AIR: Application-Level Interference Resilience for PDES
on Multicore Systems

JINGJING WANG, Binghamton University
NAEL ABU-GHAZALEH, University of California, Riverside
DMITRY PONOMAREYV, Binghamton University

Parallel discrete event simulation (PDES) harnesses parallel processing to improve the performance and
capacity of simulation, supporting bigger and more detailed models simulated for more scenarios. The
presence of interference from other users can lead to dramatic slowdown in the performance of the simulation.
Interference is typically managed using operating system scheduling support (e.g., gang scheduling), a
heavyweight approach with some drawbacks. We propose an application-level approach to interference
resilience through alternative simulation scheduling and mapping algorithms. More precisely, the most
resilient simulators allow dynamic mapping of simulation event execution to processing resources (a work
pool model). However, this model has significant scheduling overhead and poor cache locality. Thus, we
investigate using application-level interference mitigation where the application detects the presence of
interference and reacts by changing the thread task allocation. Specifically, we propose a locality-aware
adaptive dynamic mapping (LADM) algorithm that adjusts the number of active threads on the fly by
detecting the presence of interference. LADM avoids having the application stall when threads are inactive
due to context switching. We investigate different mechanisms for monitoring the level of interference and
different approaches for remapping tasks. We show that LADM can substantially reduce the impact of
interference while maintaining memory locality.

Categories and Subject Descriptors: 1.6.8 [Simulation and Modeling]: Types of Simulation—Discrete event,
Parallel

General Terms: Design, Algorithms, Performance
Additional Key Words and Phrases: Interference, application adaptation, PDES, proportional slowdown

ACM Reference Format:

Jingjing Wang, Nael Abu-Ghazaleh, and Dmitry Ponomarev. 2015. AIR: Application-level interference re-
silience for PDES on multicore Systems. ACM Trans. Model. Comput. Simul. 25, 3, Article 19 (April 2015),
25 pages.

DOT: http://dx.doi.org/10.1145/2701420

1. INTRODUCTION

Discrete event simulation (DES) is a simulation methodology for systems where
changes of state occur at discrete times. It is widely used in a range of appli-
cation domains such as computer and telecommunication systems, war gaming,

This work is supported by the Air Force Research Laboratory under agreement number FA8750-11-2-0004.
This work is also supported by National Science Foundation grants CNS-0916323 and CNS-0958501.
Authors’ addresses: J. Wang and D. Ponomarev, Department of Computer Science, Thomas J. Watson School of
Engineering and Applied Science, State University of New York at Binghamton, P.O. Box 6000, Binghamton,
NY 13902-6000; emails: jwang36@binghamton.edu, dima@cs.binghamton.edu; N. Abu-Ghazaleh, Depart-
ment of Computer Science and Engineering, 351 Winston Chung Hall, University of California, Riverside,
900 University Ave., Riverside, CA 92521; email: nael@cs.ucr.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2015 ACM 1049-3301/2015/04- ART19 $15.00

DOI: http://dx.doi.org/10.1145/2701420

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 19, Publication date: April 2015.

http://dx.doi.org/10.1145/2701420
http://dx.doi.org/10.1145/2701420

19:2 J. Wang et al.

transportation systems, operational planning, and biological simulations. Parallel dis-
crete event simulation (PDES) [Fujimoto 1990a] harnesses the computational power
and resources of parallel computing to improve the performance and capacity of DES,
allowing the simulation of larger models, in more detail, and for more scenarios.

Parallel applications are commonly designed under the assumption of a homogeneous
environment with no interference from other colocated applications. Interference from
other applications, as well as other noise in the system, creates competition for the
available resources, leading to slowdowns [Zhuravlev et al. 2010; Tsafrir et al. 2005].
Ideally, under interference, an application experiences a slowdown proportionately to
the reduction in its share of the resources: a metric we call proportional slowdown.
However, the impact of interference can be significantly worse, even when the amount
of interference is small. For example, when evaluating a multithreaded PDES engine,
we discover that even one external computationally bound thread results in a slowdown
of up to 3.9 for an eight-way simulation on the Core i7 platform and up to 2.8 for a
48-way simulation on an AMD Magny-Cours platform.

A primary reason for the high cost of interference is the granularity of the operating
system (OS) scheduler. When the OS schedules an interfering process on a core, it has
to context switch one of the simulation threads out, making it inactive. As a result, this
thread is stalled for an extended period of time related to the OS scheduling quantum.
Meanwhile, any dependencies on the stalled thread are delayed, eventually causing
other threads to stall, leading to an impact far beyond proportional slowdown.

Although the problem is common to most parallel applications, the impact is espe-
cially high for fine-grained applications such as PDES. In the context of PDES, as-
suming optimistic simulation, when a thread is descheduled, other simulation threads
surge forward. Eventually, when the OS schedules the thread again, its late events
cause rollbacks throughout the simulation: thus, most of the computation time on all
threads is lost, and additional inefficiency results from the overhead of rollbacks. Since
the dependency pattern is dense and dynamic, the simulation effectively fails to make
progress whenever any of the threads is descheduled. Moreover, the dependency pat-
terns make it difficult to apply traditional approaches to solve the problem such as
fine-grained work sharing or work stealing [Blumofe and Leiserson 1999].

Gang scheduling is a standard solution to interference problems in parallel applica-
tions [Feitelson and Rudolph 1992]. Gang scheduling eliminates interference by sepa-
rating applications in time. Threads belonging to an application are co-scheduled such
that all threads are active, allowing application progress, or all are inactive, allowing
other interfering applications to run. However, gang scheduling is a heavyweight ap-
proach that can lead to loss of application performance and system throughput. For
example, applications may be able to coexist if some of the threads are I/O bound; they
are forcibly separated by gang scheduling, reducing utilization and increasing runtime
[Feitelson and Rudolph 1992; Wiseman and Feitelson 2003]. If interference is limited,
the machine could be more efficiently shared by partitioning in space (using fewer pro-
cessors) rather than in time. The bursty operation under gang scheduling may cause
contention and challenge real-time applications. Finally, gang scheduling may not be
available on many platforms such as networks of workstations [Arpaci et al. 1995] and
clouds [Armbrust et al. 2010].

The goal of this article is to develop alternative organizations to PDES simulation
that are more resilient to the impact of external interference. In conventional PDES im-
plementations, a simulation model is partitioned across multiple processing elements
(PEs), each responsible for executing the events destined to a subset of the simulation
objects. Each PE is executed by a process (or thread).

In many existing PDES simulators such as ROSS [Carothers et al. 2000] and WarpIV
[Steinman 2008], the mapping between PEs and processes (or threads) is established

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 19, Publication date: April 2015.

AIR: Application-Level Interference Resilience for PDES on Multicore Systems 19:3

at the initialization of simulation and does not change during the simulation (the so-
called fixed-mapping, or FM, scheme). FM is an effective strategy in a load-balanced
simulation in the absence of external interference, primarily because it promotes
locality of memory references and because it incurs little overhead for scheduling
[Fujimoto 2000]. However, FM suffers in the presence of interference because a stalled
thread remains responsible for simulating its objects, leading to poor performance.

In this article, we explore application-level interference resilience for PDES on mul-
ticore platforms. We first propose a dynamic-mapping (DM) scheme that is capable of
dynamically changing the mapping between PEs and threads during the simulation.
In particular, each thread attempts to work on the next available PE in a round-robin
fashion. For correctness, each PE can only be mapped to one thread at a time. As a
result, DM has limited opportunities to solve the problem: a thread is often switched
out while in the middle of processing events on a PE while holding its lock. Thus, we
discovered that the baseline DM cannot effectively solve the interference problem.

We next investigate an adaptive DM scheme that reduces the number of active
threads when interference is detected. As a result, the number of threads is again
matched to the available hardware contexts, and the simulation does not have to suffer
extended periods when one of its threads is switched out. The active threads have
to service a number of PEs that are larger than them. Having the threads switch in
round-robin fashion among the PEs promotes load-balanced operation but leads to poor
locality as PEs move among threads, causing cache interrogation. To promote locality,
the locality-aware adaptive DM (LADM) scheme creates a schedule where each thread
is primarily associated with one PE but spends a portion of its time helping one or more
other PEs whose primary thread has been disabled. The proportion of time is chosen so
that the total active time each PE receives remains balanced. Since each thread works
on a limited number of PEs (two under reasonable interference conditions), locality is
kept high.

LADM has the following key characteristics:

(1) In the absence of external loads, LADM incurs small performance loss (less than
5%) compared with the optimal FM implementation on both the Intel Core i7
and AMD Magny-Cours machines. The loss includes the overhead of detecting
interference but also the cost of rate misprediction of interference, a problem we
hope to address with more careful design of the detector.

(2) LADM can substantially reduce the impact of interference, thus reducing the gap
with proportional slowdown. For example, LADM is able to achieve 2 to 4x im-
provement in performance in the presence of interference on both a four-core (eight
hardware threads) Intel Core i7 and a 48-core AMD Magny-Cours machine.

