OMADS5G: Online Malware Detection in 5G Networks using
Compound Paths

Zhixin Wen
Binghamton University
School of Computing
Binghamton, NY, USA
zwen7@binghamton.edu

Abstract

The pervasive growth of mobile devices has made them lucrative
targets for various malware attacks. Despite numerous previous
efforts on traffic-based malware detection, none of them offer a
holistic approach to tackle the three challenges faced in online
malware detection in 5G networks: accuracy (malware attacks can
be detected at high accuracy), scalability (malware detection can be
performed in a scalable manner for a large number of mobile users),
and integrality (the malware defense system can be seamlessly
integrated into the 5G network architecture). We thus propose a
new system called Online MAlware Detection in 5G Networks
(OMAD5G) to defend against malware attacks in 5G networks.
OMADS5G combines on-path malware detection, which is deployed
by 5G User Plane Function usually handling large volumes of user
traffic, and off-path malware detection, which is executed by sep-
arate servers with ample computational resources. We develop a
lightweight classifier trained on Internet domain names for on-
path malware detection, which is executed on P4 programmable
switches, and apply powerful transformer neural networks on vari-
ous packet features for off-path malware detection. OMADS5G uses
tri-threshold learning based on the Neyman-Pearson criterion to
facilitate toggling between on-path and off-path malware detec-
tion. The functionalities of OMADS5G are achieved with three 5G
service-based architecture (SBA)-compliant call flows to enable easy
integration into existing 5G networks. We implement a prototype of
OMADS5G and evaluate its performances using two realistic mobile
traffic datasets induced by human operations. Our results show that
OMADS5G achieves a detection rate of ~95% and a false positive
rate of ~1% for both datasets, and its on-path detection module
outperforms NetBeacon, a state-of-the-art in-network traffic classi-
fier deployable on P4 programmable switches, on both detection
accuracy and deployment scalability.

CCS Concepts

« Security and privacy — Mobile and wireless security.

Keywords

5G networks, online malware detection, machine learning, P4 pro-
grammable switch

This work is licensed under a Creative Commons Attribution 4.0 International License.
ASIA CCS ’25, Hanoi, Vietnam

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1410-8/25/08

https://doi.org/10.1145/3708821.3733864

Guanhua Yan
Binghamton University
School of Computing
Binghamton, NY, USA
ghyan@binghamton.edu

ACM Reference Format:

Zhixin Wen and Guanhua Yan. 2025. OMAD5G: Online Malware Detec-
tion in 5G Networks using Compound Paths. In ACM Asia Conference on
Computer and Communications Security (ASIA CCS ’25), August 25-29, 2025,
Hanoi, Vietnam. ACM, New York, NY, USA, 17 pages. https://doi.org/10.
1145/3708821.3733864

1 Introduction

Proliferation of mobile devices has changed the landscape of In-
ternet traffic drastically in the past decade. Over 56.8% of website
traffic now originates from mobile devices, an increase of 75% from
2015 [45]. The new 5G technology will continue to drive the growth
of mobile usage. According to GSMA Intelligence, there will be over
two billion 5G connections worldwide by 2025 [44]. The pervasive
growth of mobile devices has made them lucrative targets for vari-
ous malware attacks such as adware, trojans, and ransomware.

Among the plethora of research efforts dedicated to mobile mal-
ware detection [36, 65], many focused on offline malware detec-
tion, which aims to detect malicious mobile apps through static
analysis (e.g., RiskRanker [43], FlowDroid [16], Drebin [15], Ap-
poscopy [38], and MAST [23]) and/or dynamic analysis in emulated
environments (e.g., Andromaly [69], CopperDroid [72], AppsPlay-
ground [66], TaintDroid [32], and VetDroid [83]). For online mobile
malware detection, previous works applied traffic statistics-based
methods [8, 14, 22, 25, 26, 70] and deep packet inspection (DPI)-
based techniques [17, 25, 34, 37] to detect mobile malware traffic.

Despite these efforts, there has been lack of research on explor-
ing mobile malware detection deployed as an integral service by
mobile networks. Sitting between the subscribers’ mobile devices
and the wider Internet, mobile networks are at a unique position
to safeguard these devices from malware attacks originating from
the Internet. Mobile malware detection can be offered by a mobile
network as a value-added service to its customers. Moreover, when
a large army of mobile devices are infected by malware to create a
mobile botnet, they can be used to harm or disrupt the operations of
mobile networks [19, 33, 35, 54, 74, 75], which further provides in-
centives for mobile network operators to deploy effective malware
defense mechanisms in their networks.

Online malware detection for 5G networks, needs to tackle the
following challenges: malware attacks should be detected with high
accuracy based on only mobile network traffic (accuracy), malware
detection services can be offered to the mobile subscribers in a
scalable fashion (scalability), and the malware detection service can
be seamlessly integrated into the Service-Based Architecture (SBA)
of a 5G network to notify the users whose mobile devices have been
infected by malware (integrality). Although numerous methods
have been proposed for traffic-based malware detection [11, 20,

https://orcid.org/0000-0003-2426-0256
https://orcid.org/0000-0001-7482-4043
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3708821.3733864
https://doi.org/10.1145/3708821.3733864
https://doi.org/10.1145/3708821.3733864

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

37, 41, 48, 60, 79, 80, 84], none of them have provided a holistic
approach that can overcome all these challenges (§ 3).

Against this backdrop, this work proposes a new system called
Online MAlware Detection in 5G Networks (OMAD5G) to detect
malware-infected mobile devices in 5G networks. OMAD5G applies
a compound approach that integrates on-path and off-path malware
detection to achieve both high deployment scalability and high
detection accuracy. Its on-path malware detection module, which is
deployed on the same paths traversed by user traffic in 5G networks,
applies lightweight machine learning models on observed Domain
Name Service (DNS) packets, which comprise only a small fraction
of Internet traffic (e.g., 0.1% and 0.2% of IPv4-based Internet traffic
in 2019 and 2020, respectively [67]) for quick malware detection.
To overcome the limited discriminatory power of DNS name fea-
tures for malware detection, the on-path malware detection module
adopts two thresholds learned based on Neyman-Pearson criteria,
one for low false positive rates and the other for low false negative
rates. The first threshold is used as the first line of malware detec-
tion due to few false alarms raised to the mobile subscribers, while
the second one is used to mirror the traffic of a small portion of mo-
bile devices to separate servers for off-path malware detection. The
off-path malware detection module, which is deployed at places to
which user traffic in 5G networks are mirrored from their original
paths and can access ample computational resources, applies pow-
erful transformer neural networks [76] on various traffic features,
such as flow characteristics, packet contents, and packet arrival
timestamps, to achieve high detection accuracy. In order for seam-
less integration into 5G networks, OMADS5G introduces three 5G
SBA-compliant call flows to facilitate provision and deployments
of malware detection models within their data planes.

In a nutshell, our main contributions are summarized as follows.
(@ We propose a compound detection framework that leverages
both on-path malware detection at line speed and off-path mal-
ware detection with high accuracy (§ 4). @ We develop lightweight
malware detection models trained on Internet domain names for on-
path malware detection and transformer neural networks trained
on various features extracted from mobile traffic, such as flow char-
acteristics, packet contents, and packet arrival timestamps, for off-
path malware detection. We design a novel tri-threshold learning
scheme based on the Neyman-Pearson criterion to search for joint
threshold hyper-parameters that maximize detection rates while en-
suring that the false alarm rates are below a pre-defined value (§ 5).
(® We demonstrate the feasibility of deploying the on-path mal-
ware detection module on commodity P4 programmable switches
and the off-path malware detection module on separate computer
servers. We design mechanisms to toggle between these two mod-
ules based on triggers derived from tri-threshold learning (§ 6). @
We design three 5G SBA-compliant call flows to integrate key steps
of OMADS5G service, namely, model deployment, detection enable-
ment, and malware notification, into 5G networks seamlessly (§ 7).
(® We implement a prototype of OMADS5G based on an existing 5G
network security testbed. We use two mobile traffic trace datasets
induced by realistic human operations to evaluate the detection
performances of OMADS5G, the resource usage of its on-path detec-
tion module on an Intel Tofino-based programmable switch, and
its execution performances. Our experimental results show that
OMADS5G achieves a detection rate of ~95% and a false positive

Zhixin Wen and Guanhua Yan

rate of ~1% for both datasets, and its on-path detection module
outperforms NetBeacon [84], a state-of-the-art in-network traffic
classifier deployable on P4 programmable switches, on both detec-
tion accuracy and deployment scalability (§ 8). Our code is publicly
available at: https://github.com/CyberSecurityScience/OMAD5G.

2 Related Work

Mobile malware traffic detection. Previous efforts on mobile
malware traffic detection largely fall into two categories: shallow
detection and deep packet inspections. Shallow detection methods
only inspect packet headers such as port number, IP address and
other traffic-based statistics while deep packet inspection (DPI) can
examine the contents of the packets such as DNS queries and HTTP
requests. One shallow detection method, which is widely used, is
traffic statistics-based techniques [8, 14, 22, 25, 26, 70]. These works
rely on traffic statistics features such as average packet sizes and
flow durations for mobile malware detection. Traditional DPI-based
intrusion detection systems such as Snort [2] and Zeek [3] apply
pattern matching techniques to identify malicious network traffic,
including those generated by malicious mobile apps. These systems
usually perform poorly on malware detection when malware at-
tacks constantly evolve with new variants. Recent methods have
combined DPI with deep learning algorithms to improve detection
accuracy of malicious mobile traffic [17, 25, 34, 37]. However, these
previous approaches tend to be resource intensive and are thus not
suitable for in-network malware detection in large-scale mobile net-
works. For instance, the traffic statistics features require collection
and storage of various traffic attributes for a long period of time.
Many of these traffic statistics are collected on a per flow basis,
thus incurring significant overhead for online malware detection.
The problem is further exacerbated when deep learning is used.
To improve scalability, OMAD5G deploys a lightweight first-line
defense directly on P4 programmable switches to detect malware
at line speed for the majority of the traffic while mirroring only a
small portion of traffic to a separate server for deeper examination.

Domain name-based malware detection. There have been
numerous efforts on detecting malicious domains hosting mal-
ware [11, 12, 20, 27, 53, 60]. DNS traffic has been used to iden-
tify Domain Generation Algorithm (DGA)-based bot malware [13],
Windows malware [61], and Android malware [59]. Although the
on-path malware detector in OMAD5G also leverages DNS traffic
to identify suspicious traffic, it is deployable on P4 programmable
switches for malware detection at line speed.

Attack traffic detection on programmable switches. Several
works considered DDoS attack traffic detection using programmable
switches [51, 55, 82]. Chang et al. proposed an on-switch malware
detector which uses the switch Application-Specific Integrated Cir-
cuit (ASIC) to extract features and the switch CPU to run the neural
network model for malware detection [24]. Due to limited com-
munication bandwidth between the switch CPU and ASIC (e.g.,
32GB/s for PCle 4.0 x16) and slow CPU inference, this solution can-
not achieve malware detection at line speed (e.g., up to 6.4Tb/s for
Intel Tofino-1 and 12.8Tb/s for Intel Tofino-2) in large 5G networks.
A few recent works deployed machine learning models directly on
the switch ASIC for malicious traffic detection on P4 programmable
switches. Mousika uses binary decision trees for malware traffic
detection based on flow statistics [79]. NetBeacon improves the

https://github.com/CyberSecurityScience/OMAD5G

OMAD5G: Online Malware Detection in 5G Networks using Compound Paths

Table 1: Shortcomings of representative previous works for
online malware detection in 5G networks

Category Accuracy Scalability Integrality
PCAP-based [37, 41, 48] v X X
DNS-based [11, 20, 60] X v X
In-network [79, 80, 84] v X X

scalability by differentiating short and long flows and applying a
multi-phase sequential model architecture [84]. Our experimental
results have shown that the on-path detection module of OMAD5G
outperforms NetBeacon on both detection accuracy and deploy-
ment scalability (see § 8.2).

5G network security. There have been a plethora of efforts on
improving the security of emerging 5G networks [9, 18, 21, 29, 47,
49]. Our work has a different goal as it aims to address the accuracy,
scalability, and integrality challenges in deploying online malware
detection within 5G networks.

