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Abstract

Recent occurrences of mobile worms like Cabir, Mabir
and CommWarrior have created growing concerns over
the security of data stored on mobile devices such as cell
phones and PDAs. These worms have in common that they
all use Bluetooth communication as their infection channel.
In order to prepare effective defense strategies against such
worms, we study the nature, characteristics, and spread-
ing dynamics of Bluetooth worms in the safe environment
of simulation. Our key findings are: (i) Mobility may not
boost the Bluetooth worm propagation, instead, link insta-
bility owing to it has negative impact on the worm spreading
speed, (ii) The inherent capacity constraints imposed by the
wireless channel (e.g. interference) and the specifics of the
Bluetooth protocol can significantly slow down the Blue-
tooth worm propagation; (iii) Intelligently designed worms
can improve their propagation speed to a noticeable de-
gree by strategically selecting worm model parameters or
exploiting out-of-band propagation capabilities.

1 Introduction

Bluetooth, originally designed as a cable replacement so-
lution, is a short-range radio technology that connects wire-
less devices. It differentiates itself from other competing
radio technologies such as IEEE 802.11 by operating at low
power consumption and at low cost. Bluetooth has a wide
range of applications, including wireless headsets, peer-to-
peer file exchanges, and data synchronization. The market
for Bluetooth devices has been growing tremendously in re-
cent years: world-wide, 272 million Bluetooth devices have
been shipped in 2005, twice as many as in 2004 [18].

The wide-spread deployment of Bluetooth devices has
made the technology attractive for worm propagation. The
first cell phone worm called Cabir [9], which hit mo-
bile cell phones in 2004, used Bluetooth channels on cell
phones running the Symbian Operating System to spread
onto other phones. The Cabir descendant Mabir [6] and
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the CommWarrior worm [13] are both capable of propa-
gating themselves through the Bluetooth interfaces of cell
phones. While these worms created considerable nuisance
by draining the batteries of infected devices due to inten-
sive scanning operations and probably also by congesting
the wireless channel, they have not caused any serious se-
curity breaches as none of them actually carried a malicious
payload. However, security concerns over Bluetooth worms
that spread on cell phone networks are hard to exaggerate:
once a worm has compromised a cell phone, it can easily
place bogus calls, propagate spam emails, and steal confi-
dential or private information that is stored on the cell phone
[10][14]. More advanced worms might gain control over a
large number of cell phones in which they implant zombies.
These resulting wireless botnets could be used to launch
Distributed Denial of Service (DDoS) attacks against base
stations, cellular switches, specific IP addresses or phone
numbers such as emergency numbers [10][7].

The potential security impact of Bluetooth worms on cell
phone networks calls for an in-depth understanding of their
nature, characteristics, and dynamic behavior. We are par-
ticularly interested in the propagation speed of Bluetooth
worms. Examples of extremely fast Internet worms like
Slammer [16] tell us that manual human intervention is
hardly effective in stopping such worms. We now face a
similar question: how fast can a worm propagate in a Blue-
tooth network? To answer it, we conduct a simulation study
of Bluetooth worms. Mathematical analysis of MAC/PHY
layer interactions between Bluetooth devices in a network
at the scale in our study is difficult, if not impossible. On
the other hand, it is costly to deploy a real Bluetooth testbed
and it is also difficult to control the speed of real Bluetooth
devices in the way as what we want. Hence, simulation, due
to its repeatability and controllability in a laboratory setup,
stands out as the only practical tool to conduct this study.

In this paper, we propose a baseline worm model that
mirrors the designs of existing Bluetooth worms such as
Cabir and CommWarrior. We use simulations to understand
the propagation property of this baseline worm in a vari-
ety of scenarios. We observe that the spreading speed of
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the Bluetooth worm depends on factors such as device den-
sity, device mobility, and existence of insusceptible devices.
We also observe that the Bluetooth worm propagation time
grows almost linearly with the network size.

An important finding from our simulation results is that
mobility does not necessarily boost the Bluetooth worm
propagation. This disagrees with the observation made in
some earlier work. Further examination on the dynamics of
the Bluetooth worm reveals that link instability due to de-
vice mobility forces the Bluetooth worm to rely on timers to
detect connection failures, thus slowing down its spreading
speed. Another observation is that as a Bluetooth network
of high device density becomes populated with infected de-
vices, heavy co-channel interference may result and in re-
turn slows down the worm propagation process itself. Af-
ter a model fitting exercise, we conclude that the logistic
model, which has successfully been used to characterize the
Internet worm propagation, fails to fully capture the dynam-
ics of Bluetooth worm propagation. We thus provide some
guidelines on what properties of Bluetooth worms should
be considered when building an analytical model.

We further explore whether an advanced Bluetooth
worm can strategically select its model parameters to maxi-
mize its propagation speed. We find that a Bluetooth worm
that aggressively carries out its infection activities may not
improve its propagation speed and on the contrary, if de-
vices in the network are relatively static, its propagation
speed can be negatively affected. As a reflection of recent
worms such as CommWarrior that exploit communication
capabilities besides Bluetooth, we examine how availability
of MMS (Multimedia Message Service) accelerates Blue-
tooth worm propagation. The simulation results reveal that
with only a couple of MMS contact “buddies” per device a
Bluetooth worm can speed up its propagation by 50%.

