ARTIFACT
EVALUATED
susenix

»

AVAILABLE

HiP4-UPF: Towards High-Performance Comprehensive SG User Plane Function on
P4 Programmable Switches

Zhixin Wen
Department of Computer Science
Binghamton University
zwen7 @binghamton.edu

Abstract

Due to better cost benefits, P4 programmable switches have
been considered in a few recent works to implement 5G User
Plane Function (UPF). To circumvent limited resources on
P4 programmable switches, they either ignore some essential
UPF features or resort to a hybrid deployment approach which
requires extra resources. This work is aimed to improve the
performance of UPFs with comprehensive features which, ex-
cept packet buffering, are deployable entirely on commodity
P4 programmable switches. We build a baseline UPF based
on prior work and analyze its key performance bottlenecks.
We propose a three-tiered approach to optimize rule storage
on the switch ASICs. We also develop a novel scheme that
combines pendulum table access and selective usage pulling
to reduce the operational latency of the UPF. Using a com-
modity P4 programmable switch, the experimental results
show that our UPF implementation can support twice as many
mobile devices as the baseline UPF and 1.9 times more than
SD-Fabric. Our work also improves the throughputs in three
common types of 5G call flows by 9-619% over the UPF
solutions in two open-source 5G network emulators.

1 Introduction

The emerging 5G technologies have the potential of revolu-
tionizing various sectors in society such as manufacturing,
healthcare, transportation, agriculture, national security, and
entertainment. 5G’s promised performance improvements
over previous generations of mobile communication networks,
such as up to 20 times faster than 4G LTE, significantly lower
latency, and supporting communications for as many as a mil-
lion devices per square kilometer [14], introduces significant
technical challenges to its network architecture, particularly
for its User Plane Functions (UPFs).

5G UPFs act as the data traffic gateway between the access
networks (e.g., base stations) serving the User Equipment
(UE) (e.g., mobile phones) and the Internet or other data net-
works. UPFs apply rules received from the 5G control plane to
decide how packets should be classified, inspected, metered,

Guanhua Yan
Department of Computer Science
Binghamton University
ghyan@binghamton.edu

accounted, marked, buffered, and forwarded. When deployed
for core networks, 5G UPFs must be implemented to handle
intensive traffic volume at high speed while meeting strin-
gent QoS requirements. Various software-based optimization
techniques have been proposed to improve 5G UPF perfor-
mances on multi-core commodity servers, including direct
packet delivery to userspace memory with Data Plane Devel-
opment Kit (DPDK) [5,6,22], latency reduction based on Intel
network adapters’ Dynamic Device Personalization (DDP)
features [6], parallel lookup over multiple fields in a packet
header using a single VPP operation [5], and fast packet pro-
cessing based on the eXpress Data Path (XDP) feature of
new Linux kernels [16]. Software-based UPFs, however, do
not present a cost-effective solution for the emerging 5G net-
works as they can achieve only 0.03 Mpps (Million Packets
per Second) per US dollar (USD) or 0.14 Mpps per Watt [13].

There have been a few recent works aimed at implementing
5G UPFs on P4 programmable switches [24,26-28,32,41],
which can deliver impressively 0.4 Mpps per USD or 8.52
Mpps per Watt [13]. Unfortunately, the limited computational
resources available on commodity P4 programmable switches
pose a daunting challenge to implement the comprehensive
5G UPF features mandated by 3GPP specifications [10]. To
circumvent this challenge, the state-of-art works have either
ignored or simplified some essential features in the implemen-
tations or resorted to a hybrid approach of combining both
P4 switches and extra computational resources. For example,
MacDavid’s UPF solution [27] includes rudimentary usage re-
porting, while SD-Fabric [28] allows usage reporting for only
a small set of end devices by default. On the other hand, the
5G UPF solution developed by Singh et al. combines a fast
5G datapath using P4 programmable switches and a slow one
implemented by DPDK-based software [32]. X-Plane [26]
extends the capacity of the 5G UPF by leveraging external
Remote Direct Memory Access (RDMA)-based DRAM in
addition to the P4 programmable switch. The co-existence
of separate data paths or rule storage, however, significantly
increases the complexity of managing and synchronizing UE
state information in the data planes of 5G networks.

In this work we aim to develop a new high-performance 5G
UPF called HiP4-UPF, whose comprehensive features, except
packet buffering, can be deployed entirely on a commodity P4
programmable switch. Towards this goal, we first implement
a baseline UPF based on prior works to identify the key per-
formance bottlenecks.Through performance measurements
we discover the inefficiency of SRAM and TCAM usage due
to both the dependency among the tables storing UPF rules
and the redundancy of matching keys and data stored in these
tables. We also observe that frequent usage reporting can
cause high operational latency.

To overcome the rule storage challenge, we develop a tiered
optimization framework, which consists of three complemen-
tary optimization techniques, including removing excessive
dependency, splitting rule tables, and consolidating action
data. To reduce the high operational latency incurred by fre-
quent usage reporting, we propose a novel scheme that com-
bines pendulum table access and selective usage pulling. Pen-
dulum table access enables instantaneous rule updates while
pulling usage data from the switch ASIC with two alternating
table partitions. The selective usage pulling technique esti-
mates the urgency scores of individual rules to prioritize the
collection of their counter data from the switch ASIC.

We develop a prototype of HiP4-UPF on a Tofino-based
P4 programmable switch and evaluate its performances. Our
results show that HiP4-UPF increases the maximal number
of UEs by an average of 101.95% over the baseline UPF.
We also make modifications to HiP4-UPF to match the fea-
tures implemented by SD-Fabric [28], an open-source data
plane fabric based on P4 programmable switches. Our results
show that HiP4-UPF can support 1.9 times more UEs on a
P4 switch than the 5G UPF solution provided by SD-Fabric.
We also compare the responsiveness of HiP4-UPF to the re-
quests from the 5G control plane against alternative UPF
implementations. Our experiments show that HiP4-UPF not
only improves the throughputs in three common types of 5G
call flows by 9-619% over the CPU-based UPFs in two open-
source 5SG network emulators, freeSGC [2] and openSgs [7],
but also significantly reduces the operational latency in com-
parison with two alternative P4 switch-based UPFs. Finally,
the selective usage pulling scheme has been shown capable
of reducing the mean usage reporting latency by 84.6%.

Our implementation of HiP4-UPF has been
made publicly available at https://github.com/
CyberSecurityScience/HiP4-UPF/.

The remainder of the paper is organized as follows. Sec-
tion 2 provides the background of this work, including a
primer on 5G UPF and a baseline UPF implementation. Sec-
tion 3 presents the performance measurements of the baseline
UPF as the motivation behind this work. Section 4 introduces
three rule storage optimization techniques and Section 5 dis-
cusses how to reduce operational latency. Section 6 gives the
performance evaluation results. Section 7 discusses related
work. Section 8 makes concluding remarks about this work.

Core Network Incoming packet

S PR
@\ ‘ AVIF M ubm @
| I
| |
| |
T |
FaF I I F AUSF| Control Plane
I gNB [ERY .
_) 3 } N4 Data Plane
! i
F

‘ <«> Interface connecting to UP| ‘

Figure 1: 5G network architecture. Key NFs are Access and
Mobility Management Function (AMF), Session Management
Function (SMF), Authentication Server Function (AUSF),
Unified Data Management (UDM), NF Repository function
(NRF), and Network Slice Selection Function (NSSF).

2 Background

This section first introduces the background about 5G UPF
and then describes a baseline UPF based on prior work [27].

2.1 5G UPF Primer

Figure | illustrates the architecture of a typical 5G network.
The UEs such as mobile phones connect with a 5G core net-
work through an access network, which includes a collection
of 5G base stations called gNBs. The control plane in the
core network adopts a Service Based Architecture (SBA),
whereby various network functions (NFs) communicate with
each other through well-defined interfaces.

In the data plane, user data go through one or multiple UPFs
between gNBs and external data networks such as the Internet
and an IMS (IP Multimedia Subsystem). A UPF connects to
a gNB via the N3 interface, where GRPS Tunnelling Protocol
(GTP)-U tunnels are used to carry user data from/to the gNBs.
These tunnels are terminated at the N6 interfaces, where the
UPF forwards the user data to/from the external data networks.
Optionally, multiple UPFs can be chained together in a data
path for use cases such as home routed roaming. These UPFs
are connected via the N9 interfaces, also based on the GTP-U
protocol. Each GTP-U packet contains a Tunnel Endpoint
Identifier (TEID) to identify its own tunnel.

Through the N4 interface, a UPF gets instructions from
a Session Management Function (SMF) on how packets
should be classified, inspected, metered, accounted, marked,
buffered, and forwarded. The Packet Forwarding Control Pro-
tocol (PFCP), which runs on UDP, is used by the SMF to
control the UPF. Each PDU session, which provides an end-
to-end connectivity between a UE and a specific data network,
is managed by a PFCP session between the SMF and the UPF.

2.2 Baseline UPF

To identify the performance bottlenecks in deploying UPFs on
commodity P4 programmable switches, we implement a base-

https://github.com/CyberSecurityScience/HiP4-UPF/
https://github.com/CyberSecurityScience/HiP4-UPF/

5G Control Plane

T PFCP 4‘%

Controller

Switch
CPU

CPU Port P4 Runtime
— —

Switch
ASIC

Pre-QoS
Accounting

Decap

Encap
Buffer
Drop

Post-QoS
Accounting

PDR
matching

Forwarding

Bl

Queue
Assignment

Bitrate
Enforcement

Ingress Queuing Egress

Figure 2: Architecture of the baseline UPF

line UPF based on prior work [27] with its architecture shown
in Figure 2. A primer on Intel Tofino-based P4 switches is
given in Appendix A. The baseline UPF has two modules, con-
troller and packet processing pipeline (PPP). The controller
runs on the switch’s CPU and is responsible for translating
PFCP messages received from the control plane to rule table
updates written in the P4 language. The PPP module, which
runs on the switch ASIC, processes user data according to the
rules provisioned by the control plane.