The remainder of the article is organized as follows. Section 2 provides background
information regarding both the PDES simulator and two multicore platforms we used
in our experiments. We then define proportional slowdown to quantify the PDES per-
formance in the presence of external loads in Section 3. In Section 4, we show the
actual impact of external loads on the performance of fixed-mapping PDES simulators.
We then explain why the performance of the PDES simulator with FM implementation
suffers considerably when external loads interfere with the simulation. In Section 5,
we provide a design overview of the baseline DM mechanism. In Section 6, we provide
the details of our LADM scheme that can address the limitations in the baseline DM
implementation. Section 7 provides the details of the experimental setup and simu-
lation benchmarks. Section 8 presents an experimental evaluation. In Section 9, we
review some related work. Finally, in Section 10, we present some concluding remarks.

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 19, Publication date: April 2015.

19:4 J. Wang et al.

2. BACKGROUND

In this section, we first review the multithreaded simulator used in this article. We
follow by providing an overview of the two multicore platforms used in the experiments:
a quad-core Intel Core i7 system and a 48-core AMD Opteron Magny-Cours.

We use a recently developed multithreaded version [Jagtap et al. 2012b; Wang et al.
2014] of the Rensselaer’s Optimistic Simulation System (ROSS) [Carothers et al. 2000].
ROSS is a state-of-the-art PDES simulation engine that supports both conservative
and optimistic simulations. The multithreaded ROSS (ROSS-MT) encapsulates each
group of objects as a PE and assigns each PE to a thread (i.e., it uses fixed mapping).
The thread-based implementation allows optimizing communication using fast shared
memory operations [Jagtap et al. 2012b; Wang et al. 2014]. Moreover, the simulator
was evaluated on and optimized for a number of platforms, including conventional
multicores [Jagtap et al. 2012b; Wang et al. 2014], the Tilera Tile64 many-core processor
[Jagtap et al. 2012a], and clusters of multicores [Wang et al. 2013].

In PDES, a simulation model is partitioned across multiple PEs. Each PE processes
the events in timestamp order. When an event is processed, it may update the state
of the simulation object and/or schedule future events. These timestamped events are
communicated to the destination PE. The events for each PE are continuously processed
within a simulation loop until the simulation time of the PE reaches the simulation
completion time. During each iteration, a designated number of events (batch size) can
be processed before moving to the next iteration.

Each PE processes events in timestamp order to ensure correct causality of the
simulation [Jefferson 1985]. Enforcing causality across multiple PEs requires the im-
plementation of a synchronization protocol. PDES simulators use either conservative or
optimistic synchronization [Fujimoto 1990a]. In conservative simulation, a model prop-
erty called lookahead is used to allow PEs to communicate safe processing distances to
other PEs and guarantee correct execution. In contrast, optimistic simulation allows
PEs to process events without synchronization, advancing their local simulation time
(LVT). Thus, it is possible to receive a remote event with an earlier timestamp than the
current simulation time, indicating a causality error; such an event is called a straggler.
Correct execution requires a rollback to a time earlier than the straggler time, restoring
the simulation state, and cancelling any generated events after the checkpoint. ROSS-
MT leverages efficient reverse computation [Carothers et al. 1999], instead of the more
conventional state saving [Palaniswamy and Wilsey 1993], to restore the simulation
state in the case of a rollback. In order to be able to commit events and to reclaim
rollback checkpoint information, global virtual time (GVT) is computed periodically
to measure the overall progress of the simulation. GVT computation is a form of the
classical distributed global checkpoint computation problem [Koo and Toueg 1987].

We use two multicore platforms with significantly different CPU and memory orga-
nizations. The first is a quad-core Intel Core i7 system. In this platform, each core has
private 32KB L1 and 256KB L2 caches and shares 8MB L3 cache with other cores.
With hyperthreading enabled, each core can simultaneously execute two hardware
threads that share both L1 and L2 caches. The second architecture we use is an AMD
48-core machine. It consists of four AMD Opteron 12-core chips, connected with hyper-
transport links. Each chip has two dies, with each die holding six cores. Each core has
private 64KB L1 and 512KB L2 caches and shares a 6MB L3 cache with other cores
on the same die. In addition, the memory accesses to different memory regions on this
platform have nonuniform memory access (NUMA) latencies [Conway et al. 2010].

3. IDEAL SLOWDOWN UNDER INTERFERENCE

Consider a primary application, such as our PDES simulation, running with IV, threads
on a multicore platform. Let N, be the total count of hardware threads such that all

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 19, Publication date: April 2015.

AIR: Application-Level Interference Resilience for PDES on Multicore Systems 19:5

these threads can execute concurrently; hardware threads refer to cores, or hardware
contexts in the case of simultaneous multithreaded (SMT) processors. Suppose that
one or more external interfering loads can start or terminate at any time during the
simulation. Thus, to measure performance more accurately, we divide the simulation
into n small intervals [X;_1, X;] indexed by j. In addition, let N,y ; be the total number
of software threads executing on the machine (i.e., the number of primary application
threads, as well as the number of external loads running concurrently) during the
interval j. In typical conditions, the operating system scheduler fairly allocates its
CPU resources to each thread (e.g., the Linux Completely Fair Scheduler (CFS) with
SCHED_NORMAL scheduling policy [Jones 2009]). In other words, each load obtains

(M{X;J) of the available CPU time on average during the interval j, assuming that N;oza,

loads compete for N, CPUs. Therefore, the expected primary application slowdown
under such conditions during the interval j is approximated by
S =]vtotal,j _ Np +Ne,j
! N, N,
where N, ; is the number of external loads running concurrently with the primary
application during the interval j. Note that this reasoning assumes that threads are
computation bound. We call S; the proportional slowdown during the interval j, since
S; increases proportionately to the number of interfering load processes. We assume
that Ny ; is always greater than or equal to N,, and the interference from external
loads on the primary application performance occurs if Ny, ; >Ne.

The runtime of the entire application in the presence of external loads can be approx-
imated by adding up the expected runtime across all intervals. Let T'; be the execution
time required for the interval j of an FM simulation without interference. By multiply-
ing T by the corresponding S;, we obtain TJ'-, defined as the execution time required
for the interval j of the simulation in the presence of external loads. Therefore,

Tigea = y_T;=> TjxS; @)
j=1 j=1

denotes the ideal runtime of the entire simulation in the presence of external loads.
T 401 Tepresents a best-case scenario where the presence of interference merely reduces
the amount of available resources and results in a slowdown proportional to this re-
duction. Such a slowdown may be experienced by embarrassingly parallel applications.
In practice, the impact is significantly worse than Tj4, because of the dependencies
between the threads belonging to one application. In the case of optimistic simula-
tion, T4« also does not take into account the effect of rollbacks to undo the erroneous
computation after a thread being interfered with is activated.

(D

4. MEASURED IMPACT OF INTERFERENCE

In this section, we evaluate the slowdown experienced by ROSS-MT and show that it
far exceeds proportional slowdown. We also explain and quantify the reasons for the
slowdown.

4.1. PDES Slowdown Under Interference

For most of the experiments, we use the Phold simulation model [Fujimoto 1990b],
which equally distributes a number of simulation objects among PEs. We use a control-
lable version of Phold that allows specifying the communication percentage between
different objects on different cores. The simulation consists of eight PEs running on
the Intel Core i7 platform and 48 PEs running on the AMD 48-core machine, with
1,000 objects per PE. Each PE was also mapped to a different thread: thus, all CPU

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 19, Publication date: April 2015.

19:6 J. Wang et al.

—#-0% Remote —¥-0% Remote
-8-5% Remote r -5 5% Remote
~©-10% Remote ~©-10% Remote
—+20% Remote —+20% Remote
81|~ %~ Proportional 8|~ -Proportional

Relative Slowdown
®

Relative Slowdown
@

5 0 1 24 30

2 3 12 18
Number of External Loads Number of External Loads

(a) Intel Core i7 System (b) AMD Magny-Cours System

Fig. 1. The relative slowdown of ROSS-MT caused by external loads.

Table I. Execution Time of a Four-Way Simulation on
a Quad-Core Processor using WarplV Simulator

Optimistic | Conservative

No external load 6 sec 10 sec
1 external load takes
50% CPU of a core 12 sec 19 sec
1 external load takes
100% CPU of a core >4.7 hr >40 hr

resources were used by ROSS-MT threads in the absence of external loads. In addition,
we selected a GVT computation interval of 128 batches on both platforms, with a batch
size of 24 events. Although the results are somewhat sensitive to the GVT interval (as
a small GVT interval acts as a throttle to the simulation [Tay et al. 1997]), these values
are in the range where ROSS-MT is most efficient across a majority of the models.
For these experiments, we use a CPU-intensive process as the external load; the
process repeatedly performs computation within a tight loop. Thus, the process when
active competes continuously for CPU cycles with the ROSS-MT threads. In the exper-
iments, the external load is started with ROSS-MT and executes for the duration of
the simulation. Thus, the proportional slowdown factor from one external load can be
calculated by Equation (1) to be g for the Core i7 and % for the AMD Magny-Cours.
Figure 1(a) and Figure 1(b) show the relative slowdown experienced by ROSS-MT as
the number of external loads increases on the Intel Core i7 system and AMD Magny-
Cours machine, respectively. The relative slowdown is calculated by dividing the execu-
tion time of simulation in the presence of interference by the one without interference.
As the percentage of remote communication is increased, the dependencies among the
different PEs increase. ROSS-MT with 0% remote communication performs close to pro-
portional slowdown: since there are no dependencies between PEs, if a PE is delayed,
it does not affect the progress at other PEs and, on average, all threads make progress
with their computation. In contrast, the interference from external loads dramatically
degrades the performance of ROSS-MT even when a small amount of remote commu-
nication exists, far beyond proportional slowdown. For example, even one external load
can result in a slowdown of up to 3.9 on the Core i7 and 2.8 on the AMD Magny-Cours,
whereas proportional slowdown is 1.125 and 1.02, respectively, for the two machines.
The problem is not specific to ROSS: we were able to demonstrate similar trends, and
even worse slowdown, on the WarpIV PDES simulator [Steinman 2008]. Table I shows
four-way optimistic and conservative simulations interfered with by one external load

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 19, Publication date: April 2015.