We structure this paper as follows. Section 2 provides
a brief overview of Bluetooth technology as background
knowledge. We present the design of a baseline worm
model in Section 3 and the experimental results with this
model in varied scenarios in Section 4. We analyze the
spreading dynamics of the Bluetooth worm in Section 5 and
provide some considerations from the modeling perspective
in Section 6. We explore the effect of model parameters
in Section 7 and investigate how long-range infection chan-
nels can boost Bluetooth worm propagation in Section 8.
Section 9 briefly presents some implications on the defense
against Bluetooth worms. Section 10 discusses related work
and Section 11 summarizes this paper.

2 Bluetooth Primer

Bluetooth is a short-range radio technology that is aimed
at connecting different wireless devices at low power con-
sumption and at low cost. It operates in the 2.4GHz fre-
quency band and its channels are shared among devices

through a time-division duplexing (TDD) scheme. It also
uses frequency hopping scheme to reduce interference.

When a Bluetooth device wants to find other devices in
its vicinity, it broadcasts inquiry packets by hopping 3,200
times per second along a 32-channel inquiry hopping se-
quence. A nearby device in the discoverable mode listens
on the same frequency sequence but moves forward its lis-
tening carrier every 1.28 seconds. When a device hears an
inquiry packet, it backs off for a random period of time and
then reenters the scanning state. When it receives another
inquiry packet, it responds with a Frequency Hop Synchro-
nization (FHS) packet. On the arrival of this packet, the in-
quirer device knows that the responder is in its radio range.

Once a device has discovered its neighboring devices,
it may want to establish a connection with one or more of
them. In order to set up a Bluetooth link with a neighbor
device, it goes through the paging process. This process is
similar to the inquiry process, except that the paging de-
vice explicitly specifies the receiver’s address to indicate
with which device it wants to set up a connection. After
a connection is established, the pager device and the paged
device are called the master and slave of the new link re-
spectively. In the connected state, the master and the slave
can exchange normal data packets by hopping 1,600 times
per second along a 79-channel frequency sequence decided
by the master’s local clock and its device address.

A Bluetooth link has a maximum capacity of 1Mbps.
The Bluetooth specification defines two types of links: syn-
chronous connection-oriented (SCO) links for voice com-
munication and asynchronous connectionless (ACL) links
for data communication. ACL links use the Automatic Re-
peat Request (ARQ) scheme to recover lost packets. ACL
links support 6 types of packets, among which DHS pack-
ets have the highest data rates. The payload of each DHS5
packet has 339 bytes.

3 A Bluetooth Worm Model

We present the design and implementation of our Blue-
tooth worm in a Bluetooth protocol simulator. In our Blue-
tooth worm model, an infected device only attempts to in-
fect devices within its range. It does not need the network-
ing layer to route packets to devices multiple hops away.
Such design captures the behavior of existing Bluetooth
worms like Cabir and CommWarrior. This single-hop prop-
agation behavior is the key difference from Internet worms.

The infection cycle of a Bluetooth worm is illustrated
in Figure 1. When a Bluetooth worm is activated, it starts
looking for Bluetooth-enabled devices in its vicinity. When
it starts an inquiry, it specifies both the inquiry timeout,
Ting, and the expected number of responses, N;,q. If the
infected device sees the N;,q-th response before 15,4 time
units after it starts the inquiry, the inquiry process finishes;
otherwise, if the infected device receives less than N;,,, re-
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Figure 1. Infection Cycle of A Bluetooth Worm
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sponses when Tj,, time units elapse after it initiated the
inquiry, the inquiry process also terminates. The default
value for T3, in the Bluetooth specification is 10.24 sec-
onds, which ensures that all devices can be discovered in a
loss-free environment if there is no limit on V.

After the Bluetooth worm has compiled a list of
Bluetooth-enabled devices in its radio range, it iterates
through the list attempting the following with each neighbor
device: establish a connection, probe infection possibility,
replicate itself, and disconnect from the victim device.

Establishing a connection to a victim device involves the
paging process. It is, however, possible that paging fails.
One obvious reason is that the victim device has moved out
of radio range at time of paging request. Paging failures can
also result from interference. For example, if two devices
page each other simultaneously, they both will fail; if a de-
vice pages a node that is performing an inquiry, it will also
fail [19]. In order to detect paging failures, a Bluetooth de-
vice schedules a paging (or connection establishing) timer
that expires after T,,,, time units. The default value of
Teonn in the Bluetooth specification is 5.12 seconds.

If the infected device fails to establish a connection to
a victim device, it removes it from the list and attempts
to infect the next one; otherwise, it probes the victim de-
vice for the infection possibility. When the victim device
receives the probing packet, its response depends on its in-
ternal state: (1) if at state insusceptible, it sends back a RE-
JECTED response packet; (2) if at state susceptible but in-
fected, it sends back an INFECTED response packet; (3) if
at state susceptible and uninfected, it sends back an UNIN-
FECTED response packet.

On the arrival of a REJECTED or INFECTED response

packet, the probing device removes the victim device from
the list and attempts to infect the next one. If the probing
device finds that the victim device is vulnerable and has not
yet been infected, it starts to replicate the worm code onto
the victim device. Similar to the paging process, the prob-
ing device may not receive any response from the victim
device. Hence, it starts a timer as it sends out the probing
packet. The probing timer expires after 7,4 time units
if no response has been received. When the timer fires, the
worm attempts to infect the next device on the list.

The probing process in our worm model closely mirrors
the behavior of most real Bluetooth worms. For instance,
a CommWarrior worm probes each victim device for the
availability of the *Obex Push’ service; on a positive reply,
the worm replicates itself onto that device [8]. Moreover, if
a victim device is susceptible to the worm attack, our model
distinguishes two cases: it has not been infected, and it has
already been infected. This is possible because a worm, af-
ter gaining control over a victim device, can inform probing
devices of the fact that the probed device has already been
infected. This prevents the worm from replicating itself to
the same device unnecessarily for more than one time.

