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Abstract—Code Reuse Attacks (CRAs) recently emerged as a new
class of security exploits. CRAs construct malicious programs out of
small fragments (gadgets) of existing code, thus eliminating the need
for code injection. Existing defenses against CRAs often incur large
performance overheads or require extensive binary rewriting and other
changes to the system software. In this paper, we examine a signature-
based detection of CRAs, where the attack is detected by observing the
behavior of programs and detecting the gadget execution patterns. We
first demonstrate that naive signature-based defenses can be defeated
by introducing special “delay gadgets” as part of the attack. We then
show how a software-configurable signature-based approach can be
designed to defend against such stealth CRAs, including the attacks that
manage to use longer-length gadgets. The proposed defense (called
SCRAP) can be implemented entirely in hardware using simple logic
at the commit stage of the pipeline. SCRAP is realized with minimal
performance cost, no changes to the software layers and no implications
on binary compatibility. Finally, we show that SCRAP generates no false
alarms on a wide range of applications.

1 INTRODUCTION

Exploits targeting software vulnerabilities remain one of
the primary security threats to computer systems, with
costs estimated in the 100s of billions of dollars [1]. The
NIST national vulnerability database includes tens of
thousands of vulnerabilities, with an average reporting
rate of 10 new vulnerabilities per day [2]. Thus, it is
critical to build systems that make exploits difficult to
launch and that detect and limit their effect quickly.

Most current attacks start by exploiting a buffer over-
flow vulnerability. Despite significant efforts in devising
solutions that prevent buffer overflows [3]–[6], they re-
main prevalent. Early code injection attacks overwrote
the buffer with the malicious code on the stack and
simultaneously overwrote the return address to point at
the start of the exploit code [7], [8]. A number of software
and hardware approaches to protect against such attacks
were devised [9]–[12]. These efforts have culminated in
the recent deployment of hardware memory protection
mechanisms that do not allow a memory page to be both
writable and executable at the same time (the so called
W ⊕X protection). These hardware extensions are sup-
ported by both AMD and Intel processors and deployed
in both Linux and Windows operating systems [13], [14].

1.1 Code Reuse Attacks: Bypassing W ⊕X

In response to these defenses new Code Reuse Attacks
(CRAs) emerged that construct a malicious program by
stitching together carefully selected fragments of the ex-
isting library code; these snippets are called gadgets [15].
One example of a CRA is the return-oriented program-
ming (ROP) attack, where each gadget ends with a return
instruction to trigger the execution of the next gadget
pointed to by the next return address on the stack. All
the attacker has to do is to inject a proper sequence of
return addresses onto the stack to point to the needed
gadgets. ROP was shown to be Turing-complete on a
variety of platforms [16]–[20]. Automated tools have
been developed that allow unsophisticated attackers to
construct arbitrary malicious programs using ROP [21]–
[24].

Several defense mechanisms against ROP have been
recently proposed [25]–[30]. Perhaps the simplest of
these solutions are the ones that utilize a shadow
call/return stack, where the return instructions are
matched against the corresponding calls using protected
memory space [28]–[30]. We assume that such an en-
forcement of call-return pairs is already in place and
therefore simple ROP-based attacks are defeated.

Fig. 1. Example of a simple JOP attack.

Unfortunately, a new form of CRA was developed that
does not rely on return instructions [31]–[33]. In this
jump-oriented programming (JOP) model, the attacker
chains the gadgets using a sequence of indirect jump
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instructions, rather than return instructions. A special
dispatcher gadget is used to orchestrate the control
flow among the gadgets. A high level example of the
JOP attack model is shown in Figure 1. This diagram
shows how the attack will jump from the dispatcher
gadget to functional gadgets which will then return the
control back to the dispatcher gadget. The jump locations
change based on the addresses popped off the stack by
the dispatcher gadget, and will ultimately result in the
execution of a system call.