The PPP module consists of components that use these
resources to process packets based upon the various rules
provisioned by the control plane. These rules are maintained
as follows in our implementation: (D Packet Detection Rule
(PDR): Each PDR is uniquely identified by a PDR_ID (24
bits). As done in prior work [27], we use three parallel PDR
tables as follows. A complex PDR table, which is stored in
TCAM, is used to map from a packet’s packet detection in-
formation (PDI) (e.g., GTP-U TEID, QoS Flow Identifier
(QFI), IP 5-tuple, packet direction (uplink or downlink), and
Differentiated Services CodePoint (DSCP) markings) to its
corresponding PDR_ID. We also use two simple PDR ta-
bles to keep exact match rules in the resourceful SRAM,
one for uplink and the other for downlink. The uplink sim-
ple table matches packets based on their tunnel destinations
and TEIDs, while the downlink one based on the UEs’ IP
addresses. There is a single entry per UE in either of these
simple PDR tables. The structures of these tables are shown
in Table 1. @ Forwarding Action Rule (FAR): All FARs
are stored in a forwarding table, which matches PDR_IDs
to the corresponding forwarding actions. @ QoS Enforce-
ment Rule (QER): QERs are used to enforce bitrates for
selected PDU sessions based on TrTCM [21] meters, which
are natively supported by Tofino-based switches. Our current
implementation allows up to 1/8 of the rules in all PDR tables
(simple uplink, simple downlink and complex) to use its own
TrTCM meter. The meter objects allocated by the switch are
stored in a meter storage table, indexed by their identifiers
called METER_IDs. We also use a meter lookup table to
find the METER_ID of the meter used for a given PDR_ID.
@ Usage Reporting Rule (URR): A PDR can be mapped to

Stage 0 Stage 1 ---- Stage n Stage n+1 - Stage nt+4 Stage n+5 - -

Ml Lookup Storage
..... Fo‘rwardifng Ingress

El_simple i Accounting

S p—]

(a) Baseline UPF

Stagen Stage n+1 Stage n+2 Stage n+3 Stage n+4
I il 1T 1

| simpl Meter
LIS Storage L
dl_simple S Ingress
Accountin;
T I

(b) After applying RED optimization
Stage 1 Stagen Stage n+1 Stage n+2 Stagen+3

‘ comple;(‘

Egress
Accounting

Stage 0 Stagel ...
11 1

[complex |

Stage 0

Egress Accounting

Meter Ingress
NVERS Accounting

ul
_complex!

o |
dl_N6_simple D ‘ olex Egress Accounting
'L I

(c) After applying RED+SPT optimization

Figure 3: Illustration of table placement in the switch ASIC in
different scenarios. Pink rectangles indicate forwarding data
and purple rounded boxes indicate ingress accounting.

an arbitrary number of URRs. It would be extremely waste-
ful of precious SRAM resources if we create a URR table
that can accommodate the maximum number of URRs for
every PDR. Hence, we use two tables to store counters for
each PDR, one at the ingress port (ingress accounting table)
and the other the egress port (egress accounting table), in the
switch ASIC. The controller periodically pulls information
from these counters and thereby generate usage reports based
on URRs provisioned from the control plane. 5) Buffering
Action Rule (BAR): We do not implement buffering within
the switch due to its limited resources. Instead, a buffering ser-
vice is deployed on a different server. If the action given by a
FAR indicates the need for buffering, the packet is forwarded
to the buffering service.

The details of packet processing and usage reporting based
on these rule tables are explained in Appendix B.

3 Motivation

Using the baseline UPF, we identify performance bottlenecks
related to rule storage and operational latency.

3.1 Rule Storage

To understand how UPF rules are stored we consider a sce-
nario where there are two exclusive sets of UEs. Each UE
in the simple UE set has one rule in the ul_simple table and
the other in the dl_simple table. Each UE in the complex
UE set has two rules in the complex table. We use the com-
plex/simple ratio to denote the ratio of the size of the complex

Table 1: PDR tables used by the baseline UPF. set_ids loads PDR_ID, QER_ID and FAR_ID from action data to packet metadata,

nop does not do anything.

Table Place Match fields Action Action data
ul_simple SRAM TEID, QFI set_ids | nop PDR_ID
dl_simple SRAM Destination IP set_ids | nop PDR_ID
complex TCAM direction, TEID, QFI, IP 5-Tuple, DSCP set_ids | nop PDR_ID

5 TypeA Type-B Ingress stages Egress stages
Dependency Dependency 'j
—
Match Data Match |Action Action Data Match Data Match Data
TEID QFl IP PDR_ID|| |PDR_ID encaplP QFI TEID - - - | | GRLREDREYISE=E0E LY== 0 Y Dk
12 1 0.0.0.0/0 0-65535 -> 0.0.0.0/0 0-65535 | 21 21 [Encap[08331234 7 123 21 1 1 Countery
13 1 0.0.0.0/0 0-65535 -> 0.0.0.0/0 0-65535 | 22 22 |Encap|98331234 7 124 22 2 2 E 21
14 1 0.0.0.0/0 0-65535 -> 0.0.0.0/0 0-65535 | 23 23 |Encap| 98331234 7 125 23 3) 8 c
51 1 1.5.8.6/32 80 -> 1.2.1.0/24 9000-65535 | 364 364 |Decap = = 364 4 4 o .
: 0 o : Egress accounting
PDR complex Forwarding ﬁ Meter lookup Mete store
Match Data Match Data Match Data Match Data Match Data
TEID QFI | PDR_ID IP PDR_ID ﬁPDR_lo Counters QUEUE_ID P Port MAC
87 1 175 1.5.10.231 522 ‘ 21 . ‘ 12 98.33.12.34/32 | 3 12:34:56:78:9a:1f
PDR simple UL PDR simple DL Ingress accounting Queue assignment IP routing

Figure 4: Illustration of rule storage inefficiencies by baseline UPF. Same matching keys and same action data are highlighted in

brown and green, respectively. Best viewed in color.

Z3 Complex X Simple

o]
o

(o))
o

N
o

N
o

Number of UEs (thousand)

o

1:5 1:10 1:20 1:50
Complex/Simple ratio

Figure 5: Maximal numbers of UEs supported by the baseline
UPF under different complex/simple ratios

UE set to that of the simple UE set. To find the maximal num-
ber of UEs under a certain complex/simple ratio, we search
the size of the simple UE set in an increment of 1024 while
calculating the number of the complex UE set accordingly.
The P4 compiler generates an error if the computational re-
sources on the P4 switch cannot support the number of UEs
requested. We vary the ratio among 1:5, 1:10, 1:20, and 1:50,
and report the maximal number of UEs supported by the P4
switch in Figure 5. We observe that as the fraction of simple
UESs becomes larger, more UEs can be supported. When the
complex/simple ratio is 1:50, the P4 switch can accommodate
at most 83.5 thousand UEs. By contrast when the ratio is 1:5,
only 52.8 thousand UEs can be supported.

To gain deep insights into how the SRAM and TCAM
resources are utilized, we use Intel’s P4Insight tool [3] to
identify the placements of the rule tables in the P4 switch’s

ASIC when the complex/simple ratio is 1:5. The table place-
ments are shown in Figure 3(a). We notice that although the
rule tables are distributed across all available stages on the
Tofino ASIC and the utilizations of the SRAM and TCAM
are 54.4% and 49.3%, respectively. Among them, only 2.3%
of SRAM is used for each of the ul_simple and dl_simple
tables, while 48.6% of the TCAM is used for the complex
table. Also, 17.1% of the SRAM is used for usage accounting.

Inefficient rule storage can result from the dependency ex-
isting among different rule tables. We use Figure 4 to demon-
strate how rules are stored by the baseline UPF. There are
two types of table dependencies. Type-A dependency exists
within ingress stages. For example, both packet forwarding
based on the forwarding table and pre-QoS accounting based
on ingress accounting table require the lookup results of the
PDR tables, suggesting that the PDR tables must be placed at
an earlier stage than the forwarding and ingress accounting
tables as shown in Figure 3(1). Such dependency can lead to
resource usage disparity among different stages, which affects
the resource utilization on the P4 switch. Type-B dependency
occurs between the ingress and egress phases. As shown in
Figure 4, use of the egress accounting table also needs the
PDR_IDs resulting from the lookup of the PDR tables. How-
ever, as the PDR_IDs are carried within the packets when they
travel from the ingress to the egress phases, they effectively
eliminate the necessity of placing the egress accounting table
in earlier stages than the PDR tables.

There also exists ample redundancy among the different
rule tables in the baseline UPF. Such redundancy can occur

(=)}

—— Update latency
& Reporting latency

~

Delay (seconds)
[%)
e

i
-
e

25% 50% 75%
Fraction of time spent on pulling usage data

Figure 6: Operational latency observed for the baseline UPF

in both matching keys and action data. Figure 4 shows both
redundant match fields stored in the PDR complex table and
redundant action data stored in the forwarding table.

3.2 Operational Latency

The second performance bottleneck occurs when a 5G net-
work requires both frequent usage reporting and short opera-
tional latency. Ideally, when 5G networks are used to support
Ultra-Reliable Low-Latency Communication (URLLC) appli-
cations such as autonomous vehicles and augmented/virtual
reality, the control plane latency should be less than 10 mil-
liseconds [9]. The baseline UPF uses two accounting tables,
one for pre-QoS accounting during the ingress phase and the
other for post-QoS accounting during the egress phase. These
tables need to be read from the switch ASIC to the CPU when
performing usage reporting while they need to be written
when there are rule updates (e.g., PDU session establishment).
However, the P4 switch allows only one type of operation
(read and write) at a time on each table stored in its ASIC. To
circumvent this issue, we use two threads, one responsible for
usage reporting and the other for rule updates. As usage re-
porting can occur frequently, we let the corresponding thread
sleep for a certain period after it finishes pulling all counter
data from the switch ASIC to allow rule updates by the other
thread. We vary the sleep duration to control the fraction of
time spent on pulling counter data from the switch ASIC by
the usage reporting thread, which is denoted by p.

We conduct experiments to measure the delays of usage
reporting and rule update by the baseline UPF. For report-
ing latency, we consider volume-based reporting: a report is
triggered when a traffic quota is reached. Traffic is generated
by Cisco’s TRex tool [8], which runs on a server connected
to the P4 switch through a 100G Ethernet cable. We record
the time when traffic quota is reached at the traffic generator,
denoted by 7,, and the time when the report arrives at the SMF,
denoted by 7,. As it is difficult to measure the exact time when
the traffic volume exceeds the quota at the P4 switch, we first
measure the round trip time between the traffic generator and
the P4 switch, denoted by #,. After 20 runs, ¢, is measured to
be 0.2 +0.034 milliseconds. As ¢, has negligible variation we
estimate the report latency to be ¢, — (t, — mean(t,)/2).

For update latency we measure the delay between the times
when a handover PFCP request message is sent by the SMF
and when the response message from the UPF is received at
the SMF. Figure 6 shows both reporting latency and update
latency when we vary f among 25%, 50%, and 75%. The
results illustrate the obvious contention between reporting
latency and update latency: when we increase 3 from 25% to
75%, the mean reporting latency decreases from 3.9 to 1.9
seconds, while the mean update latency increases from 60
to 230 milliseconds with the 99-percentile update latency in-
creasing from 1.5 to 2.7 seconds. Moreover, regardless of how
B is chosen, both types of operational latency significantly
exceed the desirable control plane latency of 10 milliseconds
for URLLC applications in 5G networks. Therefore, there is
a need for optimizing the baseline UPF to further reduce both
rule update latency and usage reporting latency.

4 Rule Storage Optimization

Our performance measurement results shown in Section 3.1
reveal that the number of UEs supported on a P4 pro-
grammable switch can be affected by both rule dependencies
and rule redundancy across different rule tables used by the
data planes of 5G networks. This section describes a three-
tiered optimization framework to overcome inefficient rule
storage due to these challenges.

4.1 Remove Excessive Dependency (RED)

From Figure 3(a), we see that the two PDR simple tables are
placed in the same last stage of the complex table (i.e., Stage
n). This is because all the PDR tables must be placed before
the forwarding, ingress accounting, and meter lookup tables,
all of which process packets based on PDR_IDs obtained
from the PDR tables. Moreover, these downstream tables
have to store the mapping keys (i.e., PDR_IDs), which incur
additional SRAM usage.

