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ABSTRACT
Thwarting the severe threat posed by the voluminous mal-
ware variants demands effective, yet efficient, techniques for
malware classification. Although machine learning offers a
promising approach to automating malware classification,
existing methods are oblivious of the costs associated with
the different types of errors in malware classification, i.e.,
false positive errors and false negative errors. Such treat-
ment adversely affects later applications of per-family mal-
ware analysis such as trend analysis. Against this back-
drop, we propose a unified cost-sensitive framework for au-
tomated malware classification. This framework enforces the
Neyman-Pearson criterion, which aims to maximize the de-
tection rate under the constraint that the false positive rate
should be no greater than a certain threshold. We develop
a novel scheme to chain multiple Neyman-Pearson criteria
on heterogeneous malware features, some of which may have
missing values. Using a large malware dataset with labeled
samples belonging to 12 families, we show that our method
offers great flexibility in controlling different types of errors
involved in malware classification and thus provides a valu-
able tool for malware defense.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and protection

Keywords
Malware, classification, Neyman-Pearson criterion

1. INTRODUCTION
The Internet is now inundated with numerous malware

which are responsible for a wide range of malicious activi-
ties such as email spamming, botnets, and identity theft. As
evidenced by the Symantec reports showing as many as 286
million malware variants were created in 2010 and 400 mil-
lion in 2011 [35], we must equip ourselves with effective, yet
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scalable, solutions to mitigating the ever-growing malware
threats. Traditional approaches based on malware signa-
tures produced from AV (Anti-Virus) software companies
have been shown fruitless in defending against current mal-
ware threats; some reports even go as far as claiming that
the existing AV solutions are “dead” [11, 2].

In some previous efforts, machine learning has been of-
fered as an alternative approach to classifying the vast vol-
ume of malware attacks [30, 14, 25, 27, 21, 32, 26, 1, 38]).
Albeit promising, a few technical obstacles still remain as
we apply machine learning to automated malware classifica-
tion in practice. First, the numbers of malware variants be-
longing to different malware families are highly skewed [28].
Severe class imbalance across malware families poses signifi-
cant challenges to controlling the accuracy of malware classi-
fication, as for a rare family with only a few instances, simply
flagging every instance as negative would achieve high clas-
sification accuracy. Second, heterogeneous malware features
can be extracted from malware programs [40]. Ideally, we
would want to combine various types of features to achieve
highly accurate malware classification. Existence of missing
feature values hinders the deployment of standard machine
learning techniques in a straightforward manner. Last but
not least, malware samples that are accurately labeled are
not easy to obtain, as it is difficult, if not impossible, to
manually label a large number of malware variants, and it is
hard to overcome the inconsistency among classification re-
sults by multiple AV software to find unbiased labeled sam-
ples by consensus [16, 18]. Hence, in many cases, we possess
only a small number of malware samples that are confidently
labeled along with a large number of unlabeled ones.

In this work we propose a unified malware classification
framework that overcomes these challenges. This framework
is built on an ensemble of cost-sensitive malware classifiers,
each of which is trained individually on a type of features
extracted from malware programs. Hence, even if we cannot
collect one specific type of features from a malware program,
the framework can still rely on other types of features to in-
fer the family it should belong to. The cost-sensitive nature
of individual classifiers offers us the flexibility of imposing
different penalties on false positive and false negative er-
rors. Taking advantage of how much penalties we assign to
each type of classification errors, we enforce the Neyman-
Pearson criterion [31, 4], which aims to maximize the de-
tection rate of the ensemble classifier while ensuring that
the false positive rate should be no greater than a certain
threshold. When only a small number of malware samples
are labeled, we leverage the structural information inherent

121



in a large amount of unlabeled data to train high-quality
classifiers based on semi-supervised learning.

In a nutshell, our contributions made in this work can
be summarized as follows. (1) We design and implement
a unified cost-sensitive framework for automated malware
classification, which overcomes various challenges we face
in classifying large numbers of malware variants into their
corresponding families in practice, such as missing feature
values, class imbalance, and difficulty in obtaining accu-
rately labeled samples. (2) To combine classification results
from multiple cost-sensitive classifiers, we extend a well-
established concept in hypothesis testing, Neyman-Pearson
criterion [31, 4], and propose the chain Neyman-Pearson cri-
terion, which can be used to ensure that the false positive
rate of the ensemble classifier should be no greater than a
certain threshold while maximizing its detection rate. (3)
We apply the dynamic programming technique to search op-
timal configurations that satisfy the chain Neyman-Pearson
criterion for individual classifiers, each trained on a specific
type of malware features. (4) Using a malware dataset con-
taining tens of thousands of malware instances belonging to
12 families, we demonstrate that our method offers great
flexibility in controlling different types of errors involved in
automated malware classification.

The rest of the paper is structured as follows. Section 2
presents the challenges in malware classification. Section 3
introduces a unified malware classification framework. Sec-
tion 4 discusses how to train individual classifiers and Sec-
tion 5 how to build an ensemble classifier. Section 6 shows
the evaluation results. Section 7 discusses related work.

2. REALITY CHECK
Our study is based on a malware dataset from Offensive

Computing [22] with 526,179 samples. While processing this
dataset, we encounter the following three major challenges.

2.1 Labeled and unlabeled data
In order to know the family each malware variant belongs

to, we upload its MD5 to the VirusTotal website [37] and
obtain the detection results from 43 AV software. Among
all these results, we consider only the detection results from
the five major AV software, McAfee, Kaspersky, Microsoft,
ESET (NOD32), and Symantec. Next, we extract the mal-
ware family information from the detection result from each
AV software. For instance, if Microsoft detects a malware
program as Trojan:Win32/Vundo.BY, we then identify its
family name as Vundo. Thereafter, we use the majority rule
to label a malware instance: if four out of five AV software
classify it as the same malware family, we assume it belong
to that family. Using this method, we are able to label only
26,848 instances, which belong to 12 distinct malware fam-
ilies, Bagle, Bifrose, Hupigon, Koobface, Ldpinch, Lmir,
Rbot, Sdbot, Swizzor, Vundo, Zbot, and Zlob. Conventional
wisdom is that we train a classifier for each family based on
only labeled data. The large amount of unlabeled data how-
ever contain rich structural information that can be further
exploited to improve classification accuracy.

2.2 Class imbalance issue
Figure 1 shows the number of instances labeled in each

family. The Full case includes both packed and unpacked
instances, and the Unpacked case has only unpacked in-
stances. The plot clearly shows high imbalance among dif-
ferent malware families. For instance, for the Unpacked case,

the Hupigon family has 31.2 times as many instances as the
Bagle family has. The class imbalance issue complicates
the search for an optimal classifier [10]. For instance, con-
sider a widely used measure, classification accuracy, which
is defined to be the fraction of correctly classified instances.
When we train an optimal classifier that maximizes classi-
fication accuracy from a dataset with only a few positive
samples, a dummy classifier that simply classifies every in-
stance as negative may stand out as the best one.

2.3 Missing feature values
We extract the following types of features from each mal-

ware program in our dataset. (1) Hexdump 2-gram: We
use utility hexdump to produce byte sequences from each
malware program, and a hexdump 2-gram feature is con-
structed by obtaining the frequencies of any two consecu-
tive bytes in the program. (2) Objdump 1-gram: We
use utility objdump to disassemble each malware program,
and treat the concatenation of the prefix and the opcode
in each instruction as a feature. The value of a feature is
the frequency which which it appears in the program. (3)
PE header: We extract information from the PE header of
each malware program with utility pefile. We extract two
types of features from PE headers. PE-num: numerical fea-
tures extracted from PE headers, PE-bool: boolean features
extracted from PE headers, such as bits in characteristic
fields, whether a DLL is imported, and whether a system
call in a DLL file is imported. (4) PIN trace: We exe-
cute each malware program in a controlled environment for
five minutes and use Pin [12], a dynamic binary instrumen-
tation tool, to dump the execution traces. We also extract
two types of features from PIN traces. PIN 2-gram: the fre-
quency of the ordered combination of opcodes in every two
consecutive instructions, and PIN SysCall: the number of
times that a system call has been invoked.