The time that a worm takes to upload itself onto another
device depends on its size Syorm and the packet type. We
assume all worm packets are DHS packets. The size of a
Bluetooth worm seen so far ranges from thousands to tens
of thousands of bytes. For example, the Cabir.H worm (a
variant of Cabir worm) consists of only about 7,000 bytes;
the CommWarrior.a!sys worm (a variant of CommWarrior
worm) has 30,582 bytes [2].

Worm replication may fail because devices move out of
each other’s radio range. Thus, a replication timer is started
when an infected device starts uploading. If it expires after
T)¢p time units, the infected device gives up the attempt and
tries to infect the next one on its neighbor list. After a worm
successfully copies itself onto another device, it disconnects
from it. In case that the communication channel is lost dur-
ing this period, we also schedule a timer to ensure that the
channel between them is destroyed successfully. The dis-
connection timeout is 7;; 5. time units in our worm model.

After attempts to replicate itself onto all the devices
found in the vicinity, a worm keeps inactive for 7;4. time
units before another infection cycle starts.

4 Baseline Worm Experiments

We implemented the Bluetooth worm model described
in Section 3 in the ns-2 network simulator [3] using the
Bluetooth module UCBT [4]. The UCBT module has a
full implementation of the Bluetooth protocol stack. How-
ever, it does not provide a detailed radio propagation model.
Hence, we have implemented the radio propagation model
used in [11] to calculate signal attenuation. In this model,
the path loss, which refers to signal attenuation on the prop-
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Notation Value Notation Value
Ting 10.24 (sec) Ning 7
Teonn 5.12 (sec) Torobe 0.1 (sec)
Trep 10 (sec) Sworm | 20,000 bytes
Tisc 0.1 (sec) Tidle 20 (sec)

Table 1. Notations and values in the baseline
worm model

agation path, is defined as follows:

toss =\ 58.3 4 33 x logio(d/8) d>8m

This model assumes free space propagation for the first 8
meters (i.e., it assumes that there always exists an unob-
structed line-of-sight path between the source and the desti-
nation); beyond this range, the signal attenuates at a rate that
is a function of d>3, where d is the distance to the source.

Interference is a major limiting factor in the performance
of Bluetooth networks [11]. In our simulation study, we
take co-channel interference into consideration. Co-channel
interference occurs when devices on different channels use
the same frequency to transmit packets at the same time.
The Bluetooth specification requires that in order for the
receiver to successfully decode a signal, the carrier to inter-
ference ratio (C/I) must be at least 11 dB. In this study, we
assume that a lower C/I ratio leads to packet loss.

We configure the parameters in our baseline Bluetooth
worm model as illustrated in Table 1. In all the experiments
in this paper, we simulate Bluetooth networks operating at
power class 2; thus, each Bluetooth device has a commu-
nication range of 10 meters. In the following sections, we
investigate how the worm propagation speed is affected by
varied scenario parameters, including device density, device
mobility, network size and fraction of insusceptible devices.

4.1 Effects of Density and Speed

In this set of experiments, we simulate a network with
200 Bluetooth devices. We vary device densities by putting
these devices in square areas with side length 50, 75, 100,
125, and 150 meters. An important part of our simulation
study is how to model device mobility. Ideally, we would
like to use traces from real Bluetooth networks. Unfor-
tunately, the few publicly available mobility datasets are
not suitable as they do not provide position data of each
device at fine-grained time scales. Under such circum-
stance, we apply the widely used random waypoint mobil-
ity model to generate device movement traces despite its
well-known flaws. In this model, a node stays at a loca-
tion for a uniformly distributed period between 7,,;, and
Tmaz» then chooses another location randomly and moves
towards it at a uniformly distributed speed between vy,
and v,q,. In all the simulation studies in this paper, we
have: Tpin = 0(sec), Tmaz = 10(s€c), Vmin = 0(m/s).

In this set of experiments, we vary the mean speed (i.e.,
(Vmin + Umaz)/2) among 1, 2, 3, 4, and 5 m/s. For each
scenario we simulate 10 sample runs.

Figure 2 depicts the average propagation time needed for
50% and 95% infection coverage in 3-dimension graphs.
We observe that given the same mean device speed, both
times increase roughly linearly with the side length. The
simulation results agree with our intuition that Bluetooth
worms should propagate more slowly in a sparse network
than in a dense network. On the other hand, given the
same device density, both propagation times seem to grow
roughly linearly with the mean speed. The observed linear-
ity, however, may hold only in the parameter space exam-
ined. It is worth mentioning that our simulation results dis-
agree with the observation made in [15] that mobility boosts
viral propagation in mobile environments. The key reason
for this different conclusion is that our work considers de-
tailed MAC/PHY layer characteristics. We will present de-
tailed explanation later in Section 5.

4.2 Effects of Insusceptible Devices

Real Bluetooth networks usually mix susceptible and in-
susceptible devices. For instance, Cabir worm only spreads
on smart cell phones running Symbian OS 6.1 or higher; it
can not infect those that run other operating systems. An
interesting question, then, is to understand how coexistence
of susceptible and insusceptible devices affects worm prop-
agation in Bluetooth networks. We consider a network with
the same number of Bluetooth devices. There are two con-
flicting factors that may affect worm propagation. On one
hand, existence of insusceptible devices eliminates the ne-
cessity of replicating worm code onto these devices, but on
the other hand, it also lowers the probability that two sus-
ceptible devices are within each other’s radio range.