To overcome this issue, we eliminate the forwarding and
meter lookup tables from the baseline UPF, and then for each
PDR_ID, merge its associated action and action data in each
of these tables into the corresponding entry in the PDR tables.
However, we cannot remove PDR_IDs altogether from the
PDR tables because they are needed to index the egress ac-
counting tables, which cannot be merged into the PDR tables
because they are used in the egress phase.

The table placement after applying RED is shown in Fig-
ure 3(b). We can see that the forwarding and meter lookup
data have been merged into the three PDR tables (complex,
dl_simple, and ul_simple). However, even with the RED op-
timization, the two simple PDR tables have to be placed no
earlier than Stage n, where the complex PDR table ends, be-
cause the result of being a lookup hit or miss from the complex
PDR table is known at this stage. This can lead to consider-
able resource under-utilization from Stages O to n-1, except

Table 2: List of split PDR tables. The drop flag decides whether to drop the packet. The nocp flag decides whether to notify the
control plane. The mark_dscp flag decides whether to trigger DSCP marking; if set, the value from the dscp_val field is used for

marking. The buffer flag decides whether buffering is needed.

Table name Place Match fields Action Action data
ul_to_n6_simple SRAM TEID, QFI set_ids Inop | PDR_ID, drop, nocp, METER_ID,
mark_dscp, dscp_val
ul_to_n6_complex TCAM TEID, QFIL, IP 5-| set_idsInop | PDR_ID, drop, nocp, METER_ID,
Tuple, DSCP mark_dscp, dscp_val
ul_to_n9_n3_simple SRAM TEID, QFI set_ids | nop | PDR_ID, drop, nocp, TUNNEL_IP, TEID,
QFI, METER_ID
ul_to_n9_n3_complex TCAM TEID, QFI, IP 5-| set_ids |nop | PDR_ID, drop, nocp, TUNNEL_IP, TEID,
Tuple, DSCP QFI, METER_ID
dl_from_n6_simple SRAM Destination IP set_ids [nop | PDR_ID, drop, nocp, buffer, TUNNEL_IP,
TEID, QFI, METER_ID
dl_from_n6_complex TCAM IP 5-Tuple, DSCP set_ids | nop | PDR_ID, drop, nocp, buffer, TUNNEL_IP,
TEID, QFI, METER_ID
dl_from_n9_simple SRAM TEID, QFI set_ids | nop | PDR_ID, drop, nocp, buffer, TUNNEL_IP,
TEID, QFI, METER_ID

that egress accounting can be performed in these stages due to
its Type-B dependency on the PDR tables (see Section 3.1).

Following the same example shown in Figure 4, the RED
technique merges the forwarding table and the meter lookup
table into the PDR complex table. Although this operation
expands the action data of the PDR complex table, it does not
affect its total number of rule entries.

4.2 Split PDR Tables (SPT)

Our second optimization aims to reduce the action data for
packet forwarding, which have been merged into the PDR
tables by the RED scheme. The key observation here is that
when packets are forwarded to different interfaces by UPF
(i.e., N3, N6, and N9), their matching fields and action data
needed are different. The SPT scheme splits the PDR tables
into smaller ones based on forwarding interfaces.

Table 2 lists all the split PDR tables after applying this tech-
nique. Its ul_to_n6_simple and dl_from_n6_simple tables are
the same as ul_simple and dl_simple, respectively, in Table 1,
while its other tables are derived by splitting the complex
table in Table 1. Based on these tables packets are processed
as follows. (D Packets going to a DN through the N6 inter-
face are processed based on the rules in ul_to_n6_simple
or ul_to_n6_complex. As the UPF is a terminating one, it
has the option of DSCP marking and the action data include
both mark_dscp (a boolean indicating whether DSCP mark-
ing is necessary) and a specific DSCP value. 2) For uplink
packets going to another UPF via the N9 interface (i.e., this
UPF serves as an I-UPF/UL-CL UPF) or those that go to
another gNB via the N3 interface in case of N2 handover,
they are processed based on the rules in ul_to_n9_n3_simple
or ul_to_n9_n3_complex. As this UPF is not serving as a
terminating one, DSCP marking is not needed. QFI is used to

mark flows for QoS enforcement internally within the mobile
network. As packet encapsulation is needed, a TEID and a
TUNNEL_IP (i.e., the destination IP address used in the tun-
nel header) are included within the action data for the new
GTP-U tunnel header. 3 Downlink packets from a DN via the
N6 interface are processed by the rules in dl_from_n6_simple
or dl_from_n6_complex. Before being forwarded to an I-UPF
or a gNB, these packets are encapsulated with a tunnel header,
which thus requires a TEID and a TUNNEL_IP in the ac-
tion data. The action data also include the need for buffering
or notifying the control plane. @ Downlink packets from
another UPF via the N9 interface need to be encapsulated
within a new GTP-U tunnel header, thus requiring a TEID
and a TUNNEL_IP. As these packets are forwarded among
UPFs, they are processed only by the simple rules stored in
dl_from_n9_simple.

As seen from Figure 3(c), the SPT optimization technique
has the benefit of splitting the original PDR tables into smaller
ones, which allow a mixture of simple and complex tables to
fit into the same early stages. As each rule in the complex table
in the baseline UPF is assigned to only one of the specialized
tables after PDR table splitting, SPT does not affect the overall
number of entries in all the PDR tables. However, by reducing
the sizes of either match fields or action data for the complex
rules, SPT decreases the storage space for the PDR tables.

4.3 Consolidate Action Data (CAD)

Our third optimization is motivated by the observation that
multiple UEs can share some common action data. For exam-
ple, different PDU sessions may have their downlink packets
be forwarded to the same base station, classified by the same
QFI, and processed with the same flags (i.e., buffer, drop, and
nocp). Although these UESs cannot use exactly the same action

data due to different TEIDs, we can consolidate those shared
fields into the same template, in hopes that the number of bits
to represent the entire action data can be reduced.

It is noted that after our first two optimizations, the
PDR_IDs in Table 2 are used only to look up the egress ac-
counting table, as other action data have already been merged
into the PDR tables. The key idea of the CAD optimiza-
tion technique is to encode the templates as described above
into these PDR_IDs. As an example, suppose that 200 UEs
share the same downlink gNB IP 154.100.10.8 and QFI value
1. We can assign their downlink PDRs with PDR_ID val-
ues from 256 to 455, which allows a single ternary match
0b0001,xxxx,xxxx to match any PDR_IDs ranging from 256
to 511. Given any such matched PDR_ID, the UPF per-
forms encapsulation with shared action data (Action=Encap,
1[P=154.100.10.8, QFI=1). For ease of presentation, we call
each unique combination of action and action data an action
template. Based on packet directions and action types (e.g., en-
capsulation or decapsulation), we define three types of action
templates, each stored in a particular action template table.
The action template tables, which are stored in TCAM, can be
matched in parallel because the Tofino chip supports ternary
match over multiple tables in each stage. With this design, all
Boolean flags, QFIs and TUNNEL_IPs are removed from the
PDR tables completely, because they can be derived from the
much compressed action template tables instead.

The controller is responsible for assigning PDR_ID ranges
to different action templates. As ternary match is based on a
matching value along with masked bits, we denote a PDR_ID
range as a tuple (r,m) such that it covers the PDR range
[rx 2™ (r41) x 2™ — 1]. Following the previous example,
a ternary match of ObO0O1,xxxx,xxxx can be achieved by a
PDR_ID range of (1,8). For ease of presentation, we also use
(R,M), where |R| = |M|, to denote a set of PDR_ID ranges
with {(rk,mk)|rk € R my € M}

The PDR_ID assignment problem is formulated as follows.
LetT = (11,1, ...,1,) be a collection of action templates which
need to be assigned with actionable PDR_ID ranges. Also, let
L= (L,l,...,I,) include the minimum number of PDU ses-
sions that can be applied to each action template in 7. Hence,
for each action template t; € T, [; provides a lower bound on
the size of PDR_ID range assigned to #;.. Both 7" and L are
providedby the Mobile Network Operator (MNO) during UPF
startup. Our goal is to find a set of disjoint PDR_ID ranges
(Ri,M;) to each t; € T, such that the total number of entries
in the action template tables (i.e., };|M;|) is minimized. The
optimization problem should be solved with the following
constraints satisfied. First, for each 1; we have }.,,cpr, 2" > [;.
The constraint is used to ensure that, for each action template,
its allocated disjoint PDR_ID ranges should have the capacity
to accommodate the minimum number of PDU sessions pro-
visioned by the control plane. Second, there is an upper bound
on the number of bits to represent each PDR_ID, which is
denoted by ®. Third, we consider assignments of only disjoint

(t1, 2) Template [PDR_ID| Ternary

(t1, 2) 5 (t2,) | © (0,0) | 0000
(t2,9) I (o, t 1, 1) | 001x

(a) Action templates provided

(b) After decomposition 0 (1,3) | Ixxx

by MNO TT

(c) Tree building process

Figure 7: An example showing assignments of PDR_ID
ranges to action templates by the bootstrapping algorithm

PDR_ID ranges to avoid non-deterministic behavior from the
switch (if overlapping PDR_ID ranges are assigned to differ-
ent action templates) or to prevent redundancy (if they are
given to the same action templates).

We address this PDR_ID assignment problem with two
algorithms. The bootstrapping algorithm finds an initial as-
signment scheme with both 7 and L provided by the MNO.
As the PDRs provided by the control plane change over time
with new PDU sessions established and old ones removed,
such changes are addressed by the runtime update algorithm.

Bootstrapping. We use an example to explain the basic
idea of the bootstrapping algorithm, whose details can be
found in Appendix C. Let the provisioned number of bits for
PDR_IDs be 4 (i.e., ® = 4). Figure 7(a) shows that initially
two action templates, #; and f,, are provided by the MNO, and
they require at least 2 and 9 PDR_IDs to be assigned, respec-
tively. Hence we have T = {t,1,} and L = {l; = 2,l, = 9}.
The bootstrapping algorithm consists of two steps, decom-
position and tree-building. To explain these two steps, we
introduce a few notations here.

We use logs(x) to represent the binary logarithm of x. For
each z = (¢,1), we define its looseness score to be Y(z) =
200 . Intuitively speaking, y(x) indicates how many spare
IDs there are if a smallest PDR_ID range is assigned to it.
When the provisioned number of bits (i.e., ®) is insufficient
to encode all the action templates requested by the MNO,
the decomposition step iteratively decomposes the one with
the highest looseness score into two with a smaller looseness
score combined.

In the same example, for (¢2,/2), any PDR_ID range (r,m)
assigned to it must have m > 4. However, as ® = 4, it means
that the provisioned number of bits is insufficient to assign
PDR_ID ranges to (¢1,/1) any more. The decomposition step
overcomes this issue by breaking (#2,1,) into two, (#,,8) and
(f2,1), as seen from Figure 7(b). The reason why (t2,/2) is
chosen because it has a larger looseness score (i.e., ¥((#2,9)) =
7 >v((#1,2)) = 0). After decomposition, there are three (¢,1)-
tuples, each having a looseness score of 0. Assuming that a
smallest PDR_ID range is assigned to each (z,/)-tuple, the
sum of the lengths of these ranges is only 11, which can be
accommodated by the ® bits provisioned by the MNO.