Figure 2 depicts the fraction of unpacked malware sam-
ples in each family that we are able to extract feature val-
ues successfully. Not surprisingly, we are able to extract
hexdump 2-gram and PE header (including both PE-num and
PE-bool) features successfully from every malware program.
However, for those objdump 1-gram features, we cannot ex-
tract features from a significant portion of malware instances
because objdump crashes during the disassembly process.
This occurs similarly to Pin when we try to extract PIN

trace (including both PIN 2-gram and PIN SysCall) fea-
tures. Interestingly, there is no strong correlation between
missing objdump 1-gram and PIN trace feature values: for
some malware families (e.g., Koobface, Zbot and Zlob), we
are able to extract objdump 1-gram features from the ma-
jority of malware instances but can only extract PIN trace

features from a small portion of malware instances.

3. A UNIFIED MALWARE CLASSIFICATION
FRAMEWORK

A unified malware classification framework is illustrated
in Figure 3. It works on a malware database that contains
not only labeled malware programs but also a large number
of unlabeled malware instances. Labeled malware samples
can come from those identified manually by malware foren-
sic analysts, or from consensus among multiple AV software.
Due to the voluminous malware variants, many malware in-
stances will remain as unlabeled in the malware database.
Rather than ignoring these unlabeled samples, our frame-
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Figure 1: Imbalanced number of
instances per family
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Figure 2: Fraction of instances
with feature values per family

Figure 3: A unified malware clas-
sification framework

work exploits the structural information inherent among
these unlabeled samples when training malware classifiers.

We extract various types of features from malware pro-
grams. There have been a large literature dedicated to dis-
covering powerful features for malware detection or classifi-
cation. In principle, our framework can integrate all these
different types of features together, and provide a high-
quality malware classifier based on their collective efforts.
For each type of features extracted from malware programs,
we may need to perform feature selection before training a
classifier on them, because for some types of malware fea-
tures, the number of features is so large that a classifier
trained on all of them does not perform efficiently in prac-
tice, and for some classifiers, having more features does not
necessarily mean that its performance is better than that
when only a small number of features are used [40].

Once we have decided what features to use for each feature
type, we use these features collected from both labeled and
unlabeled malware instances to train a malware classifier. In
parlance of machine learning, this process is semi-supervised
learning. Semi-supervised learning contrasts with super-
vised learning, which relies on only labeled data when train-
ing a classifier. When labeled data are costly to obtain, the
performance of supervised learning usually suffers because
the distribution of labeled data used in the training dataset
may not be representative of the true distribution of the new
instances coming later. By contrast, semi-supervised learn-
ing exploits the structural information inherent in the large
amount of unlabeled data to approximate better the true
distribution of the instances which we will need to classify
later. A fundamental assumption behind semi-supervised
learning is that if two instances appear in the same clus-
ter, they are likely to belong to the same class [6]. Based
on this assumption, a semi-supervised classifier either prop-
agates labeling information from labeled instances to those
unlabeled ones belonging to the same cluster, or searches for
classification boundaries through only sparse areas.

Another key component of our framework is the cost sen-
sitiveness of the malware classifier we train on each type of
features. When searching for an optimal classifier for a spe-
cific type of malware features, we apply the Neyman-Pearson
criterion, which tries to maximize the detection rate under
the constraint that the false positive rate must be no greater
than a certain threshold [31, 4]. To enforce the Neyman-
Pearson criterion, we use a cost-sensitive classifier with ad-
justable penalty weights on different types of classification
errors. We search for an optimal setting from the parameter
space of these weights, and use cross-validation techniques
to ensure that the Neyman-Pearson criterion should be met.

With multiple individual classifiers, each of them may
have its own opinion when we apply it on a new malware

variant. As we may have missing features for a feature type,
we assume that its corresponding classifier classifies it as
negative. This naturally leads to a classifier ensemble based
on the ‘OR’ rule: if any classifier decides that a new vari-
ant should belong to a specific malware family, the ensemble
of classifiers believes it is a variant of that family; only all
classifiers decide it is a negative sample does the ensemble
classifier classifies it as negative. Such an ‘OR’ decision rule
can be easily translated into a sequence of malware classi-
fiers, each of which is trained on a specific type of malware
features. If any of the classifiers decides a new sample is
positive, the ensemble classifier terminates by flagging it as
positive; only if the malware variant passes the tests of all
individual classifiers can it be flagged as negative.

We further propose the chain Neyman-Pearson criterion,
which is applicable to multiple classifiers that work in tan-
dem. Under the chain Neyman-Pearson criterion, a dynamic
programming method is used to spread the overall false pos-
itive rate allowed for the ensemble classifier over all the in-
dividual cost-sensitive classifiers as the constraints on their
false positive rates.

We now theoretically analyze the ensemble classifier based
on the ‘OR’ rule. Regarding the ‘OR’ rule that combines
multiple classifiers, we have the following proposition about
its Vapnik-Chervonenkis (VC) dimension, which measures
the capacity of a classifier [36]:

Proposition 1. Consider a hypothesis space H over do-
main X = {0, 1}n, which is a set of {0, 1}-valued functions.
For each h ∈ H and x = (x1, x2, ..., xn) ∈ X, we have
h(x) =

∏n
i=1 xi. The VC-dimension of H is then 2.

Proof. Consider two points in X, x0 = 0 and x1 6= 0.
Clearly, any h ∈ H can shatter the two points. However, for
any three distinct points in X, there must be at least two
of them each containing at least one non-zero element. No
hypothesis in H can shatter these two points.

We further have the following about the VC-dimension of
the classifier ensemble combined with the ‘OR’ rule.

Proposition 2. Consider a set of k binary classifiers, whose
VC-dimensions are summed up to d. The VC-dimension of
the classifier ensemble combined with the ‘OR’ rule is upper
bounded by (d+ 2) log2[3e(k + 1)2].

Proof. The k binary classifiers combined with the ‘OR’
rule can be deemed as a feed-forward architecture with k+1
computation nodes. The sum of all the computation nodes
in this architecture is d+2 (note that the node corresponding
to the ‘OR’ rule has a VC of 2, as seen from Proposition 1).
According to Theorem 1 in [3], we have the number of realiz-
able functions with m points, denoted by ∆(m), as follows:

∆(m) ≤ ((k + 1)em/(d+ 2))d+2, for m ≥ d+ 2. (1)
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We next show that if m = (d+ 2) log2[3e(k+ 1)2], it holds
that ∆(m) < 2m. Note that:

∆((d+ 2) log2[3e(k + 1)2]) = [(k + 1)e log2[3e(k + 1)2]]d+2.

On the other hand, we have:

2(d+2) log2[3e(k+1)2] = [3e(k + 1)2]d+2. (2)

As we have both log2(3e) < 3 and log2(k+ 1)2 < 3k for k ≥
1. We thus have ∆(m) < 2m when m = (d+ 2) log2[3e(k +
1)2]. Hence, the VC-dimension of the ensemble classifier is
upper bounded by (d+ 2) log2[3e(k + 1)2].