3 Background and Motivation

Core Network Data Networks

e
\‘\ ((((5‘3)) NNEHNUDM Nisse
gk

Figure 1: 5G network architecture. The labels shown on the
connecting lines describes 5G communication interfaces.

A typical 5G network architecture is shown in Figure 1. A UE
(User Equipment) is an end device (e.g., a mobile phone) that is
capable of 5G communications. A 5G Radio Access Network (RAN)
is comprised of one or more gNodeBs (gNBs), which are base sta-
tions using the New Radio (NR) technology. A 5G core network
consists of its control plane following an SBA and its data plane.
The key network functions (NFs) in the SBA include Access and Mo-
bility Management Function (AMF), Session Management Function
(SMF), Network Repository Function (NRF), Unified Data Manage-
ment (UDM), Authentication Server Function (AUSF), Network
Exposure Function (NEF), Network Slice Selection Function (NSSF),
Policy Control Function (PCF), and Short Message Service Function
(SMSF). The user plane is comprised of one or more User Plane
Functions (UPFs), whose responsibilities include interconnecting
5G RANs and the external data networks (e.g., the Internet), packet
routing/forwarding/inspection, Quality of Service (QoS) manage-
ment, and usage reporting.

This work assumes a threat model of malicious mobile applica-
tions that run on mobile devices in a 5G network. As the traffic
generated by these mobile apps needs to traverse the 5G network’s
user plane, the goal of this work is to investigate the feasibility
of detecting malware-infected UEs based on their mobile network
traffic. Towards this end, we need to tackle the following technical

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

challenges: @D Accuracy: Can malware-infected UEs be detected in
an online fashion based on their network traffic with high accuracy
in a 5G network? (2) Scalability: Can the online malware detection
service be scaled up for a large number of mobile subscribers in
a 5G network? (3 Integrality: Can the online malware detection
service be integrated into the 5G network’s SBA architecture to
notify the users whose UEs have been infected by malware?

Despite many previous efforts on traffic-based mobile malware
detection, none has offered a holistic approach to overcome all
these challenges. Table 1 summarizes their shortcomings. For ex-
ample, deep learning techniques have been applied on the features
extracted from mobile traffic PCAP files to detect mobile malware
with high accuracy [37, 41, 48]. Given the humongous amount of
traffic in 5G networks, these methods lack the scalability to sup-
port online malware detection for a large number of mobile users.
Researchers have proposed malware detection techniques based
on DNS packets [11, 20, 60], which can be deployed close to DNS
servers to monitor DNS request packets sent to suspicious domain
names. Although they can achieve high scalability, their detection
accuracy suffers due to the limited predictive power based on only
DNS packets. Recently a few in-network traffic classification tech-
niques have been developed to detect suspicious network traffic
with impressive detection accuracy using flow statistics features
on P4 programmable switches [24, 79, 84]. However, our experi-
mental results (see § 8.2) have shown that they cannot be deployed
efficiently along with UPFs on P4 programmable switches due to
excessive computational resources needed to store the flow state
features on the switches.

None of these previous works have considered integration into
5G networks for online malware detection. Although it is not hard
to run these methods in the 5G data planes to detect malware
traffic, it is difficult to attribute which mobile devices have been
infected by malware. Traffic-based malware detection can identify
the IP addresses from which malicious traffic originate, but linking
these ephemeral IP addresses, which are dynamically assigned by
SMFs, to the particular devices requires access to the internal states
distributed at multiple NFs in the 5G control planes.

4 System Overview

To tackle the above challenges, we propose the OMAD5G system
whose architecture is shown in Figure 2. OMADS5G can be offered as
an opt-in value-added service by a mobile network to its subscribers
for a particular data network (DN) (e.g., the Internet). Hence, when-
ever a UE requests to establish data connections to that DN, its
service plan maintained by the 5G network is retrieved to check
whether malware detection should be enabled for this device.
OMADS5G has three modules: on-path malware detection, off-path
malware detection, and model provisioning. The on-path malware de-
tection module runs along with the UPFs deployed in the data plane.
As the UPFs have to deal with large volumes of mobile traffic in 5G
networks, there may be limited computational resources available
for on-path malware detection. Hence, the on-path malware detec-
tion module in OMADS5G applies a lightweight machine learning
model Doy on the Internet domain names requested by UEs to
derive the likelihood that they have been infected by malware. For
readers’ convenience, we summarize the notations of the different
machine learning models used by OMAD5G in Appendix A.

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

Domain name- .
) Detection
based detection on
by DGl
(Don)

Negative | Detection
off

by Doy
[Positive | Positive
On-path malware Notify UE Mirror traffic to
detection otity computer server

. (())
Data
Network

5G Control
Plane
FC/ZCt/TSt-_based Detection
etection > of f
by D
. (Dorr) Y Zorr
omputer .
Data Model Server Off-path L Positive
collection training detection Notify UE
Model provisioning

Figure 2: The system architecture of OMAD5G

A unique design of OMADA5G is that the likelihood produced by
model Doy is compared against two separate thresholds to balance
false positives and false negatives. The low false positive (LFP)-
threshold, denoted by ©¢J};, allows quick malware detection based
on only domain names with low false alarm rates. Using O]}, it is
however possible that the detector can miss some malware-infected

UEs. Therefore, the low false negative (LEN)-threshold, denoted by

@sz\{ , is used to achieve high detection rates, even at the sacrifice
of false alarms. The alerts raised due to @)OJ;J; are not visible to the
mobile users as they are only used to select a small portion of UEs
whose traffic should be mirrored to the off-path detection module.

For ease of presentation, the detection model Doy equipped

with the LFP-threshold and LFN-threshold is called DO” and ng;{ ,
respectively. Based on these two detectors, the on- path malware
detection module works as follows: if a UE’s DNS traffic is detected
to be positive by D, a notification is sent to the UE. Otherwise,
Dgyy is further applied and a positive detection triggers its traffic

to be mirrored to a separate computer server running off-path

malware detection. Careful selection of both ©7}, and G)(g;{ enables
infrequent false alarms raised by the on-path malware detection
module while reducing the amount of traffic mirrored to the off-path
malware detection module for further examination.

The off-path malware detection module applies a more powerful
transformer neural network model, denoted by DofpF, on a combi-
nation of flow characteristics (FC), packet content (PC), and packet
arrival timestamp (TS) features for malware detection with high
accuracy. Based on model DorF, a threshold hyperparameter, de-

noted by @OJ;J;, is used by the off-path malware detection module

to balance its false positive and false negative errors. This malware

detect;; using threshold @)g;,_fj17 is called Dg];fF When the detection
D’

by D 5y is positive, an alert is triggered to notify the infected UEs.

The compound scheme of combining both on-path and off-path
malware detection can achieve both high detection accuracy and
high scalability. Assuming that usually only a small fraction of mo-
bile devices are infected by malware, the on-path malware detection
module works as the first line of defense to achieve high scalability
by filtering out the majority of mobile network traffic. Using the

Zhixin Wen and Guanhua Yan

more advanced transformer neural networks on FC/PC/TS features,
the complementary off-path malware detection module overcomes
the limited discriminatory power of on-path malware detection
based on only domain names to improve detection accuracy.

The prediction models needed for both on-path and off-path
malware detection are trained by the model provisioning module.
It is implemented by a new NF called User Safety Function (USF),
which is responsible for ensuring the safety of users’ data stored on
their end devices. As part of the 5G SBA, USF can apply the same
security mechanisms as other NFs for service authentication [5].

The model provisioning module uses labelled datasets to train

on of f of f : :
the three detectors, DON’ DON’ and DOFF More specifically, it
partitions these datasets into two portions: the training portion is
used to train the two models Doy and Dorfr while the validation

portion is used for tri-threshold learning, which finds proper values

for the three thresholds @2)'}\], OOJ;J; ,and © O];J; In tri-threshold
learning, we apply the Neyman-Pearson criterion [68, 73] to maxi-
mize the overall detection rate of OMADS5G while ensuring that its
false positive rate should not exceed threshold ¢ within a targeted
detection period.

Coordination among the three modules of the OMAD5G system
is needed to achieve online malware detection in 5G networks.
OMADS5G introduces three respective 5G SBA-compliant call flows
to deploy the detection models trained by the USF in the 5G user
plane, enable malware detection for a particular UE, and notify
the UE after malware infection has been detected from its mobile
traffic.

5 Model Provisioning

5.1 On-path detection model

OMADSG uses the Internet domain names queried by mobile apps as
features for malware detection. During the training phase, a reputa-
tion score is learned for each simplified domain name encountered
in a DNS request packet. As there are numerous Fully Qualified
Domain Names (FQDNs) on the Internet, making it difficult to learn
a reputation score for each of them, we strip their prefix host names
to obtain simplified domain names as follows. If a FQDN includes
a gTLD (generic Top Level Domain), its simplified domain name
includes its last two labels. For example, www.eecs.mit.edu and
math.mit.edu share the same simplified domain names as mit.edu.
Moreover, if a FQDN includes a ccTLD (Country Code Top Level Do-
main), we define its simplified domain name to include its three last
labels. For example, the simplified domain name of www.google.co.jp
is google.co.jp.

Let M, where [M| = m, denote the ordered set of all simplified
domain names observed from the network traffic traces. Their rep-
utation scores are learned from a labeled dataset G with |G| = n.
Each data point in G is a tuple (X;, y;) abstracted from the network

traffic trace of a particular mobile device, where X; = {c(]) }i=1
()

with ¢;7” giving the occurrence count of the j-th simplified domain

name in set M (denoted by M) within this trace while y; € {0,1}
indicates whether the trace contains malicious traffic or not.
Given dataset G, the goal of reputation score learning is to learn
a reputation score r() € R for each simplified domain name M),
We apply the mini-batch gradient descent approach to learn the
reputation scores. We first define the aggregate reputation score

OMAD5G: Online Malware Detection in 5G Networks using Compound Paths

learned for the i-th data sample as follows:
s(i) — Z r(j) ~C;(j), (1)

1<j<m

where c;(j) = ¢;() 4§ is the augmented occurrence number of
the j-th domain in set M. We add a random jitter §, where § ~
N(O, x-ci ()), to the occurrence count in every mini-batch gradient
descent step with strength k. Such jitters can improve the robustness
of the model when it is deployed for inference as the occurrence
counts of simplified domain names may fluctuate in the real world.
By default we let x be 0.5.

When applying the mini-batch gradient descent method, we use
the weighted cross entropy loss as the objective function:

L= —% Z (yiloga(=sD) + (1-yplog (1 - o(~sD)}, (2

where o(+) is the sigmoid function and A can be used to help reduce
false positive rates. By default we let A be 0.5. The negative sign in
front of s(!) ensures that a higher reputation score corresponds to
a lower probability of being malicious.

The outcome of model training is a logistic regression model
Don, which includes the reputation score for each simplified do-
main name. A mobile device usually contains system applications
that constantly communicate with some system domains. As such
system domain names give no indication of the device’s infection
state, we omit them from set M. Appendix B lists some system
domains used by Android.

During malware detection some domain names may not have
been seen in the training dataset. We assign a special domain
UNKNOWN to represent any unseen domain name. The reputation
score of this UNKNOWN domain is also learned during the training
phase. During each mini-batch gradient descent step and for each
sample, we randomly choose a small fraction y of the domain names
and set them to be UNKNOWN. We let y be 5% by default.

5.2 Off-path detection model

Off-path malware detection in OMADS5G uses a transformer neural
network trained on flow characteristics, packet content, and packet
arrival timestamp features. Each flow is uniquely identified by the
standard 5-tuple, including the source IP address/port number, the
destination IP address/port number, and the protocol in use. A flow
is considered completed if any of the following is met: (1) a TCP
flow with FIN flags sent in both directions; (2) a TCP flow with RST
set in its packet; (3) a DNS response in a DNS flow with a corre-
sponding request packet; and (4) any flow that has been inactive
for 120 seconds or longer. For each flow we extract flow character-
istics features such as number of bytes, ratio of uplink/downlink
byte/packet counts, and mean packet inter-arrival time.

For packet content features, we consider the first Npc bytes
observed from each flow, including those from the IP headers. To
prevent learning bias, we exclude the source or the destination IP
address among these bytes. If a flow is completed with fewer than
Npc bytes, the remaining ones are padded with zeros.