AIR: Application-Level Interference Resilience for PDES on Multicore Systems 19:7

GVT synchronization

4. It may later cause
other PEs to be rolled
back

Thread 1 1 |—| .
PE 1 Upgg IR Upe1 |y

-" 3.PE Lis rolled back
and re-executed

+ 2.Attz thread 2
resumes execution,
. and PE 2 sends e1
Thread 2 1 toPE1

PE 2

Y

1. At t1, thread 2
stops execution
because of
ntext switch

Fig. 2. A rollback caused by interferences from external loads.

on a quad-core processor; due to export control restrictions on WarplV, we had to run
this experiment on a quad-core Xeon machine. Somewhat surprisingly, the simulation
almost stops when the external load takes 100% of the time on one core (a situation
that occurred sometimes, a decision that the Linux scheduler makes). We believe this
situation is due to the fuzzy barrier used in GVT computation in WarpIV [Gupta
1989]. At any given time, one thread is not executing and the fuzzy barrier condition
is not met. However, even when the external load gets a lower scheduling priority
and shares one of the CPU cores with a PDES process, the WarplV simulation still
experiences a performance slowdown factor of about 2. The situation was the same for
both conservative and optimistic simulation.

4.2. Explaining the Impact of Interference

Recall that in ROSS, each thread is assigned a PE consisting of a group of simulation
objects. The groups of objects assigned to each thread are selected, often via a partition-
ing algorithm (e.g., [Bahulkar et al. 2012]), to minimize costly communication and to
load balance computation. Each thread is responsible for processing all events whose
destination is an object in its PE group. Thus, the mapping of work to threads is fixed.

Consider a two-way simulation of ROSS-MT, with one LP per PE, as seen in Figure 2.
PE 1 and PE 2 are executed by thread 1 and thread 2, respectively. Suppose an external
load starts and interferes with thread 2 at wall clock time ¢, after a GVT computation
phase (which requires barrier synchronization in ROSS). Once the interfering noise
process is scheduled, thread 2 is context switched out and stops execution, while thread
1 continues. Thread 2 does not get scheduled again until the noise process exhausts
its OS quantum (otherwise, a hardware context becomes available); the OS quantum
is typically in the tens of milliseconds, sufficient for thread 1 to execute for several
million CPU cycles. At a wall clock time # (¢, > t;), thread 2 resumes execution, and
PE 2 sends an event e; to PE 1. Due to the large pause in execution, this event is
a straggler as PE 1 has executed far ahead of PE 2, limited only in the ROSS case
by the GVT computation interval; in other simulators, the degree of optimism can be
unbounded. Upon receiving e1, PE 1 is rolled back to a simulation time before that of
e1 and then is re-executed. Thus, loss of efficiency occurs for two reasons: (1) inactive
PE on the critical path: not only is processing time lost at PE 2 while it is context
switched out, but also most of the time that is available to PE 1 is also wasted due to
the dependency between the two PEs; and (2) rollback overhead: the straggler causes

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 19, Publication date: April 2015.

19:8 J. Wang et al.

—¥- Conservative —*- Conservative
-E- Optimistic f -E- Optimistic
8

Relative Slowdown

/’__,//) ..—M/“/“

0
5 0

Relative Slowdown
o - N w £ 3] o ~ o« © o

o

1 2 3 4 1 12 18 30
Number of External Loads Number of External Loads

(a) Intel Core i7 System (b) AMD Magny-Cours System

Fig. 3. The effect of rollbacks.

other PEs to be rolled back. Thus, the overhead of large rollbacks in terms of state
restoration (or reverse computation), sending antimessages, and other data structure
restoration exacerbates the inefficiency.

To identify the contributions to the slowdown from these two effects, we show the
relative slowdown of both optimistic simulation and conservative simulation on the
Core i7 and Magny-Cours platforms (Figure 3). In this experiment, we fixed the remote
communication percentage at 5%. In the absence of interference, ROSS-MT performs
similarly in both optimistic and conservative modes for the Phold model. Under inter-
ference, conservative simulation suffers from delays when the inactive PE slows the
other PEs down as they wait for their dependencies to be satisfied (the first effect), but
there is no cost for rollbacks. In contrast, optimistic simulation suffers both forms of
overhead. Thus, the performance gap between optimistic and conservative simulations
is a reasonable estimate of the overhead of rollbacks for this particular model. Clearly,
the overhead of rollbacks is substantial and increases with the degree of interference.

5. CAN DYNAMIC MAPPING HELP?

To address the harmful behavior that occurs in the presence of interference, we pursue
application-level resilience to interference. Specifically, we consider approaches for de-
tecting the presence of interference and remapping the application to avoid contention
for hardware resources. Our first attempt is dynamic mapping of threads to PEs. More
specifically, in this scheme, we periodically remap the threads to different PEs (recall
that each PE encapsulates a group of objects in the simulation). The intuition behind
DM is that it allows active threads to rotate across the different PEs, avoiding having
a PE lag far behind the others.

Recall that each thread in ROSS-MT executes a loop that repeatedly performs the
simulation tasks such as sending and receiving events and event processing. To imple-
ment DM, we add a new step at the beginning of the loop where a thread determines
which PE to associate itself with; the base implementation simply rotates threads in a
round-robin fashion across the PEs. Consider the example as shown in Figure 2. After
thread 2 finishes the execution of PE 2 for an iteration, it then switches to PE 1. Thus,
in principle, the active thread alternates working on PE 1 and PE 2, reducing the LVT
difference between them. Alternative bases for scheduling PEs to threads are possible
(e.g., attempting to work on the PE with the lowest LVT).

Note that a side effect of remapping threads to PEs is a loss of data locality: FM
permanently maps a hardware thread to a unit of work, and the caches for the core are
populated with the data relevant to it. As DM remaps work across cores, the PE data
must be brought to each new core (from shared lower-level caches or main memory).

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 19, Publication date: April 2015.

AIR: Application-Level Interference Resilience for PDES on Multicore Systems 19:9

A second, more serious, limitation of DM is its limited opportunity for assisting
performance. More precisely, for correctness, two threads cannot be attached to the
same PE concurrently, which prevents remapping from being able to assist if the
context-switched thread happens to hold the lock on the PE. We implemented efficient
synchronization using a condition variable and a spin lock for each PE. More precisely,
a PE status is checked (without locking); if the status is busy, the thread moves on
to the next PE. If the status is free, the thread acquires the spin lock for the PE and
checks if it is still free. If it is, the thread sets the PE to busy and is admitted to work
on the PE. Once the iteration is over, it sets the PE status to free and moves on again to
the next PE. Thus, DM is limited if the first thread is switched out while in the middle
of processing a batch since the PE will be marked as busy until the thread is scheduled
again. Since this is the common case, DM cannot effectively solve the problem.

6. LOCALITY-AWARE ADAPTIVE DM

In this section, we propose an LADM scheduler that is capable of addressing limitations
of DM. LADM improves DM in the following ways. The first improvement, which we
call adaptive DM (ADM), adjusts the number of active threads to match the available
hardware contexts: when a noise process is detected, the number of active threads is
reduced to avoid competing for a core and the resulting expensive context switches.
Thus, only active threads are allowed to execute and the simulation work has to be
remapped to them. To support ADM, two main mechanisms are needed: one to reduce
the number of active threads upon detecting the interference, and another to check if the
interference is no longer there and to reactivate idle threads. The second improvement
of LADM is control of the mapping of threads to work to promote high data locality. In
particular, LADM uses a locality-aware scheduler to map PEs among active threads.
We discuss these mechanisms in the remainder of this section.

6.1. Detecting the Presence of Interference
ADM periodically detects the presence of noise during simulation. The detection pe-

riod is set to % simulation loop iterations in our implementations, where Ty, is
the GVT interval. We implemented two different interference detection algorithms.
In the first implementation, each active thread periodically monitors its total event
processing time. The average processing time per event (APTE) of each active thread
is calculated by dividing the total event processing time by the corresponding number
of processed events. A performance anomaly is detected if the ratio of the maximum
APTE to minimum APTE is beyond a defined threshold. There is a tradeoff between
the responsiveness and the stability of the noise detector. If the detection threshold is
set too high, then the system can become less responsive to the presence of noise. On
the other hand, as the threshold is made lower, responsiveness increases but noise can
be erroneously detected in the presence of natural variation in the simulation progress.
We study this tradeoff in the next section.