1.2 Proposed Solution: Signature-based CRA De-
tection
Although it may appear that CRAs are a narrow form of
attack, they represent a wide-open vulnerability that is
increasingly used to exploit common buffer overflows.
For example, Apple’s operating system for mobile de-
vices (iOS) employs a secure boot chain and code signing
to prevent any untrusted code from executing [34]. How-
ever recent approaches to jailbreak and software unlock
such devices are CRA-based [35] and are able to bypass
all these security measures. Thus, it is critical to develop
solutions that protect against this major vulnerability,
preferably in a way that protects legacy binaries.

In this paper, we propose Signature-based CRA Pro-
tection (SCRAP): a simple and low-overhead hardware
scheme to protect against JOP attacks that are based on
the dynamic detection of attack signatures, or the pat-
terns of executed instructions that are indicative of the
JOP attack. SCRAP works because the attack patterns are
significantly different from those of the regular programs
as they execute frequent indirect jump (or call) instruc-
tions to jump from gadget to gadget. Previous work [26]
investigated this type of defense for ROP attacks and
showed that it has promise. They implemented a defense
mechanism called DROP in software using Valgrind tool
to detect the ROP pattern. Because it is implemented in
software, DROP incurs over 5X performance loss on the
average across simulated workloads, mainly due to the
overhead of Valgrind.

Starting from DROP, we made several observations
about existing signature-based detection that motivated
this work. First, the ideas of signature-based detection
can be extended to protect against the JOP attacks if
one uses the indirect jumps as the gadget boundaries.
Second, the high performance overhead of DROP (ap-
propriately adapted to protect against JOP attacks) can
be avoided by implementing the checking logic in hard-
ware, placing this hardware off-the-critical path in the
commit stage of the pipeline, and performing simple
checks during instruction commitment. If successful, this
approach can provide protection with much lower over-
head and complexity compared to the previous solutions
and can naturally protect the existing binaries. Third,
and most important, the naive implementations of the
signature-based detection along the lines of DROP can
be bypassed because of the strong assumptions it makes
about usable gadget lengths. For example, we demon-
strate an attack that uses a delaying gadget through
a function call in the middle of the attack with the

only purpose to distort the attack signatures expected
by a DROP-like signature-based defense. Finally, the
thresholds on the length of gadgets assumed by DROP
are not absolute: although difficult, it is possible to
find longer gadgets and integrate them into an attack,
avoiding detection. In this paper, we present a complete
working example of such a stealth JOP attacks integrat-
ing delay gadgets, and using gadgets longer than the
DROP thresholds.

Motivated by these observations, we propose an at-
tack signature detection logic that protects against such
stealth JOP attacks by filtering out the spurious function
calls in the middle of the attack from the attack signature.
We develop a language for the possible attack sequences
and derive from it a state machine implementation of the
detection logic. We show that the proposed mechanism
generates no false alarms in any of the regular workloads
that we considered and successfully detects CRAs, even
when delay gadgets are used, for a large number of
shellcodes. Finally, we extend the detectors to tolerate
infrequent use of longer gadgets.

We propose implementing the detector in hardware
both for performance and legacy binary support reasons,
but the main reason is that hardware solutions are able to
detect even when unintended instructions (see Section 2.2)
are used by the attacker. Software solutions such as
CFI [36], CFL [37], Google NaCl [38] try to prevent the
attacker from ever using an unintended instruction. But
if only one control flow change could be executed, then
the attacker could bypass all the checking instructions by
only using unintended instructions. Such a starting point
might be due to a bug in the verifier/binary rewriter
or due to a portion of the code that is not checked. In
hardware based solutions, even unintended instructions
are subject to checks.

SCRAP has the following key characteristics:
• It successfully detects all JOP attacks that we were

able to generate, while resulting in zero false alarms
across regular code base.

• It incurs minimal performance cost (less than 2%)
and only requires simple hardware at the commit
stage of the pipeline. There is also no impact on the
processor cycle time.

• It does not require complex binary rewriting, bi-
nary annotation, or construction of a full control
flow graph of a program. It also does not require
compiler or ISA support and can be used to protect
legacy binaries.

• With a simple hardware support, it performs checks
for unintended jumps (in variable instruction-length
architectures, such as x86) thus closing the potential
security vulnerability of purely software-based so-
lutions.