Data preprocessing. Before feeding the raw features to the
transfomer neural network, we preprocess them as follows. For each
categorical feature, such as the transport or the application protocol
name, we learn its projection into an R* embedding space during

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

the training phase. For each numerical feature x, we first perform
normality test on x using the Shapiro-Wilk test [81] with the p-
value set to 0.05. If the feature is normally distributed, we normalize
each of its values, xj, as xlf = % where p and o are its mean and
standard deviation, respectively. If X is not normally distributed, we
apply the log transformation technique [31] to prevent failed model
training due to Not a Number (NaN) loss or weights as follows: we
first take the logarithm as x;” = log (1 + x; — min; {x;}). Assuming
that y//” and ¢”” are the mean and standard deviation of set {x}’ h

' ' X
we obtain normalized values as xlf ==

Model design. For each flow we use four types of projected fea-
tures. First, its FC features are projected to 512-dimensional vector
with a 3-layer Multilayer Perceptron (MLP) network with batch
normalization and Gaussian Error Linear Unit (GELU) activation.
Second, for PC features, the inputs are processed with a 3-layer
convolutional network (CNN) to project the first Npc bytes of a
flow to another 512-dimensional vector. The first layer in the model
has a kernel size of 20 and a stride of 10, the second one a kernel
size of 15 and a stride of 1, and the last one a kernel size of 1 and
a stride of 1. By default we use Npc = 160 bytes to balance model
complexity and detection accuracy. Third, we encode a flow’s start
and end timestamps into a 512-dimensional vector using a similar
idea of sinusoidal positional encoding in [76]. Let ¢ € {0, 1800} be
a timestamp. We compute its d-dimensional encoding as a vector:

(i) _ {Sln(Wk.t), if i = 2k 5

t cos(wg.t), ifi=2k+1

where w = l/(lOOOOZk/d). We set d = 256 so the two respec-
tive encodings for start and end timestamps of each flow can be
concatenated to create a 512-dimensional vector.

The three 512-dimensional vectors are summed to form a single
512-dimensional feature vector for each flow. All flows’ feature
vectors, together with a learned [CLS] token, are fed into a two-
layer transformer neural network [76]. The output of [CLS] token
is used for malware prediction via another small MLP, denoted
by MLPcys. The output from MLPcyrs is a score between [0, 1]
indicating the likelihood that the UE has been infected by malware.

Model training. To bound the model size so that it can fit into
the GPUs, we randomly drop out flows for each UE to ensure that
the number of flows per UE does not exceed a certain threshold,
0f. By default we let 07 be 4000. We train our model using the
AdamW [56] optimizer with a batch size of 24 and a weight decay
of 0.1 for 10 epochs. We use a learning rate of 3e-4 at the beginning
and decrease it to 3e-5 and 3e-6 at epoch 5 and 8, respectively.
The outcome of model training is called DofF as seen in Figure 2.
Appendix C presents the experimental results about the effects of
different feature types and model hyperparameters on the detection
accuracy of the off-path detection model.

5.3 Tri-threshold learning

After the model training phase, we have obtained a logistic regres-
sion model Doy for on-path malware detection and a transformer
neural network DoFr for off-path malware detection. Although
these two models are trained independently using different fea-
tures, when they are deployed, the execution of off-path malware
detection hinges upon the result of on-path malware detection as

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

seen from Figure 2. Such dependency renders it difficult to control
the Type I errors (false positives) and Type II errors (false negatives)
of the overall malware detection system. Therefore, we use a valida-
tion dataset to search joint optimal threshold hyperparameters so
that the compound malware detector satisfies the Neyman-Pearson
criterion [68, 73], which is to maximize the detection rate, or equiv-
alently, to minimize the false negative rate, while ensuring that the
false positive rate does not exceed a pre-defined tolerance level ¢.

For on-path malware model Doy, two thresholds are used: (1)
LFP-threshold ©(]}: if the aggregate reputation score is below

0 the UE is deemed to contain malicious traffic with high confi-

dence and an alert is thus sent to the UE. (2) LEN-threshold @00111; :

; : : on of f

if the :;}ggregate rep.utatlo.n score is betwef.:n YN gnd QO N the
UE is likely to contain malicious traffic and its traffic is mirrored to
the off-path detection module for further examination.

For off-path malware detection model DoFF, the score produced

by MLPcrs is compared against threshold @ngfF to decide whether

the UE is infected by malware or not. The malware detector using

threshold @0011?; is called Dgg;,.

Due to dependency between Do and DofpF, we use a validation
dataset to simulate the detection process for a certain period of
time, say, a day, and estimate the false positive and false negative
rates of the compound malware detector within that period. We
assume that both on-path and off-path malware detection modules
are executed periodically every w time units. We use the validation

dataset to simulate the detection process for k - time units. For

each threshold triple (02} @ooj;{ , @oOJ;J;), we can apply the two
malware detection models Doxn and DoFrr as shown in Figure 2 to
simulate malware detection within the k - » time units and derive
the overall false positive and false negative rates of the compound
malware detector during this period. The tri-threshold learning
phase aims to find such a threshold triple that leads to a false
positive rate below the pre-defined threshold ¢ while minimizing
the false negative rate.

From a practical perspective, we should put a limit on how much
traffic should be mirrored to the off-path malware detection module,
depending upon the amount of resources available to it. Therefore
in our design we define a maximal fraction of UEs, denoted by 7,
whose traffic can be forwarded to the off-path detection module.
During tri-threshold learning, if on average more than 7 of the
UEs have to use off-path malware detection, the threshold triple is
deemed as invalid. More specifically, consider k detection periods,
each lasting w time units. We assume that there are u UEs. Let
qi be the number of UEs for which off-path malware detection
is enabled during the i-th period. For a given threshold triple, if

koo
% > 1, this configuration is deemed likely to overload the
u

off-path detection module and is thus treated as invalid.

6 Malware Detection

6.1 On-path malware detection

Currently, OMADS5G assumes that 5G UPFs are deployed on P4 pro-
grammable switches. P4 programmable switch-based UPFs usually
adopt an architecture where its pre-queuing ingress stage performs
traffic classification and packet routing/forwarding and its post-
queuing egress stage does post-QoS accounting [57, 78].

Zhixin Wen and Guanhua Yan

The malware detection module deployed on a P4 programmable
switch is illustrated in Figure 3. It consists of two components: a
controller and a monitor. Although they are both located on the
same switch device, the controller is executed by the switch CPU
while the monitor runs on the switch ASIC. The controller keeps
track of all active PDU sessions whose traffic should be examined
for malware infection. A timer is created for each such session,
which is periodically fired every w time units to read aggregated
reputation scores from the switch ASIC and compare it against

thresholds ©7}; and G)(g;]; to decide whether the PDU session is
infected by malware or whether its traffic should be mirrored to
the off-path detection module. The monitor, which is implemented
as P4 programs, parses DNS packets for each PDU session and
aggregates the reputation scores of observed simplified domain
names based on the on-path malware detection model (i.e., Doy)
pre-trained by the USF.

Feature extraction. To extract simplified domain names as
features from DNS packets, we follow a previous approach [50]
by extracting domain labels into chunks whose sizes are always
the powers of two. The domain labels are reversed at the ingress
deparsing step and reversed again at the egress deparsing step. As
the labels in a domain name appear in a reverse order at the egress
stage, the Top Level Domain and Second Level Domain labels can
be easily identified to obtain the simplified domain name.

After domain name extraction the chunks are fed into the domain
suffix count table to determinate the length of its suffix. The domain
suffix count table is an exact-match table that stores the number
of labels in a domain suffix. For example www.google.com has a
single suffix, com, while www.google.co.jp has two suffix labels, co.jp.
In our implementation at most two suffix labels are used for each
FQDN. Based on the suffix length, we further extract an additional
label from the domain name to construct the simplified domain
name, which is the concatenation of this additional label and the
suffix label(s). We next apply the CRC32 hash function provided
by the programmable switch to obtain a 32-bit domain name key,
which is used to identify a simplified domain name feature used by
the classification model.

The hash value of a simplified domain name is used by the do-
main reputation score table to maintain the quantized reputation
score learned for each simplified domain name. In this table the sys-
tem domain names have reputation scores of 0 and therefore their
appearances have no effects on malware detection. To support mul-
tiple classification models, each used for a different mobile ecosys-
tem, the key to the domain reputation score table also includes a
model identifier, which is associated with every PDU session whose
detection service is enabled. To handle UNKNOWN domain names,
a separate table is used to map a model identifier to a reputation
score. For a particular model identifier, if the domain name hash
does not match any entry in the domain reputation score table, the
score is derived from this table instead.

Reputation score quantization. The reputation scores learned
for simplified domain names are floating point numbers (see § 5.1),
which cannot be directly used on programmable switches. We use
the following scheme to quantize these floating point numbers into
integers. We first map the entire range of possible scores into the
range of 9-bit signed integer and store it in a 16-bit signed integer.

OMAD5G: Online Malware Detection in 5G Networks using Compound Paths

A

Malware alerts

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

Detection enablement
New models

| Off-path trigger | Controller (Switch CPU) | Model deployment '::>| Model inference |
11

-ing '

Domain suffix

.]
Boram Session-Level !
1

Table i

Table

Mirrored Packets

1
1
1 .
1 - . Reputation Reputation i
Eye{ Parsing [t | Miror X Deparsing [l Parsing [asnsatoutation [| 52° [#] Scores [»] Deparsing| 5
i
1

Monitor (Switch ASIC)

Figure 3: On-path malware detection deployed on a P4 programmable switch

Let7U >, where 1 < j < m, be the quantized reputation score of the
Jj-th simplified domain name M) ysed during model inference. As
represented by a 9-bit signed integer, we have —256 < 7U) < 255,
In model quantization, we store each 9-bit signed integer in a 16-bit
register to prevent integer overflow during summation.

Suppose that all the reputation scores learned from the previous
step fall into range [[, h], where their values can be positive or
negative. We define the quantization function:

- X 9-1
Q) = Lt - (@7 = 1)1 @
where | -] denotes the nearest integer. The quantized representation
of reputation score r/) is given by Q(r(/)).

Model inference. OMAD5G performs online malware detection
periodically for each PDU session whose detection service flag is
enabled. It schedules an on-path inference timer every « time units
to invoke on-path malware detection. The switch ASIC keeps an
exact-match table to store session-level aggregate reputation scores.
An aggregate reputation score is stored as a 16-bit signed integer
using a Register extern on the P4 programmable switch. For each
DNS query packet with a simplified domain name d, its reputation
score 7y is retrieved from the domain reputation score table and next
added to the existing aggregate reputation score of its PDU session s:
gs = gs BT4. B denotes saturated addition which prevents overflow.
We only consider DNS query packets because they demonstrate the
intents of an app even under unsuccessful resolution.

When an aggregated reputation score g is retrieved from the
switch ASIC for a PDU session, the controller compares it against
threshold ©}; to determine whether it contains malware activities.
If malware infection is detected, gs is reset to 0 and a malware
notification call flow is initiated. Otherwise, score g5 is compared

against threshold G)OO];]; to decide whether it is necessary to trigger

the off-path malware detection module for further examination.

6.2 Off-path malware detection

The off-path malware detection module consists of three compo-
nents: off-path trigger, which is executed by the controller of the P4
programmable switch as shown in Figure 3, traffic collector, which
runs on a separate computer server with sufficient computational
resources to process mirrored packets, and off-path detector, which
has accesses to GPUs needed for malware detection based on the
pre-trained transformer neural network model. When off-path de-
tection is enabled for a PDU session, the off-path trigger inserts a

new entry into the mirroring table stored inside the switch ASIC
to mirror all its packets to the traffic collector and then suspends
on-path malware detection for it. The off-path trigger also sends to
the traffic collector a request message including the IP address of
the UE whose traffic should be examined. Meanwhile, the off-path
trigger schedules a off-path inference timer for the PDU session,
which will be fired when an off-path detection period of w time
units ends for this session.

When the off-path inference timer fires, the off-path trigger
sends a request message, which includes the UE’s IP address and
the traffic collector’s URL (there may be multiple traffic collector
instances running to achieve scalability), to the off-path detector.
On the arrival of this message, the off-path detector queries the
corresponding traffic collector to obtain the flow characteristics,
packet content, and packet arrival timestamp features extracted
for the UE. The off-path detector feeds all these features to the
transformer neural network model shown in Figure 3. Using thresh-

old ©%/7 the detection model makes the prediction and sends the
detection result to the off-path trigger within an inference response
message. If malware infection is detected, the same procedure is
followed as in the on-path malware detection module to notify the
UE. On-path detection resumes after off-path detection regardless
of its detection result.