The APTE-based interference detection algorithm assumes that the event processing
time is uniform. Thus, it is vulnerable to misprediction in simulation models where
event processing time varies, a condition common in realistic simulation models. Thus,
we propose an alternative approach that is independent of the simulation model. In
particular, to detect the presence of interference, an active thread periodically executes
and times the pthread_yield() function to relinquish the CPU. If interference is not
present, the calling thread is quickly rescheduled as there is no competition for an
available CPU. In this situation, the runtime is only several microseconds. On the
other hand, if interference exists, the calling thread is context switched out, resulting

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 19, Publication date: April 2015.

19:10 J. Wang et al.

in a delay of several milliseconds (a function of the the OS quantum) for the thread to
get scheduled again. We call this detector the Processing Interference (PI) detector.

6.2. Deactivating PDES Threads Under Interference

After a performance anomaly is detected, the status of the thread with maximum APTE
is set to “inactive.” Each thread checks its status at the beginning of the simulation loop,
and inactive threads remain idle. The PEs assigned to idle threads are termed orphan
PEs, and the responsibility for processing their events is remapped to the remaining
active threads.

ADM substantially reduces the effect of interference, and thus significantly improves
the performance of the simulation in the presence of external loads. Consider a 48-
way simulation interfered with by one external load on the 48-core AMD Magny-
Cours machine, for example. Once a performance anomaly is successfully detected, the
simulation is then executed by 47 active threads. The OS scheduler will later assign
each thread to a different core, thus removing interference between PDES threads and
the external load.

6.3. Reactivating Threads

As the interference from external loads may be transient, it is desirable to detect
the availability of additional cores to reactivate inactive threads once resources are
again available. We implemented two different reactivation mechanisms. The first
implementation is to reactivate an inactive thread periodically to check if there is an
available core. If noise remains present, then the deactivation logic detects that and
deactivates the thread. Thus, in this implementation, the reactivation period must
be significantly larger than the detection period to avoid too frequent testing (we use
10 x Tgy, 40 times larger than the detection period). We call this approach periodic
reactivation (PR).

The main disadvantage of PR is that an inactive thread may be incorrectly re-
activated while noise remains present. This harms the performance of the simulation
until the interference is detected again. An alternative approach is to check if the noise
has disappeared before reactivating a thread. In particular, once an inactive thread is
woken up by a signal sent from an active thread, it immediately relinquishes the CPU
by calling the pthread_yield() function. The runtime of executing pthread_yield()
function is measured to decide if the interference remains. If the runtime is only several
microseconds, then the calling thread gets reactivated. Otherwise, the calling thread
remains inactive. Since probing is passive, it does not interfere with the simulation
when noise is present, allowing more aggressive reactivation evaluation. We call this
approach reactivation after probing (RAP).

6.4. Improving the Data Locality

Similar to DM, ADM remaps threads to PEs in a round-robin fashion even when there
is no interference, leading to poor data locality. To improve the data locality, we modified
the ADM scheduler to increase locality: we call this implementation LADM. Similar to
FM, at the initialization of simulation, each thread is assigned to a primary PE and
maintains this assignment in the absence of interference to maximize locality. Once
interference is detected and a thread (or more) is deactivated, the PE assigned to the
inactive thread is marked as an orphan until such a time when its thread is reactivated.
The remaining active threads divide their time between their primary PEs and orphan
PEs.

In particular, after each event processing iteration on its primary PE, each active
thread checks PEs on the orphan list in a round-robin fashion; it selects an orphan that
is currently behind its primary PE in the number of processing iterations (alternatively,

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 19, Publication date: April 2015.

AIR: Application-Level Interference Resilience for PDES on Multicore Systems 19:11

LVT may be used). The status of the selected PE is then checked, and the spin lock
for it is acquired if its status is free. Once the thread is admitted to work on the PE,
it executes Nyy;, iterations before switching back to its primary PE. We set Nygcr, to
10, which performs well on both platforms. The thread returns to its primary PE if all
the orphan PEs have caught up with it. Unlike ADM, the PEs whose primary thread
is active remain exclusively processed by that thread, and only orphan PEs experience
a loss of locality.

6.5. The Expected Runtime of LADM

Suppose that the simulator is configured with N, threads at the initialization of simu-
lation, where N, equals the total count of hardware threads on the multicore platform.
In addition, we divide the simulation into n small intervals [X;_;, X;] indexed by ;.
Let N; be the number of external loads running concurrently with PDES during the
interval j of the simulation. Once LADM detects N; (IN; < N,,) external loads, the sim-
ulation is then executed by (N, - N;) active threads during the interval j. The expected
runtime of the entire simulation is thus approximated by

- N
Tex ected — —L X T'v (3)
P ; N,-N; =7/

where T'; is the execution time required for the interval j of an FM simulation with-
out interference. Moreover, LADM allows at least one active thread to execute the
simulation if N; > N,,.

It is important to note that LADM does not achieve proportional slowdown. ADM
schedulers simply give up hardware contexts that are in contention to avoid a situation
where they are context switched. Because of this conservative behavior, it is possible
for interference loads to crowd out the simulation threads, resulting in significant slow-
down under high interference. However, the OS scheduling policy will cause inefficient
operation if more threads are running than there are available hardware contexts. To
approach proportional slowdown, alternative OS scheduling policies are needed.

7. EXPERIMENTAL SETUP AND SIMULATION BENCHMARKS

In most of the experiments, we use the Phold benchmark [Fujimoto 1990b]. In this
model, simulation objects are equally distributed across PEs. During execution, each
object sends a timestamped event message to a randomly selected target. Upon re-
ceiving the message, a new message may be sent to another target. Phold is control-
lable, allowing us to specify the communication percentage between different objects
[Fujimoto 1990b].

We also use a personal communication system (PCS) model [Carothers et al. 1995], for
some of our experiments. The PCS model simulates a cellular provider infrastructure
as it manages mobile phone calls. In this model, an event represents a mobile phone
call, sent from one cell phone tower to another. Each cell phone tower has a fixed
number of channels. Upon receiving a call, the cell phone tower assigns an available
channel to the call and later releases the allocated channel when the call completes.
If all channels are busy, the call is blocked. In addition, the call is handed off to the
destination cell phone tower if the call’s connected mobile is leaving the area of the cell
phone tower [Carothers et al. 1995]. The experimental configuration for the model on
the two multicore systems is presented as follows:

(1) The first platform we use is a quad-core Intel Core 17-860 machine. The platform is
running Debian 6.0.2 with Linux version 3.0.0-1. The total number of LPs was set
to 8,000 in the Phold model and 36,864 in the PCS model. These LPs were equally

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 19, Publication date: April 2015.

19:12 J. Wang et al.

=3
S

—¥-Threshold=1.8 —%Threshold=1.8
-0~ Threshold=3.6 250 -0~ Threshold=3.6
200{ |- x-Threshold=5.4 -x-Threshold=5.4 f

a

o
n
=1
S

=3
S

Execution Time (Seconds)
s @
S S

Execution Time (Seconds)

o
=]

24 30

1 2 3 4 1 12 18
Number of External Loads Number of External Loads

(a) Intel Core i7 System (b) AMD Magny-Cours System

Fig. 4. Impact of threshold for detecting the interference: ADM.

distributed among eight PEs. We selected a GVT interval of 128 with a batch size
of 24. In addition, the simulation time was set to 30,000.

(2) We also evaluated the performance of PDES under interference on an AMD Opteron
6100 (Magny-Cours) 48-core machine with nonuniform memory access (NUMA).
The platform is running Ubuntu 10.10 with Linux version 2.6.35-30-server and
has 64GB memory. We fixed the total number of LPs at 48,000 in the Phold model
and 36,864 in the PCS model, where LPs are equally distributed among 48 PEs.
We used a GVT period of 128 with a batch size of 24 in our simulations. In addition,
the simulation time was set to 10,000 for the Phold model and 30,000 for the PCS
model.

8. PERFORMANCE EVALUATION

In this section, we present a performance evaluation of LADM under interference from
external loads. In particular, we first evaluate the performance of ADM in comparison
to both FM and DM. We follow this by evaluating the performance of the locality-aware
scheduler of LADM. We then study the performance of different interference detection
algorithms and thread reactivation approaches implemented in LADM to identify the
most efficient implementations used in the remainder of the experiments. In addition,
every experiment is repeated 10 times to bound the confidence interval; the figures plot
the average of these 10 runs.