Therefore, the VC-dimension of the ensemble classifier is
dominated by factor d+ 2, suggesting that the simple ‘OR’
rule does not improve significantly the capacity of the orig-
inal set of classifiers, which agrees well with our intuition.
Hence, our malware classification framework relies on indi-
vidual classifiers that are sufficiently complicated in dividing
malware families. To this end, we use the popular SVM clas-
sifier, whose VC dimension can be very high or even infinite
when equipped with the radial basis kernel [5].

4. TRAINING INDIVIDUAL CLASSIFIERS
With the set of features chosen for each type of malware

features, we prefer a classifier that is capable of not only
performing semi-supervised learning but also having tun-
able parameters to impose different costs associated with
different types of classification errors. Due to the extensi-
bility of SVM for achieving both semi-supervised and cost-
sensitive learning, it is used as the bedrock of individual
malware classifiers in our framework. Consider two datasets,
Dl = {〈xi, yi〉}i=1,...,nl where yi ∈ {+1,−1} and Du =
{x∗j }j=1,...,nu , which contain labeled and unlabeled data,
respectively. In order to train an SVM-type of classifier,
we first project xi or x∗j into a Hilbert space with a map-

ping Φ : Rd → H, where d is the dimension of the feature
space. In this Hilbert space, we search for a hyperplane
with parameters w and b that minimizes the sum of mar-
gin errors, which are represented as ξi and ξ∗j , respectively,
for labeled and unlabeled training samples. Assuming that
I+ = {i : yi = +1}, I− = {i : yi = −1}, J+ = {j : y∗j = +1}
and J− = {j : y∗j = −1}, the objective function is given by:

min
w,b,ξ,ξ∗,y∗

V (w, b, ξ, ξ∗,y∗) =
1

2
||w||2 +

Cρ
∑
i∈I+

ξi + C
∑
i∈I−

ξi +

C∗ρ∗
∑
j∈J+

ξ∗j + C∗
∑
j∈J−

ξ∗j (3)

subject to:

yi(〈w,Φ(xi)〉H + b) ≥ 1− ξi, ∀xi ∈ Xl, i = 1, ..., nl

y∗j (〈w,Φ(x∗j )〉H + b) ≥ 1− ξ∗j , ∀x∗j ∈ Xu, j = 1, ..., nu

ξi ≥ 0, ∀i = 1, ..., nl

ξ∗j ≥ 0, ∀j = 1, ..., nu

y∗j ∈ {−1,+1}, ∀j = 1, ..., nu

(4)

where C and C∗ represent the cost parameters associated
with margin errors induced by labeled and unlabeled train-
ing samples, respectively, and ρ and ρ∗ are the cost ratios

between margin errors on different sides induced by labeled
and unlabeled training samples, respectively.

Our framework uses the radial basis kernel k(x,x′) =

e−
||x−x′||2

σ . Moreover, we let C∗ always be C and ρ∗ be
a constant. Hence, we have three tunable parameters C,
ρ, and σ. Given fixed C, ρ, and σ, the current implementa-
tion of our framework uses SVM-Light [34] to solve Equation
(3), although other alternative packages such as libsvm [17]
can also be used here. In our experiments later, we always
set ρ∗ to the default value given by SVM-Light, although in
principle this parameter can also be tuned.

Next, we consider how to search for the optimal configura-
tion, where a configuration means a combination of tunable
parameters C, ρ, and σ in Equation (3). For a given malware
classifier, its performance can be evaluated based on both its
false positive rate and its detection rate, which leads to a bi-
criteria optimization problem. As it is a conflicting task to
minimize the false positive rate while maximizing the detec-
tion rate, we apply the Neyman-Pearson criterion [31], which
seeks for a classifier that maximizes the detection rate under
the constraint that its false positive rate be no greater than a
certain threshold. As we do not have a closed-form formula
about the detection rate and the false positive rate of a clas-
sifier based on Equation (3), we resort to cross-validation to
enforce the Neyman-Pearson criterion. More specifically, we
divide the training data into m folds {Fi}i=1,2,...,m. Each
time, we use one of the folds Fi as the test data, and the
remaining F−i for the purpose of training. Given any con-
figuration, we train a classifier on F−i by solving Equation
(3) and test its performance on Fi. For brevity, we use
αi(C, ρ, σ) and βi(C, ρ, σ) to denote the false positive rate
and the detection rate of the classifier trained from F−i on
testing data Fi, respectively, under configuration (C, ρ, σ).

The Neyman-Pearson criterion can be written as follows:

argmaxC,ρ,σβ̃(C, ρ, σ), (5)

subject to: α̃(C, ρ, σ) ≤ α∗, (6)

where β̃(C, ρ, σ) =
1

m

m∑
i=1

βi(C, ρ, σ)

α̃(C, ρ, σ) =
1

m

m∑
i=1

αi(C, ρ, σ),

and α∗ is the threshold on the average false positive rate.
In order to compare two configurations g1 = (C1, ρ1, σ1)

and g2 = (C2, ρ2, σ2), we say that g1 ≺ g2 or g1 outperforms
g2 if either of the following two cases hold:

Case 1: α̃(C1, ρ1, σ1) ≤ α∗

α̃(C2, ρ2, σ2) ≤ α∗, and

β̃(C1, ρ1, σ1) > β̃(C2, ρ2, σ2) (7)

Case 2: α̃(C2, ρ2, σ2) > α∗ and

α̃(C1, ρ1, σ1) < α̃(C2, ρ2, σ2). (8)

We also say that g1 ≡ g2 or g1 is equivalent to g2 if α̃(C1, ρ1, σ1) =

α̃(C2, ρ2, σ2) and β̃(C1, ρ1, σ1) = β̃(C2, ρ2, σ2).
Accordingly, we say that g is the best configuration in a

configuration set if it outperforms or is equivalent to any
other configuration in the set. Originally, we planned to use
the coordinate descent algorithm presented in [7] to search
the best configuration. However, as we are not sure how
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many trials are needed for the algorithm to converge starting
from any random point, the algorithm may spend a signifi-
cant time on local search before exploring the entire configu-
ration space. Hence, we decide to use the genetic algorithm,
which performs local search and global search simultane-
ously, to find the best configuration for a given individual
classifier. We treat parameters C, ρ, and σ as three types
of chromosomes of the “population”. In each generation, we
select the k best configurations to breed the next generation.
More specifically, given the current generation of the pop-
ulation, the next generation is reproduced as follows: (1)
Crossover: For any two of the top k configurations, we
average the values of each chromosome type. The intuition
here is that the middle point between two good configura-
tions is likely to be good. (2) Partial mutation: For each
of the top k configurations, we replace any of its chromo-
somes with a randomly generated value of the correspond-
ing type. Partial mutation explores points that differ from
good configurations at only one chromosome. (3) Full mu-
tation: We randomly generate values for all three types of
chromosomes; full mutation prevents the search from con-
verging to local optima. Among these three different re-
production schemes, crossover and partial mutation can be
deemed as local search, as they search areas that are close to
those configurations that are already found to be good; by
contrast, the full mutation scheme regenerates a totally new
configuration, which is used to explore good configurations
in new regions at a global level.

The fitness function of a configuration g = (C, ρ, σ) is
defined as follows:

f(g) = β̃(C, ρ, σ) · δ(α̃(C, ρ, σ) ≤ α∗)−
α̃(C, ρ, σ) · δ(α̃(C, ρ, σ) > α∗), (9)

where δ(x) is 1 if x is true or 0 otherwise.
The algorithm is illustrated in Figure 4. The genetic al-

gorithm has the following advantages. First, as mentioned
earlier, it performs both local search and global search in
each generation. This prevents the algorithm from getting
stuck at local optima while improving the overall quality
of the population from generation to generation. Second,
both parameter k, which is used to control the number of
good configurations from which to reproduce the next gen-
eration, and the number of generations that are eventually
reproduced can be used to control the number of times that
the search takes place. This thus provides a knob to decide
how much time would be spent on searching the optimal
configuration, given the computational resources available.
Finally, the genetic algorithm can be easily parallelized by
distributing the reproduction task over multiple processors.