7 OMADS5G call flows

OMADS5G introduces three 5G SBA-compliant call flows to support
online malware detection in a 5G network. The model deployment
call flow deploys pre-trained malware classification models in the
data plane of the 5G network. OMAD5G allows multiple models
deployed in the same 5G network, each trained for a different mobile
ecosystem (e.g., Android and iOS). The detection enablement call
flow enables the data plane to know which PDU sessions should
be monitored for malware infection. The malware notification call
flow sends a short message notification to an infected UE, if its PDU
sessions are detected to contain malware traffic.

Model deployment. The USF is responsible for training detec-
tion models Dy, and D,, £ based on labeled mobile network traffic

traces, and finding the threshold triple (98’;\] @OO];{; , @OO];];) using a
validation dataset. Figure 4(1) presents the call flow to deploy both
detection models and the threshold triple from the USF to the UPFs.

The call flow involves the following steps. @ Once started the

USF queries NRF for SMF(s) with OMADS5G support. 2) The NRF

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

lusF| s | [upF| [nrRF|
(DRetrieve
(@Response
(®Subscribe
@ Notify
(5) Deploy
(1) Model deployment
’AMF‘ ’SMF‘ ’UPF‘ ’UDM‘
(DEstReq
@CreatesM @Retrieval
(@ N4EstReq
(®Response
(2) Detection enablement
[avE | [swF | [upF | [smsF]
@N4SessRep
@UplinkSMS
(®MsgTransfer|

(3) Malware notification
Figure 4: Call flows used by OMAD5G

returns a list of online SMFs to the USF in its response. 3) The USF
subscribes with the NRF to be notified when a new SMF comes
online. @ Once a new SMF becomes online, the NRF notifies the
USF. (® For each online SMF, the USF requests to deploy malware
classification models on its associated UPFs. Note that Step & can
happen right after Step @) for those SMFs on the NRF’s response
list. Between @ and (B a few steps used for authentication are
omitted for simplicity.

Detection enablement. A UE can choose to enable OMAD5G
for a specific DN (e.g., the Internet) as part of its service plan. The
call flow to enable malware detection for a particular UE is illus-
trated in Figure 4(2). It involves the following steps. @ When the
UE wants to connect to a DN, it sends a PDU Session Establishment
Request to the AMF. (2) The AMF processes this message and sends
an Nsmf_PDUSession_CreateSMContext Request message to the
SMF. ® The SMF retrieves from the UDM the information needed
to set up a connection (e.g., the maximum bandwidth). So far the
call flow follows the standard PDU session establishment proce-
dure [4]. To support malware detection, an extra flag is added to
the retrieved data, indicating whether this subscriber requires the
OMADS5G service for this DN. @ If the service is enabled, when a
PDU session is established for a given DN the SMF tells the PDU
Session Anchor (PSA) UPF to enable malware detection in the N4
Session Establishment message, which is also used to create the
context and install packet forwarding rules in the UPF. The PSA
UPF serves as the anchor point for a PDU session to a given DN for
a geographical region. As long as the UE stays in this region all its

Zhixin Wen and Guanhua Yan

traffic goes through the PSA UPF before reaching the DN, which
preserves the same IP address and connection. Therefore, installing
malware classification models on the PSA UPF allows for persistent
malware detection even under device mobility. (3 The UPF notifies
the SMF that the PDU session has been successfully established for
the UE in the data plane.

Malware notification. The call flow notifying an UE of mal-
ware infection, shown in Figure 4(3), includes three steps. @ Once
a PDU session is detected to contain malware traffic, the UPF sends
out an alert to the SMF using a N4 Session Report Request mes-
sage [4]. @ The SMF requests the SMSF to send a text message
to the UE about malware infection. This is done via the SMSF’s
Nsmsf_SMService_UplinkSMS APIL (3 The message is sent to the
UE via AMF using its Namf_Communication_N1N2MessageTransfer.

8 Evaluation

We have developed a prototype of the OMAD5G system based
on VET5G [77], which is a testbed dedicated to 5G network secu-
rity experimentation. We modify its SMF, NRF and UDM, which
are implemented in Rust, to support the call flows introduced by
OMADS5G. We implement the USF in Python due to its use of Py-
Torch for model training. We choose HiP4-UPF [78] as the 5G
UPF implementation deployed on P4 programmable switches be-
cause its various optimization techniques improve scalability over
other implementations [57, 63]. We make HiP4-UPF run on an Intel
Tofino-based Netberg Auaro 710 programmable switch and imple-
ment the controller and the monitor as shown in Figure 3. The
controller running on the switch CPU is implemented in Rust along
with the existing UPF’s controller program, while the monitor is
implemented in the P4 language. The USF contains around 1400
lines of Python code and the modified UPF uses about 2,300 lines
of P4 code. The traffic collector in the off-path detection module
has around 1500 lines of Rust code and the off-path detector based
on the transformer neural network has around 380 lines of Python
code. More implementation details are provided in Appendix D.

8.1 Dataset description

Although there are many public mobile malware sample datasets,
few provide mobile traffic traces induced by realistic human opera-
tions. The popular CICAndMal2017 dataset [52] is the only one we
have found that contains traffic traces collected from the executions
of a large number of both malicious and benign Android apps. The
dataset contains 426 malicious and 1700 benign pcap traces. To
address the dataset scarcity issue, we created the ZooBazaar2024
dataset by downloading the latest Android apps from both Andro-
Zoo [10] and MalwareBazaar [7]. We asked forty students to run
these applications within Android Emulator (Version 31.1.4.0) for
at least five minutes to stimulate realistic mobile traffic. Each app
was executed only once. Eventually, we obtained PCAP traces of
474 benign and 515 malicious apps for the ZooBazaar2024 dataset.

Dataset statistics. The basic statistics of both the CICAnd-
Mal2017 and ZooBazaar2024 datasets are given in Table 2. We notice
that on average each PCAP trace in the CICAndMal2017 dataset
lasts longer than that in the ZooBazaar2024 dataset, but there are
fewer packets in each PCAP trace in the former dataset than the
latter. Although the CICAndMal2017 dataset includes fewer DNS

OMAD5G: Online Malware Detection in 5G Networks using Compound Paths

Table 2: Basic statistics (means and standard deviations) of PCAP traces in CICAndMal2017 and ZooBazaar2024 datasets

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

Dataset Label Samples Duration Packets DNS Request | Distinct Simplified
(seconds) Packets Domain Names
Benign 1700 636.4 £515.8 11327.7 +£ 10788.9 129.1 +£125.3 35.7+16.0
CICAndMal2017 L
navia Malicious 426 2766.6 £ 527.7 | 55197.1 £ 214924.1 643.4 + 337.4 110.7 £ 41.2
ZooBazaar2024 Benign 474 453.9 £ 393.6 66026.1 + 99787.8 302.3 +£196.8 27.1+25.8
Malicious 512 371.7 £413.5 59636.9 = 84798.7 | 1130.2 = 13615.1 79.6 £ 1106.9

request packets in each PCAP trace, its average number of dis-
tinct simplified domain names in each trace is higher than that in
the ZooBazaar2024 dataset. Also, the domain names requested by
the malware samples in the ZooBazaar2024 dataset exhibit high
variation: there are 7 malware apps with more than 100 distinct
simplified domain names, while 34 of them request fewer than 10
distinct simplified domain names.

The differences in traffic characteristics between the two datasets
can result from multiple factors. First, the mobile apps used in the
ZooBazaar2024 dataset are much more recent than those in the
CICAndMal2017 dataset. Second, the mobile traffic traces were
obtained from real smart phones for the CICAndMal2017 dataset,
while for the ZooBazaar dataset they were captured from emulated
Android devices operated by different human users. Using these two
different datasets can provide more insights into the performances
of OMAD5G when it is deployed in diverse real-world scenarios.

Data mixing. Many PCAP traces last only for a short period. As
in practice mobile users may switch among different apps on their
phones, we concatenate multiple PCAP traces to create a mixed
dataset with longer periods of PCAP traces as follows. To support
5-fold nested cross validation, we first divide the PCAP files in each
dataset into three types (i.e. training, validation, testing) and we
only mix PCAP files from the same type. The training set is used to
train the models, the validation set is used for tri-threshold learning,
and the testing set is used for performance assessment.

The mixed traffic trace for each UE is created as follows. For one
not infected by malware, we concatenate randomly chosen benign
PCAP files until the total duration exceeds T time units. To create
a sample traffic trace for a malware-infected UE, we mix benign
and malicious pcaps from the same type by choosing @ benign
PCAP files after each malicious one. By default we let ., which is
called a mixing ratio, be three. We keep selecting malicious and
benign PCAP files with replacement until the total duration exceeds
T time units. Thereafter we randomize the order of all selected
PCAP files and concatenate these PCAP traces to simulate the
UE’s traffic. We name the mixed datasets based on CICAndMal2017
and ZooBazaar2024 as CICAndMal2017-mixed and ZooBazaar2024-
mixed, respectively. After data mixing, the domain name statistics
are explained in Appendix E.

8.2 Comparison with existing methods

PCAP-based detection. A number of methods have used the PCAP
files in the CICAndMal2017 dataset to evaluate malware detection
performances and they can be classified into two categories: tradi-
tional models [8, 52] and deep learning models [37, 41, 48]. We thus
use it to justify the choices of both on-path and off-path malware
detection models used by OMAD5G. For either model, we use a

threshold of 1% false positive rate to search its hyperparameters
based on the validation dataset. We measure malware detection
performances using precision and recall metrics at the PCAP trace
level. Given that the numbers of true positives, false positives, true
negatives, and false negatives are TP, FP, TN, and FN, respectively,
the precision is TP / (TP + FP) and the recall is TP / (TP + FN).

Table 3 compares the precisions and recalls of different methods
based on the CICAndMal2017 dataset. The results show that the
domain name-based on-path malware detector is comparable to
the traditional models, although applying the 1% false position
rate threshold in model training renders it to have much higher
precisions while sacrificing recalls. We believe that this is a right
choice as a malware detection system with high false alarm rates is
usually less useful in practice [40, 71]. On the other hand, the off-
path malware detector in OMAD5G has comparable performances
as the existing deep learning-based methods.

Table 3: Performance comparison with previous malware de-
tectors based on the CICAndMal2017 dataset. Deep learning
models are indicated by *.

Work Precision Recall Algorithm
Lashkari [52] 85.88% 88.30% Random Forest
Lashkari [52] 85.40% 88.10% KNN

Lashkari [52] 85.10% 88.00% Decison Tree
Abuthawabeh [8] 86.65% 89% Random Forest
Feng [37] 99.2% 98.2% CACNN*
Imitiaz [48] 93.5% 93.4% DeepAMD*
Gohari [41] 99.79% 99.5% CNN-LSTM*
OMAD5G:Doy 94.46% 82.93% Section 5.1
OMADS5G:Dopr 97.40% 99.76% Section 5.2*

In-network detection. We perform experiments to compare the
on-path malware detector Dop in OMADSG and a state-of-the-art
in-network traffic classifier, NetBeacon [84]. We choose NetBeacon
for performance comparison because its implementation code is
publicly available [1], it has better detection accuracy and scalability
than previous solutions [79], and its line-speed detection capability
cannot be achieved by the previous work using the switch CPU for
inference [24]. NetBeacon differentiates short and long flows. For
short flows, it uses pure per-packet features to detect suspicious
traffic so there is no need to store states for them. For long flows,
it first uses hardware hashing to map them to a fixed number of
stored states and then applies multi-phase sequential models on
flow-level features for traffic detection. Decision tree forest models
(e.g., Random Forest and XGBoost) are used to classify traffic flows.