The tree-building step, which is illustrated in Figure 7(c),
performs the task of assigning the PDR_ID ranges to the (¢,1)-

tuples produced from the decomposition step. For each such
tuple, it creates a leaf node whose capacity is defined to be the
total number of IDs if a smallest PDR_ID range is assigned
to it. The algorithm runs iteratively, and in each iteration the
two nodes with the smallest capacities are merged. If the two
nodes (« and v) have different capacities, the smaller one (i.e.,
u) is recursively paired with an empty leaf node of the same
capacity (shown in white boxes in Figure 7(c)) to form a
parent node with a doubled capacity (shown as circle nodes
in Figure 7(c)) until the parent node has the same capacity as
the larger node (i.e., v). After that u and v are paired to form
a parent node with a doubled capacity. The process repeats
until there is only a single root node. It is easy to see that the
tree as constructed above must be a strict binary tree. With
this tree, the depth-first traversal algorithm can be used to
visit all nodes in the tree. Each node can be coded by the
traversal path, which appends bit 0 if a left branch is taken or
bit 1 if a right one is taken. Whenever a non-empty leaf node
is visited, its associated template is assigned by a PDR_ID
range (r,m), where r is the code of the leaf node and m is the
binary logarithm of the node’s capacity.

Runtime update. At runtime, old PDR rules can be re-
moved or new ones can be added, suggesting that PDR_ID
range assignments should be adjusted dynamically. Two re-
spective procedures, deallocate and allocate, are thus devel-
oped. They both operate on the same strict binary tree with
augmented fields and their details are given in Appendix D.

S Operational Latency Optimization

Although the switch ASIC constantly updates the accounting
data of each PDR according to its matched packets, they have
to be collected from the switch ASIC to obtain the current
usage data. As explained in Section 3.2, when there are a
large number of PDU sessions, frequent usage reporting can
cause excessively high operational latency. The root cause is
that the P4 programmable switch does not allow simultane-
ous read and write operations on the same rule table stored
in its switch ASIC. To overcome this challenge, we propose
two techniques, pendulum table access and selective usage
pulling, for HiP4-UPF. Pendulum table access uses two sepa-
rate partitions for each accounting table in the switch ASIC to
enable simultaneous read and write operations on the two par-
titions of the same accounting table, while the selective usage
pulling scheme prioritizes the PDRs whose accounting data
should be pulled with high urgency from the switch ASIC.
To accommodate these two methods, we restructure the
original UPF Controller shown in Figure 2 into two com-
ponents, North Controller and South Controller. The North
Controller interacts with the 5G control plane (i.e., the SMFs)
through PFCP protocols and performs PDR_ID assignments,
while the South Controller interacts with the P4 switch’s ASIC
through its ASIC driver. The two controllers, both of which
are executed by the switch CPU, communicate with each other

through Unix raw sockets.

The split in functionalities between the two controllers
strikes a balance between security and performance. The
North Controller is implemented by the secure Rust program-
ming language, whose strict enforcement of thread and mem-
ory safety can prevent code injection attacks posed by the
insecure UDP-based PFCP protocol messages from the N4
interface. It uses the P4 runtime library to perform typically
infrequent updates of all UPF tables but PDR tables. The
South Controller is responsible for latency-sensitive opera-
tions including rule updates for the PDR tables and reading
both the ingress and egress accounting tables. The South Con-
troller, which is implemented in C++ on top of the native
ASIC driver, enables fast custom data serialisation based on
FlatBuffers [1]. The ASIC driver’s APIs also allow multi-
threaded table update and reading, so different tables can be
read and updated at the same time, which cannot be achieved
by the PARuntime interface.

5.1 Pendulum Table Access

The South Controller uses two read threads and one write
thread to parallelize the tasks of reading the usage data and
updating the PDR tables. The two read threads are used for
reading the ingress and egress counters, respectively. For both
ingress and egress accounting, its accounting table has two
non-overlapping partitions, which are referred as Accounting
Table Partition (ATP) 1 and 2, respectively. Note that both
ATPs, along with the PDR tables, are stored in the switch
ASIC. Without loss of generality our following discussion
considers only the read thread used for egress accounting.
Each of the two ATPs can be in an either READ or WRITE state.
When an ATP is in a READ state, its accounting data can be
pulled from the switch ASIC. By contrast, when an ATP is
a WRITE state, it means that its rules can be updated by the
write thread but its accounting data should not be pulled by
the read thread. The two partitions of the same accounting
table operating in different states enable simultaneous read
and write operations on the same accounting table stored in
the switch ASIC.

As two separate partitions are used for the same accounting
table, we need to ensure that the rules are coherently main-
tained in these two partitions under dynamic rule updates (i.e.,
rule insertion, rule modification, and rule deletion) while the
accounting data read for each PDR should be accurate within
a reasonable report delay. Towards this goal, the South Con-
troller uses the following data structures. It keeps the index
of the ATP used for reading and writing as I, and I, respec-
tively, during the current pulling period. Read/write accesses
to both indices are protected by a mutex exclusion semaphore.
The South Controller also stores two maps, Mjqs and My pire,
which maps PDR_IDs to timestamps. M, records the last
time when a rule entry is pulled from the switch ASIC, and
M xpire denotes the time when a rule entry should expire. As

M xpire is used by both the read thread and the write thread, ac-
cess to it is protected by a mutex exclusion semaphore. M;,
is used only by the read thread so no protection is needed.

The read thread interleaving pulls the counter data from
the two ATPs as follows. We use T to denote the start time
of the current pulling period. Once it finishes pulling the
accounting data from ATP I, it performs the following: it
notifies the North controller of the latest accounting data; for
each entry with PDR_ID=k in ATP I,, M}, [k] is set to T; for
every PDR_ID k € Meypire-keys(), if Mexpire[k] < Miaq k], it
removes the corresponding entry from the ATP where it is
stored and then notifies the North Controller of the deletion
of this rule; it swaps I, and I,,, which effectively changes the
roles of both ATPs. Finally, T is updated to be the current
wallclock time, indicating the start of the next pulling period.

The write thread monitors new rule update requests from
the North Controller. There can be three types of rule update
operations, which are handled differently as follows.

(1) Rule insertion. For insertion of a rule that is newly
allocated by the North Controller, the write thread simply
adds an additional entry to the PDR table. A corresponding
entry is also added to the ATP indexed by I,. For a newly
inserted rule k, its Moy pire[k| and M, (k] are initialized to
be infinity and the current wallclock time, respectively. The
write thread reports successful update to the North Controller,
which further finishes the corresponding PFCP operation.

(2) Rule modification. Rule modification, which replaces
an old rule with a new one, can occur frequently in a 5G
network due to handover operations. Due to its complexity,
we use an example illustrated in Figure 8 to explain how it
is accomplished. We assume that at time #o the read thread
starts reading from ATP 1. @ The North Controller receives
a PFCP request from the SMF, which requires an old rule
with PDR_ID=10 to be replaced by a new one. The North
Controller allocates a new PDR_ID=20 and then sends a rule
modification request to the South Controller, which is received
by its write thread at 7;. (® The write thread updates the PDR
table to produce an entry with PDR_ID=20 instead of 10.
This update can be a single action data modification if the
match keys are unchanged, or an entry deletion followed by an
insertion in case of changed match keys. The write thread sets
M expire[10] to be the current wallclock time (i.e., 71). The write
thread next inserts a new entry with PDR_ID=20 into ATP 2.
As Intel’s Tofino driver allows these table update operations
to be performed within a single transaction, traffic accounting
switches from PDR_ID=10 to PDR_ID=20 instantaneously.
(© The write thread reports successful update to the North
Controller, which further finishes the corresponding PFCP
operation. It is noted that this update procedure from @) to (©
does not involve any time-consuming operation, thus allowing
for low rule update latency.

@ The read thread finishes pulling counter values from
ATP 1 and sends them to the North Controller for usage report-
ing. For each rule with PDR_ID=k in ATP 1, it sets M, [k]

2 '3 Time

! North : : : '
icontroller” T T " >
e P e
E Read * : : : :
1 Thread § ST 5C 5] >
- RS A Rl '
' Read Read .
' ATP 2 ATP 1 H
Write) !

1 Thread

AsIC |5 o p o
~— ~N ~ ~N
Il Il 11 Il
=] =] [=} =]
o o o o
o o o o
o o o o
PDR table ATP 1 ATP 2 PDRtable ATP1 ATP 2 PDRtable ATP 1 ATP 2
Before tg Between t1 and t3 After t3

Figure 8: An example showing a rule modification operation

to be 1y, the start time of the past pulling period. While doing
s, it finds that M,y pire (k] > Mj45[k], which means that there
are some residual counter value left in ATP 1 for the old rule
with PDR_ID=10. Finally, the read thread switches the roles
of ATPs 1 and 2 by swapping I, and I,,. This starts the next
pulling period for which ATP 2 is used.

(© At time 3, the read thread finishes pulling the counter
data from ATP 1, again. After updating M, [10] to be t, as
it finds that Moy pire[10] < M4 [10], it deletes the entry from
ATP 1 and notifies the North Controller of the completion of
the rule with PDR_ID=10 in addition to the latest counter data.
On the arrival of this notification, the North Controller frees
PDR_ID 10 using its deallocation procedure. Later the North
Controller will add counter values from both PDR_ID=10 and
PDR_ID=20 to create usage reports. The read thread removes
PDR_ID=10 from Mj,s; and Mexpire.

Note: Consider a different case where PDR_ID=10 is in
ATP 2 when a rule modification request arrives at the write
thread at time #;. The final counter data for PDR_ID=10 is
read during the second pulling period and, as done in Step (@,
the North Controller is notified of its completion at time #;.

(3) Rule deletion. Suppose that the rule has PDR_ID=k.
The write thread removes PDR_ID=k from the PDR table and
sets Moxpire|[k] to the current wallclock time. The write thread
reports successful update to the North Controller, which fur-
ther finishes the corresponding PFCP operation. Later when
Meyxpire[k] < M5 k], the same procedure in Step (&) happens:
the South Controller notifies the North Controller of the com-
pletion of rule PDR_ID=k, which allows the latter to deallo-
cate PDR_ID=k.

Analysis: If a PDU session has multiple PDR_IDs assigned
to it, it is possible that their final counter data are reported to
the North Controller out of order with respect to the times at
which they are assigned. Following the same example in Fig-
ure 8, if PDR_ID=20 is requested to be deleted within the first
pulling period (which is ended by Step (®), the final counter
data for PDR_ID=10 is reported to the North Controller at
time #3, but the final counter data for PDR_ID=20 is reported
to the North Controller at time #, even though PDR_ID=20 is

7 t,
Dy fest “(7)\01 ‘(Z)pu]l fest
— . @
)
PDRID7 [y |, tm
') | tm
| 1= f PDR_ID 2
o @ e -
pr mea pr
S
u? u@
pr pr
. 7) 7
uz=min(u' 7y}, ul)p]) u2:min(u(2)[m, u(z’m)
W) x E|
C]
R .
Batch size B
fest
Period Period
start end
Fstimate) Sor v oo
stimate ort P .
ull from switch
®urgency ®urgency @ @ Nonll1l
Controller

Figure 9: HiP4-UPF’s usage reporting timelines

assigned to the PDU session later than PDR_ID=10. Hence
the North Controller needs to wait for counter data for all the
PDR_IDs assigned to the same PDU session before it reports
its overall usage to the SMF.