5. ENSEMBLE OF CLASSIFIERS
For each type of features, we can train a classifier as dis-

cussed in Section 4. The question that naturally follows
is: given the classification results from multiple individual
classifiers on a new malware instance, how should we decide
whether it belongs to a specific family? One widely used
rule is decision by majority, that is, the same decision made
by the majority of the classifiers is chosen as the final ver-
dict. The problem with the majority rule, however, is that
we have to collect all types of features that are fed to these
individual classifiers, which make independent decisions on
classification. This can be time consuming, as for some types
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Best	
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Best	
  candidates	
  in	
  (k+1)-­‐th	
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Figure 4: Illustration of genetic algorithm for
searching optimal parameters

of features, it takes significant time and resources to collect
their values from a new malware variant.

Due to this concern, our framework uses a simple ‘OR’
rule: as long as any classifier decides that a new malware
instance belong to a specific family, the framework classifies
it into that family. With such an ‘OR’ rule, our malware
classification framework can draw classification results from
individual classifiers in a sequential manner. As long as
one classifier classifies the malware instance as positive, the
framework does not need to consider the classification results
by subsequent classifiers, and it is thus unnecessary to col-
lect their corresponding types of features. In order to train
the ensemble classifier as described, we enforce the chain
Neyman-Pearson criterion on individual classifiers, which
will be explained next.

5.1 Chain Neyman-Pearson Criterion
Suppose that the training data are divided into m folds
{Fi}i=1,2,...,m. Next, we train an individual classifier for
the t-th type of features from each of {F−i}i=1,2,...m and
evaluate its performance on instances in Fi. Also suppose
that from each malware sample we can extract T types of
features. We now discuss how to modify the algorithm dis-
cussed in the previous section to train an individual classifier
for the t-th type of features where 1 ≤ t ≤ T .

Let F+
i ⊆ Fi and F−i ⊆ Fi be the set of positive and

negative instances in fold Fi, respectively. Given any con-
figuration g = (C, ρ, σ) for the t-th type of features, let the
set of positives that the candidate classifier trained from F−i
identifies from test data Fi be Θt,i(g). Define α∗1→t as:

α∗1→t = {α∗1, α∗2, ..., α∗t }, (12)

where 0 ≤ α∗1 ≤ α∗2 ≤ ... ≤ α∗t ≤ 1. Sequence α∗1→t contains
false positive rate thresholds that are used to train the indi-
vidual classifiers corresponding to the first t feature types.

We define Λ(i, t)|α∗1→t and ∆(i, t)|α∗1→t recursively as in
Figure 5. Hence, Λ(i, t)|α∗1→t and ∆(i, t)|α∗1→t represent the
accumulative set of true positives and false positives in the
i-th fold, respectively, by the sequence of individual classi-
fiers trained from the first t feature types under false pos-
itive thresholds α∗1→t. The definitions of Λ(i, t)|α∗1→t and
∆(i, t)|α∗1→t depend on g∗t |α∗1→t , which, defined in Figure 6,
is the best configuration found for the t-th feature type when
the sequence of false positive rate thresholds used to train
the individual classifiers for the first t feature types is α∗1→t.

Hence, in contrast to the original Neyman-Pearson cri-
terion given in Equation (5), we apply the chain Neyman-
Pearson criterion: for the individual classifier trained for
the t-th feature type, we search for the configuration with
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Λ(i, t)|α∗1→t =

{
Λ(i, t− 1)|α∗1→t−1

∪ (Θt,i(g
∗
t |α∗1→t) ∩ F

+
i ) t > 0

∅ t = 0
(10)

∆(i, t)|α∗1→t =

{
∆(i, t− 1)|α∗1→t−1

∪ (Θt,i(g
∗
t |α∗1→t) ∩ F

−
i ) t > 0

∅ t = 0
(11)

Figure 5: Definition of Λ(i, t)|α∗1→t and ∆(i, t)|α∗1→t

g∗t |α∗1→t = argmax(C,ρ,σ)β̃t(C, ρ, σ)|α∗1→t ,
subject to: α̃t(C, ρ, σ)|α∗1→t ≤ α

∗
t ,

with β̃t(C, ρ, σ)|α∗1→t =
1

m

m∑
i=1

|(Θt,i(C, ρ, σ) ∩ F+
i ) ∪ Λ(i, t− 1)|α∗1→t |
|F+
i |

,

α̃t(C, ρ, σ)|α∗1→t =
1

m

m∑
i=1

|(Θt,i(C, ρ, σ) ∩ F−i ) ∪∆(i, t− 1)|α∗1→t |
|F−i |

,

Figure 6: Definition of g∗t |α∗1→t

the highest accumulative detection rate over the first t fea-
ture types under the constraint that the accumulative false
positive rate over the first t feature types is no higher than
α∗t . With redefined α̃t(C, ρ, σ) and β̃t(C, ρ, σ), we keep the
same method of comparing two configurations as described
in Section 4. Hence, given the current false positive rate
threshold α∗t , the algorithm presented in Section 4 can be
used to train each individual classifier sequentially based on
the chain Neyman-Pearson criterion.

5.2 Dynamic Programming
The application of the chain Neyman-Pearson criterion

requires us to know the sequence of false positive thresholds,
{α∗1, α∗2, ..., α∗T }, where T gives the total number of feature
types in the classification framework. Given that the overall
false positive rate threshold is α∗, we then should have α∗T =
α∗. Clearly, how to set these false positive rate thresholds
affects the performance of the ensemble of classifiers trained
based on the chain Neyman-Pearson criterion. In an extreme
case, if we let α∗1 be α∗ and we can find a classifier based
on the first feature type that has a false positive rate equal
to α∗, then for the remaining feature types, the classifiers
trained based on the chain Neyman-Pearson should not lead
to any false positives in order for the ensemble of classifiers
to have a false positive rate no greater than α∗.

Searching the continuous space of {α∗1, α∗2, ..., α∗T } for an
optimal configuration can be computationally prohibitive,
as these parameters are dependent on each other. More-
over, during the search process, we want to tease out those
features that contribute little to the accumulative classifi-
cation performance, which is typically done in a separate
feature selection process. To overcome these challenges, we
propose a dynamic programming method, as illustrated in
Figure 7, to search an optimal setting of α∗1→T . Consider
the following set of false positive rate thresholds that should
be satisfied by individual classifiers,

{0α∗/D, 1α∗/D, 2α∗/D, ...,Dα∗/D}, (13)

where D is a predefined parameter, and we let the false posi-
tive rate thresholds in the sequence {α∗1, α∗2, ..., α∗T } take val-
ues only from this set. For brevity, we defineD = {0, 1, ..., D}.

Figure 7: Dynamic programming for searching op-
timal configurations. g∗j (iα∗/D), which is the best
configuration when the false positive rate threshold
over all the first j features is iα∗/D, is obtained based
on the best configurations in the previous column,
g∗j (kα∗/D) where k = 0, 1, ..., i. For the last feature
(i.e., feature T), only the configuration under false
positive rate threshold α∗ needs to be computed.