The vanilla NetBeacon does not support integration with any
existing 5G UPFs. We thus port it onto a P4 programmable switch

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

Table 4: Comparison of UPF functionalities and detection
performances for on-path malware detection

Functionalities NetBeacon NetBeacon OMADS5G
& Performances -full -partial (DonN)
Simple PDR v v v
Complex PDR X X 4
Forwarding X 4 v
IP routing X v v

Usage reporting X v 4

QoS enforcement X X v
Number of UEs 59K 15K 124K
Precision 94.00% 93.63% 94.46%
Recall 62.82% 63.05% 82.93%

along with HiP4-UPF [78] to build a new UPF named as NetBeacon-
UPF. As NetBeacon performs traffic classification based on network
flows while OMADS5G detects malware traffic at the UE level, we
let NetBeacon-UPF use the following rule for UE-level malware
detection: for any UE, if more than ¢ flows associated with it have
been detected to be malicious by NetBeacon, the UE is deemed to
be malware-infected. In our experiments, we search threshold & to
achieve a targeted precision of 95%. NetBeacon-UPF also uses the
default number (65,536) of stored states for hashed long flows.

Despite our best effort, we could not build a functional NetBeacon-
UPF with all UPF features included. When the requested resources
exceed the limit available on the P4 programmable switch, the P4
compiler outputs an error message. Hence, we consider two differ-
ent approaches to reduce the resource usages. In the NetBeacon-full
solution, we keep all NetBeacon functionalities intact but remove
some UPF functionalities. We find that almost all UPF functionali-
ties except traffic classification based on the simple PDR (Packet
Detection Rule) table have to be removed. In the NetBeacon-partial
solution, we remove two features used by NetBeacon, minimum
packet size and variance of packet size, so only QoS enforcement
and packet classification based on the complex PDR table have to
be excluded from the UPF. By contrast, OMAD5G is able to work
with all UPF functionalities enabled.

Table 4 summarizes the comparison results with NetBeacon.
The NetBeacon-full and NetBeacon-partial approaches can support
59K and 15K UEs, respectively. Although NetBeacon-full uses all
NetBeacon functionalities, it disables most of UPF functionalities,
which allows it to accommodate more UEs than NetBeacon-partial.
By contrast, OMADS5G can support as many as 124K UEs, suggesting
its superior scalability. NetBeacon-full and NetBeacon-partial have
similar detection performances with precision at ~94% and recall at
~63%. In comparison, the Doy detector in OMADS5G can achieve
a recall of 82.93%, which is a 31.6% improvement with a similar
precision. These experimental results have demonstrated that our
DNS-based on-path malware detector outperforms NetBeacon on both
detection accuracy and deployment scalability.

8.3 Integrated detection performances
As shown in Figure 2, OMAD5G uses three separate malware detec-

tors, two for on-path malware detection (D)}, and DOO];\J;) and one

Zhixin Wen and Guanhua Yan

for off-path malware detection (Dg];J;) We use the CICAndMal2017-
mixed and ZooBazaar-mixed datasets to evaluate the performances
of integrated detection where all three malware detectors are used.
As PCAP traces are concatenated, we need to consider how the
detection windows decided by w overlap with the original PCAP
traces. It is possible that a detection window does not contain suffi-
cient malicious traffic for malware detection. When we generate
malicious training samples, we require a malicious training sample
to be a detection window that either (a) covers at least a fraction
of an individual malicious PCAP trace or (b) has at least a fraction
B of its duration overlapping with one or more malicious individual
PCAP traces. We call fraction f the overlapping ratio.

We let each detection window in both on-path and off-path
malware detection last 30 minutes (i.e., = 30 minutes). To generate
benign samples, we mix only benign individual PCAP traces. We
then apply 30-minute windows on the concatenated traces to extract
domain name features and FC/PC/TS ones for the benign samples.
To create malicious samples, we mix both benign and malicious
individual PCAP traces with a mixing ratio of @ = 3. From these
concatenated PCAP traces, we use only those 30-minute windows
with an overlapping ratio of at least § = 0.7 as malicious samples for
model training. In total we have created 10,200 training windows,
including 5,100 benign samples and 5,100 malicious ones.

For the validation dataset, we create 1,200 mixed traffic traces,
each lasting at least four hours. They include traffic traces of 120
malware-infected UEs and 1,080 clean ones. Hence, the fraction
of malware-infected UEs is 10%. Similarly, for testing purposes,
we also create 1,200 mixed PCAP traces with the same fraction of
malware-infected UEs. We measure the detection accuracy at the
UE level: a clean UE alerted to be malware-infected is treated as a
false positive. Otherwise, if a malware-infected UE is missed by the
malware detector, it is deemed as a false negative. We choose false
positive rate (FPR) and detection rate (DR), where FPR = FP / (FP +
TN) and DR = TP / (TP + FN), for performance evaluation.

We set parameter 7, which is used in tri-threshold learning as
the limit on the fraction of UEs whose traffic can be mirrored for
off-path malware detection, to be 40% by default. The targeted false
positive rate (i.e., parameter ¢) is set to be 1%.

As shown in Figure 2, the operations of the three detectors (i.e.,

D3k Dgy-and Dy
detection performances of DZJ ., DOOrJlV"'ng;\]IC’ and D (i.e., DZy+
Dg];\j; + DOO];J;) For the D7}, detector, if a UE is flagged as positive
by D%, within any of the detection windows, it is deemed malware-

) depend upon each other. Figure 5 compares

infected. For the DZ}; + Dg)]?; detector, if a UE is flagged as positive

by either DZJ}; or Dl())];\J]C within any of the detection windows, the
UE is treated to be malware-infected. For the D4y detector, if a

UE is flagged as positive by either D}, or Dg;]; within any of the
detection windows, it is deemed to be malware-infected.

Figure 5 reveals that the overall performance achieved by Dy,
reaches a false positive rate of 0.9 + 1.8% and a detection rate of
95.7 + 3.2% for CICAndMal2017-mixed and a false positive rate of
0.9 + 0.7% and a detection rate of 94.7 + 1.7% for ZooBazaar-mixed.
For both datasets OMAD5SG has achieved the targeted average
false positive rate, which is below 1%. The detection performance

differences seen in Figure 5 shows the different roles played by the

OMAD5G: Online Malware Detection in 5G Networks using Compound Paths

E=S FPR

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

E=S FPR XX DR]
1.0 3 10
Il -
038 o 08 =
8 3
é 0.6 5 é 0.6
204 s 204
& &
0.2 % 0.2
0.0 e 0.0 =
Dy Do+ DY Dare Dy

Detector

(1) CICAndMal2017-mixed

Figure 5: Integrated detection performances of OMAD5G

three individual detectors. For D‘(’)'}V, although its false positive rate

is low, its detection rate is only ~31% for CICAndMal2017-mixed

and ~78% for ZooBazaar2024-mixed. D(O)flf is able to catch almost
all malware-infected UEs for both datasets, but its false positive
rate can be high: about 78% for CICAndMal2017-mixed and 25%
for ZooBazaar2024-mixed. DOOJ;fF is able to further improve the
detection performances: for both datasets, it can detect ~95% of the
malware-infected UEs while having a false positive rate below 1%.
The tiered detection scheme adopted by OMAD5G avoids mir-
roring all UEs’ mobile traffic to the heavyweight off-path malware
detection module. From the experiments, we observe that the av-
erage fraction of UEs whose traffic is mirrored to the off-path de-
tection module per detection window is 39.7% and 10.9% for the
CICAndMal2017-mixed and ZooBazaar2024-mixed datasets, respec-
tively. As parameter 7 is set to be 40% in our experiments, the results
imply that its impact on tri-threshold learning is more significant
with CICAndMal2017-mixed than that with ZooBazaar2024-mixed.
Effect of targeted false positive rate ¢. We vary the targeted
FPR ¢ among 1%, 3%, and 5% while keeping n = 40% and f = 0.7.
Figure 6 shows how the detection rate changes with parameter
¢. We notice that for both datasets, when ¢ increases from 1% to
3%, the detection rate also increases. This is unsurprising because
a higher ¢ means that a higher false positive rate can be toler-
ated to achieve higher detection rates. Indeed, when ¢ = 1%, the
observed detection rate is 95.7% for CICAndMal2017-mixed and
94.7% for ZooBazaar2024-mixed while the false positive rates are
0.9% for both datasets. When ¢ increases to 3%, the observed detec-
tion rate becomes 100% and 96.6% for CICAndMal2017-mixed and
ZooBazaar2024-mixed, respectively, and the false positive rates are
2.7% and 2.9% for the two datasets, respectively. However, when we
further increase ¢ from 3% to 5%, the detection rate does not change
significantly any more. This is because even with increased ¢, the
observed false positive rates still stay the same for both datasets.
Effect of mirroring limit parameter 1. The mirroring limit
parameter 7 gives the maximum fraction of UEs whose traffic could
be forwarded to the off-path detection module. We vary n from 10%
to 100% while keeping ¢ = 1% and f = 0.7. For the CICAndMal2017-
mixed dataset, when 7 is less than 40%, the tri-threshold learning
step fails to find proper thresholds that can achieve the targeted FPR
of 1% based on the validation dataset. When 7 increases to 40%, a
detection rate of 95.7% can be achieved on the testing dataset. When
we further increase 1 to 50% or higher, OMADS5G can achieve a
detection rate of 100%. For the ZooBazaar2024-mixed dataset, when

(2) ZooBazaar2024-mixed

B9 DR CICANdMal2017 --§-- ZooBazaar2024 |
333 22 100.0
= 3 975
R L
= -
o 95.0 T
92.5¢ I i
1% 3% 5%
Dgy+ Dy Dawe FPR target ¢

Detector

Figure 6: Effects of targeted false positive
rate ¢ on detection performances

1 = 10%, no proper thresholds can be found to achieve the targeted
FPR of 1% based on the validation dataset. When we increase 7 to
20% or higher, the detection rate becomes stable at about 95%.

These results agree well with the experimental results shown
in Figure 5. The domain name-based features have weaker pre-
dictive power in the CICAndMal2017-mixed dataset than them
in the ZooBazaar2024-mixed dataset, as evidenced by the detec-
tion rate of Dg’}v for ZooBazaar2024-mixed, which is more than
double of that for CICAndMal2017-mixed. Hence, to achieve high
detection accuracy, a larger portion of traffic has to be mirrored
to the off-path detection module for CICAndMal2017-mixed than
for ZooBazaar2024-mixed. When there is sufficient traffic mirrored
to the off-path detection module, further increasing parameter 1
affects little its detection performance for both datasets. The peak
detection performance with sufficient mirrored mobile traffic is
affected by the discriminatory power of the FC/PC/TS features
when they are fed to the transformer neural network model. For
CICAndMal2017-mixed, the peak detection rate of OMADS5G can
reach almost 100% while for ZooBazaar2024-mixed, its peak detec-
tion rate stays at ~95%.

Effect of overlapping ratio . We vary f from 0.1 to 0.9 to
study its effects. We set the targeted FPR to be below 1%. We also
let the mirroring limit parameter 1 be 100% (i.e., no limit in traffic
mirroring) to constrain its own impact on tri-threshold learning.
Figure 8 shows how the detection rate is affected by parameter f.
We notice that for both datasets, the optimal value for f is 0.7. If
B is too low the training data can be more noisy because a detec-
tion window even with few malicious network activities are still
labelled as positive. By contrast, if § is too high, only those detec-
tion windows containing intensive malicious network activities
are labelled as positive; therefore, the detection model has weaker
generalization capabilities to detect those malware-infected UEs
with fewer malicious network activities.

8.4 Resource usage on P4 programmable switch

Due to limited TCAM and SRAM memory on the P4 programmable
switch, the P4 compiler produces an error if the switch does not
have enough resources to support all the PDU sessions. With the
malware detection service enabled for all UEs, the UPF can have up
to 124K PDU sessions on the Intel Tofino-based P4 programmable
switch. Table 5 shows the amount of resources consumed by the
UPF with and without OMADS5G. By comparing the first two rows,
we observe that DNS packet processing for feature extraction sig-
nificantly increases the resource usages by both Packet Header

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

CICAndMal2017

CICAndMal2017 -4+ ZooBazaar2024

Zhixin Wen and Guanhua Yan

100/ 100
(o‘ ;5 T I
<] = 90w
2 95 fofped Iz T !