This submission is an extended version of the pa-
per that appeared in HPCA-2013 conference [39]. The
conference paper has been significantly extended in the
following ways:

• In the conference version, we only evaluated the
impact of SCRAP on SPEC 2006 benchmarks. In this
submission, we extend the study of false alarms
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due to SCRAP to a number of other applications,
including Adobe Flash Player, Apache web Server
and Mozilla Firefox web browser and Xpdf PDF
viewer. We present including Xpdf, Adobe Flash
Player, Apache2 Web Server and Mozilla Firefox
web browser. We present detailed results for these
applications and demonstrate that no false positive
alarms occur during their execution.

• Figure 12 and Figure 14, showing the false positive
rates, have been significantly improved to clarify the
specific benchmarks that have at least one false pos-
itive for varying SCRAP parameters. These figures
also include the statistics from the newly evaluated
applications listed above.

• To analyze the impact on the critical path delay
and dynamic power consumption, we implemented
the proposed SCRAP detector in Verilog HDL on
an FPGA with a 90nm process. We evaluated both
designs: a vanilla SCRAP presented in Section 7
and the two-threshold SCRAP variation discussed
in Section 10. For comparison, we also evaluated 8-,
16-, 32- and 64-bit counters in the same technology.
Our results are presented in Section 11, showing that
the overhead of SCRAP from both timing and power
standpoints is negligible. Specifically, a simple G7,4

SCRAP logic, has a shorter delay than an 8-bit
counter and consumes as much power as a 16-bit
counter.

• To estimate the memory overhead of SCRAP, we
added Figure 11, which shows the memory footprint
of the Secure Call Stack using different alignments
for SCRAP counters. Specifically, we evaluated the
overhead of adding byte- and word-long SCRAP
counters to each Secure Call Stack entry, and we
show that the additional memory overhead due to
SCRAP counters is negligible.

2 CRA MECHANICS AND EXAMPLE

In this section, we overview a fully functional example
of a JOP attack. We follow by discussing how variable
length ISAs such as x86 and x86-64 significantly increase
the number of gadgets available for attacks.

2.1 Functional JOP Attack Example
Figure 2 shows an example of the malicious shell code
to be executed by the attacker. The purpose of this
simple code is to execute a system call that starts a
new shell. For this example, we use the standard C
library (libc 2.11.3) as the code base for the gadget
composition. Table 1 shows the gadgets that we found
in libc to carry out the functionality of the attack from
Figure 2. Finally, we show the dynamic sequence of the
discovered gadgets to execute this attack and explain
the functionality and purpose of each dynamic gadget
invocation.

In order to launch a shell using the gadgets in Table 1,
this type of attack has to accomplish two things: the
correct parameters for a system call must be placed in
the argument registers and a system call must be made.

; Load the syscall number for execve to eax
xor eax, eax ; Set eax to 0
mov al, 0x0b ; Set eax to 0x0b

; Point ecx and edx to a null word
mov ecx, NULL ; NULL points to 0x00000000
mov edx, NULL

; Point ebx to the executable path
mov ebx, SH ; SH points to "/bin/sh"

int 0x80 ; Make the system call

Fig. 2. Example shellcode in assembly.

Gadget Gadget Function

g0
popa

Dispatchercmc
jmp [ebp+0x62]

g1 add [esi+edi*4-0xD], bl Null-Writer
jmp eax

g2 int 0x80 System Call

TABLE 1
Gadgets used in example attack.

To launch a shell, our example attack makes a system
call to execve. When the system call is made, registers
ecx and edx must point to a null word, 0x00000000,
and ebx must point to the string "/bin/sh". Both
null words and the string "/bin/sh" can be found in
memory; we can place their addresses onto the stack
and let the JOP attack pop them into the appropriate
registers. The remaining step in the attack is to initialize
the value of the eax register.

When the system call is made, eax must contain
0x0000000b, indicating a call to execve. However, a
JOP attack typically depends on exploiting a buffer over-
flow; these attacks typically rely on a buffer overflow
which is exploited by the attacker to place data on the
stack. The buffer is typically a string buffer, so a 0x00
byte causes the system to terminate reading the string;
the attacker cannot use null values in the initial overflow.
If the attack needs any null values, such as those in the
word 0x0000000b, the attack must generate them itself.