To understand which factor is important in Bluetooth
worm propagation, we perform another set of experiments
where susceptible and insusceptible devices are mixed to
varied degrees. The proportion of susceptible devices is
chosen among 0.25, 0.5, 0.75, and 1.0. We still use the
random waypoint mobility model to generate device move-
ment traces; we vary its mean speed between 1 and 3 meters
per second. We also vary device densities by simulating 200
devices in square areas with side 75 and 150 meters.

Figure 3 depicts how varied fractions of susceptible de-
vices impact the worm propagation time for 50% and 95%
coverage. It is clear that in all scenarios both times de-
crease monotonically as the fraction of susceptible devices
increases. This reveals that the second factor plays a dom-
inant role in affecting worm propagation. We also find
that when the device density is relatively low, increasing
the fraction of insusceptible devices leads to super-linear
growth of worm propagation time.
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4.3 Effects of Network Size

The total number of devices in the network considered
is a key parameter. We simulated our worm on several
network sizes with the aim to see how the propagation
speed changes with growing network size, while keeping
the device density constant. We vary device densities in
the network between 0.0356 device/m? (dense) and 0.0089
device/m? (sparse). We also vary the mean speed in the
random waypoint model between 1 and 3 meters per sec-
ond. The results, including 95% confidence intervals, are
presented in Figure 4. The figure shows average propaga-
tion times for 50% and 95% infection coverage as a func-
tion of network size under four scenarios. It seems that in
all cases both times grow linearly with the network size, ex-
cept that the ones corresponding to mean speed 3m/s and
low density grow slightly sub-linearly. We use least squares
linear regression technique to fit the simulation results and
the derived linear curves are also depicted in Figure 4. The
observed linearity allows us to extrapolate worm propaga-
tion times in Bluetooth networks at scales beyond simula-
tion capabilities as of today. Consider a network that has
one million Bluetooth devices in a 108 m? area. This net-
work has almost the same device density as the aforemen-
tioned sparse scenarios. If we assume that all devices are
vulnerable to worm infection and move according to the
random waypoint model at mean speed 1m/s, then using
the slopes derived from Figure 4, we can infer that it would
take approximately 10 days for the worm to infect half of
the population and 17 days to infect 95% of all the devices.

S Dynamics Analysis

In the previous section, we have presented how Blue-
tooth worms propagates under varied scenarios. In this
section, we give a more detailed analysis on the dynam-
ics unique to the Bluetooth worm propagation. We perform
two new sets of experiments, both simulating a network
with 200 Bluetooth devices in a 75m X 75m area. In the
first set, devices remain stationary throughout the simula-
tion, and in the second one, devices move according to the
random waypoint mobility model. In each experiment, we
randomly choose a Bluetooth device and let it be infected at
the beginning of the simulation.

5.1 Results for Static Devices

We simulate the static network for 300 seconds. Every
device in the network is susceptible to the worm infection.
We perform 10 sample runs, in each of which devices are
randomly distributed in the area (we throw away those that
do not yield a fully connected network).

Propagation curve. For ease of explanation, we de-
fine notation 1}, to be the time in seconds needed to infect
p percent of the devices in the network. Figure 5 presents
the cumulative numbers of infected devices as a function of
simulation time in three sample runs. These sample runs are
selected in the following way: We rank the 10 sample runs
based on their 759, and choose the one with the smallest
value, the one with the largest value, and the one with the
median value. We also plot the curve that averages all the
sample runs. From the graph, we observe that there exists
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large variance in worm propagation speed among the sam-
ple runs. The largest T, is twice as much as the smallest
one. This is because we randomly place the devices in the
area and the initial worm is also randomly chosen. On the
other hand, the propagation curve of the sample run with
the median 759 is very close to the propagation curve that
averages all the sample runs. Among all the sample runs,
T95% has mean 161.35 and standard deviation 37.41; TSO%
has mean 80.15 and standard deviation 21.35.

Interference Analysis. Throughout each simulation
run, we also collect the average packet loss rate due to co-
channel interference every 10 seconds. We denote it by
Ly, co . The result with 95% confidence interval is depicted
in Figure 6. We observe the general tread of increasing
packet loss rate due to co-channel interference; this is be-
cause as the number of infected devices grows, interference
among devices also increases. When almost all the devices
in the network are infected, L,, ., reaches its peak at about
27%; after that point, the network enters a relatively stable
state and L, ., thus becomes steady.

It is interesting to see how much co-channel interfer-
ence slows down worm propagation. In another set of ex-
periments, we do not drop packets when co-channel in-
terference occurs. Simulation results tell us that without
packet losses due to co-channel interference, T95% has
mean 119.10 and standard deviation 20.28; TSO% has mean
67.06 and standard deviation 14.85. Hence, for the 95% in-
fection coverage, co-channel interference slows down worm
propagation by about 36%, and for the 50% infection cover-
age, co-channel interference leads to about 20% slowdown
in spreading speed.

Phase Analysis. To gain further understanding on Blue-
tooth worm propagation, we analyze the three major phases
in a worm infection cycle: searching for nearby devices, es-
tablishing a connection to a particular device, and replicat-
ing worm code onto a victim device. Figure 7 presents the
average number of responses received in an inquiry process.
‘We observe that as more devices are infected, fewer devices
respond to those infected devices searching victims in their

vicinities. This observation still holds even when we dis-
able packet losses due to co-channel interference. Further
examination on the experimental results reveals that among
all the devices that do not respond to inquiries, most of them
have already been infected. This occurs when they also en-
gage in searching nearby devices or infecting a new vic-
tim. As more devices in the network are infected, it is more
likely that an infected device is surrounded by others that
are also searching for new victims.