80
90 ———— : | i
1020304050 100 01 03

Mirroring limit n (%)

g ZooBazaar2024}
__160 —&— Session
S
2

.......... 4. » 150
g
2 140
2
2

‘ ‘ 2 130
0.7 0.9

Overlapping ratio 8

0 10 20 30 40 50 60 70 80 90 100
Percentage of UEs with COMMALD5G service enabled

Figure 7: Effects of mirroring limit pa- Figure 8: Effects of overlapping ratio

rameter 7 on detection performances

Table 5: Resource usage of OMAD5G. The first row shows
resource usage with only UPF deployed with neither domain
reputation score tracking nor DNS packet parsing. The sec-
ond row shows resource usage with DNS packet parsing and
hashing but no reputation score tracking. The last row is the
case when the full OMADS5G service is deployed.

Service No. of No. of Parser
On? Domains Sessions SRAM - PHV States
No 0 0 72.0% 37.0% 52.7%
Yes 0 0 75.5% 70.9% 73.8%
Yes 2% 8192 124K 89.7% 70.6% 73.8%

Vectors (PHVs) and parser states. PHVs are temporary registers
used to store fields extracted from packet headers. This observation
is unsurprising as the monitor run by the switch ASIC needs to
parse DNS packets and store extracted domain names.

The third row presents the resource usages when the full OMAD5G
service is enabled for all 124K PDU sessions. In this case, malicious
domain tracking is turned on and there are two malware classifica-
tion models, each including reputation scores for 8192 simplified
domain names. In comparison against the second row, we observe
that these functionalities increase the SRAM usage by 18.8%. The
extra SRAM usage results from the storage of domain reputation
scores, mapping from PDU session IDs to indices of reputation
scores, and the storage of session-level reputation scores.

We perform new experiments to study how the maximum num-
ber of PDU sessions supported on the UPF is affected by the fraction
of UEs with the service enabled. The results are depicted in Figure 9.
With no UE opting to enable the service, the maximum number of
PDU sessions supported is 162K, which is 6% fewer than the 173K
PDU sessions supported by the vanilla UPF. It is noted that even
if no UE enables the malware detection service, resources are still
allocated for DNS packet parsing and model storage. With an in-
creasing fraction of UEs enabling malware detection, the maximum
number of PDU sessions supported decreases almost linearly.

8.5 Execution performances

As the on-path malware detection module is performed by the
switch ASIC of the P4 programmable switch at line speed, its ex-
ecution performance is limited only by the hardware. We use the
CICAndMal2017-mixed dataset to evaluate the execution perfor-
mance of the off-path malware detection module. We assume that

on detection performances

Figure 9: Number of PDU sessions with
the fraction of UEs enabling OMAD5G

there are 5,000 UEs, each with one-hour mixed PCAP traces. We
use Cisco’s TRex tool [28] to replay these traces to the UPF in real
time. We use two computer servers connected via two 100 Gigabit
Ethernet cables, both of which are also connected to a Netberg
Aurora 710 P4 programmable switch. One of the x86 server runs
TRex and serves as the traffic generator for the UPF. The other
server, which includes a 64-core Intel Xeon Gold 6338 CPU, 512GB
RAM and three NVIDIA RTX A6000 GPUs, executes both the traffic
collector and the off-path detector. Only one of the three GPUs,
each having 48GB Video Random Access Memory (VRAM), is used.

We measure the serving times of both the traffic collector and
the off-path malware detector. For each of the 5,000 UEs, we send
request messages to the traffic collector and the off-path detector
sequentially to prevent any waiting time from being included in
our measurements. Our results show that the serving time of the
traffic collector is 1.72 + 0.53 milliseconds, data preprocessing takes
36.71 + 17.26 milliseconds, and model inference by the off-path
detector takes 6.65 + 3.01 milliseconds with a peak VRAM usage of
7.3GB in the single GPU used in our experiments.

9 Conclusion

This work studies how to incorporate online malware detection
as an integral service in 5G networks. OMADS5G combines fast
DNS-based on-path malware detection and highly accurate off-
path malware detection using transformer neural networks. We
have implemented a prototype of OMADS5G based on an existing 5G
network testbed. Our results show that OMADS5G presents a holistic
solution to online malware detection in 5G networks that can tackle
the accuracy, scalability, and integrality challenges effectively.

In the future we will address the following limitations of this
study. Firstly, OMADS5G relies upon only domain name features for
on-path malware detection. We will investigate other complemen-
tary features that can be extracted efficiently from mobile network
traffic by P4 programmable switches to improve on-path malware
detection accuracy and robustness. Secondly, our evaluation experi-
ments used only two datasets in this study. We plan to collect more
realistic datasets with a larger number of human users operating
mobile apps on real devices. Lastly, as only Android mobile apps are
considered in this study, we will extend this study by developing
both on-path and off-path malware detectors for iOS mobile devices.

OMAD5G: Online Malware Detection in 5G Networks using Compound Paths

Acknowledgments

We thank the anonymous reviewers for their constructive feedback
and the shepherd for helping us in improving the final version of
this paper. This work is partially supported by the U.S. National
Science Foundation under award CNS-1943079.

References

[1]
[2
[3
[

4

(5]

[10]

[14]

[15

[16

[17]

[18]

[19

™
A=A

[21]

2023. NetBeacon. https://github.com/IDP-code/NetBeacon. (2023).

2025. https://snort.org/. (2025).

2025. https://zeek.org/. (2025).

3GPP. 2018. 5G; Procedures for the 5G System. Technical Specification (TS) 23.502.
3rd Generation Partnership Project (3GPP). https://www.etsi.org/deliver/etsi_ts/
123500_123599/123502/15.03.00_60/ts_123502v150300p.pdf Version 15.3.0.
3GPP. 2021. Security architecture and procedures for 5G system. Techni-
cal Specification (TS) 33.501. 3rd Generation Partnership Project (3GPP).
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.
aspx?specificationld=3169 Version 16.4.0.

3GPP. 2022. Interface between the Control Plane and the User Plane
Nodes. Technical Specification (TS) 29.244. 3rd Generation Partner-
ship Project (3GPP). https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationld=3111 Version 17.3.0.

abuse.ch. 2024. MalwareBazaar. https://bazaar.abuse.ch/. (2024).

Mohammad Abuthawabeh and Khaled W Mahmoud. 2020. Enhanced Android
malware detection and family classification, using conversation-level network
traffic features. The International Arab Journal of Information Technology 17, 4A
(2020), 607-614.

Mujtahid Akon, Tianchang Yang, Yilu Dong, and Syed Rafiul Hussain. 2023.
Formal Analysis of Access Control Mechanism of 5G Core Network. In Proceedings
of the 2023 ACM SIGSAC Conference on Computer and Communications Security.
666—680.

Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
Androzoo: Collecting millions of Android apps for the research community. In
Proceedings of the 13th international conference on mining software repositories.
468-471.

Manos Antonakakis, Roberto Perdisci, David Dagon, Wenke Lee, and Nick Feam-
ster. 2010. Building a dynamic reputation system for DNS. In Proceedings of the
19th USENIX Security Symposium.

Manos Antonakakis, Roberto Perdisci, Wenke Lee, Nikolaos Vasiloglou II, and
David Dagon. 2011. Detecting malware domains at the upper DNS hierarchy. In
Proceedings of the 20th USENIX Security Symposium.

Manos Antonakakis, Roberto Perdisci, Yacin Nadji, Nikolaos Vasiloglou, Saeed
Abu-Nimeh, Wenke Lee, and David Dagon. 2012. From Throw-Away Traffic
to Bots: Detecting the Rise of DGA-Based Malware. In Proceedings of the 21st
USENIX Security Symposium. 491-506.

Anshul Arora and Sateesh K Peddoju. 2017. Minimizing network traffic features
for Android mobile malware detection. In Proceedings of the 18th International
Conference on Distributed Computing and Networking. 1-10.

Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad
Rieck. 2014. Drebin: Effective and explainable detection of Android malware
in your pocket.. In Network and Distributed System Security Symposium, Vol. 14.
23-26.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
FlowDroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps. ACM Sigplan Notices 49, 6 (2014), 259-269.

Ofek Bader, Adi Lichy, Chen Hajaj, Ran Dubin, and Amit Dvir. 2022. MalDIST:
From encrypted traffic classification to malware traffic detection and classification.
In Proceedings of the 19th Annual Consumer Communications and Networking
Conference. IEEE, 527-533.

David Basin, Jannik Dreier, Lucca Hirschi, Sasa Radomirovic, Ralf Sasse, and
Vincent Stettler. 2018. A formal analysis of 5G authentication. In Proceedings
of the 2018 ACM SIGSAC conference on computer and communications security.
1383-1396.

Ramzi Bassil, Ali Chehab, Imad Elhajj, and Ayman Kayssi. 2012. Signaling oriented
denial of service on LTE networks. In Proceedings of the 10th ACM International
Symposium on Mobility Management and Wireless Access. 153-158.

Leyla Bilge, Engin Kirda, Christopher Kruegel, and Marco Balduzzi. 2011. Expo-
sure: Finding malicious domains using passive DNS analysis.. In Proceedings of
Network and Distributed System Security Symposium. 1-17.

Evangelos Bitsikas, Syed Khandker, Ahmad Salous, Aanjhan Ranganathan, Roger
Piqueras Jover, and Christina Pépper. 2023. UE Security Reloaded: Developing
a 5G Standalone User-Side Security Testing Framework. In Proceedings of the
16th ACM Conference on Security and Privacy in Wireless and Mobile Networks.
121-132.

[22]

[23

[24

[26

[27

[28

[29]

@
=

[31

[32

[33

&
=)

[35

[36

[37

S
=

(41

[42

[43

[44

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

Giampaolo Bovenzi, Francesco Cerasuolo, Antonio Montieri, Alfredo Nascita,
Valerio Persico, and Antonio Pescapé. 2022. A comparison of machine and deep
learning models for detection and classification of Android malware traffic. In
Proceedings of IEEE Symposium on Computers and Communications. IEEE, 1-6.
Saurabh Chakradeo, Bradley Reaves, Patrick Traynor, and William Enck. 2013.
Mast: Triage for market-scale mobile malware analysis. In Proceedings of the sixth
ACM conference on Security and privacy in wireless and mobile networks. 13-24.
Hsin-Fu Chang, Michael I-C Wang, Chi-Hsiang Hung, and Charles H-P Wen. 2022.
Enabling malware detection with machine learning on programmable switch. In
Proceedings of IEEE/IFIP Network Operations and Management Symposium. IEEE,
1-5.

Rong Chen, Yangyang Li, and Weiwei Fang. 2019. Android malware identification
based on traffic analysis. In Proceedings of the 5th International Conference on
Artificial Intelligence and Security. Springer, 293-303.

Zhenxiang Chen, Hongbo Han, Qiben Yan, Bo Yang, Lizhi Peng, Lei Zhang, and
Jin Li. 2015. A first look at Android malware traffic in first few minutes. In
Proceedings of IEEE Trustcom/BigDataSE/ISPA, Vol. 1. IEEE, 206-213.

Chhaya Choudhary, Raaghavi Sivaguru, Mayana Pereira, Bin Yu, Anderson C
Nascimento, and Martine De Cock. 2019. Algorithmically generated domain de-
tection and malware family classification. In International Symposium on Security
in Computing and Communications. Springer, 640-655.

Cisco. 2024. TRex Low-Cost, High-Speed Stateful Traffic Generator. https:
//github.com/cisco-system-traffic- generator/trex- core. (2024).

C Cremers and M Dehnel-Wild. 2019. Component-based formal analysis of 5G-
AKA: channel assumptions and session confusion. In Proceedings of Network and
Distributed System Security Symposium. Internet Society.

Thiago A Navarro do Amaral, Raphael V Rosa, David F Cruz Moura, and Chris-
tian E Rothenberg. 2021. An in-kernel solution based on xdp for 5g upf: Design,
prototype and performance evaluation. In 2021 17th International Conference on
Network and Service Management (CNSM). IEEE, 146-152.

Christo El-Morr, Manar Jammal, Hossam Ali-Hassan, and W El-Hallak. 2022.
Machine Learning for Practical Decision Making. International Series in Operations
Research and Management Science (2022).

William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. 2014.
TaintDroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Transactions on Computer Systems (TOCS) 32, 2 (2014),
1-29.