8.1. Evaluation of ADM

We first evaluate the performance of ADM without the data locality optimization. As
described in Section 6, there is a tradeoff between responsiveness and stability in the
design of the control mechanism that reacts to noise. If the detection threshold is set
too high, ADM responsiveness is affected as we may fail to detect noise quickly. On
the other hand, too small a value can cause the system to react to normal fluctuations
in the application of the system, causing a thread to be incorrectly deactivated in an
interference-free environment. Figure 4(a) and Figure 4(b) show the performance of
ADM with different values of the threshold on the Core i7 and Magny-Cours platforms,
respectively. In this experiment, we used the APTE-based interference detection algo-
rithm. The interfering loads started with the simulation and ran for the duration. In
addition, we used Phold model, with 40% remote communication (the communication
between PEs). As shown in both Figure 4(a) and Figure 4(b), a threshold of 5.4 achieves
the best performance on both platforms. Thus, we used this threshold in the rest of
our experiments. In practice, this threshold can be derived empirically for important

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 19, Publication date: April 2015.

AIR: Application-Level Interference Resilience for PDES on Multicore Systems 19:13

—FM %
1601 |-&-Baseline DM

v

D Baseline DM

~-ADM A 80
- %-ldeal Runtime

Execution Time (Seconds)
Efficiency (%)
8

0 20 40 60 80 100 20 40 60 80 100
Remote Communication (%) Remote Communication (%)
(a) Execution Time (b) Efficiency

Fig. 5. Performance of ADM on the Intel Core i7 system (interfered with by one external load).

180 100
——FM

1601 [-B- Baseline DM
~-ADM

-*-ldeal Runtime

90

80

70

60

50

Efficiency (%)

40

30

Execution Time (Seconds)

e . 20

[IBaseline M

20 .- 10 ~om
0 o [W1
0 20) 60 80 100 20 40 60 80 100
Remote Communication (%) Remote Communication (%)
(a) Execution Time (b) Efficiency

Fig. 6. Performance of ADM on the AMD Magny-Cours system (interfered with by one external load).

applications or derived adaptively by scoring adaptation decisions and adjusting the
threshold accordingly.

We show the performance of ADM compared to FM and baseline DM on the Core i7
(Figure 5) and Magny-Cours (Figure 6) platforms, respectively. In this experiment, the
simulations were interfered with by one external load. In Figure 5(a) and Figure 6(a),
we see the execution time as a function of the percentage of remote communication.
ADM achieves better performance than FM on the Core i7 but only outperforms FM
at high remote communication (>20%) percentages on the Magny-Cours machine. The
behavior can be partially explained by the high cost of lower-level cache accesses on
the Magny-Cours relative to the Core i7. The locality-aware version of ADM attempts
to address this issue.

In addition, the baseline DM experiences poor efficiency as a thread or more are con-
tinuously deactivated, stalling the simulation. Efficiency is defined as the percentage of
all processed events that are committed (i.e., not rolled back). ADM reduces contention
by inactivating one or more threads to match the active thread count to the available
hardware contexts. To evaluate this behavior, we present efficiency of corresponding
simulations (Figure 5(b) and Figure 6(b)). Clearly, the baseline DM exhibits poor effi-
ciency, similar to that of FM on the Core i7 machine, but achieves a small improvement
in efficiency on the Magny-Cours machine. In contrast, ADM significantly improves
efficiency to over 90% on both platforms.

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 19, Publication date: April 2015.

19:14 J. Wang et al.

—FM —=FM
-8 ADM & ADM
40{|--LADM 801 - LADM

@ W
S o

Execution Time (Seconds)
poN
S O
Execution Time (Seconds)
o
S
$-

-
o8

10 20

0 20 40 60 80 100 0 2

0 40 60 80 100
Remote Communication (%) Remote Communication (%)

(a) Intel Core i7 System (b) AMD Magny-Cours System

Fig. 7. Performance of locality-aware adaptive dynamic-mapping scheme (no external load).

DA ——FM
—+
el s f
~%-LADM

1401|- - deal Runtime 140

- %-ldeal Runtime
-E- Expected Runtime

-B- Expected Runtime

=)
S

@
3

Execution Time (Seconds)
@
8

Execution Time (Seconds)

100 0 100

0 40 60 80 20 40 60 80
Remote Communication (%) Remote Communication (%)

(a) Intel Core 17 System (b) AMD Magny-Cours System

Fig. 8. Performance of locality-aware adaptive dynamic-mapping scheme (one external load).

8.2. The Impact of Data Locality

In ADM, each active thread moves to the next free PE in a round-robin fashion at
the beginning of the simulation loop, even when there is no interference. Thus, ADM
can lead to poor cache locality, as each thread accesses different PEs, causing their
state to be interrogated between caches. LADM improves data locality by associating
threads with primary PEs. Only orphan PEs (those whose primary thread is inactive)
experience a loss of locality as their events are processed by the other active threads.

The next experiment evaluates the performance of FM, ADM, and LADM in the
absence of external loads to measure the overhead of the mechanisms when they
are not needed. Both ADM and LADM use the APTE-based interference detection
algorithm and PR approach to reactivate PDES threads. As seen in Figure 7, LADM
performs up to 11% better than ADM on the Core i7 machine and up to 53% on the
Magny-Cours machine. In addition, LADM incurs small performance loss (less than
5%) relative to the FM version. The overhead is partially due to the extra checking
that LADM does; however, we also noticed that rarely, LADM incorrectly detects the
presence of interference.

In the next experiment, we consider a scenario with one external interfering process
(Figure 8). At high remote communication (>20%), LADM outperforms the original FM
by a factor of up to 2.8x on the Core i7 machine and up to 2x on the Magny-Cours
machine. In addition, LADM performs up to 43% better than ADM on the Magny-Cours
machine, due to the fact that LADM can achieve better data locality. Figure 9 shows

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 19, Publication date: April 2015.

AIR: Application-Level Interference Resilience for PDES on Multicore Systems 19:15

v
351|Jabm
lLAom

L1 Miss Rate (%)

L2 Miss Rate (%)
8
L3 Miss Rate (%)

20 40 60 80 100 o 20 40 60 80 100 0 20 40 60 80
Remote Communication (%) Remote Communication (%) Remote Communication (%)

(a) L1 Cache Miss Rate (b) L2 Cache Miss Rate (¢) L3 Cache Miss Rate

100

Fig. 9. Cache performance of 48-way simulation on the AMD Magny-Cours system.

——— APTE-PR —*— APTE-PR
—o— APTE-RAP —<%— APTE-RAP|
——— PI-PR —%— PI-PR
—&— PI-RAP —&— PI-RAP

a

S
a
S

EHe-

Execution Time (Seconds)
s
g

Execution Time (Seconds)
3
38

a
S
a
S

0 0

5 0 24 30

2 3 1 12 18
Number of External Loads Number of External Loads

(a) Intel Core i7 System (b) AMD Magny-Cours System

Fig. 10. Impact of interference detection and thread reactivation approaches.

the cache miss rates, demonstrating how LADM has substantially lower cache miss
rates than ADM.

8.3. Interference Detection and Thread Reactivation Mechanisms

As described in Section 6, we implemented two different approaches for detecting
the interference. The first approach monitors APTE of each active thread (threshold
value of 5.4). On the other hand, the second detector (PI) detects the presence of in-
terference by measuring the runtime of executing the pthread_yield() function. In
addition, we developed two approaches for reactivating threads when additional re-
sources become available. The first approach uses PR to periodically wake up a thread
to check if additional resources are available. The second approach, RAP, probes the
system to check the availability of resources and reactivates a thread only if it deter-
mines there are available resources. In this experiment, we compare the performance
of four combinations: APTE-PR, APTE-RAP, PI-PR, and PI-RAP. Figure 10(a) and
Figure 10(b) show the performance of these four versions on the Core i7 and Magny-
Cours platforms, respectively. Clearly, PI-RAP outperforms the other three implemen-
tations on both platforms.

To explain why PI-RAP performs better, we show the convergence behavior of PI-
RAP on both the Core i7 (Figure 11) and Magny-Cours platforms (Figure 12). In this
experiment, the number of active threads of the simulation is periodically recorded as
the simulation progresses. In addition, the simulations were interfered by five external
loads on the Core i7 machine and 30 external loads on the Magny-Cours system. Thus,
the optimal number of active threads is three on the Corei7 and 18 on the Magny-Cours.

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 19, Publication date: April 2015.

19:16 J. Wang et al.

—¥%— APTE-PR

74 | -©—PI-RAP

Number of Active Threads

1.8 2.1 2.4 2.7 3

o 0.3 0.6 0.9 1. 1.5
Simulation Time x10*

Fig. 11. Convergence on the Intel Core i7 system (five external loads).

—¥— APTE-PR

a2 —— PI-RAP

Number of Active Threads

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Simulation Time

Fig. 12. Convergence on the AMD Magny-Cours system (30 external loads).

——FM
~O-LADM 1200
-%-ldeal Runtime
-B- Expected Runtime

»
a
S

=)
=3
S

N
S
S

@

=1

S

@
=]
3

=)
8
Execution Time (Seconds)

Execution Time (Seconds)
o
B

2 3 2 3
Number of External Loads Number of External Loads

(a) EPG=0 (b) EPG=500

Fig. 13. Impact of event processing granularity on the Intel Core i7 machine.

As shown in Figure 11 and Figure 12, PI-RAP can track the optimal configuration more
than APTE-PR on both platforms. We use PI-RAP in LADM for the remainder of the

experiments.