5.2 Selective Usage Pulling

It is often the case that counter data are not immediately
needed to generate usage reports. To further reduce opera-
tional latency, we propose a selective usage pulling scheme,
which prioritizes those PDRs with high urgency of usage re-
porting. Let S = (51,52, ...,8,) denote the set of PDRs in the
UPF. The North Controller sends URRs along with PDR up-
dates to the South Controller. The South Controller sorts these
PDRs based on their urgency scores.

To support selective usage pulling, the read thread performs
additional steps as illustrated at the bottom of Figure 9. @
The thread loops through all PDRs among all PFCP sessions’
URRSs and update their urgency scores stored in a sorted map
U. @ The PDRs in U are then sorted based on their updated
urgency scores. Q) The read thread pulls the counter data of
PDR_IDs belonging to the current ATP for up to B PDRs
with the highest urgency scores from the sorted map U in a
batch. By default we use B = 10,000. @ The counter values
are sent to the North Controller as discussed in Section 5.1.
The time spent on Steps) and) is much shorter than the
time spent on the pulling operation during Step Q).

We next explain how to estimate the urgency score u; of
each PDR s; in Step . Suppose that the read thread estimates
the urgency score at time f,;; which is at the beginning of a
pulling period. Let the last time at which the PDR’s counter
data were pulled be tl(f,j ;- For each PDR s; we keep the number
of bits that has already been counted as g;.

We consider any URR provisioned by the control plane, R,
with a set of associated PDRs. The same PDR can appear in
two different URRs but the PDRs associated with the same
URR must differ. As a URR can contain different types of
triggers for usage reporting, we calculate urgency scores based
on three factors, volume, time, and periodic.

Volume: Let GEQI be the volume threshold for URR R;
which, if crossed, triggers usage reporting. We measure the
observed bitrates of all PDRs, which are updated whenever
their counter data are pulled. We use an Exponential Moving
Average (EMA) method to estimate the bitrate with factor
o: at every time step, the estimated bitrate b, is updated as
a-big +(1—a)-b, , where b, is the observed bitrate at
the current step for PDR s;. We set o0 = 0.95.

As a volume-based reporting rule can pull usage data from
multiple mutually exclusive PDRs, we can sum up the bitrate

and counted volume for a URR R; as b =¥, b, and g/) =
Y.; qi, respectively, for all PDR s; that appear in R;.
The volume urgency of any PDR s;, denoted by I't\(/lo)l’ can be
estimated as min;j{max{0, (Gijo)l - q(j))/bg,)}} with s; € R;.
That is to say, the volume urgency of PDR s; is the minimum
estimated time for any of the URRs containing s; to reach
its volume threshold. In Figure 9, PDR_ID 7 use volumes to
trigger usage reporting.

Time: 5G networks allow time-based reporting to operate
in two modes. The measurement can be immediately started
when the URR is provisioned (mode A), or after the first
matching packet has been detected by the UPF (mode B,
which is the default option). In either mode, let tf,;ga denote
the time at which measurement is started for PDR s;. Also

let 9,(:,), be the time threshold which, if crossed, triggers usage

reporting. Then the time urgency, denoted by ut(i,),, can be

estimated as max{0, 9,(,[,2 — (fost — t,Sil,a)} In Figure 9, PDR_ID
2 requires time-based usage reporting.

Periodic: We define the periodic urgency, denoted by uﬁfﬁ,

as max{O,Ggp — (tost — tlglz”)}, where 65,’2 indicates how fre-
quently the PDR’s counter data should be collected. We as-
sume that there is an imaginary timer for two different use
cases. First, if the PDR requires periodic reporting, the timer

can be periodically fired to trigger pulling. In this case, we

can simply set GE,I,) to be the time interval of periodic usage
reporting requested by the control plane. Second, if periodic
usage reporting is not needed explicitly, the timer can still be
used to prevent starvation caused by selective usage pulling
and thus improve the accuracy of bitrate estimation in volume
urgency calculation. When it fires, the urgency of the PDR
is elevated to ensure that its counter data should be pulled
immediately. We set GE,IZ to be 5 seconds by default.

With these three types of urgency defined, the eventual
urgency score fo(r) PDR s; is defined as their minimum value:

i ()
1.

u<—min{u(i) Upps U
i— vol» %tm s “p

6 Performance Evaluation

For performance evaluation we have built a prototype of HiP4-
UPF, which includes 31.1K lines of Rust code for the North
Controller, 6.1K lines of C++ code for the South Controller,

72 Baseline E= RED XX RED+SPT
160 I

[T

[Full HiP4

LI

@
o

[«2]
o

Number of UEs (thousand)

IS
o

N
o

o

1:5 1:10 1:20 1:50
Complex/Simple ratio

Figure 10: Maximal numbers of UEs supported under differ-
ent optimization schemes

and 1.2K lines of P4 code for the data plane. Our implemen-
tation is based on a Netberg Aurora 710 P4 programmable
switch with an Intel Tofino ASIC and an Intel Xeon D-1527
CPU, which runs Ubuntu 20.04 with kernel 5.15.83 on its
CPU. Two x86 servers using Intel Xeon CPUs are connected
to the P4 switch through 100Gb Ethernet cables. We use the
P4 compiler and the switch ASIC driver from Intel’s Bf SDE
9.11.2 software package. We use the P4Insight tool in the Bf
SDE to obtain the resource usages of P4 programs.

For presentation clarity, we keep using the baseline UPF to
refer to our UPF implementation based on prior work [27] (see
Section 2.2). Our performance comparison experiments also
consider other open source UPF implementations, including
SD-Fabric [28], freeSGC [2], and open5gs [7].

6.1 Number of UEs Supported

In this set of experiments we study how many UEs can be
supported by HiP4-UPF. We model the same scenario in
Section 3.1 where two exclusive UE sets are considered. As
usually not many UEs need cross-UPF N9 interface, we keep
a constant number of 2,048 UEs as exceptions. Hence, when
SPT is applied, the ul_to_n3_n9_simple table is fixed to have
2,048 entries. If the size of the simple UE set is N, the sizes of
both ul_to_n6_simple and ul_from_n6_simple are Ny — 2048.
Moreover, we allocate half of the UEs in the complex UE set
to the complex NO table. Formally, if N, denotes the size of
the complex UE set, the sizes of the ul_to_n3_n9_complex,
ul_to_n6_complex and ul_from_n6_complex tables are all
N, /2. We also use the same method in Section 3.1 to search
for the maximal numbers of UEs supported under different
optimization schemes.

Optimization effects. Figure 10 depicts the contribution
of each optimization scheme to the improvement in the num-
ber of UEs supported under different complex/simple ratios.
The results for the baseline case are the same as what are
shown in Figure 5. Compared against the baseline UPF, the
full optimization mode of HiP4-UPF (i.e., RED+SPT+CAD)

increases the maximal number of UEs supported by 97.6%,
116.6%, 98.6%, and 95.0% at a complex/simple ratio of 1:5,
1:10, 1:20, and 1:50, respectively, which leads to an average
improvement of 101.95% over all four cases. From our ex-
periments we also observe that the TCAM usage decreases
with a decreasing complex/simplex ratio. This agrees with our
intuition as the PDR rules for the complex UE set are stored
in the TCAM (see Table 2).

Within the three-tiered optimization framework, the aver-
age increase of the number of UEs supported due to RED,
SPT, and CAD over the previous optimization level is 53%,
27%, and 5.2%, respectively. As we move up the optimization
ladder, the SRAM usage becomes higher due to more UEs
supported under the same complex/simple ratio. However,
with the same complex/simple ratio, the TCAM usage under
RED+SPT is lower than that under RED because the SPT
optimization scheme makes more efficient use of the TCAM
that stores the complex rules.

Comparison against SD-Fabric. SD-Fabric [28] is an
open source programmable network fabric with various data
plane features including 5G UPF. We compile SD-Fabric’s
data plane P4 program with its 5G UPF feature enabled while
disabling its In-band Network Telemetry (INT) feature.

For fair comparison between SD-Fabric and HiP4-UPF,
we make the following modifications. First, the vanilla SD-
Fabric’s UPF supports 100,000 UEs, among which only 4096
have usage counters associated. As SD-Fabric is designed
to support private enterprise SG deployment it does not re-
quire each UE to have a usage counter. We modify its code
to have a counter assigned to each UE. Second, SD-Fabric
and HiP4-UPF differ in their UPF rules. In the SD-Fabric’s
UPF module, packets match against UEs’ IP addresses in
the downlink direction and the UPF IP and TEID in the up-
link direction. These two tables serve a similar purpose as
HiP4-UPF’s simple tables. In SD-Fabric, all UEs’ packets
go through application detection rules and are classified into
one of at most five application types. SD-Fabric then use the
session id and an APPLICATION_ID to decide the packet
forwarding action and produce an usage counter identifier,
which is further used to index a later usage accounting table.
SD-Fabric does not support UPF-triggered usage reporting
as HiP4-UPF can achieve. For fair comparison, we modify
HiP4-UPF to apply the same application detection approach.
We remove its complex and N9 tables and add an application
detection table similar to the one used in SD-Fabric. A 4-bit
APPLICATION_ID is produced by looking up this table and
is later used as part of the matching data in the simple PDR
tables. Due to these modifications on HiP4-UPF, we dub it as
HiP4-UPF (AppDetect) for ease of presentation. Third, as 5G
UPF is only part of SD-Fabric’s comprehensive data plane
solution, we remove some of its functionalities unnecessary
for 5G UPF, such as VLAN, MPLS and ACL. We dub this
simplified version as SD-Fabric (UPF only).

We use the same search method as described in Section 3.1

Table 3: Comparison between HiP4-UPF and SD-Fabric

Solution #UEs SRAM | TCAM
SD-Fabric 35.8k 342% | 17.4%
SD-Fabric (UPF only) 553k | 433% | 4.2%
HiP4-UPF (AppDetect) | 159.7k | 85.4% | 9.7%

to find the maximal number of supported UEs. The compari-
son results are shown in Table 3. By removing the unneces-
sary features, the simplified SD-Fabric has a lower TCAM
usage than its vanilla version, but its SRAM usage has in-
creased by 26.6% due to a 54.5% increase in the number of
UEs supported. However, even with similar features imple-
mented, HiP4-UPF (AppDetect) can support 1.9 times more
UEs on the commodity P4 switch than the simplified version
of SD-Fabric with about twice the SRAM and TCAM usages.