This seems helpful in accelerating worm propagation be-
cause those devices that do not respond have already been
infected and failing to find them saves time from establish-
ing connections to them and then probing them. These sav-
ings, however, may be offset by the increasing inquiry du-
rations when more devices are infected. In Figure 7, we
also depict how the average inquiry duration evolves in the
simulation. It is clear that, when the number of infected de-
vices increases, the time needed to finish an inquiry grows
dramatically towards its upper bound 75,4 (Which is 10.24
seconds in the baseline worm model). At the beginning of
the simulation, because most of the devices are not infected,
a device scanning nearby devices can receive up to Ny,
(which is 7 in the baseline worm model) responses much
earlier before T}, time units elapse. Hence, during this pe-
riod, an infected device is able to finish the inquiry process
quickly. As the number of infected devices increases, some
of them do not respond to inquiries launched by nearby de-
vices, as we explained above. Many inquiries are thus fin-
ished only when their associated timers expire after T3,
time units. This results that average inquiry duration ap-
proaches to T},, with increasing saturation of infected de-
vices in the network.

Figure 8 describes the results on connection establishing
attempts per 10 seconds. Not surprisingly, both successful
and failed attempts at establishing connections to infected
devices increase with the growing number of infected de-
vices in the network. Furthermore, establishing a connec-
tion to an uninfected device seldom fails. A notable obser-
vation from the graph is that among attempts at connecting
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to infected devices, failed ones outnumber successful ones
almost by 100% after about 25 seconds since the initial in-
fection. Moreover, Figure 9 tells us that as the network is
saturated with Bluetooth worm, a successful connection es-
tablishing process takes about 2.0 seconds.

In Figure 9, we also present the average amount of time
spent on replicating the worm code. If there is no box dur-
ing a time period, it indicates that no worm replication oc-
curs. Further examination reveals that the duration of worm
code replication is severely impacted by the co-channel in-
terference. If we disable packet losses due to co-channel
interference, the durations have very small variance.

5.2 Results for Mobile Devices

Propagation curve. We simulate the same network in
Section 5.1 for 700 seconds except that nodes are not sta-
tionary. Figure 10 presents the cumulative numbers of in-
fected devices as a function of simulation time in several
sample runs and the propagation curve that is averaged over
all the sample runs. The sample runs shown in this graph
are selected in the same way as in Figure 5. The variance
among the sample runs is still large, which is similar to the
observation we made from the static case. The largest T
is almost twice as much as the smallest one. A close exam-
ination on the graph further tells us that the shapes of these
curves are actually quite similar, but the differences in the
propagation speeds at their early phases are noticeable. This
suggests that the propagation speed of the Bluetooth worm
in a mobile network is significantly impacted by how fast it
spreads itself shortly after it is released.

From the simulation results, T95% has mean 307.76 and
standard deviation 38.61; TSO% has mean 150.67 and stan-
dard deviation 35.04. Compared with the worm propaga-
tion in the static network, T95% has increased by 90.7%
and T95% has increased by 86.7%. Here, we do not intend
to make a hasty conclusion that mobility must lead to slow-
down in worm propagation. Imagine a situation in which a
static network consists of several disjoint “islands” between
which there is no communication path. In this network, in-
fecting a device in one island can only lead to worm infec-
tions in that particular island but devices in the other islands
will never be infected. But if mobility is introduced, devices
from different islands can be mixed and it is possible that all
devices are eventually infected.

Investigating how mobility models affect Bluetooth
worm propagation is out of the scope of this paper. Here,
provided the observation that mobility can slow down Blue-
tooth worm propagation, we are thus motivated to expose
the characteristics inherent in the Bluetooth protocol that
leads to it. The findings can gain us more insights into the
dynamics of Bluetooth worm propagation. If an analytical
model is necessary, they can also provide a guideline on
deciding what details in the Bluetooth protocol should be

captured. In this regard, our work differs from some earlier
work [15] that attempts to build an analytical model directly
without taking the MAC/PHY properties into consideration.

Interference Analysis. Figure 11 illustrates the packet
loss rate due to co-channel interference. During the first 50
seconds, as the number of infected devices increases, packet
loss rate due to co-channel interference ramps up to about
27%. Thereafter, the packet loss rate due to co-channel in-
terference fluctuates around 27%. Comparing this graph
with Figure 6, we notice that as most of the devices are
infected, the average packet loss rates due to co-channel
interference are similar to those in the static network. To
examine how co-channel interference slows down worm
propagation, we disable packet losses due to co-channel in-
terference in the simulation. The results show that Tggo,
has mean 215.63 and standard deviation 34.80; TSO% has
mean 130.09 and standard deviation 38.25. Hence, for
the 95% infection coverage, co-channel interference slows
down worm propagation by about 43%, and for the 50%
infection coverage, co-channel interference leads to about
16% slowdown in spreading speed.

We, however, expect that the impact of co-channel in-
terference on worm propagation speed is a function of de-
vice density in the network. It is obvious that denser de-
vices lead to more congestion in communication channels
and thus lower propagation speed. This is confirmed by
some other simulation results. Use the same network in
the 150mx 150m area as an example. Co-channel interfer-
ence causes only 9% slowdown in 95% infection coverage
and 3% slowdown in 50% infection coverage. Hence, the
worm propagation slowdown due to co-channel interference
is much smaller than that in the 75m x75m case.