8.4. Impact of Event Processing Granularity

In the next experiment, we modify the Phold model to increase the granularity of event
processing time. In particular, a new parameter, called event processing granularity
(EPG), is defined to control the amount of computation for each event processing in
Phold. A higher value of EPG indicates more computation per event, increasing the
ratio of computation to communication.

We evaluate the performance of FM and LADM as the number of external loads is
increased for both the Intel (Figure 13) and AMD Magny-Cours (Figure 14) platforms

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 19, Publication date: April 2015.

AIR: Application-Level Interference Resilience for PDES on Multicore Systems 19:17

400 700
—FM
~0-LADM 600
-*-ldeal Runtime

-B- Expected Runtime

@
S
S

Execution Time (Seconds)
5
8

3
3
Execution Time (Seconds)

N
=3
3

=]
=N

c
c

@
S
o

1 24 30

12 18
Number of External Loads

(a) EPG=0 (b) EPG=500

1 12 18
Number of External Loads

Fig. 14. Impact of event processing granularity on the AMD Magny-Cours system.

300
“—FM ——FM

~o-LADM ¢ 2500 LADM
-%-ldeal Runtime -%-ldeal Runtime

-B-Expected Runtime

«
=
S

@
=3
3

~
=]
S

-E- Expected Runtime ¥

2 a 9
8 o 9
S & o

Execution Time (Seconds)
8
3

Execution Time (Seconds)

N
S
S

100
[

24 30

12 18
Number of External Loads

(a) Intel Core i7 System (b) AMD Magny-Cours System

2 3
Number of External Loads
Fig. 15. Performance of PCS model.

at a remote communication percentage of 40%. As seen in Figure 13 and Figure 14,
LADM performs better than FM on both platforms when the simulation is interfered
with by external loads. In addition, the gap with the ideal performance is decreased as
EPG increases. Another interesting observation is that FM performs closer to LADM as
EPG increases. We discover that FM is capable of achieving relatively better efficiency
at higher EPGs. As each event requires more time for processing in the case of higher
EPG, the advance rate of each PE in FM is more balanced than that in the case of lower
EPG.

8.5. Performance Evaluation of PCS Model

In this experiment, we study a model of a PCS system [Carothers et al. 1995]. The
PCS simulation consists of 36,864 cells (LPs) distributed among eight PEs on the Intel
Core i7 machine and 48 PEs on the AMD Magny-Cours machine. Moreover, we fixed
the number of channels per cell phone tower at 10. Figure 15(a) and Figure 15(b) show
the performance of the PCS model in the presence of external loads on the Core i7
machine and the AMD Magny-Cours machine, respectively. Clearly, LADM performs
better than FM on both platforms. In the case of five external loads, for example, the
performance of LADM exceeds that of FM by a factor of 3.7x on the Core i7 machine.
In addition, LADM outperforms FM by a factor of about 2.8 x in the case of 30 external
loads on the Magny-Cours machine.

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 19, Publication date: April 2015.

19:18 J. Wang et al.

-3
S

-3

o

~
S

[JLabm 70y [JLADM

@
o

@
o

Execution Time (Seconds)
w -
=3 =3
Execution Time (Seconds)
»
o

n
S

o
-
o

o
o

10 100 1000 1 10 100 1000
CTP (Microseconds) CTP (Microseconds)

(a) Intel Core i7 System (b) AMD Magny-Cours System

Fig. 16. Impact of on-off interference with different CTPs (one external load).

200

M —*—FM
- LADM —4— LADM
-*-ldeal Runtime 2004 | 7"~ !deal Runtime
150 - -B- - Expected Runtime

-B- Expected Runtime

@
S

o
3

Execution Time (Seconds)
o 2
o o
Execution Time (Seconds)
3
S

5 1

2 3 4 12 18 24
Number of External Loads Number of External Loads

(a) Intel Core i7 System (b) AMD Magny-Cours System

Fig. 17. Impact of on-off interference as number of external loads is increased (CTP = 1,000).

8.6. Impact of Time-Varying Interference on PDES Performance

In our previous experiments, the entire simulation was interfered with by a fixed level
of external loads. In order to evaluate if LADM can adapt quickly in an environment
with variable interference, we use an external load model with an on-off pattern. A
parameter in the external load, called computation time per period (CTP), is used to
control the on period of the external load in microseconds every time it is started. We
then use the same period to determine when the load will restart. Thus, if CTP is
1 microsecond, we have a recurring external process that runs for 1 microsecond and
then sleeps for 1 microsecond.

In this experiment, we used the Phold model, with 40% remote communication.
In addition, we performed the experiment under various CTPs. Figure 16(a) and
Figure 16(b) show the performance of FM and LADM when the simulation is partially
interfered with by an on-off external load on the Core i7 machine and the Magny-Cours
machine, respectively. LADM outperforms FM by a factor of up to 2.1x on the Core i7
machine and up to 1.4x on the Magny-Cours machine.

In the next experiment, we fixed CTP at 1,000 and increased the number of on-off
external loads. In this experiment, we started external loads at the same time. As
shown in Figure 17, LADM outperforms FM by a factor of 2.7x in the case of five
external loads on the Core i7 machine and 1.7x in the case of 30 external loads on the
Magny-Cours machine.

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 19, Publication date: April 2015.

AIR: Application-Level Interference Resilience for PDES on Multicore Systems 19:19

8.7. Comparison to Gang Scheduling

Thus far, experiments have used the Linux Completely Fair Scheduler (CFS) with
SCHED_NORMAL scheduling policy. Under this scheduling policy, the threads be-
longing to the same application are treated as independent scheduling units by
the scheduler, leading to performance problems under interference. Gang schedul-
ing is a widely used solution to control interference in parallel processing environ-
ments. It operates by coscheduling threads belonging to the same application together
[Feitelson and Rudolph 1992; Wiseman and Feitelson 2003]. As a result, all the threads
are running concurrently and performance problems do not arise.

Gang scheduling may be thought of as creating separation between applications in
time such that different applications do not run concurrently unless there are sufficient
resources to support them. In contrast, application interference resilience (AIR) does
not rely on the OS, but rather attempts to create separation in space, reducing the
number of active threads until contention for cores is eliminated. Given these different
philosophies for managing contention, we expect the following behavior:

—Gang scheduling can lead to poor efficiency when the interfering load is sparse. For
example, if one interfering process is running with an application, the resources
available to the application may be cut in half as the scheduler alternates scheduling
quanta between the application and the interfering process. That is, the slowdown
factor may be significantly worse than proportional slowdown.

—Gang scheduling does not allow applications to share cores even when it is possible
to do so. For example, an I/O-bound application may be able to gracefully share a
core with a computation-bound one.

—On the other hand, application-level resilience is a passive approach and will lead to
unfairness when one application reduces its number of active threads while another
does not. In this case, interference is eliminated, but at the expense of the adaptive
application, which relinquishes resources. The nonadaptive application gains from
the additional resources, but the performance of the adaptive application suffers
because it has to do with a possibly much smaller number of cores. This behavior is
inherent to AIR since it has no control over the interfering application. In this case,
assistance from the OS in creating separation is needed for a fair resolution of the
problem. We believe that hybrid policies combining application resilience with OS
coscheduling are a promising area of future research.

In this subsection, we attempt to illustrate these characteristics by comparing gang
scheduling to AIR under a number of scenarios.

We use the Simple Linux Utility Resource Management (SLURM) [Jette et al. 2002]
for gang-scheduling implementation. In addition, external loads were selected from
PARSEC 3.0 [Bienia 2011], a benchmark suite that contains several programs from
different application domains. We evaluated the performance of FM with gang schedul-
ing in comparison to LADM with SCHED_NORMAL scheduling policy on the Core i7
machine (Figure 18). In this experiment, each external load ran one thread, with
large input sets. In addition, each external load started concurrently with the PDES
simulation. As shown in Figure 18, LADM with SCHED_NORMAL scheduling policy
can achieve better performance than FM with gang scheduling. This is because gang
scheduling keeps the other seven CPUs idle when the external load gets scheduled,
thus leading to inefficiency if the degree of interference is low.

With gang scheduling, the application can be isolated in time from external interfer-
ence, making the application runtime somewhat resilient to the level of experienced
interference. To demonstrate this effect, we evaluated the performance of FM with
gang scheduling and LADM with SCHED_NORMAL scheduling when the external

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 19, Publication date: April 2015.

19:20 J. Wang et al.

100 1
Bl v (Gang)

[JLADM (CFs)

804

60 -

40

Execution Time (Seconds)

20 4

Canngy
dedu o

body’faCk
Hui, iy
e

5 @
2 £
F £
g &
§ 5
2
7]

blackschole
N

Fig. 18. Impact of OS scheduling policies on PDES performance interfered with by PARSEC benchmarks
(running one thread of each external load).