6.2 UPF Responsiveness

In this section we evaluate how quickly HiP4-UPF can re-
spond to the PFCP requests from an SMF, which is adapted
from its implementation in the VET5G testbed [38]. Each
experiment considers 150,000 UEs and is repeated 200 times.
Comparison against CPU-based UPFs. For performance
comparison we consider the CPU-based UPF implementa-
tions in two existing 5G network emulators, freeSGC [2] and
open5gs [7]. As the UPFs in both free5GC and open5gs run
on commodity servers, their data plane performances are far
worse than that of HiP4-UPF whose data plane functionalities
are executed by the P4 switch’s ASIC. We thus only compare
different UPFs’ responsiveness to the PFCP requests from
the control plane. For fair comparison we let the SMF run on
a separate server from the one that executes the free5GC or
the openSgs UPF. The two servers are connected to the same
regular switch through 10G Ethernet cables. The P4 switch is
connected to the regular switch through a 10G Ethernet cable.
Hence, the SMF has a similar route to the UPF in all cases.
We measure the throughput as follows. For each common
type of operations, registration, deregistration, and handover,
the SMF repeatedly sends 10 concurrent PFCP requests and
waits for all of them to respond. After repeating this until one
second has passed, we wait for the responses for the last batch
of requests. The throughput is calculated as the total num-
ber of PFCP requests finished divided by the entire duration.
Table 4 compares the throughput results for the three dif-
ferent UPF implementations. HiP4-UPF achieves the highest
throughputs in all cases. More specifically, for the registration,
deregistration and handover operations, HiP4-UPF improves
the throughput by 197%, 619%, and 51% over open5gs and
by 49%, 272%, and 9% over free5gc, respectively.
Comparison against P4 switch-based UPFs. We consider
the baseline UPF described in Section 2.2, which uses two

Table 4: Throughputs of different UPF solutions measured in
the number of operations per second. Both means and standard
deviations are shown.

Operation openSgs freeSgc HiP4-UPF
Restration 362+19 723440 10741454
Deregistration | 379423 73350 | 2725+1007
Handover 17961195 | 2478+292 | 2713+455

threads, and a single thread approach. The latter uses one
thread to handle both read and write operations: by constantly
monitoring the Unix socket for update requests, the thread
performs rule updates if an update request is received and
otherwise pulls counter data for only 100 PDRs.

We measure the handover response latency as follows. The
SMF sends two concurrent handover requests every 10 mil-
liseconds for 1 second (in total there are 200 requests) and
then waits for them all to respond. The handover response
latency is measured as the delay between the handover request
and the corresponding response. The experimental results are
depicted in Figure 12. Compared with the baseline UPF, the
single thread approach improves the 99-percentile latency
from 1.3 seconds to 361 millisecond but its medium latency
increases from 4 to 9 milliseconds. By contrast, HiP4-UPF
has a medium latency of 1 millisecond and a 99-percentile
latency of 6.4 milliseconds. The much reduced latency results
from its pendulum table access scheme which divides the
original ingress or egress accounting table into two partitions
to alternate read and write accesses, thus enabling the write
thread to perform rule updates instantaneously.

6.3 Effects of Selective Usage Pulling

In this section we evaluate HiP4-UPF’s performance improve-
ment due to selective usage pulling. We use the same emu-
lated SMF as discussed in Section 6.2. We use Cisco’s TRex
tool [8] to generate representative Internet traffic from UEs in
the uplink direction. We choose the tool’s SFR profile, which
is created from captured real life traffic ranging from web
browsing, emails, to voice and video calls. Each UE has a
bitrate ranging from 100 Kbps to 600 Kbps.

Due to page limitation we only show the results about
volume-based reporting latency, which is measured in the
same way as in Section 3.2. Figure 11 shows the cumulative
distribution function (CDF) of the reporting latency in one
representative run with 150,000 active UEs. Due to selective
usage pulling, the mean reporting latency is reduced by 84.6%
from 3.12 to 0.48 seconds, more than 73.8% of all UEs have
reporting latency less than 500 milliseconds , and 93.1% of
them have reporting latency less than one second. Comparing
these results with Figure 6 it is clear that selective usage
pulling allows HiP4-UPF to significantly reduce the high
reporting latency observed with the baseline UPF.

1.00
0.75
g
g 0.50
0.25 = w/ Selective usage pulling
w/o Selective usage pulling
0.00

0 2 4 6 8 10 12 14 16
Reporting latency (seconds)

Figure 11: Volume-based reporting latency with 150,000 UEs

7 Related Work

Optimization of packet classification. There have been a
plethora of efforts on optimization of packet classification,
which, according to work [20], can be classified into three
groups based on the type of algorithms used: hash-based
(e.g., Tuple Space Search [35]), decomposition-based (e.g,
cross-producting [36], recursive flow classification [19], and
Aggregated Bit Vector [11]), and decision tree-based (e.g.,
HiCuts [19], HyperCuts [31], HyperSplit [30], EffiCuts [37],
Adaptive Binary Cutting [33], and ParaSplit [18]). There are
also works aimed at balancing fast packet classification and
fast rule updates, such as Tuple Space Search [35], Partition-
Sort [39] and TupleMerge [15]. These packet classification
algorithms have been implemented in both hardware (e.g.,
TCAM-based network devices [17,25,34,40]) and software
(e.g., Open vSwitch [29]). While HiP4-UPF leverages the
existing packet classification capabilities on a commodity P4
switch to implement 5G UPFs, its three-tiered rule storage
optimization schemes leverage 5G-specific rule characteris-
tics to improve efficiency of rule storage on the resource-
constrained switch ASIC and thus increases its capacity.

Software-based optimization of 5G UPFs on commodity
servers. UPF products by Ericsson [22], Metaswitch [5], and
SK Telecom [6] all rely on DPDK for fast packet processing,
as it allows packets received at the NICs to be directly deliv-
ered to the user-space memory. The SK Telecom’s solution [6]
further leverages Intel network adapters’ DDP capabilities to
reduce packet latency [6], while the Metaswitch’s solution
relies upon an optimized packet pipepine with match-action
classifiers allowing parallel lookups over the packet header in
a single operation [5]. Amaral et al. propose to leverage the
XDP feature of new Linux kernels for fast packet processing
in 5G UPFs [16]. Although software-based UPFs allow easy
scaleout and inclusion of comprehensive features, they are
not as cost effective as P4 switch-based UPFs [13].

5G UPFs based on programmable hardware. Bose et
al. propose to offload packet processing to programmable
dataplane hardware to improve UPF performance per unit
cost or power [13]. In their work, PFCP messages from the
control plane are processed by a thread running on the CPU,
while packet forwarding rules are implemented on the smart-
NICs. However, their UPF solution can support the forward-

1.00
075 T
EO 50
otEN /S e HiP4-UPF
0.25 = Single thread
F Baseline UPF
0.00
20 40 60 80 100

Latency (milliseconds)

Figure 12: Handover response latency

ing states of only 10K users. Their recent work [12] suggests
that it is possible to further improve SG UPF performance
by offloading the majority of PFCP messages containing sim-
ple packet processing rules (e.g., those for IoT devices) onto
programmable NICs or switches.

MacDavid et al. have provided the design of a 5G UPF,
which can run on a real Intel Tofino-based programmable
switch [27]. The development of HiP4-UPF has been heavily
influenced by this work, which serves as its starting point for
further performance optimization. Singh et al. propose a hy-
brid approach to combine a fast datapath based on the switch
with a slow one, which is implemented on commodity ser-
vices with plenty of resources for packet processing [32]. X-
Plane [26] is a recent SG UPF implementation, which extends
TEA’s original idea of storing lookup tables on inexpensive
DRAMs accessible from P4 programmable switches [23].
X-Plane has proposed new methods to overcome the chal-
lenges of concurrent access to stateful data, slow table lookup,
and out-of-order packets due to such a design. Our work is
orthogonal to Singh’s method and X-Plane as its goal is to
optimize 5G UPF with comprehensive features, which, ex-
cept packet buffering, can be deployed entirely on a com-
modity P4 programmable switch. Other UPFs based on P4
programmable switches have also been discussed in the litera-
ture [24,28,41]. Our experimental results in Section 6.1 have
shown that HiP4-UPF can support 2.9 times as many UEs as
the UPF implementation by SD-Fabric [28]. As few details
are provided in [24,41] and their implementation code is not
publicly available, comparisons with these two UPF solutions
are not conducted in this study.

8 Conclusions

Due to the increasing use cases of 5G networks, there is a ur-
gent need to develop high-performance UPFs that can support
a large number of UEs with low operational latency. In this
work we present the design and implementation of HiP4-UPF,
whose novel contributions include a three-tired optimization
framework for rule storage and a hybrid approach combining
pendulum table access and selective usage pulling to reduce
operational latency. Our evaluation demonstrates that HiP4-
UPF offers a high-performance solution to 5G UPF, whose
comprehensive features, except packet buffering, can be de-
ployed entirely on commodity P4 programmable switches.

Acknowledgements

We thank the anonymous reviewers for their constructive feed-
back. This work is partially supported by the US National
Science Foundation under award CNS-1943079 and Intel’s
Fast Forward Initiative 2022 Award.

References

[1] FlatBuffers. https://flatbuffers.dev/.
[2] free5GC. https://free5gc.org/.

[3] Intel® P4 Insight. https://www.intel.com/
content/www/us/en/products/details/network-
io/intelligent-fabric-processors/pd-
insight.html.

[4] Intel® tofino™ native architecture - public version.
https://github.com/barefootnetworks/Open-
Tofino/blob/master/PUBLIC_Tofino-Native-
Arch.pdf.

[5] Lighting Up the 5G Core with a High-Speed User Plane
on Intel Architecture. https://builders.intel.
com/docs/networkbuilders/lighting-up-the-
5g-core-with-a-high-speed-user-plane-on-
intel-architecture.pdf.

[6] Low Latency 5G UPF Using Priority Based 5G
Packet Classification. https://builders.intel.
com/docs/networkbuilders/low-latency-
5g-upf-using-priority-based-5g-packet-
classification.pdf.

[7] OpenSGS. https://openbgs.org/.

[8] Trex low-cost, high-speed stateful traffic genera-
tor. https://github.com/cisco-system-traffic-
generator/trex-core.

[9] URLLC Latency Requirements in User and Control
Planes. https://resources.pcb.cadence.com/
blog/2022-urllc-latency-requirements-in-
user—and-control-planes.

[10] 3GPP. 5G; 5G System; User Plane Function Services;
Stage 3 (3GPP TS 29.564 version 17.1.0 Release 17).
Technical specification (ts), 3rd Generation Partnership
Project (3GPP), July 2022.

[11] F. Baboescu and G. Varghese. Scalable packet classi-
fication. ACM SIGCOMM Computer Communication
Review, 31(4):199-210, 2001.

[12] A. Bose, S. Kirtikar, S. Chirumamilla, R. Shah, and
M. Vutukuru. AccelUPF: accelerating the 5G user plane
using programmable hardware. In Proceedings of the
Symposium on SDN Research, pages 1-15, 2022.

[13] A. Bose, D. Maji, P. Agarwal, N. Unhale, R. Shah, and
M. Vutukuru. Leveraging programmable dataplanes for
a high performance 5G user plane function. In Proceed-
ings of the 5th Asia-Pacific Workshop on Networking,
pages 57-64, 2021.