Consider the t-th feature type, where 1 ≤ t ≤ T , and
any d ∈ D. Given that the false positive rate threshold for
the t-th feature type under the chain Neyman-Pearson cri-
terion is dα∗/D, we use the equations in Figure 8 to find
recursively the optimal threshold for the false positive rate
of the (t − 1)-th feature type, which is prev(t, d) · α∗/D.
The crux here is that when we search the optimal value for
prev(t, d), we check all possible false positive rate thresholds
for the previous feature type (note that that previous thresh-
old should be no greater than the current threshold), and
use the one that leads to the best configuration for the cur-
rent feature type under the chain Neyman-Pearson criterion.
When we calculate the best configuration g∗t |d,d′ when the
current and the last false positive rate thresholds are dα∗/D
and d′α∗/D, respectively, we keep track of both Λ(i, t, d) and
∆(i, t, d), which represent the set of true positives and false
positives, respectively, under the condition that the current
false positive threshold is dα∗/D and the previous false pos-
itive thresholds are set to the values that recursively lead to
the best configuration for the current feature type t.

The calculation can be done in an approach based on dy-
namic programming. For the first feature type (i.e., t = 1),
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prev(t, d) =

{
argmaxd′∈D g∗t |d,d′ t > 1

−1 t = 1

where g∗t |d,d′ = argmax(C,ρ,σ)β̃t(C, ρ, σ)|d′ ,
subject to: α̃t(C, ρ, σ)|d′ ≤ dα∗/D,

with β̃t(C, ρ, σ)|d′ =
1

m

m∑
i=1

|(Θt,i(C, ρ, σ) ∩ F+
i ) ∪ Λ(i, t− 1, d′)|
|F+
i |

,

α̃t(C, ρ, σ)|d′ =
1

m

m∑
i=1

|(Θt,i(C, ρ, σ) ∩ F−i ) ∪∆(i, t− 1, d′)|
|F−i |

,

Figure 8: Definition of prev(t, d) and g∗t |d,d′

Λ(i, t, d) =

{
Λ(i, t− 1, prev(t, d)) ∪ (Θt,i(g

∗
t |d,prev(t,d)) ∩ F+

i ) t > 0
∅ t = 0

∆(i, t, d) =

{
∆(i, t− 1, prev(t, d)) ∪ (Θt,i(g

∗
t |d,prev(t,d)) ∩ F−i ) t > 0

∅ t = 0

Figure 9: Definition of Λ(i, t, d) and ∆(i, t, d)

we calculate the best configuration for each possible false
positive rate threshold dα∗/D, where d ∈ D. Once the
best configurations for the (t− 1)-th feature type have been
found, we search the best configuration for the t-th feature
type for each possible false positive rate threshold dα∗/D,
where d ∈ D. For any such d, we check the d possible false
positive rate thresholds for the previous feature type (i.e.,
0, 1α∗/D, 2α∗/D, ..., dα∗/D), and assuming that the previ-
ous classifier uses its best configuration for each of these false
positive rate thresholds, we look for the best configuration
for the current feature type.

It is noted that for the last feature type, i.e., the T -th
feature type, we only need to consider the false positive rate
threshold Dα∗/D. Define an operation to be an execution of
the genetic algorithm, which is used to solve Equation (12).
We have the following proposition:

Proposition 3. If the dynamic programming algorithm per-

forms as described, it takes 2(D + 1) + (T − 2) · (D+1)(D+2)
2

operations to calculate the best configurations.

Proof. For the first feature type, the algorithm performs
D+1 operations that calculate the best configurations, each
for a threshold dα∗/D with d ∈ D. For the last feature
type (i.e., the T -th feature type), the best configurations
are only searched under the false positive rate threshold
Dα∗/D; as the previous threshold for the (T − 1)-th fea-
ture type can be any of dα∗/D with 0 ≤ d ≤ D, D + 1
operations that calculate the best configurations are per-
formed. For the k-th feature type where 2 ≤ k ≤ T−1, when
the current false positive rate threshold is dα∗/D, d oper-
ations that calculate the best configurations are performed
(note that the previous threshold should be no greater than

dα∗/D). Hence, for each of these feature types,
∑D
d=0 d =

(D + 1)(D + 2)/2 operations are performed. In total, there

are thus 2(D + 1) + (T − 2) · (D+1)(D+2)
2

operations used to
calculate the best configurations.

Implementation. If exhaustive search for optimal con-
figurations were allowed, the detection rates with the config-
urations in the matrix in Figure 7 would be (weakly) mono-
tonically improving from left top to right bottom. Due to a

limited number of tries when searching for an optimal con-
figuration with the genetic algorithm, it is however possible
that no feasible configuration can be found or the config-
uration found has a false positive rate not falling into the
current threshold range. In such circumstances, extra efforts
are needed to ensure that classification performances of the
entries in the matrix are indeed monotonically improving.

Let matrix M contain the configurations found; that is to
say, M(d, t) gives the configuration (α, β) found when the
threshold on the false positive rate is dα∗/D for the t-th
feature type; if no configuration is found, M(d, t) is null.
To optimize the process of finding the best configurations,
we update the t-th column in two passes when the search
for the t-th feature type is finished:

First pass: Consider the following example. The three
thresholds on false positive rates are 0.01, 0.02, and 0.03.
Suppose that the corresponding configurations found are
(0.005, 0.8), (0.001, 0.99), and (0.025, 0.9). Hence, both
the first two configurations have a false positive rate falling
in the range [0, 0.01]. In this case, we use the second one to
overrule the first one because it leads to a higher detection
rate. Hence, in the first pass, for the configuration found for
the d-th threshold, we proceed as follows:

(a.1) Its false positive rate is higher than dα∗/D. As this
violates the Neyman-Pearson criterion, we let M(d, t)
be null.

(a.2) Its false positive rate is no greater than dα∗/D but
higher than (d − 1)α∗/D. In this case, we keep the
current solution found for this threshold.

(a.3) Its false positive rate is no greater than (d − 1)α∗/D.
Let the false positive rate of the solution found be r.
We calculate d′ = drD/α∗e and compare the config-
uration previously found under the false positive rate
threshold d′α∗/D. If the current solution outperforms
the previous configuration, we replace the previous
configuration under the false positive rate threshold
d′α∗/D with the current solution, and set the current
solution under the false positive rate threshold dα∗/D
to be null.
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Second pass: Using the same example, after the first pass,
the three configurations become (0.001, 0.99), null, and
(0.025, 0.9). Note that albeit having a higher false posi-
tive rate, the third configuration has a lower detection rate,
suggesting that it is dominated by the first configuration.
Hence, in the second pass, we ensure that all configura-
tions in the matrix M are ordered by the performances. Let
maxβMi,j be the maximum detection rate among the first i
rows and j columns of matrix M . Without loss of generality,
if Mi,j is null, its detection rate is assumed to be 0.

For the d-th configuration where 1 ≤ d ≤ D, let its detec-
tion rate be βd,t. We have the following cases.

(b.1) maxβMd,t−1 ≥ maxβMd−1,t ≥ βd,t. This means that
classification from the current feature type does not
help improve the detection accuracy. Hence, we in-
herit the classification results from the previous fea-
ture type with the same false positive rate threshold
without using the current feature type.

(b.2) maxβMd,t−1 ≥ maxβMd−1,t ≥ βd,t. This implies that
the current feature type helps but increasing the false
positive rate threshold does not help. We thus deacti-
vate the configurations found from the current thresh-
old for this feature type and will not consider any fur-
ther results based on M(d, t). We say that M(d, t) is
now inactive.

(b.3) βd,t > max{maxβMd,t−1,maxβMd−1,t}. This means
that both the current threshold and the feature type
help improving the detection accuracy, and we thus
keep its classification results.

