management in distributed storages
using the hyperledger blockchain platform, 2019.

[20] A. Demichev, A. Kryukov, and N. Prikhodko. The approach to managing
provenance metadata and data access rights in distributed storage using
the hyperledger blockchain platform. arXiv:1811.12706, 2018.

[21] L. Desrosiers and R. Olivieri. Extend your blockchain smart contracts
with off-chain logic, 2018.

[22] J. Eberhardt and S. Tai. On or off the blockchain? insights on off-
chaining computation and data. In European Conference on Service-
Oriented and Cloud Computing, pages 3–15. Springer, 2017.

[23] Ethereum blockchain platform. https://www.ethereum.org/.

[24] G. Greenspan. Scaling blockchains with off-chain data. https://www.
multichain.com/blog/2018/06/scaling-blockchains-off-chain-data/.

[25] Hyperledger. https://www.hyperledger.org.

[26] IBM. Why new off-chain storage is required for blockchains document
version 1.0, 2018.

[27] K. Janowicz, B. Regalia, P. Hitzler, G. Mai, S. Delbecque, M. Fröhlich,
P. Martinent, and T. Lazarus. On the prospects of blockchain and dis-
tributed ledger technologies for open science and academic publishing.
Semantic Web, pages 1–11, 2018.

[28] T. D. Joseph Poon. The bitcoin lightning network: Scalable off-chain
instant payments. https://lightning.network/lightning-network-paper.pdf,
2016.

[29] D. Karastoyanova and L. Stage. Towards collaborative and reproducible
scientific experiments on blockchain. In International Conference on
Advanced Information Systems Engineering, pages 144–149, 2018.

[30] A. Kashlev and S. Lu. A system architecture for running big data
workflows in the cloud. In Proc. Of the IEEE International Conference
on Services Computing (SCC), pages 51–58, 2014.

[31] X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla.
Provchain: A blockchain-based data provenance architecture in cloud
environment with enhanced privacy and availability. In CCGRID, pages
468–477, May 2017.

[32] X. Liang, J. Zhao, S. Shetty, and D. Li. Towards data assurance and
resilience in iot using blockchain. In IEEE Military Communications
Conference, pages 261–266, 2017.

[33] R. Luo, P. Yang, S. Lu, and M. I. Gofman. Analysis of scientific work-
flow provenance access control policies. In The 9th IEEE International
Conference on Services Computing (SCC), pages 266–273, 2012.

[34] P. McDaniel. Data provenance and security. IEEE Security & Privacy,
9:83–85, 2011.

[35] MultiChain Private Blockchain. https://www.multichain.com/download
/multichain-white-paper.pdf.

[36] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009.
[37] I. Nath. Data exchange platform to fight insurance fraud on blockchain.

In ICDM Workshop, pages 821–825, 2016.
[38] R. Neisse, G. Steri, and I. N. Fovino. A blockchain-based approach

for data accountability and provenance tracking. In International
Conference on Availability, Reliability and Security, 2017.

[39] A. Ramachandran and M. Kantarcioglu. Using blockchain and
smart contracts for secure data provenance management. CoRR,
abs/1709.10000, 2017.

[40] A. Ramachandran and M. Kantarcioglu. Smartprovenance: A distributed,
blockchain based dataprovenance system. In ACM Conference on Data
and Application Security and Privacy, pages 35–42, 2018.

[41] A. Rosenthal, L. Seligman, A. Chapman, and B. Blaustein. Scalable
access controls for lineage. In workshop on Theory and practice of
provenance, page 110, 2009.

[42] S. Shetty, V. Red, C. Kamhoua, K. Kwiat, and L. Njilla. Data provenance
assurance in the cloud using blockchain. volume 10206, pages 10206 –
10206 – 11, 2017.

[43] S. M. K. Sigurjonsson. Blockchain use for data provenance in sci-
entific workflow. http://www.diva-portal.org/smash/get/diva2:1235451/
FULLTEXT02, 2018.

[44] Y. Simmhan, B. Plale, and D. Gannon. A survey of data provenance in
e-Science. SIGMOD Record, 34(3):31–36, Sept. 2005.

[45] Tierion Platform. https://tierion.com/.
[46] D. Tosh, S. Shetty, X. Liang, and C. A. K. L. Njilla. Consensus protocols

for blockchain-based data provenance: Challenges and opportunities. In
Ubiquitous Computing, Electronics and Mobile Communication, 2017.

[47] P. Treleaven, R. G. Brown, and D. Yang. Blockchain technology in
finance. Computer, 50(9):14–17, 2017.

[48] W. Tsai, X. Wei, Y. Chen, R. Paul, J. Chung, and D. Zhang. Data
provenance in soa: security, reliability, and integrity. 1(4):223247, 2007.

[49] Using The Blockchain To Secure Provenance MetaData.
https://archive.org/details/usingtheblockchaintosecureprovenance
metadatatechnicalreport.

[50] T. Wu and X. Liang. Exploration and practice of inter-bank application
based on blockchain. In 2017 12th International Conference on
Computer Science and Education (ICCSE), pages 219–224, Aug 2017.

[51] P. Yang, X. Xie, I. Ray, and S. Lu. Satisfiability analysis of workflows
with control-flow patterns and authorization constraints. IEEE Transac-
tions on Services Computing, pages 237–251, 2014.

90