[14] Bytestart. How 5G will benefit businesses.
https://www.bytestart.co.uk/how-5g-will-
benefit-businesses.

[15] J. Daly, V. Bruschi, L. Linguaglossa, S. Pontarelli,
D. Rossi, J. Tollet, E. Torng, and A. Yourtchenko. Tu-
pleMerge: Fast software packet processing for online
packet classification. IEEE/ACM transactions on net-
working, 27(4):1417-1431, 2019.

[16] T. A.N. do Amaral,R. V. Rosa, D. F. C. Moura, and C. E.
Rothenberg. An in-kernel solution based on XDP for
5G UPF: Design, prototype and performance evaluation.
In Proceedings of the 17th International Conference
on Network and Service Management, pages 146—152.
IEEE, 2021.

[17] M. Faezipour and M. Nourani. Wire-speed tcam-based
architectures for multimatch packet classification. IEEE
Transactions on Computers, 58(1):5-17, 2008.

[18] J. Fong, X. Wang, Y. Qi, J. Li, and W. Jiang. ParaS-
plit: A scalable architecture on FPGA for terabit packet
classification. In Proceedings of the 20th IEEE Annual
Symposium on High-Performance Interconnects, pages
1-8. IEEE, 2012.

[19] P. Gupta and N. McKeown. Packet classification on
multiple fields. In Proceedings of the ACM Conference
on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication, pages 147—-160,
1999.

[20] P. He, G. Xie, K. Salamatian, and L. Mathy. Meta-
algorithms for software-based packet classification. In
Proceedings of the 22nd IEEE International Conference
on Network Protocols, pages 308-319. IEEE, 2014.

[21] J. Heinanen and R. Guerin. A two rate three color
marker. RFC 2698, RFC Editor, September 1999.

[22] L. Johansson, P. Holmberg, and R. Skog. Energy-
efficient packet processing in 5G mobile systems. Eric-
sson Technology Review, 2022(7):2-11, 2022.

[23] D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar, and
S. Seshan. TEA: Enabling state-intensive network func-
tions on programmable switches. In Proceedings of the
ACM Conference on Data Communication on the Appli-
cations, Technologies, Architectures, and Protocols for
Computer Communication, pages 90-106, 2020.

https://flatbuffers.dev/
https://free5gc.org/
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/p4-insight.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/p4-insight.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/p4-insight.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/p4-insight.html
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://builders.intel.com/docs/networkbuilders/lighting-up-the-5g-core-with-a-high-speed-user-plane-on-intel-architecture.pdf
https://builders.intel.com/docs/networkbuilders/lighting-up-the-5g-core-with-a-high-speed-user-plane-on-intel-architecture.pdf
https://builders.intel.com/docs/networkbuilders/lighting-up-the-5g-core-with-a-high-speed-user-plane-on-intel-architecture.pdf
https://builders.intel.com/docs/networkbuilders/lighting-up-the-5g-core-with-a-high-speed-user-plane-on-intel-architecture.pdf
https://builders.intel.com/docs/networkbuilders/low-latency-5g-upf-using-priority-based-5g-packet-classification.pdf
https://builders.intel.com/docs/networkbuilders/low-latency-5g-upf-using-priority-based-5g-packet-classification.pdf
https://builders.intel.com/docs/networkbuilders/low-latency-5g-upf-using-priority-based-5g-packet-classification.pdf
https://builders.intel.com/docs/networkbuilders/low-latency-5g-upf-using-priority-based-5g-packet-classification.pdf
https://open5gs.org/
https://github.com/cisco-system-traffic-generator/trex-core
https://github.com/cisco-system-traffic-generator/trex-core
https://resources.pcb.cadence.com/blog/2022-urllc-latency-requirements-in-user-and-control-planes
https://resources.pcb.cadence.com/blog/2022-urllc-latency-requirements-in-user-and-control-planes
https://resources.pcb.cadence.com/blog/2022-urllc-latency-requirements-in-user-and-control-planes
https://www.bytestart.co.uk/how-5g-will-benefit-businesses
https://www.bytestart.co.uk/how-5g-will-benefit-businesses

[24] R. Kundel, T. Meuser, T. Koppe, R. Hark, and R. Stein-
metz. User plane hardware acceleration in access net-
works: Experiences in offloading network functions in
real 5G deployments. In Proceedings of the Hawaii In-
ternational Conference on System Sciences, pages 1-10,
2022.

[25] K. Lakshminarayanan, A. Rangarajan, and S. Venkat-
achary. Algorithms for advanced packet classification
with ternary cams. ACM SIGCOMM Computer Commu-
nication Review, 35(4):193-204, 2005.

[26] Y. Liu, H. Nie, H. Cai, B. Jiang, P. Zhang, Y. Liu, Y. Yao,
X. Wei, B. Lyu, C. Xu, et al. X-Plane: A high-throughput
large-capacity 5G UPF. In Proceedings of the 29th
Annual International Conference on Mobile Computing
and Networking, pages 1-14, 2023.

[27] R. MacDavid, C. Cascone, P. Lin, B. Padmanabhan,
A. Thakur, L. Peterson, J. Rexford, and O. Sunay. A
P4-based 5G user plane function. In Proceedings of the
ACM SIGCOMM Symposium on SDN Research (SOSR),
pages 162-168, 2021.

[28] ONF. SD-FABRIC. https://opennetworking.org/
sd-fabric/.

[29] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou,
J. Rajahalme, J. Gross, A. Wang, J. Stringer, P. Shelar,
K. Amidon, and M. Casado. The design and imple-
mentation of open vSwitch. In Proceedings of the 12th
USENIX symposium on Networked Systems Design and
Implementation, pages 117-130, 2015.

[30] Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li. Packet classifi-
cation algorithms: From theory to practice. In Proceed-
ings of the IEEE International Conference on Computer
Communications, pages 648—656. IEEE, 2009.

[31] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet
classification using multidimensional cutting. In Pro-
ceedings of the ACM Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer
Communications, pages 213-224, 2003.

[32] S. K. Singh, C. E. Rothenberg, J. Langlet, A. Kassler,
P. Voros, S. Laki, and G. Pongracz. Hybrid P4 pro-
grammable pipelines for 5G gNodeB and user plane
functions. IEEE Transactions on Mobile Computing,
2022.

[33] H. Song and J. Turner. ABC: Adaptive binary cuttings
for multidimensional packet classification. IEEE/ACM
Transactions On Networking, 21(1):98-109, 2012.

[34] E. Spitznagel, D. Taylor, and J. Turner. Packet classifica-
tion using extended TCAMs. In Proceedings of the 11th
IEEE International Conference on Network Protocols,
pages 120-131. IEEE, 2003.

[35] V. Srinivasan, S. Suri, and G. Varghese. Packet classifi-
cation using tuple space search. In Proceedings of the
ACM Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication,

pages 135-146, 1999.

[36] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel.
Fast and scalable layer four switching. In Proceedings
of the ACM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communica-
tion, pages 191-202, 1998.

[37] B. Vamanan, G. Voskuilen, and T. Vijaykumar. Effi-
cuts: Optimizing packet classification for memory and
throughput. ACM SIGCOMM Computer Communica-
tion Review, 40(4):207-218, 2010.

[38] Z. Wen, H. S. Pacherkar, and G. Yan. Vet5g: A virtual
end-to-end testbed for 5G network security experimen-
tation. In Proceedings of the 15th Workshop on Cyber
Security Experimentation and Test, pages 19-29, 2022.

[39] S. Yingchareonthawornchai, J. Daly, A. X. Liu, and
E. Torng. A sorted-partitioning approach to fast and scal-
able dynamic packet classification. IEEE/ACM Trans-
actions on Networking, 26(4):1907-1920, 2018.

[40] F. Yu and R. H. Katz. Efficient multi-match packet
classification with TCAM. In Proceedings of the 12th
Annual IEEE Symposium on High Performance Inter-
connects, pages 28-34. IEEE, 2004.

[41] C.Zhou, B. Zhao, and B. Wang. A 100Gbps user plane
function prototype based on programmable switch for
5G network. In Proceedings of the 6th Asia-Pacific
Workshop on Networking, pages 83-84, 2022.

Appendix A: Primer on P4 Programmable
Switches

In this section we briefly describe the working of Intel Tofino
programmable switch. Figure 13 shows the overview of Intel
Tofino architecture.

Packets from entering the switch are first parsed by a pro-
grammable parser to extract header fields and other meta-
data. The programmable parser is a state machine where in
each state a certain amount of packet is extracted into Packet
Header Vectors (PHVs). P4 allows for transitioning to differ-
ent parser states based on extracted value to achieve handling
of different types of packets. To ensure the state machine
completes no loop is allowed and all paths from the start state
must go to one of two end states: accept and reject.

Packets after being parsed goes into a set of match-action
units (MAU) sequentially. With in each stage header fields or
metadata extract during parsing are put into different tables in
parallel and matched against (e.g., exact, range, and ternary

https://opennetworking.org/sd-fabric/
https://opennetworking.org/sd-fabric/

Ingress MAU stages
A

@
a
c [0}
€0 &2
IS I
W A &
o0 8
e
o

Queuing

Egress MAU stages
A

Programmable
Parser
Deparser

Match logic: SRAM and TCAM are used to
implement exact, range, ternary, Ipm matches
and if statements

Queuing: Dozens of queues
per egress front panel port

Action Logic: ALU and Stateful ALU are used
to perform field manipulations, counting,
arithmetic, register read/write etc.

Figure 13: Overview of Intel Tofino

matching) value configured by the switch controller. Each
match entry in a table has an action associated with it and will
be executed if the match was a hit. Action can be a simple
assignment to a header filed or metadata, or complex oper-
ations like CRC calculation, arithmetic operations, register
read/write via stateful ALU, metering/counting etc.

The key limitation of this architecture is that in order to
achieve high packet throughput, action within each stage is
limited to one clock cycle operation (e.g., bitwise, add, sub-
tract, logical shift, min/max etc.). More complex operations
have to be split into multiple MAU stages which Tofino has a
limited number of.

The P4 construct Registers is what make programmable
switches so powerful as they can maintain states between
packets. To achieve high throughput, registers also have their
limitations: 1) they are MAU stage local, meaning they can
only be read from and written to within that MAU stage. 2)
actions based on registers are also limited to two clock cycles,
meaning it can be just a bit more complex then regular actions,
supporting additional operations like if statement and math
operations.

For more details of Intel Tofino we refer the readers to [4].

Appendix B: Details of baseline UPF

In the baseline UPF, the controller and PPP modules com-
municate with each other via two interfaces. Through the P4
Runtime interface, rule table updates, which are translated
from PFCP messages, are sent from the controller to the PPP
module while the counters are read in the opposite direction.
A CPU port, which is manifested as a Linux network inter-
face, is used by the controller to inject end markers into the
packet processing pipeline and by the PPP module to send
Notify Control Plane (NoCP) packets to the controller'.

'End marker in 5G is a special GTP packet sent toward the access net-
work to facilitate packet reordering by the gNB during handover and Notify
Control Plane (NoCP) packets are copies of the triggering packets sent to the

(1) Packet processing. Using the rules defined in Sec-
tion 2.2, the PPP module of the baseline UPF processes pack-
ets as illustrated in the upper right box of Figure 1.