After the two passes, we ensure that performances of the
configurations in matrix M , if they are active, must increase
(weakly) monotonically as we increase the false positive rate
threshold or add more feature types. These two passes are
performed immediately for each feature type once the con-
figurations are learned based on the chain Neyman-Pearson
criterion under all the false positive rate thresholds. Due to
the optimization applied in our implementation, the count
stated in Proposition 3 provides only an upper bound on the
real number of operations that have been executed.

It is noted that the overhead in feature extraction varies
with the type of the features. When we train the ensemble
classifier under the chain Neyman-Pearson criterion, feature
groups are ordered based on their relative extraction over-
head in an non-decreasing manner. Hence, costly features
are used only if the cheap ones do not have sufficient dis-
criminative power in classifying the malware family being
considered.

6. EXPERIMENTS
We use those unpacked samples in the malware dataset

described in Section 2 for performance evaluation, although
in practice packed samples can be unpacked first before ex-
tracting features from them. Due to limited resources avail-
able, we extract features only for those samples that have
been labeled. In total we have 15,494 labeled unpacked sam-
ples for experiments, and their family breakdown is as fol-
lows: Bagle (152), Bifrose (1677), Hupigon (4748), Koob-
face (371), Ldpinch (190), Lmir (181), Rbot (923), Sdbot

(253), Swizzor (1276), Vundo (2852), Zbot (1231), and Zlob

(2140). A classifier is built for each of these families, based

on the one-against-all rule, which treats samples from the
family under study as positive and all others as negative.

Among all the samples, we randomly choose 80% of them
for training, and the remaining 20% for testing. In the train-
ing dataset, 75% of them are marked as unlabeled. When
using the chain Neyman-Pearson criterion to train classi-
fiers, we further divide the training dataset into five folds
(i.e., m = 5 in Section 5.1), four of them used to search the
best configurations and the remaining one used to evaluate
the performance of a configuration. It is noted that dur-
ing the training phase based on cross validation, the 20% of
the test data are not available. Our task is to train a cost-
sensitive classifier from the training dataset, and then label
every instance in the test dataset. We set the false positive
rate allowed for the ensemble classifier to be at most 5%
(i.e., α∗ = 0.05). For the purpose of dynamic programming,
we partition the overall false positive rate into 6 intervals,
i.e., D = 6 in Equation (13).

Moreover, when using the genetic algorithm to search the
optimal configuration, we generate candidate solutions for
three generations, among which solutions in the first gen-
eration are randomly generated based on the full mutation
scheme (see Figure 4). From the population of each gen-
eration, we choose the top three configurations for further
reproduction. Hence, three new configurations are generated
from crossover, and three others from partial mutation. In
addition, three more are produced from full mutation. The
size of the total population per generation is thus 9.

The six types of features mentioned in Section 2 are con-
sidered, PE-num, PE-bool, Hexdump 2-gram, Objdump 1-gram,
PIN 2-gram, and PIN SysCall. We use the logistic regres-
sion method discussed in [40] to choose 100 features from
each of the six feature types. When we search optimal con-
figurations for each feature type, we order the six feature
types based on the relative difficulty of obtaining their val-
ues. As both PE header features and Hexdump 2-gram fea-
tures can be obtained in a deterministic manner, we consider
them during the early phase of the classifier ensemble. Ob-

jdump 1-gram features require disassembly code of the ex-
ecutable programs, which can be obtained through static
analysis. PIN features require dynamic execution of the pro-
grams, and are thus more difficult to obtain. Hence, we train
individual classifiers sequentially according to the following
order of the six feature types: PE-num, PE-bool, Hexdump

2-gram, Objdump 1-gram, PIN 2-gram, and PIN SysCall.

6.1 Classification Performance
Table 1 presents the average performances of the configu-

rations found by our method over the five test folds in terms
of false positive rates and detection rates. Clearly, for any of
these malware families, it is not necessary to include all six
feature types. For instance, for the Swizzor, Zbot, and Zlob

families, only the features extracted from the PE headers are
needed to classify their instances. This is desirable because
for some feature types such as those from dynamic execu-
tion, it takes significant efforts to collect their feature values.
Hence, our method based on the chain Neyman-Pearson cri-
terion has the effect of selecting only those feature types that
are useful for automated malware classification. Moreover,
it is observed that classification of different malware fami-
lies requires different types of features. For instance, Hex-
dump 2-gram features are only useful for the Ldpinch and
the Lmir families but not the other ones. This is plausible
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Table 1: Performances trained under the chain Neyman-Pearson criterion. The numbers are the averages of
5-fold cross validation. ’-’ means that the feature type is not used. False positive rate threshold is 5%.

Family PE-num PE-bool Hexdump 2-gram Objdump 1-gram PIN 2-gram PIN SysCall
Bagle (0.34%, 91.3%) (1.1%, 98.0%) - (1.6%, 100.0%) - -

Bifrose (0.7%, 81.7%) - - (2.0%, 91.2%) (2.2%, 94.2%) (2.5%, 95.8%)
Hupigon (1.1%, 91.5%) (1.9%, 98.4%) - - - (3.7%, 99.4%)
Koobface (0.06%, 90.9%) (0.09%, 94.6%) - (0.96%, 100%) - -
Ldpinch (0.4%, 46.7%) (1.9%, 83.1%) (3.04%, 90.5%) - - -

Lmir (0.35%, 70.7%) (0.4%, 92.8%) (1.96%, 95%) - - -
Rbot (2.8%, 85.1%) (3.2%, 91.5%) - - - (3.67%, 92.6%)
Sdbot (1.2%, 58.3%) (1.5%, 73.7%) - - - (1.6%, 76.5%)

Swizzor (0.33%, 97.9%) (0.5%, 99.7%) - - - -
Vundo (0.33%, 95.6%) (1.0%, 99.3%) - - - -
Zbot (0.76%, 87.9%) (1.6%, 92.2%) - - (3.6%, 93.4%) (4.0%, 96.0%)
Zlob (1.5%, 98.6%) (2.1%, 100.0%) - - - -

as the uniqueness of a malware family may manifest itself
over only a specific subset of feature types. Our algorithm
is able to find these distinguishing feature types.

Figure 10 shows the classification performance for each
malware family. From Figure 10(1), we observe that the
false positive rate for classifying the test samples in each
malware family is no greater than the predefined threshold
of 5% for each malware family, suggesting that the classi-
fier ensemble trained is indeed able to enforce the Neyman-
Pearson criterion. The detection rate per family is shown
in Figure 10(2). For most of the families, we observe that
the detection rate is above 90%, implying that the major-
ity of the samples of these families can be identified by our
method. For the Sdbot family, however, the detection rate
is only around 70%. We note that for this family, during
the training phase, our algorithm cannot find good configu-
rations to achieve high classification accuracy anyway: the
combination of PE header features and the PIN-SysCall fea-
tures can only lead to an average detection rate of 76.5%
based on 5-fold cross validation. Hence, the poor detection
rate of Sdbot samples attributes to the six feature types used
here which are unable to distinguish samples in the Sdbot

family as effectively as those in the other ones. Comparing
the detection rates in Figure 10(2) against those in Table 1,
we find that the former are typically lower than the corre-
sponding values by the classifier ensembles seen in Table 1.
This is feasible as the detection rates in Figure 10(2) are
obtained on the test data, which are invisible to the train-
ing phase; by contrast, during the training phase, we search
configurations that lead to the highest detection rates under
the false positive rate constraint using 5-fold cross valida-
tion, which are shown in Table 1.