100~
o0 [Fm (Gang)
_ so] [JLADM (CFs)
w
2 704
o
2
3 601
-
2 s0q
E
= 40
S
3 304
(]
o 204
10
o
2] 3 T =3 2 & 12 o
g & £ 5§ F 7 & %
s 5 & ¥ F F &
5 S g § 5
K 2 2 ?
3 -
(a) Running Four Threads of Each External Load
200 -
Bl v (Gang)
1601 [JLADM (CFs)
w
=]
=
o
2
8 1209
(-3
E
= 80
S
5
=3
2
Z a0
o]
o« 3 - =3 2 & (2] ~
g & & 5 £ 7 & %
S = 5 S s S g
@ o 3 £ o
S] 2 5 5
& > @ @
kS g £

(b) Running Eight Threads of Each External Load

Fig. 19. Performance of PDES when degree of interference is increased.

load ran four threads and eight threads, respectively. As shown in Figure 19(a) and
Figure 19(b), FM with gang scheduling performs worse when the simulation is inter-
fered with by I/O-bound programs (e.g., blackscholes, canneal, dedup). This is because
gang scheduling simply creates separation between PDES and the external load and

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 19, Publication date: April 2015.

AIR: Application-Level Interference Resilience for PDES on Multicore Systems 19:21

Table II. Relative Slowdown of PARSEC Benchmarks and FM with Gang Scheduling

PARSEC Benchmark FM (Interfered with
(Interfered with by FM) by PARSEC Benchmark)

blackscholes 1.3 2.38
bodytrack 1.35 2.38
canneal 1.24 2.21
dedup 1.75 1.71
fluidanimate 1.23 2.46
streamcluster 1.25 2.5

swaptions 1.35 2.42
x264 1.82 2.46

Table Ill. Relative Slowdown of PARSEC Benchmarks and LADM with SCHED_NORMAL Scheduling

PARSEC Benchmark LADM (Interfered

(Interfered with by LADM) with by PARSEC Benchmark)
blackscholes 1.15 1.38
bodytrack 1.23 2.21
canneal 1.12 1.38
dedup 1.38 1.46
fluidanimate 1.16 2.46
streamcluster 1.24 3.33
swaptions 1.22 2.29
x264 1.42 2.5

thus cannot schedule PDES threads until the time slice of the external load expires,
even when the external load enters the I/O phase, leading to loss of efficiency. On the
other hand, when the external load is CPU intensive (e.g., streamcluster), the perfor-
mance of LADM with SCHED_NORMAL scheduling becomes worse as the number of
threads from the external load increases. This is because LADM suffers as it uses a
much smaller number of cores.

In our next experiment, we evaluated the corresponding performance of each PAR-
SEC benchmark as a realistic external load experienced from another user of a com-
putational cluster. Table II and Table III show the relative slowdown of each PARSEC
benchmark and PDES with gang scheduling and SCHED_NORMAL scheduling, re-
spectively. Recall that the relative slowdown is calculated by dividing the execution
time of application under interference by the one without interference. In addition,
each PARSEC benchmark ran four threads, while PDES ran eight threads initially.
Clearly, each benchmark in the presence of LADM with SCHED_NORMAL schedul-
ing can achieve better performance than the one interfered with by FM with gang
scheduling. Thus, we believe that it is not sufficient to purely rely on gang scheduling
to handle the interference problem. Instead, some solutions need to be built inside the
PDES simulators (and parallel applications in general).

9. RELATED WORK

LADM was originally presented in a previous paper [Wang et al. 2013]. This article
significantly expands on that work by introducing more efficient interference detection
and thread reactivation algorithms, characterizing the overhead of interference and
evaluating the performance of LADM under gang scheduling. In this section, we first
review some prior works in the context of PDES. We follow this by describing the
interference problem in the general parallel processing community.

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 19, Publication date: April 2015.

19:22 J. Wang et al.

9.1. Dynamic Load-Balancing Approaches

Dynamic load-balancing approaches rely on a monitoring scheme to detect load imbal-
ance and make dynamic adjustments to improve the performance of simulation. These
approaches differ in metrics of detecting load imbalance and balancing schemes.

Vitali et al. [2012] presented a load-sharing scheme developed for a symmetric multi-
threaded optimistic PDES simulator. Each PE is executed by multiple worker threads
in order to improve parallelism of the simulation. The approach works by allowing a
PE that is lagging behind to acquire additional threads to assist with its computa-
tion. Thus, this approach is on the face of it similar to our approach in that threads
can be redirected to work on lagging PEs. The approach can effectively foster load-
balanced simulation but cannot effectively solve the interference problem, as other
threads cannot assist when threads keep getting context switched in the middle of
event processing. Child and Wilsey [2012] proposed a different approach to support
runtime core frequency adjustment on many-core systems, with the goal of accelerat-
ing the critical path of execution of the Time Warp simulation. To balance workloads of
LPs, the cores containing LPs with larger rollbacks are underclocked, while the cores
having LPs with smaller rollbacks are overclocked. Though this approach may reduce
rollbacks caused by external loads, the performance issue caused by the interference
still exists as LPs can’t advance if their executing thread is switched out.

Carothers and Fujimoto [2000] designed a scheme to support background execution
of Time Warp. A background central process periodically monitors the workload of
each processor and dynamically determines the set of processors to be used for the
Time Warp simulation. LPs are then distributed across these processors by using
object migration. Zheng [2005] designed an application-independent load-balancing
framework called Charm++. In a Charm++ application, the applications were divided
into a large number of objects, where multiple objects can be assigned to a single
processor. Once a load imbalance was detected, object migration was applied to move
some objects from overloaded processors to underloaded ones. Object migration cannot
solve the interference problem as well unless all objects are migrated away from a
context-switched thread.

9.2. Other Approaches to Reduce the Effect of Interference on PDES

Malik et al. [2009] observed the same behavior present in the cloud environment. To
reduce excessive rollbacks caused by interference, they developed a protocol called 7W-
SMIP, with the goal of identifying straggler messages early and thus avoiding frequent
rollbacks. Yoginath and Perumalla [2013] proposed an LVT-based hypervisor scheduler
to reduce the effect of interference in the cloud environment. In this approach, LP
with a lower LVT is given a higher scheduling priority. Replication is another approach
that is capable of reducing the effect of interference. As presented in Shum [1998],
multiple copies of PDES simulation are executed simultaneously on a heterogeneous
workstation cluster. It allows the runtime reconfiguration in terms of runtime resource
availability, and thus this approach can adapt to interferences from external loads.

9.3. Interference in General Parallel Processing

Similar to PDES, most parallel applications have dependencies between executing
threads. Thus, when the interference occurs, active threads have to wait for context-
switched ones before continuing to execute, and the pace of the execution is determined
by the slowest thread. As a result, the performance of these applications can be substan-
tially harmed [Tsafrir et al. 2005; Zhuravlev et al. 2010]. Two approaches are widely
used to balance workloads of threads at runtime: work sharing and work stealing. In
work sharing, when a thread completes its task, it grabs a new one from a central work

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 19, Publication date: April 2015.

AIR: Application-Level Interference Resilience for PDES on Multicore Systems 19:23

pool shared across all threads [Andrews 1999]. In contrast, in a work-stealing scheme
such as Cilk, once a thread finishes its tasks, it steals other threads’ tasks [Frigo et al.
1998]. Turner [1998] concluded that the work-stealing scheme is not efficient for large
PDES simulation, as it increases the critical path length of the simulation. To the best
of our knowledge, both work sharing and work stealing are load-balancing approaches,
and neither approach can solve the interference problem unless a context-switched
thread does not hold any tasks.

Gang scheduling [Feitelson and Rudolph 1992] can mitigate the effect of interfer-
ence by coscheduling threads belonging to an application together. Conventional gang
scheduling [Feitelson and Rudolph 1992] separates applications in time to eliminate
interference; however, this approach reduces system throughput. To increase system
throughput, Wiseman and Feitelson [2003] proposed a paired gang-scheduling ap-
proach where the threads of two jobs can be scheduled in the same gang. However,
this approach was implemented on the ParPar cluster [Anat et al. 1999] and thus may
not be supported on other systems (e.g., Linux). Xian et al. [2008] proposed a lock-
contention-aware scheduler to reduce lock contention in multithreaded applications by
first assigning a priority to each thread associated with the number of locks the thread
holds. To prevent a thread being preempted in a critical section, the scheduler assigned
more time slice to a thread with higher priority. Although this approach may mitigate
the effect of interference by preventing a thread from being preempted in a critical
section, it may lead to unfair scheduling across threads.

10. CONCLUSIONS

In this article, we demonstrated the sometimes dramatic slowdown that can result in
the presence of external interference. We presented a new metric, called proportional
slowdown, to measure the idealized slowdown of PDES in the presence of interference
and showed that in practice, the observed slowdowns far exceed it. We proposed to use
dynamic mapping to allow active threads to work on the PEs in a fair way, allowing the
simulation to continue to proceed even if one or more threads are context switched. We
then proposed a locality-aware dynamic-mapping scheme that improves the locality of
the proposed adaptive scheme by attempting to keep PEs assigned to their primary
threads. Moreover, we studied the tradeoff between different interference detection
and thread reactivation approaches. In addition, we developed a new external load
model with an on-off pattern to evaluate PDES performance. Our experimental results
showed that LADM is significantly better able to tolerate interference than a fixed-
mapping implementation, thus reducing the gap with proportional slowdown. Finally,
we studied the effect of gang scheduling on PDES performance and showed that gang
scheduling cannot solve the interference problem effectively.