Phase Analysis. We plot the average number of re-
sponses per inquiry and the average inquiry duration in Fig-
ure 12. We can make similar observations as from Figure
7: as the network has more infected devices, the average
number of responses per each inquiry decreases, and corre-
spondingly, the average inquiry duration approaches to the
inquiry timeout value; as the majority of the devices are in-
fected, both measures become relatively steady.

Figure 13 shows the results on connection establishing
attempts in the mobile Bluetooth network. Comparing it
with Figure 8, we notice that in the mobile network connec-
tion establishing attempts fail more frequently. We men-
tioned that the proportion of failed attempts at establishing
connections to already infected devices in the static network
is about 2/3. By contrast, in the mobile network this pro-
portion reaches 7/8. Moreover, in the mobile network the
number of failed attempts at building connections to un-
infected devices is also larger than that in the static net-
work. All these observations suggest that device mobility
increases the difficulty of setting up connections between
two devices, thus making it harder for worm propagation.
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Figure 14 depicts the average time needed to success-
fully establish a connection. After most of the devices are
infected, it is maintained between 1.5 and 2 seconds, which
is similar to the static case. The same graph also gives the
average amount of time needed to replicate the worm code
onto a victim device. If we disable packet losses due to
co-channel interference, very small variance is observed on
the duration of worm code replication. This conforms to
our earlier finding that co-channel interference is the major
factor affecting the performance of worm code replication.

6 Modeling Considerations

An accurate worm propagation model can provide use-
ful guidance for effective detection and defense. There have
been substantial efforts on analytically characterizing the
dynamics of Internet worms. A natural question is whether
existing Internet worm propagation models can be directly
borrowed to model Bluetooth worm propagation. To answer
this question, our simulation results can serve for valida-
tion purpose and also provide guidances on what elements
should be captured in a good analytical model.

We start from the logistic model proposed in [17]:

K (=T)
X TRy

where N (t) be the number of infected devices at time ¢,
Ngey 1s the total number of devices in the network, and K

N(t) = Nde'u (2)

and T are the two parameters in the model. In the logistic
model, the growth curve is symmetric around the inflection
point, where the growth rate reaches its peak.

A fundamental assumption underlying the logistic model
is that individuals should mix homogeneously so that the
probability an individual infects another one is exactly the
same between any two individuals. This does not hold for
Bluetooth worm propagation in a static network because a
worm can only infect its neighbors. Hence, the model fitting
exercise here is only done on the scenario in Section 5.2
where devices move in a bounded area and are thus mixed
throughout the simulation.

We now examine how well the logistic model fits the
simulation results. Here, we try a simple model fitting
method that still gives us enough insight about how well the
model characterizes the worm propagation. We fix the ini-
tial point N (0) to be 1 and derive the inflection point from
the simulation results. Using these two points, we are able
to derive the parameters for the model. In Figure 15, we plot
the average number of infected devices as simulation time
advances and the logistic curve derived according to the
above model fitting method. It is clear that the logistic curve
underestimates the propagation speed at the early phase of
the worm propagation but overestimates it at the late phase.
It is noticed that the logistic model in Equation (2) does not
consider any congestion, which can slow down the worm
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propagation. One may wonder whether incorporating ele-
ments that capture packet losses due to co-channel interfer-
ence in the model may lead to a much better model fitting.
We plot the cumulative number of infected devices with-
out co-channel interference and the fitted logistic curve also
in Figure 15. The graph shows that although both curves
move left relative to those with co-channel interference en-
abled, the logistic curve still underestimates the propagation
speed at the early phase of the worm propagation but over-
estimates it at the late phase.

The observed mismatch suggests that something is still
missing. We mentioned earlier that the logistic function in
Equation (2) assumes that devices are sufficiently mixed. It
is important, though, to distinguish the two cases: devices
are physically mixed and devices are logically mixed. Two
devices which are in each other’s communication range can
be neighbors physically, but if both of them perform worm
activities simultaneously, they may not discover each other
and thus they are not neighbors logically. It is obvious that
if we do not consider co-channel interference, worm propa-
gation is essentially affected by the degree to which devices
are mixed logically instead of physically.

In Figure 16, we plot the average number of devices
discovered per second per worm in a sample run (the re-
sults from other sample runs are similar and thus omitted
here). The co-channel interference in this run is disabled to
make explanation easier. It is also worth mentioning that
this graph is different from that in Figure 12 because the
latter gives the average number of devices discovered in a
single infection cycle. The average duration of an infection
cycle may change in the course of the worm propagation.
This is because as more devices are infected in the network,
the inquiry phase lasts longer but fewer neighbors are dis-
covered and contacted. Figure 16 reveals that the overall
logical contact rate between devices actually decreases as
the network is populated with more infected devices. This
can slow down the worm propagation at its late phase.

On the other hand, because an infected device perform-
ing worm activities may not be discovered by its neigh-
bors, the visibility of uninfected devices to a worm increases

when there exist infected devices in the neighborhood. In
Figure 17, we compare the fraction of uninfected devices
among the whole population and the fraction of uninfected
devices among all the devices discovered as the simulation
time advances in a sample run. It is clear that relatively
more uninfected devices are discovered than their propor-
tion in the whole population. Hence, a model assuming
the same discovery ratio for uninfected and infected devices
does not fully capture the dynamics of Bluetooth worms.

We also notice that the position of a device on the neigh-
bor list collected by a worm affects the probability that the
device is infected. If a device is closer to the front of the
list, the worm will try fewer devices before starting to in-
fect it and it is thus more likely that the device still remains
in the worm’s radio range when the worm tries to infect
it. Therefore, devices on the front part of the neighbor lists
have higher probability to get infected and vice versa. This
is verified from our simulation results. Figure 18 plots the
infection probability if a device is uninfected when discov-
ered as opposed to its position on the neighbor list. The
decreasing curve confirms our observation.