For a classifier, let the number of true positives, false pos-
itives, true negatives, and false negatives be ntp, nfp, ntn
and nfn, respectively. Its precision is ntp/(ntp + nfp), and
its recall ntp/(ntp+nfn). The F-1 score, the harmonic mean
of precision and recall, is 2ntp/(2ntp+nfp+nfn). The preci-
sion, recall, and F-1 score of the classifier trained for each of
the 12 malware families are shown in Figure 10(3). We note
that the recall measures are high for most of the malware
families (except the Sdbot family), because the recall mea-
sure is essentially the same as the detection rate. However,
the precision measure can be low for some of the families,
such as Bagle, Ldpinch, Lmir, and Sdbot. Common to these
families is the fact that they are severely underrepresented,
having a much smaller number of instances than the other
families. Consider any malware family, whose samples com-
prise a fraction p of the entire dataset. Let the false positive

rate and the detection rate of the classifier trained for this
family be α and β, respectively. Then, we have:

precision =
pβ

(1− p)α+ pβ
≤ 1

1 + α(1/p− 1)
. (14)

The inequality holds as β ≤ 1, so if p is small, meaning
that the malware family is significantly underrepresented,
then 1/p − 1 is large, and precision becomes small even
though all positive samples can be detected successfully.

In some cases, however, it is important to have a classifier
with high precision. For instance, if we need to study com-
mon characteristics shared by samples by a malware family,
such as its unique string signatures, it is desirable to have
a classifier that produces only a small fraction of false posi-
tives among the samples labeled as positive. For such cases,
there are two solutions. First, we can use a smaller false
positive rate in Equation (14), which can cancel the effect
of 1/p− 1. For instance, we use a smaller false positive rate
threshold 0.5%, and the classification performances for the
Ldpinch and the Lmir families are shown as follows:

Measure Ldpinch Lmir
False positive rate 0.063% 0.16%

Detection rate 75.0% 88.6%
Precision 0.923 0.861

Recall 0.750 0.886
F1 Score 0.828 0.873

With a lower false positive rate threshold, the classifier
trained by our framework reduces the false positive rate, and
thus leads to a higher precision measure. Under this lower
false positive rate threshold, the majority of the samples
labeled as positive by the classifiers indeed belong to the
malware families under study. For the Lmir family, although
a false positive rate threshold of 0.5% is used, the detection
rate is even higher than what we have observed when the
false positive rate threshold is 5%. This results from the
fluctuations due to randomness in searching for the optimal
configurations by the genetic algorithm and the randomness
in partitioning the dataset for training and testing.

An alternative way of training a classifier ensemble with
a high precision measure is to slightly modify the chain
Neyman-Pearson criterion: rather than ensuring that the
accumulative false positive rate is no greater than a certain
threshold, we search for configurations with the highest de-
tection rates under the constraint that the precision measure
should be no smaller than a predefined threshold. If such
a threshold is set to be, say, 0.8, we expect the classifier to
produce positive labels among which at least 80% of them
are true positives.
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Figure 10: Performances of the classifiers trained under the chain Neyman-Pearson criterion

6.2 Performance Comparison
In the previous subsection, we have demonstrated the clas-

sification performance using the chain Neyman-Pearson cri-
terion. Next we show how it compares against existing en-
semble learning techniques. For the sake of performance
comparison, we consider the following methods. (1) Im-
puted : We combine all the features used in the previous
subsection together, and use the means of available values
to impute those missing ones. We further use three stan-
dard classifiers, kNN, SVM, and decision trees (C4.5) to
train classifiers from a subset of the imputed dataset. (2)
Boosting : Using each of the three classifiers from (1) as the
base learner, we further use the boosting method as the
ensemble classifier. (3) Bagging : Using each of the three
classifiers from (1) as the base learner, we further use the
bagging method as the ensemble classifier. (4) Stacking :
We stack all the three classifiers from (1) as the base learn-
ers together to create an ensemble classifier. Due to space
limitation, we omit the details of these methods here and
refer interested readers to the existing literature (e.g., [29,
8, 24]). For fair comparison, we use the implementations of
these methods from a third-party machine learning software,
Orange [23]. In order for other researchers to reproduce our
results, we use the default settings in Orange in all the ex-
periments, except that for the stacking scheme, we use kNN
rather than Naive Bayes as the meta learner. Using the lat-
ter leads to very poor performance for malware classification
(not shown here due to space limitation), and this has also
been observed in our earlier work [40].

In a new set of experiments, 80% of samples are labeled
and used to train the classifier and the remaining 20% are
used for testing. Note that in the experiments, all the sam-
ples in the training dataset are labeled. The classification
results are shown in Table 2. It is observed that none of the
standard approaches is able to produce false positive rates
below 5% for all the families: for each of these schemes, at
least five families have false positive rates higher than 5%.
Even with more labeled samples for training, the number of
malware families with a detection rate below 80% varies from
one to four among existing approaches, the best compara-
ble to our proposed scheme. These results suggest that the
ensemble classifier trained based upon the chain Neyman-
Pearson criterion outperforms the existing methods.

The superior performance of our scheme is explained as
follows. First, the implementation by Orange, the software
we use for the standard methods, is not necessarily optimal.
Second, our method aggressively searches the best parame-
ter settings of the individual classifiers under the Neyman-
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Figure 11: Execution time per instance

Pearson criterion, but the standard solutions do not. Last
but not least, our approach seeks to optimize the collective
performance of the entire classifier ensemble in a sequential
manner, which is not done by the existing methods.

6.3 Execution Time for Online Classification
As our goal is to automate the process of malware clas-

sification, one may wonder whether our proposed malware
classification framework is suitable for online malware clas-
sification. We thus perform another set of experiments to
examine the average execution time spent on each malware
instance in the test dataset. We run our method on a Linux
workstation with 12 1.6Hz cores and 64G memory.

In our experiments, we only consider the execution time
spent on malware classification. Hence, the time spent on
collecting the features that are necessary for classification is
not counted in the execution time we show here. The test
dataset contains 3199 malware instances, which is fed to each
of the 12 classifier ensembles we have trained in Table 1. For
each classifier ensemble, we perform malware classification
over the entire test dataset for 20 times. The mean execution
time per family is shown in Figure 11, together with its
standard deviation over these 20 runs.

Over all the 12 classifier ensembles, the mean execution
time per malware instance is merely 0.2779 second, which
suggests that when we apply our malware classification frame-
work on a new malware variant to test whether it belongs to
a specific family, the majority of the time would be spent on
collecting necessary features that are used for classification,
rather than the classification process itself. However, if we
want to test whether a new malware variant belongs to any
of existing families, we would have to test it against each
of the classifier ensembles trained for these families. Still,
even though we have to test the malware variant against the
ensemble classifiers for 100 families, the total execution time
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Table 2: Performance comparison. The experiments use 80% of labeled samples for training, and the other
20% for testing. All numbers are in percentage. False positive rates (FPR) higher than 5% and detection
rates (DR) below 80% are shown in bold.