In our future work, we plan to improve the accuracy of the interference detection
algorithm in LADM. Moreover, we plan to modify the OS scheduler to make it more
friendly to applications. In particular, the OS informs a thread to reach a safe state
without holding any task before the thread is context-switched out. Then the tasks of
this thread can be safely executed by other active threads.

REFERENCES

D. F. Anat, D. G. Feitelson, A. Batat, G. Benhanokh, D. Er-el, Y. Etsion, A. Kavas, T. Klainer, and M. A.
Volovic. 1999. The ParPar System: A Software MPP. High Performance Cluster Computing 1 (1999),
754-770.

G. R. Andrews. 1999. Foundations of Multithreaded, Parallel, and Distributed Programming. Addison-
Wesley.

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I.
Stoica, and M. Zaharia. 2010. A view of cloud computing. Commun. ACM 53, 4 (April 2010), 50-58.

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 19, Publication date: April 2015.

19:24 J. Wang et al.

R. H. Arpaci, A. C. Dusseau, A. M. Vahdat, L. T. Liu, T. E. Anderson, and D. A. Patterson. 1995. The
interaction of parallel and sequential workloads on a network of workstations. SIGMETRICS Perform.
Eval. Rev. 23, 1 (May 1995), 267-278.

K. Bahulkar, J. Wang, N. Abu-Ghazaleh, and D. Ponomarev. 2012. Partitioning on dynamic behavior for
parallel discrete event simulation. In Principles of Advanced and Distributed Simulation (PADS). IEEE,
221-230.

C. Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D. Dissertation. Princeton University.

R. D. Blumofe and C. E. Leiserson. 1999. Scheduling multithreaded computations by work stealing. J ACM
46, 5 (Sept. 1999), 720-748.

C. Carothers, D. Bauer, and S. Pearce. 2000. ROSS: A high-performance, low memory, modular time warp
system. In Principles of Advanced and Distributed Simulation (PADS). IEEE, 53-60.

C. Carothers, K. Perumalla, and R. Fujimoto. 1999. Efficient optimistic parallel simulations using reverse
computation. ACM TOMACS (1999).

C. D. Carothers and R. M. Fujimoto. 2000. Efficient execution of time warp programs on heterogeneous,
NOW platforms. IEEE Trans. Parallel Distrib. Syst. 11 (2000), 299-317.

C. D. Carothers, R. M. Fujimoto, and Y.-B. Lin. 1995. A case study in simulating PCS networks using time
warp. In Principles of Advanced and Distributed Simulation (PADS). IEEE, 87-94.

R. Child and P. Wilsey. 2012. Dynamically adjusting core frequencies to accelerate time warp simulations in
many-core processors. In Proc. ACM/IEEE /SCS Workshop on Principles of Advanced and Distributed
Simulation (PADS). IEEE, 35-43.

P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes. 2010. Cache hierarchy and memory
subsystem of the AMD Opteron processor. IEEE Micro 30, 2 (2010), 16—29.

D. G. Feitelson and L. Rudolph. 1992. Gang scheduling performance benefits for fine-grain synchronization.
J. Parallel Distrib. Comput. 16 (1992), 306-318.

M. Frigo, C. E. Leiserson, and K. H. Randall. 1998. The implementation of the Cilk-5 multithreaded lan-
guage. In Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language Design and
Implementation. 212—223.

R. Fujimoto. 1990a. Parallel discrete event simulation. Commun. ACM 33, 10 (Oct. 1990), 30-53.

R. Fujimoto. 1990b. Performance of time warp under synthetic workloads. Proc. SCS Multiconference on
Distributed Simulation 22,1 (1990), 23-28.

R. Fujimoto. 2000. Parallel and Distributed Simulation Systems. Wiley Interscience.

R. Gupta. 1989. The fuzzy barrier: A mechanism for high speed synchronization of processors. In Proc.
ASPLOS. 54-63.

D. Jagtap, K. Bahulkar, D. Ponomarev, and N. Abu-Ghazaleh. 2012a. Characterizing and understanding
PDES behavior on Tilera architecture. In Proceedings of the Workshop on Principles of Advanced and
Distributed Simulation (PADS’12).

D. Jagtap, N. Abu-Ghazaleh, and D. Ponomarev. 2012b. Optimization of parallel discrete event simulator for
multi-core systems. In Proceedings of the International Parallel and Distributed Processing Symposium
(IPDPS’12). IEEE, 520-531.

D. Jefferson. 1985. Virtual Time. ACM Tran. Program. Lang. Syst. 7, 3 (July 1985), 405-425.

M. A. Jette, A. B. Yoo, and M. Grondona. 2002. SLURM: Simple Linux utility for resource management. In
Proceedings of Job Scheduling Strategies for Parallel Processing (JSSPP’03). Lecture Notes in Computer
Science, Springer-Verlag, 44-60.

M. T. Jones. 2009. Inside the Linux 2.6 Completely Fair Scheduler: Providing Fair Access to CPUs since
2.6.23. Retrieved from http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler/.

R. Koo and S. Toueg. 1987. Checkpointing and rollback-recovery for distributed systems. IEEE Trans. Soft-
ware Eng. SE-13 (Jan. 1987), 23-31.

A. W. Malik, A. J. Park, and R. M. Fujimoto. 2009. Optimistic synchronization of parallel simulations in cloud
computing environments. In Proceedings of the International Conference on Cloud Computing. 49-56.

A. Palaniswamy and P. A. Wilsey. 1993. An analytical comparison of periodic checkpointing and incremental
state saving. In Proceedings of the 7th Workshop on Parallel and Distributed Simulation (PADS’93).
Society for Computer Simulation, 127-134.

K. H. Shum. 1998. Replicating parallel simulation on heterogeneous clusters. J. Syst. Architecture 44 (1998),
273-292.

J. Steinman. 2008. The WarpIV Parallel Simulation Kernel version 1.5.2. Retrieved from http://www.warpiv.
com/.

S. C. Tay, Y. M. Teo, and S. T. Kong. 1997. Speculative parallel simulation with an adaptive throttle scheme.
In Principles of Advanced and Distributed Simulation (PADS). IEEE, 116-123.

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 19, Publication date: April 2015.

http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler/
http://www.warpiv.com/
http://www.warpiv.com/

AIR: Application-Level Interference Resilience for PDES on Multicore Systems 19:25

D. Tsafrir, Y. Etsion, D. Feitelson, and S. Kirkpatrick. 2005. System noise, OS clock ticks, and fine-grained
parallel applications. In Proceedings of the ACM /IEEE Conference on Supercomputing. ACM, 303-312.

S. J. Turner. 1998. Models of computation for parallel discrete event simulation. J. Syst. Architecture (March
1998), 395-409.

R. Vitali, A. Pellegrini, and F. Quaglia. 2012. Towards symmetric multi-threaded optimistic simulation
kernels. In Principles of Advanced and Distributed Simulation (PADS’12). IEEE, 211-220.

J. Wang, N. Abu-Ghazaleh, and D. Ponomarev. 2013. Interference resilient PDES on multi-core systems:
towards proportional slowdown. In Proceedings of the 2013 ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation (SIGSIM-PADS’13). 115-126.

J. Wang, D. Jagtap, N. Abu-Ghazaleh, and D. Ponomarev. 2014. Parallel discrete event simulation for multi-
core systems: Analysis and optimization. IEEE Trans. Parallel Distrib. Syst. 25, 6 (2014), 1574-1584.

J. Wang, D. Ponomarev, and N. Abu-Ghazaleh. 2013. Can PDES scale in environments with heterogeneous
delays? In Proceedings of the SIGSIM-PADS Conference.

Y. Wiseman and D. G. Feitelson. 2003. Paired gang scheduling. IEEE Trans. Parallel Distrib. Syst. 14, 6
(2003), 581-592. DOI: http://dx.doi.org/10.1109/TPDS.2003.1206505

F. Xian, W. Srisa-an, and H. Jiang. 2008. Contention-aware Scheduler: Unlocking Execution Parallelism in
Multithreaded Java Programs. In Proceedings of the 23rd ACM SIGPLAN Conference on Object-oriented
Programming Systems Languages and Applications. 163-180.

Srikanth B. Yoginath and Kalyan S. Perumalla. 2013. Optimized Hypervisor Scheduler for Parallel Dis-
crete Event Simulations on Virtual Machine Platforms. In Proceedings of the 6th International ICST
Conference on Simulation Tools and Techniques (SimuTools’13). 1-9.

G. Zheng. 2005. Achieving High Performance on Extremely Large Parallel Machines: Performance Prediction
and Load Balancing. Ph.D. Dissertation. Champaign, IL. Advisor(s) Kale, Laxmikant V. AAI3202198.

S. Zhuravlev, S. Blagodurov, and A. Fedorova. 2010. Addressing shared resource contention in multicore
processors via scheduling. In Proceedings of ASPLOS. ACM, 129-142.

Received February 2014; revised June 2014; accepted December 2014

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 19, Publication date: April 2015.

http://dx.doi.org/10.1109/TPDS.2003.1206505