William Enck, Patrick Traynor, Patrick McDaniel, and Thomas La Porta. 2005.
Exploiting open functionality in SMS-capable cellular networks. In Proceedings
of the 12th ACM conference on Computer and communications security. 393-404.
Somayyeh Fallah and Amir Jalaly Bidgoly. 2022. Android malware detection
using network traffic based on sequential deep learning models. Software: Practice
and Experience 52, 9 (2022), 1987-2004.

Kaiming Fang and Guanhua Yan. 2020. Paging storm attacks against 4G/LTE
networks from regional Android botnets: rationale, practicality, and implications.
In Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and
Mobile Networks. 295-305.

Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David
Wagner. 2011. A survey of mobile malware in the wild. In Proceedings of the Ist
ACM Workshop on Security and Privacy in Smartphones and Mobile Devices. 3-14.
Jiayin Feng, Limin Shen, Zhen Chen, Yuying Wang, and Hui Li. 2020. A two-layer
deep learning method for Android malware detection using network traffic. IEEE
Access 8 (2020), 125786-125796.

Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. 2014. Apposcopy: Semantics-
based detection of Android malware through static analysis. In Proceedings of the
22nd ACM SIGSOFT international symposium on foundations of software engineer-
ing. 576-587.

Jodo Gama, Indré Zliobaité, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. 2014. A survey on concept drift adaptation. ACM computing surveys
(CSUR) 46, 4 (2014), 1-37.

Carrie Gates and Carol Taylor. 2006. Challenging the anomaly detection para-
digm: A provocative discussion. In Proceedings of The Workshop on New Security
Paradigms. 21-29.

Mabhshid Gohari, Sattar Hashemi, and Lida Abdi. 2021. Android malware detection
and classification based on network traffic using deep learning. In Proceedings of
the 7th International Conference on Web Research. IEEE, 71-77.

Ian] Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang. 2012.
Riskranker: scalable and accurate zero-day Android malware detection. In Pro-
ceedings of the 10th International Conference on Mobile Systems, Applications, and
Services. 281-294.

GSMA. 2023. The 5G Era: How 5G is Changing the World. (September
2023). https://www.gsma.com/futurenetworks/networks-blog-series/the-5g-era-
how-5g-is-changing- the-world/

https://github.com/IDP-code/NetBeacon
https://snort.org/
https://zeek.org/
https://www.etsi.org/deliver/etsi_ts/123500_123599/123502/15.03.00_60/ts_123502v150300p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123502/15.03.00_60/ts_123502v150300p.pdf
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3169
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3169
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3111
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3111
https://bazaar.abuse.ch/
https://github.com/cisco-system-traffic-generator/trex-core
https://github.com/cisco-system-traffic-generator/trex-core
https://www.gsma.com/futurenetworks/networks-blog-series/the-5g-era-how-5g-is-changing-the-world/
https://www.gsma.com/futurenetworks/networks-blog-series/the-5g-era-how-5g-is-changing-the-world/

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

[45]

[46]

[47]

[48]

[49

[50]

[51]

(52

[53

[54]

[55

[56

[57]

[58]

[59

[60]

[61]

[62]

[63]

[64

o
)

[66]

[67

[68]

[69

Josh Howarth. 2023. Internet Traffic from Mobile Devices (Sept 2023).
(2023). https://explodingtopics.com/blog/mobile-internet-traffic#percentage-
of-mobile-traffic

Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and
J Doug Tygar. 2011. Adversarial machine learning. In Proceedings of the 4th ACM
Workshop on Security and Artificial Intelligence. 43-58.

Syed Rafiul Hussain, Mitziu Echeverria, Imtiaz Karim, Omar Chowdhury, and
Elisa Bertino. 2019. 5GReasoner: A property-directed security and privacy analy-
sis framework for 5G cellular network protocol. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. 669-684.

Syed Ibrahim Imtiaz, Saif ur Rehman, Abdul Rehman Javed, Zunera Jalil, Xuan
Liu, and Waleed S Alnumay. 2021. DeepAMD: Detection and identification of
Android malware using high-efficient Deep Artificial Neural Network. Future
Generation computer systems 115 (2021), 844-856.

Roger Piqueras Jover and Vuk Marojevic. 2019. Security and protocol exploit
analysis of the 5G specifications. IEEE Access 7 (2019), 24956—-24963.

Alexander Kaplan and Shir Landau Feibish. 2022. Practical handling of DNS in
the data plane. In Proceedings of the Symposium on SDN Research. 59-66.
Angelo Cardoso Lapolli, Jonatas Adilson Marques, and Luciano Paschoal Gas-
pary. 2019. Offloading real-time DDoS attack detection to programmable data
planes. In Proceedings of IFIP/IEEE Symposium on Integrated Network and Service
Management. IEEE, 19-27.

Arash Habibi Lashkari, Andi Fitriah A Kadir, Laya Taheri, and Ali A Ghorbani.
2018. Toward developing a systematic approach to generate benchmark android
malware datasets and classification. In Proceedings of the International Carnahan
Conference on Security Technology. IEEE, 1-7.

Jehyun Lee and Heejo Lee. 2014. GMAD: Graph-based Malware Activity Detec-
tion by DNS traffic analysis. Computer Communications 49 (2014), 33-47.
Patrick PC Lee, Tian Bu, and Thomas Woo. 2007. On the detection of signaling
DosS attacks on 3G wireless networks. In Proceedings of the 26th IEEE International
Conference on Computer Communications. IEEE, 1289-1297.

Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee, Changhoon
Kim, Xin Jin, Vladimir Braverman, Minlan Yu, and Vyas Sekar. 2021. Jagen: A high-
performance switch-native approach for detecting and mitigating volumetric
DDoS attacks with programmable switches. In Proceedings of the 30th USENIX
Security Symposium. 3829-3846.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

Robert MacDavid, Carmelo Cascone, Pingping Lin, Badhrinath Padmanabhan,
Ajay Thakur, Larry Peterson, Jennifer Rexford, and Oguz Sunay. 2021. A P4-based
5G user plane function. In Proceedings of the ACM SIGCOMM Symposium on SDN
Research. 162-168.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2017. Towards deep learning models resistant to adversarial attacks.
arXiv preprint arXiv:1706.06083 (2017).

Jyoti Malik and Rishabh Kaushal. 2016. CREDROID: Android malware detection
by network traffic analysis. In Proceedings of the 1st ACM Workshop on Privacy-
Aware Mobile Computing. 28-36.

Khulood Al Messabi, Monther Aldwairi, Ayesha Al Yousif, Anoud Thoban, and
Fatna Belqasmi. 2018. Malware detection using DNS records and domain name
features. In Proceedings of the 2nd International Conference on Future Networks
and Distributed Systems. 1-7.

Jose Andre Morales, Areej Al-Bataineh, Shouhuai Xu, and Ravi Sandhu. 2010.
Analyzing and exploiting network behaviors of malware. In Proceedings of In-
ternational ICST Conference on Security and Privacy in Communication Networks.
Springer, 20-34.

Mozilla. 2020. PUBLIC SUFFIX LIST. (September 2020). https://publicsuffix.org/
ONF. 2021. SD-FABRIC: Open Source Full-Stack Programmable Leaf-Spine
Network Fabric. https://opennetworking.org/wp-content/uploads/2021/06/SD-
Fabric-White-Paper-FINAL.pdf. (2021).

Sourav Panda, KK Ramakrishnan, and Laxmi N Bhuyan. 2022. Synergy: A smart-
nic accelerated 5G dataplane and monitor for mobility prediction. In 2022 IEEE
30th International Conference on Network Protocols (ICNP). IEEE, 1-12.

Attia Qamar, Ahmad Karim, and Victor Chang. 2019. Mobile malware attacks:
Review, taxonomy & future directions. Future Generation Computer Systems 97
(2019), 887-909.

Vaibhav Rastogi, Yan Chen, and William Enck. 2013. AppsPlayground: automatic
security analysis of smartphone applications. In Proceedings of the Third ACM
conference on Data and Application Security and Privacy. 209-220.

Luca Schumann, Trinh Viet Doan, Tanya Shreedhar, Ricky Mok, and Vaibhav
Bajpai. 2022. Impact of evolving protocols and COVID-19 on Internet traffic
shares. arXiv preprint arXiv:2201.00142 (2022).

Clayton Scott. 2007. Performance measures for Neyman-Pearson classification.
IEEE Transactions on Information Theory 53, 8 (2007), 2852-2863.

Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss. 2012.
“Andromaly”: a behavioral malware detection framework for Android devices.
Journal of Intelligent Information Systems 38, 1 (2012), 161-190.

[70

[71]

[72

(76

[77

3
&,

[79

(80]

(81]

[82

[83

(84

Zhixin Wen and Guanhua Yan

Deepak Sharma. 2016. Android malware detection using decision trees and
network traffic. International Journal of Computer Science and Information Tech-
nologies 7, 4 (2016), 1970-1974.

Robin Sommer and Vern Paxson. 2010. Outside the closed world: On using ma-
chine learning for network intrusion detection. In Proceedings of IEEE Symposium
on Security and Privacy. IEEE, 305-316.

Kimberly Tam, Salahuddin J Khan, Aristide Fattori, and Lorenzo Cavallaro. 2015.
Copperdroid: Automatic reconstruction of Android malware behaviors.. In Pro-
ceedings of the Network and Distributed System Security Symposium. 1-15.

Xin Tong, Yang Feng, and Anqi Zhao. 2016. A survey on Neyman-Pearson
classification and suggestions for future research. Wiley Interdisciplinary Reviews:
Computational Statistics 8, 2 (2016), 64-81.

Patrick Traynor, Chaitrali Amrutkar, Vikhyath Rao, Trent Jaeger, Patrick Mc-
Daniel, and Thomas La Porta. 2011. From mobile phones to responsible devices.
Security and Communication Networks 4, 6 (2011), 719-726.

Guan-Hua Tu, Chi-Yu Li, Chunyi Peng, Yuanjie Li, and Songwu Lu. 2016. New
security threats caused by IMS-based SMS service in 4G LTE networks. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. 1118-1130.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Proceedings of Advances in Neural Information Processing Systems 30
(2017).

Zhixin Wen, Harsh Sanjay Pacherkar, and Guanhua Yan. 2022. VET5G: A Virtual
End-to-End Testbed for 5G Network Security Experimentation. In Proceedings of
the 15th Workshop on Cyber Security Experimentation and Test. 19-29.

Zhixin Wen and Guanhua Yan. 2024. HiP4-UPF: Towards High-Performance Com-
prehensive 5G User Plane Function on P4 Programmable Switches. In Proceedings
of the 2024 USENIX Annual Technical Conference (ATC’24).

Guorui Xie, Qing Li, Yutao Dong, Guanglin Duan, Yong Jiang, and Jingpu Duan.
2022. Mousika: Enable general in-network intelligence in programmable switches
by knowledge distillation. In IEEE INFOCOM 2022-IEEE Conference on Computer
Communications. IEEE, 1938-1947.

Jinzhu Yan, Haotian Xu, Zhuotao Liu, Qi Li, Ke Xu, Mingwei Xu, and Jianping
Wu. 2024. Brain-on-Switch: Towards Advanced Intelligent Network Data Plane
via NN-Driven Traffic Analysis at Line-Speed. In Proceedings of the 21st USENIX
Symposium on Networked Systems Design and Implementation (NSDI 24). 419-440.
Bee Wah Yap and Chiaw Hock Sim. 2011. Comparisons of various types of
normality tests. Journal of Statistical Computation and Simulation 81, 12 (2011),
2141-2155.

Menghao Zhang, Guanyu Li, Shicheng Wang, Chang Liu, Ang Chen, Hongxin
Hu, Guofei Gu, Qiangian Li, Mingwei Xu, and Jianping Wu. 2020. Poseidon:
Mitigating volumetric DDoS attacks with programmable switches. In Proceedings
of the 27th Network and Distributed System Security Symposium (NDSS 2020).
Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu, Peng Ning, X Sean
Wang, and Binyu Zang. 2013. Vetting undesirable behaviors in Android apps
with permission use analysis. In Proceedings of the 2013 ACM SIGSAC conference
on Computer and Communications Security. 611-622.

Guangmeng Zhou, Zhuotao Liu, Chuanpu Fu, Qi Li, and Ke Xu. 2023. An efficient
design of intelligent network data plane. In Proceedings of the 32nd USENIX
Security Symposium.

Appendix A: Notations of detection models

Table 6 summarizes the notations of different malware detection
models used by OMAD5G.