The PDR matching component matches each incoming
packet with the rules in the three PDR rule tables to obtain the
PDR_ID, which will be later used to find the corresponding
rules in downstream tasks. As the complex PDR table has
higher priority over the simple ones, only a match miss from
the complex PDR table enables the simple tables to be used
for PDR matching. If there is no match from all three tables,
the packet is simply discarded.

The PDR_ID given by a matching PDR is used by the
Forwarding component to index the FAR table for the for-
warding action, which can be NoCP (notify control plane),
Buffer, Drop, Decap (decapsulation), or Encap (encapsula-
tion). The NoCP action copies the triggering packet and sends
it to the controller. The Buffer action forwards the packet to
the buffering service via a dedicated front panel port. The
Drop action simply drops the packet. The Decap action re-
moves the tunnel header from an uplink packet and forwards
it to the IP routing component. The Encap action adds a new
GTP-U tunnel header to the packet, which requires the tun-
nel data. Hence its action data includes a 32-bit destination
IP address, a 32-bit TEID and a 6-bit QFI. Given the IP ad-
dress, TEID and QFI, Encap action is then used to create the
new GTP-U tunnel header and sends the encapsulated packet
to the IP routing component. For each packet received, the
IP routing component is responsible for delivering it to the
right egress port based on two routing tables, each with 2048
exact match entries and 512 Longest Prefix Match (LPM) en-
tries. We use separate routing tables for routing encapsulated
packets based on the tunnel headers and decapsulated packets
using the original IP packet headers to achieve paralellization
in packet routing to different interfaces.

Given the PDR_ID, the Bitrate Enforcement component

controller in order to trigger certain events of interest, such as notification of
downlink packet arrival.

obtains from the QER table the identifier of the Two Rate
Three Color Marker (TrTCM) meter used to mark matching

packets. The meter identifier is zero if no meter is needed.

Based on the packet colors marked by the TrTCM meters
and traffic classes identified by QFIs, the Queue Assignment
component assign packets to different queues identified by
their 5-bit QueuelDs. The pre-QoS and post-QoS usage data
are collected periodically by the Pre-QoS Accounting and
Post-QoS Account components from the counters stored in
the Ingress and Egress Accounting tables, respectively.

(2) Usage reporting. Usage reporting in a 5G network
can be triggered periodically, or when a certain volume or
time threshold has been reached. Given these different ways
to trigger usage reporting, it is not a viable solution to push
the measurement data collected by the P4 switch’s ASIC to
the control plane. Following the same approach in [27], we
consider only pulling count statistics from the switch ASIC
by the controller, from which usage reports are generated
and then sent to the control plane using PFCP messages. Our
implementation uses the P4 switch’s built-in counters to track
the number of bytes and the number of packets for each PDU

session, both of which are pulled periodically from the switch.

Appendix C: Bootstrapping for initial PDR_ID
range assignments

The decomposition step is performed by Algorithm 1. Given
the list of (#;,/;)-tuples from the input, it first puts those with
a looseness score of 0 to list B and others into a max-priority
queue with their looseness scores as their keys (Lines 2-7). It
also uses g to keep the total number of IDs that is needed if
each (t;,1;)-tuple is assigned with a smallest PDR_ID range
(Line 3). The loop (Lines 8-18) deals with the situation where
there are not enough bits to assign g IDs. In each iteration, the
(¢,1)-tuple with the highest looseness score is extracted from
the max-priority queue Q (Line 9) and then gets decomposed.
The decomposition has three possible results: (I) the tuple
can be split into two, one with a looseness score of 0 and the
other with the same looseness score (Lines 10-12); (II) the
tuple can be transformed into one with a smaller looseness
score (Lines 13-15); and (III) the tuple can be transformed
into one with a looseness score of 0. It is noted that Cases II
and III are able to reduce g, the total number of IDs needed,
while keeping the same number of (z,/)-tuples (in either B or
Q). By contrast, Case I does not reduce g but increases the
number of (¢,1)-tuples by one after decomposition. Even so,
the decomposition is instrumental in producing the latter two
cases in future iterations of the loop. If decomposition can
not overcome the second constraint, an error is raised (Line
20). Otherwise, all the (,1)-tuples collected from both B and
Q are returned (Lines 22-24).

The tree-building step, whose details are presented
in Algorithm 2, is used to allocate a PDR_ID range
for each (z,[)-tuple returned from the decomposition

Algorithm 1: Decomposition step in bootstrapping
Imput: T = (t1,...,t,), L= (L,,1»), ®
Output: List of (¢,])-tuples

1 g < 0, Q < an empty max-priority queue, B <— an

empty list;

2 foriel.ndo

3 g(_g_|_2[[”g2(liﬂ;

a | if2llee()] = J; then

5 L Append (#;,1;) to B;

6 else

7 L Insert (1;,1;) into Q with key 2lloga ()T — .-

s while (g >29) A (Q is not empty) do

9 Extract (¢,1) from Q with the largest key;

10 | if [> 2l52()]-1 then

u Append (z,2[1022(0)1=1Y to B;

12 Insert (z,[— 2[*22()1=1) into O with key
2llog2(D)] _ .

13 else if [< 2[1082(D1-1 then

14 Insert (z,) into Q with key 2[/g2()1-1 _7.
15 g(_g_zn(’gZU))—l*l

16 else

17 Append (z,21082(0)1-1) o B;

18 | 88— L

19 if g > 29 then
20 L Raise an error of insufficient number of bits;
21 else

2 while Q is not empty do
23 L Extract (¢,1) from Q and append it to B;

24 return B

step. Towards this goal, it aims to build a strict binary
tree in which each node is represented by a S5S-tuple:
(template,capacity,allocated,left,right). For a leaf node
v, v.template stores the template for which a PDR_ID range
should be assigned, while for an internal one its template
field is set to be Null. For any node v, v.capacity keeps the
maximum number of IDs that can be possibly used by the
nodes within the subtree rooted at v, while v.allocated gives
the total number of IDs that have already been allocated to
the leaf nodes within this subtree. The algorithm uses a min-
priority queue Q to maintain all the nodes created, where their
capacities are used as the keys for insertions and extractions.

The tree-building step starts by creating leaf nodes for
the (¢,1)-tuples returned from the decomposition step (Line
3). For each leaf node, it is assigned with a smallest PDR_ID
range to accommodate the / IDs requested. Hence, its capacity
is set to the number of IDs allowed by this range, while its
allocated field is set to be [. These leaf nodes are inserted into

Algorithm 2: Tree-building step in bootstrapping

Input: B: list of (z,/)-tuples, ®

Output: A strict binary tree in which each node is
represented by a 5-tuple: (template,
capacity, allocated, left, right)

0 < an empty min-priority queue;

for (r,/) € Bdo

3 Create node v with 5-tuple

(t,2102(O1 1 Null, Null);

4 Insert v into Q with key v.capacity;

N -

5 while Q has at least two items do

6 Extract u and v from Q with the smallest keys (i.e.,
u.capacity < v.capacity);
7 while u.capacity < v.capacity do

Create node s with 5-tuple

(Null, u.capacity,0, Null, Null);
9 Create node p with 5-tuple
(Null,2-u.capacity,u.allocated, u, s);
10 U< p;

11 Create node p with
(Null, 2 u.capacity,u.allocated +
v.allocated,u,v);
12 Insert p into Q with key p.capacity;

13 Extract root from Q with the smallest key;
14 if root.capacity > 2° then
15 L Raise an error of insufficient number of bits;

16 while root.capacity < 2° do

17 Create node s with (Null, s.capacity =
root.capacity,0, Null, Null));
18 Create node p with

(Null, 2 root .capacity, root .allocated, root, s);
19 root < p;

20 DFS_assign(root,0);

21 return root;

22 Function DFS_assign (u,code):
23 if u = Null then

24 L return;

25 if u.template # Null then

26 Assign PDR_ID range
(code,logy(u.capacity)) to u.template;

27 DFS_assign (u.left, 2-code);

8 | DFS_assign (u.right,2-code +1);

the min-priority queue Q based on their capacities (Line 4).

Next the algorithm keeps merging nodes u and v, which
have the smallest capacities in Q (Lines 5-6). As these two
nodes may have different capacities, we iteratively pair the
smaller one (i.e., u) with a newly created sibling leaf node
s, which has a Null template and the same capacity, attach

them to a newly created parent node p, which also has a Null
template but does the capacity, and then replace u with p
(Lines 7-10). This process repeats until node u reaches the
same capacity as node v. At that point, a new parent node p
is created with u and v being its two children nodes (Line 11)
and next inserted into the min-priority queue Q based on its
capacity.

When Q contains only a single node, it is treated as a root
node. If the root node’s capacity has not reached the maximum
value allowed by the number of bits provisioned (i.e., @), a
new sibling leaf node is created to merge with the root node
to obtain a new parent root node. The process repeats until
the root node finally reaches the maximum capacity allowed
(Lines 16-19).

It is easy to see that the tree as constructed is a strict binary
tree. We can apply a depth-first traversal to visit all the nodes
in the tree. Each node visited can be coded by the branches
taken during the traversal: O for taking a left branch and 1 for
taking a right branch. For each leaf node discovered whose
template is not Null, a PDR_ID range (r,m) is assigned to
the template where r is the node’s code and m is the binary
logarithm of the node’s capacity (Lines 20, 22-28).

Appendix D: Allocate and deallocate procedures
in runtime update

Each leaf node in the tree additionally keeps track of the list
of used PDR_IDs, denoted by L.

Allocate: Given action template ¢, the following steps are
performed. D It first tries to find any existing node with the
same template ¢. If the length of its L4 list is smaller than
its capacity, one free ID from the node’s PDR_ID range is
assigned to it and then added to L,.y. @ If none is found
from the previous step, the procedure next tries to find an
existing empty leaf node (i.e., its L4 list is empty) in the
binary tree. If such an node exists, it is allocated to action
template ¢ and its first free ID is allocated and thus added to its
Lyseq list. @ Otherwise, the procedure finds an existing non-
empty leaf node with spare IDs and then recursively splits
it into two children nodes of equal capacity until one has an
empty L,.q list. After that, the empty child node is assigned
to action template ¢, as done in Case).

Deallocate: When a PDR_ID is deallocated, it is removed
from the L. list of the leaf node whose PDR_ID range it
falls into. If L,.4 becomes empty and the sibling node is also
an empty leaf node, these two nodes are simply removed and
their parent node is then transformed into an empty leaf node.
This process repeats until the sibling node is not empty. The
purpose of this step is to reduce fragmentation of PDR_ID
ranges in the binary tree.

	Introduction
	Background
	5G UPF Primer
	Baseline UPF

	Motivation
	Rule Storage
	Operational Latency

	Rule Storage Optimization
	Remove Excessive Dependency (RED)
	Split PDR Tables (SPT)
	Consolidate Action Data (CAD)

	Operational Latency Optimization
	Pendulum Table Access
	Selective Usage Pulling

	Performance Evaluation
	Number of UEs Supported
	UPF Responsiveness
	Effects of Selective Usage Pulling

	Related Work
	Conclusions