7 Effects of Model Parameters

The simulation results with the baseline Bluetooth worm
model in the previous sections gain us some insights about
Bluetooth worm propagation, but it is still unclear how
varying model parameters impacts worm spreading. An ad-
vanced worm may select its parameters strategically to im-
prove its propagation speed. In the following discussion,
we focus on the type of worms whose objective is to mini-
mize the time required to infect the majority (e.g., 95%) of
all vulnerable devices.

7.1 Tuning Inquiry Parameters

From both Figures 7 and 12, we know that as more de-
vices are infected, the baseline worm has to spend longer
time on collecting its neighbor information and this period
approaches the inquiry timeout value (i.e., T}y,) when the
network is populated with infected devices. The Bluetooth
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specification states that T3,,, must be at least 10.24 seconds
to discover all devices in an error-free environment. An “in-
telligent” worm, however, may not follow this suggestion if
this does not help improve its propagation speed.

Changing inquiry parameters has mixed effects. If a
worm uses a larger inquiry timeout value, then it can possi-
bly discover more nearby devices within one infection cy-
cle. However, if there are not enough devices responding
to its inquiry, the inquiry process has to wait until the in-
quiry timer expires. In such circumstance a smaller inquiry
timeout value can shorten the whole inquiry process, but the
worm may not receive as many responses as with a larger
value. A worm can also change Ny, the expected num-
ber of responses. Similarly, a worm using large NV;,, can
potentially discover more devices in its vicinity, but has to
wait for the expiration of the inquiry timer if not as many as
Niyq responses are received within 75, time units.

In a new set of experiments, we aim to find optimal se-
lections on the inquiry parameters for the Bluetooth worm.
We vary T;,, among 10.24, 7.68, 5.12, and 2.56 seconds
and N;,, among 7, 5, 3, and 1. The simulation results for
the static and mobile networks are illustrated in Figures 19
and 20 respectively. For the static network, varying inquiry
timeout value does not impose significant performance dif-
ference except the smallest value (i.e., 2.56 seconds). On
the other hand, expecting only one inquiry response for
each inquiry is always a bad choice for shortening propaga-
tion time, irrespective of the inquiry timeout value. When
Ting 18 5.12 seconds and N;,,, is 3, the shortest propagation
time is needed to infect 95% of all vulnerable devices; it is
117.36 seconds, which is 27.3% shorter than what is used
by the baseline worm.

For the mobile network, we notice that if the expected
number of inquiry responses is 1 or 3, the propagation time
for 95% infection coverage is relatively insensitive to the in-
quiry timeout value used; otherwise, small inquiry timeout
value can help shorten the propagation time. Another obser-
vation from Figure 20 is that regardless of inquiry timeout
value, smaller N;,, always leads to less time required for

1 2
The order on the collected neighbor list

Figure 18. Infection proba-

fidence interval)

4 5 6 7 100 -

Figure 19. 95% propa-

their orders on gation time with differ-
the neighbor lists (95% con- ent inquiry parameters
(Static,75mx75m)

95% infection coverage. In other words, expecting only one
response for each inquiry in the mobile network is the best
choice for the worm. This phenomenon can be explained
from two aspects. First, in the mobile network, it is rela-
tively more difficult to obtain inquiry responses from nearby
devices because of device mobilities; thus, it is more likely
that a worm using large Ny, finishes its inquiry process un-
til the inquiry timer expires. Second, although a worm using
large Ny, 4 can potentially find more devices in its vicinity, it
may suffer more unsuccessful attempts at establishing con-
nections to them because of node mobility. Figure 20 also
reveals that when N;y,q is 1 and T, is 7.68 seconds, the
least time is needed for 95% infection coverage; under this
configuration, 189.22 seconds is used, which is about 60%
of the time used by the baseline worm.

7.2 Tuning Inactive Duration

As seen from Table 1, the period that the baseline worm
remains inactive after an infection cycle (i.e., T;4;.) lasts 20
seconds. As we discuss how a worm accelerates its prop-
agation, a natural strategy for an “aggressive” worm may
be to shorten its inactive period. To see how effective this
strategy can be, we perform a new set of experiments in
which we vary T; 4. among 1, 10, 20, and 30 seconds. The
simulation results are illustrated in Figure 21. We, surpris-
ingly, do not observe that smaller 74 leads to faster worm
propagation. Instead, we find that when the inactive pe-
riod lasts only 1 second, the worm propagation in the static
network takes longer time with an enormously large confi-
dence interval; this phenomenon, however, is not observed
in the mobile networks. It can be explained as follows. A
short inactive period causes severe co-channel interference,
which significantly slows down worm propagation in the
static network. In the mobile network, device mobility leads
to uneven device densities; hence, a healthy device is more
likely to move into a area with low interference and thus
gets infected there.

Figure 21 also tells us that for the static network, as we
increase the inactive duration from 1 to 30 seconds, the time
for 95% infection coverage actually decreases, but we be-
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lieve that this observation may not hold as we continue in-
creasing T;q4;.. On the other hand, for the mobile network,
varying T;q. has little impact on worm propagation speed.
These results reveal that a Bluetooth worm that aggressively
reduces its inactive duration may not improve its propaga-
tion speed at all, and on the contrary, this can significantly
slow down its propagation if the network is relatively static.