Table 6: Explanations of detection models used by OMAD5G

Notation Explanation

D On-path detection model trained to predict malware
ON infection likelihood using objective function in Eq. (2)

D"Oj’i\} On-path detection model using LFP-threshold 77

Dg N On-path detection model using LFN-threshold G)OO];{;

D Off-path detection model (a transformer neural net-
OFF work) for predicting malware infection likelihood

Dg;]; Off-path detection model using threshold @ooj;];

https://explodingtopics.com/blog/mobile-internet-traffic#percentage-of-mobile-traffic
https://explodingtopics.com/blog/mobile-internet-traffic#percentage-of-mobile-traffic
https://publicsuffix.org/
https://opennetworking.org/wp-content/uploads/2021/06/SD-Fabric-White-Paper-FINAL.pdf
https://opennetworking.org/wp-content/uploads/2021/06/SD-Fabric-White-Paper-FINAL.pdf

OMAD5G: Online Malware Detection in 5G Networks using Compound Paths

Appendix B: Android system domains

Table 7 summarizes the list of domain names used by the Android
system by default.

Table 7: List of domains used by the Android system by de-

app-measurement.com
crashlytics.com

fault

Domain Name Usage
google.com Google
googleapis.com Google
gstatic.com Google
googleusercontent.com Google
android.com Google
gvtl.com Google
gvt2.com Google
googleadservices.com Google Ads
google-analytics.com Google Ads
doubleclick.net Google Ads

App service provided by Google
App service provided by Google

googletagmanager.com App service provided by Google
ntp.org Time sync

youtube.com Youtube

ytimg.com Youtube

tenor.com Android keyboard GIFs

Appendix C: Effects of feature types and model
hyperparameters on off-path malware detection

A new set of experiments with the same settings as in Section 8.2
are performed to evaluate the effects of different feature types
and model hyperparameters on off-path malware detection. We
examine the contributions of each individual type of features (i.e.,
FC, PC, or TS) to the detection accuracy measured in F-1 scores
and also study whether combining these different types of features
can help improve the detection accuracy. When PC features are
used, our transformer neural network architecture uses at least 80
bytes to ensure that they can at least cover an IP header (at least 20
bytes), a UDP header (at least 8 bytes), and some DNS request and
response contents. Hence, we let Npc be a multiple of 80 bytes in
our experiments.

The results with the CICAndMal2017 and ZooBazaar2024 datasets
are summarized in Table 8 and 9, respectively. We make the follow-
ing key observations. For the CICAndMal20217 dataset, using only
FC features leads to a good F1-score (97.03%) and adding TS features
improves the F1-score slightly by 1.3%; however, additional PC fea-
tures do not improve the detection accuracy. For the ZooBazaar2024
dataset, using only FC features leads to an F1 score of 85.24% and
adding TS features has little effect on the detection accuracy; by
contrast, increasing Npc for the PC features helps improve the F1
score. These observations suggest that using the combination of
FC, PC, and TS features for off-path malware detection leads to a
more robust model which can perform well in diverse situations.

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

Table 8: Comparison of feature choices in the off-path detec-
tion model for the CIC-AndMal2017 dataset. Our final model
choice is highlighted with *.

Features F1 (%)

FC 97.03 £ 0.51
PC[Np¢ = 160] 95.36 + 1.60
FC+PC[Np¢ = 160] 96.91 + 0.66
FC+TS 98.31 + 0.46
FC+PC[Npc=80]+TS 98.19 + 1.31
FC+PC[Npc=160]+TS* 98.19 % 0.64
FC+PC[Npc=240]+TS 97.82 + 1.10
FC+PC[Npc=320]+TS 98.07 % 0.45

Table 9: Comparison of feature choices in the off-path detec-
tion model for the ZooBazaar2024 dataset. Our final model
choice is highlighted with *.

Features F1 (%)

FC 85.24 + 2.68
PC[Npc = 160] 87.84 + 2.13
FC+PC[Npc = 160] 88.58 + 1.28
FC+TS 85.38 + 2.55
FC+PC[Npc = 80]+TS 87.53 + 2.40
FC+PC[Npc = 160]+TS* 88.28 + 2.31
FC+PC[Npc = 240]+TS ~ 88.69 + 2.45
FC+PC[Npc = 320]+TS 89.91 % 2.29

Appendix D: Implementation details

User Safety Function (USF). Apart from the code that is needed
to serve as a 5G network function like registering itself in the NRF,
the USF exposes the following APIs to the external NFs:

e POST /nusf_training/v1/pcap: Add a pcap file to its traffic
trace database;

e POST /nusf_training/v1/train: Manually trigger model train-
ing for a given model;

e GET /nusf_training/v1/train: Query the progress of model
training for a given model if training is still running;

e GET /nusf_training/v1/result: Query the results of model
training such as test accuracy for a given model;

e POST /nusf_training/v1/config: Update training configura-
tions, such as the learning rate;

o GET /nusf_training/v1/config: Get training configurations;

e POST /nusf_deploy/v1/deploy: Initiate the deployment of a
given model.

UPF. The OMAD5G controller is built upon the HiP4-UPF’s
controller [78] with an additional Rust module handling OMAD5G-
related tasks.

During UPF startup we populate the domain suffix count table
based on the domain suffix list curated by Mozilla [62].

In a 5G network when a UE goes idle for a certain period of time,
the core network can trigger a connection suspension procedure to
suspend its PDU sessions in order to save resources. This procedure
removes the states of the PDU sessions in not only the base station
based also the UPF. The connection is resumed when some downlink

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

packet arrives or the UE wakes up. To ensure a seamless malware
detection experience, when a PDU session is suspended, OMAD5G
saves its stored features from switch dataplane onto the switch
DRAM. This frees up the valuable SRAM in the ASIC for other
active PDU sessions. These features are restored back to the ASIC
if the connection is resumed.

In a 5G UPF, the Packet Detection Rule ID (PDR_ID), which is
identified in the UPF based on packet headers, is used to decide
how the packet should be forwarded. This ID is carried over from
the ingress to the egress stage so it can be used by the egress stage
to look up the detection_id (18-bit) that indexes the table storing
the aggregate reputation score for each PDU session. This ID is also
used in the ingress stage as key to the mirroring table.

SMF. For SMF, apart from adding OMADS5G rule installation
code to the PDU Session Establishment/Modification procedures,
we add a new API for model deployment:

e POST /nsmf_c5g/v1/deploy: Deploy a classification model
to the UPF controlled by this SMF.

N4 interface. The N4 interface in a 5G network connects SMF
and UPF by exchanging Packet Forwarding Control Protocol (PFCP)
messages [6]. A PFCP message consists of one or more Information
Elements (IEs). We modify these messages to support OMAD5G
features.

Detection enablement is implemented as part of usage reporting.
In a 5G network usage reporting is triggered when data quota are
reached or by certain events such as the first packet arrival. As
we view malware alerts as another type of events, we use existing
PFCP messages to enable malware detection and notify malware
infection.

Specifically, we add a special REPort OMAD5G (REP5G) flag as
the 25-th bit of the ReportingTriggers IE. This flag, along with the
MeasurementMethod IE set to EVENT and the MeasurementPe-
riod IE set to the detection period, enables the UPF to create the
OMAD5G context for the corresponding PDU session.

Once malware infection is detected, an alert is sent by the UPF
to the SMF in a UsageReport IE within a N4 Session Report Request
message. The UsageReport IE contains the information needed to
identify the triggering PDU session and a timestamp.

For model deployment we opt to use new PFCP message types.
We added two new types of N4 messages: PFCP Model Deploy-
ment Request and its response. In the request message we define
three IEs: ModelAction, ModelWeightsBlob and ReputationScores.
The ModelAction IE is used to enable/disable a model and set the
malware detection thresholds. The ModelBinaryBlob IE is used to
transmit the weights used by the off-path detection module. The
ReputationScores IE contains a list of simplified domain names and
their reputation scores used by the on-path detection module. The
ModelAction IE contains the identifiers of the malware classifica-
tion models and flags instructing to enable or to disable the models.
If all the IEs cannot fit into a single UDP packet due to a large size
of the models, we send multiple Deployment Requests to deploy a
single malware classification model.

Appendix E: Domain name statistics

The on-path malware detection module uses simplified domain
names as features to detect malicious mobile traffic. Table 2 shows

Zhixin Wen and Guanhua Yan

#DNS Req > #Domains ‘ #DNS Req > #Domains |

—

5 % S
2 B S S SN £0.75
§0.10 % g e
c 050 e
5 5
_%04[)5 g ..
< £ 0.25
> >

0.00 0.00

0 1 2 3 4 0 1 2 3 4
Mixing ratio Mixing ratio

(1) CICAndMal2017-mixed (2) ZooBazaar2024-mixed
Figure 10: Unknown simplified domain names during the
testing phase. #DNS Req: fraction of DNS request packets
carrying unknown simplified domain names; #Domains: frac-
tion of distinct unknown simplified domain names.

that for both CICAndMal2017 and ZooBazaar2024 datasets, the
average number of distinct simplified domain names requested by a
malware app is about three times of that requested by a benign one.
One concern is that if a malicious app visits mostly previously un-
seen DNS names, the on-path malware detector becomes incapable
of detecting its traffic as malicious. To study how often a UE can
visit a previously unseen domain name during the testing phase,
we create a mixed dataset based on randomly partitioned five folds
of individual PCAP traces. As tri-threshold learning is unnecessary
here, we do not use a validation dataset. Using four folds for train-
ing and one for testing, we generate 1000 four-hour-long mixed
traffic traces for training and 500 for testing for each mixing ratio
a varied from 0 to 4.

Figure 10 shows the fraction of DNS request packets carrying
UNKNOWN simplified domain names and the fraction of distinct
UNKNOWN simplified domain names during the testing phases
for both datasets. The general trend is that as more benign pcaps
are included in the mixed dataset both the fraction of DNS request
packets carrying UNKNOWN simplified domain names and the
fraction of distinct UNKNOWN simplified domain names decrease.
This observation agrees well with our intuition that it is more likely
for malware to visit short-lived domain names with techniques
such as Domain Generation Algorithms (DGAs) [13]. Between the
two datasets, the fraction of distinct UNKNOWN simplified domain
names is much higher with the ZooBazaar-mixed dataset than that
with the CICAndMal2017-mixed dataset. For example, when there
is no benign PCAP trace included (i.e., « = 0), about 71% of the
simplified domain names requested by a UE never appear in the
training dataset for the ZooBazaar-mixed dataset, while only 12% of
them never appear in the training dataset for the CICAndMal2017-
mixed dataset. This observation suggests that the DNS domain
names requested in the ZooBazaar dataset are much more diverse
than those in the CICAndMal2017 dataset. Indeed, the total num-
bers of distinct simplified domain names requested by all benign
and malicious apps are only 1747 and 3363, respectively, in the CI-
CAndMal2017 dataset, while they are 2892 and 26609, respectively,
in the ZooBazaar dataset.

Appendix F: Further discussions

Both on-path and off-path malware detection models should be con-
stantly adapted to address natural concept drift [39] or adversarial

OMAD5G: Online Malware Detection in 5G Networks using Compound Paths

machine learning attacks [46]. Their robustness can be enhanced by
retraining with new data or adversarial training [42, 58]. Adaption
of these models in dynamic or adversarial environments is out of
the scope of this work.

Although currently OMADS5G considers 5G UPFs deployed on P4
programmable switches, its DNS-based on-path malware detection

ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

module can be easily implemented in other UPF deployments such
as those based on smartNICs [64] and eBPF/XDP [30]. Reputation
score quantization may be unnecessary as these platforms can deal
with floating number operations directly.

	Abstract
	1 Introduction
	2 Related Work
	3 Background and Motivation
	4 System Overview
	5 Model Provisioning
	5.1 On-path detection model
	5.2 Off-path detection model
	5.3 Tri-threshold learning

	6 Malware Detection
	6.1 On-path malware detection
	6.2 Off-path malware detection

	7 OMAD5G call flows
	8 Evaluation
	8.1 Dataset description
	8.2 Comparison with existing methods
	8.3 Integrated detection performances
	8.4 Resource usage on P4 programmable switch
	8.5 Execution performances

	9 Conclusion
	Acknowledgments
	References