Family Imputed Boosting Bagging Stacking
KNN Tree SVM KNN Tree SVM KNN Tree SVM

FPR DR FPR DR FPR DR FPR DR FPR DR FPR DR FPR DR FPR DR FPR DR FPR DR

Bagle 13.2 60.6 10.8 89.7 6.7 9.0 9.1 84.0 10.8 89.7 6.7 9.0 12.0 61.3 8.0 89.2 3.5 22.1 8.1 86.0
Bifrose 6.5 90.6 5.3 95.0 8.0 94.7 6.4 93.9 5.3 95.0 8.0 94.7 6.7 90.7 4.3 97.0 8.5 94.4 4.4 95.6
Hupigon 2.0 97.4 1.1 98.9 2.6 97.8 1.0 97.7 1.1 98.9 2.6 97.8 2.1 97.4 0.9 99.2 2.5 97.8 0.9 99.1
Koobface 6.8 98.6 3.7 97.9 1.2 98.1 5.6 94.1 3.7 97.9 1.2 98.1 6.3 98.1 3.0 97.8 1.4 98.2 2.6 97.3
Ldpinch 17.9 65.9 15.4 79.6 19.3 74.2 12.5 69.2 15.4 79.6 19.3 74.2 14.9 65.1 5.6 81.3 15.3 72.2 9.9 81.8
Lmir 7.6 52.2 15.8 82.8 8.8 80.7 10.4 80.1 15.8 82.8 8.8 80.7 8.4 50.1 7.1 87.2 7.4 80.1 10.4 84.7
Rbot 31.8 90.0 7.4 93.9 23.3 93.2 25.8 91.5 7.4 93.9 23.3 93.2 32.5 92.1 7.3 95.8 21.8 95.8 6.6 95.2
Sdbot 18.3 36.7 23.9 73.2 22.4 45.8 33.6 50.3 23.9 73.2 22.4 45.8 9.5 36.2 18.2 75.2 8.0 46.0 20.0 74.9

Swizzor 3.9 97.9 0.9 99.0 2.8 96.9 1.4 98.3 0.9 99.0 2.8 96.9 3.3 98.0 0.5 99.4 3.5 96.8 1.0 99.6
Vundo 3.1 97.6 1.7 98.4 1.4 98.9 1.3 98.1 1.7 98.4 1.4 98.9 3.1 97.7 1.2 99.2 1.4 98.9 1.0 99.2
Zbot 2.8 87.6 4.2 95.4 3.7 95.0 3.7 91.3 4.2 95.4 3.7 95.0 1.8 87.5 3.0 97.3 3.4 95.0 3.8 96.3
Zlob 7.8 98.3 1.4 98.5 3.0 98.2 4.1 98.5 1.4 98.5 3.0 98.2 7.4 98.3 0.7 99.0 2.9 98.3 1.9 99.0

is still expected to be less than half an minute. This time
can be further reduced if multiple cores are used.

Interestingly, there are significant differences among the
execution times by the classifier ensembles trained for the
12 malware families. On average, the classifier ensemble
trained for the Rbot family takes the longest time, which
is 0.776 second, and the one trained for the Sdbot family
takes the least time, which is 0.0466 second. The differences
can be attributed to a number of reasons, such as the set of
features used for classification, fraction of positive samples,
how likely positive samples can be detected at the early stage
of the classifier ensemble, and the execution times of SVM-
Light under various configurations.

6.4 Analysis of Genetic Algorithm
We next show how the genetic algorithm performs in find-

ing the optimal configurations. We examine the executions
of the genetic algorithm over all the 12 malware families,
and find that about 50.8% of them do not return plausible
solutions, which lead to unused feature types seen in Table 1
(i.e., those marked with ’-’). Next we consider only the cases
in which the genetic algorithm returns a plausible solution.

Generation Fraction Crossover Partial Full
Mutation Mutation

1 49.2% 0 0 100%
2 24.6% 22.2% 35.6% 42.2%
3 26.2% 27.1% 39.6% 33.3%

The above table breaks down the fraction of solutions
found from each generation. It is noted that almost half
of the configurations found come from the first generation,
which essentially uses full mutation to randomly generate
solutions. Each of the second and third generations pro-
duces one fourth of the plausible solutions. One interest-
ing observation is that among the solutions in the second
and third generations, the full mutation scheme still con-
tributes to a significant fraction of these solutions; however,
when the reproduction process continues, the fraction of so-
lutions randomly generated from full mutation decreases.
This is because the evolutionary process gradually improves
the quality of the population from both the crossover and
the partial mutation schemes. Hence, if there are only a
small number of searches used to find the optimal config-
uration, global search, which randomly explores the entire
configuration space by full mutation, is more efficient in find-
ing a good solution; however, with more searches allowed,
local search, either crossover or partial mutation, is able
to focus the searches in those regions with good solutions
and can thus improve the current solutions more efficiently.
This suggests that the genetic algorithm can combine the

advantages of both local search and global search in finding
optimal configurations.

7. RELATED WORK AND DISCUSSIONS
Due to scalability advantages over manual malware analy-

sis, machine learning has been applied in a number of previ-
ous studies for distinguishing malware programs from benign
ones (e.g., [30, 14, 25, 27, 1, 32]). Malware detection is a dif-
ferent task from malware classification, which is the theme
of this study, as the goal of the later is to classify malware
variants into their corresponding families. In some recent
works, machine learning has also been applied to automate
the process of malware classification (e.g., [21, 40, 15, 19,
38, 20, 39]). The main differences among these works lie
in the types of features used for malware classification. Al-
though the malware features used in this study are far from
being exhaustive, they cover key malware features collected
from both static analysis and dynamic analysis, and those
features considered in the previous efforts can be easily in-
corporated in our malware classification framework based
on the chain Neyman-Pearson criterion. More importantly,
what really distinguishes our work from these previous ef-
forts is that they do not consider different requirements on
different types of errors induced by malware classification.
For instance, if we want to study the trend of a malware
family, we expect that the majority of the samples in this
family should indeed belong to this family, which requires
us to have a malware classifier with a low false positive rate
even though we have to sacrifice its detection rate. Hence, it
is of important to have the flexibility of balancing the false
positive rate and the detection rate in malware classification,
which cannot be achieved by any of existing methods.

The performance evaluation of of this work relies upon
a malware dataset with labels derived from consensus from
AV software detection results. It is known that the labels
obtained in such a way may lead to a biased dataset [16,
18]. Even with such a flaw, it is noted that using the same
dataset, the proposed solution outperforms standard ensem-
ble learning techniques in classification performances. In the
future, we plan to use other malware datasets with truthful
labels to further evaluate our approach.

Like many other machine learning techniques, the pro-
posed ensemble classifier is trained assuming that the test
data would have the same or a similar distribution as the
training data. However, the population of malware vari-
ants in a malware family can be nonstationary, which is
called concept drift in parlance of machine learning [33]. In
an adversarial environment, concept drift can bring signifi-
cant challenges to malware classification [13]. Concept drift
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requires us to monitor changes of malware populations; if
an abrupt change is observed, the classifiers need to be re-
trained. Adapting the proposed ensemble malware classifier
to deal with concept drift remains as our future work.

In this work, we use the cost-sensitive SVM as the basic
block to train individual classifiers. Davenport et al. consid-
ered how to tune the costs in cost-sensitive SVM based on
the Neyman-Pearson criterion [7] with a coordinate descent
method. The genetic algorithm used in this work can be eas-
ily parallelized, and has a single parameter (i.e., the number
of generations) to control the number of search attempts.

The existing ensemble learning techniques, such as boost-
ing, bagging, and stacking [9], can be orthogonal to our
work: they can be used to improve the performance of an in-
dividual classifier when a specific feature type is considered
in our malware classification framework. Moreover, the way
in which our work combines multiple classifiers also differs
from these existing techniques. First, the ‘OR’ rule used in
our method enables us to take advantage of the correlation
among multiple feature types: If adding a new feature type
does not help improve the classification performance over
previous feature types, our classification framework does not
collect its values from a malware sample. Second, missing
feature values render it difficult to apply existing methods
directly. For example, given a malware sample, if we cannot
collect values for a specific feature type, we cannot assign a
weight to it in the boosting algorithm. Third, by applying
the chain Neyman-Pearson criterion, we recursively train a
set of classifiers that leads to the optimal performance col-
lectively. Here, the performance of a classifier ensemble is
evaluated according to the Neyman-Pearson criterion, rather
than the classification errors used in some existing methods.
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