8 Exploiting Out-of-Band Propagation

Bluetooth interfaces often coexist with other communi-
cation channels on the same devices. For example, a smart
cell phone can have access to a cellular network such as
GSM/CDMA and UMTS, and it also provides various com-
munication interfaces such as infrared, Bluetooth, 802.11,
and GPRS/CDMA1X [10]. A Bluetooth worm can exploit
out-of-band channels to accelerate its propagation. Actu-
ally, such worms have already appeared on cell phones.
Both Mabir and CommWarrior can spread not only through
Bluetooth interface, but also by using MMS, which is based
on GPRS (General Packet Radio Service) technology.

As a Bluetooth worm uses proximity-based infection, the
victims that can be infected are limited to those in its radio
range. If out-of-band propagation channels are available, a
worm can replicate itself onto devices that are multiple hops
away or even those devices that can never be reached via
mere Bluetooth communication. An intelligent Bluetooth
worm can thus exploit out-of-band communication chan-
nels to expand its infection range.

In this part, we investigate how a Bluetooth worm can
exploit MMS communication to speed up its propagation.
We assume that all devices are equipped with both Blue-
tooth and MMS capabilities. We also assume that MMS
messages are coded by the GPRS 3+2 scheme [1]. The
download and upload speeds are 60.0kbps and 40kbps re-
spectively. We simulate the same networks in Sections 5.1
and 5.2, but each device has a list of “buddies”, which are
devices it often sends MMS messages to. For simplification,
we do not model the social network that yields these buddy
lists. Instead, we assume that each device randomly picks k
other devices as its buddies, where k is a configurable pa-
rameter. The baseline worm behavior is slightly changed
as follows. After a device gets infected, it first checks its
buddy list, and uploads a copy of worm code to each one on
the list. Once this is finished, it starts its Bluetooth infection
cycle shown in Figure 1. We only consider uploading and
downloading time in the worm code transfer.

We vary the number of buddies that each device has in
the experiments. The simulation results are presented in
Figure 22. We find that one buddy per device is sufficient
in reducing worm propagation time by half in the static net-
work, and increasing that to two buddies per device only
marginally improves the propagation speed. By contrast,
in the mobile network, there is more noticeable difference

between one buddy per device and two buddies per device:
under the former setting, out-of-band propagation helps re-
duce the time for 95% infection coverage by 35.5%, but
under the latter setting, this time is decreased by 53%.

9 Defense Implications

As Bluetooth worms employ more sophisticated strate-
gies that accelerate their propagation, it makes it increas-
ingly difficult to defend against them through manual hu-
man intervention. Active defense schemes such as patching
counter-worms, which have been proposed to fight Internet
worms, may not be effective in fighting aggressive and ma-
licious Bluetooth worms. The reasons are manifold. First,
using active worms to stop malicious worms requires de-
vices to carry on frequent Bluetooth activities, which can
drain their power rapidly. Second, intense worm behavior
can lead to severe congestion in the network. High packet
loss rates will severely impact normal communications.

Increasing software diversity can be considered as a pos-
sible approach to slowing down Bluetooth worm propaga-
tion. As observed in Figure 3, the total propagation time
increases almost super-linearly with increasing fraction of
insusceptible devices, especially when device density is rel-
atively low. This suggests that if we reduce the number of
vulnerable devices by implementing diverse but function-
ally equivalent software on Bluetooth devices, we can slow
down worm propagation.

Another defense scheme that can be used against Blue-
tooth worms is the quarantine defense. For example, if
Bluetooth worms are found on cell phones located at a spe-
cific area, quarantine tools can be deployed there to prevent
them from spreading to other places. Bluetooth by principle
is a proximity-based protocol, suggesting that quarantine
defense can be an effective counter-measure against worms
using it as a single infection means. However, as discussed
in Section 8, Bluetooth often coexists with other communi-
cation channels. Such out-of-band communication capabili-
ties overcome the spatial obstacles to Bluetooth worm prop-
agation. It is, therefore, much harder to quarantine devices
infected by a worm like CommWarrior that uses multiple
communication mechanisms to spread itself.

10 Related Work

Although substantial efforts have been made in analyz-
ing, modeling and simulating Internet worms, worm prop-
agation in mobile networks has only been investigated in
a few papers. Mickens et al. [15] also observed that tra-
ditional epidemic models fail to characterize worm propa-
gation in mobile networks. In addition, they claim that a
worm is easier to spread in a more dynamic network. Our
results with a detailed MAC/PHY layer protocol reveal that
this may not be true. Although in a highly dynamic network
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infected devices mix better with healthy ones, higher mobil-
ity also lead to more unsuccessful interactions between de-
vices. Khayam er al. [12] developed a topologically-aware
worm propagation model for stationary wireless sensor net-
works. They incorporate MAC layer interference into this
model by specifying a constant infection rate when a worm
spreads itself onto its neighbors. This differs from our work
because we use detailed MAC/PHY protocol interactions to
decide whether an infection attempt succeeds. Anderson et
al. [5] simulated mobile contagion using mobility traces
collected from a campus wireless network. Their work con-
siders worm propagation in a different type of mobile net-
works from the one we investigated.

11 Summary

Recent occurrences of Bluetooth worms have created
growing security concerns over the data stored on mobile
devices like cell phones and PDAs. This paper investigates
the nature and dynamics of Bluetooth worm propagation.
We find that Bluetooth worm propagation speed can be neg-
atively impacted by the device mobility and the channel
congestion. We also observe that an advanced worm can im-
prove its propagation speed by strategically selecting its pa-
rameters or exploiting extra long-distance communication
capabilities.
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