We make use of a null-writer gadget to create null
values on the stack that will eventually be popped
into eax. Our null-writer is constructed with an add
instruction, adding the byte held in bl to the byte on
the stack pointed to by esi+edi*4-0xD. If we place
bytes holding 0xff on the stack as part of the initial
overflow attack and ensure that bl contains 0x01, we
can add 0x01 to 0xff on the stack, overflowing to a
0x00. Using this method, our attack creates the word
0x0000000b on the stack where it can be popped into
eax as the final step before the system call gadget is
used.

In the remainder of this section we show how the
attack executes using the gadgets described in Table 1.
We assume the attacker has exploited a buffer overflow
to place data on the stack and redirect control flow to the
dispatcher gadget (g0). From the dispatcher gadget, the
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attack proceeds to execute the null-writer gadget (g1),
then g0, g1, g0, g1, g0, and finally, the system call (g2).
Below, each step starts with the gadget number followed
by an explanation of how it advances the attack.

Step 1 - g0 The dispatcher gadget initiates the attack
with a popa instruction. This instruction populates the
registers with useful values the attacker has placed on
the stack. The second instruction, cmc, has no meaning-
ful effect on this attack. After initializing the registers
with values necessary for an attack, the dispatcher jumps
to the null-writer gadget.

Step 2 - g1 The null-writer gadget adds the byte held
in bl to the byte that esi+edi*4-0xD points to. In
Step 1, the dispatcher gadget populated the registers so
that bl contains 0x01 and esi+edi*4-0xD points to
the value 0xff in the future value of eax on the stack.

Step 3 - g0 Populate the registers with the values nec-
essary to perform the null-writer a second time.

Step 4 - g1 Write 0x00 to a second byte in the future
value of eax.

Step 5 - g0 Populate the registers with values for a
third and final execution of the null-writer.

Step 6 - g1 Write the final null value onto the stack
where eax is popped from.

Step 7 - g0 Populate the registers with the appropri-
ate values for a system call. The value that is popped
from the stack to eax is 0x0000000b.

Step 8 - g2 Make a system call to execve(), launch-
ing a new shell.

2.2 Gadgets and Unintended Instructions
For ISAs such as x86 with variable size instructions, the
attackers can find gadgets that are unintended by the
programmer. Specifically, these are instructions that start
at a byte in the middle of a multi-byte instruction. These
instructions account for a large number of the gadgets
exploitable by attackers [31].

Intended piece of code from libc

Unintended gadget code with indirect jump

89  74  24  08  8b  bb  bc  FF  FF  FF  65  8b  37

or [ebx-0x4345], cl jmp ebp-0x75

mov [esp-0x8], esi mov edi, [ebx-0x44] mov  esi, gs:[edi]

Fig. 3. Example gadget with unintended jump.

To illustrate the concept of unintended branches, we
show a sequence of bytes from the libc library in the top
part of Figure 3. If the decoding starts after skipping the
first four bytes, a different instruction sequence can be
decoded as shown at the bottom of Figure 3, containing
an indirect jump that the programmer did not intend
to execute. Although the unintended gadgets far exceed
intended gadgets in number, they are often harder to
utilize because they can include rarely-used instructions
with complicated addressing modes and constants. Thus,
only short unintended gadgets are typically usable.

3 UNDERSTANDING SIGNATURES OF JOP AT-
TACKS

Signature based defenses can only work if the instruction
patterns exhibited by the attack code can be distin-
guished from those of normal programs. The JOP attack
patterns (the number and the length of gadgets used)
are different from the patterns of ROP attacks examined
in [26] because of two factors: 1) the reliance on indirect
jumps instead of returns; and 2) the need to execute the
dispatcher gadget to orchestrate the gadget-level control
flow, thus requiring more gadgets for an attack.

In terms of the number of gadgets, Chen et al. [26]
reported that at least three consecutive gadgets are
needed to carry out even a simple ROP attack. For JOP,
the number of gadgets needed is higher because of the
need to call the dispatcher gadget after every functional
gadget. In addition, it is much easier to compose an
attack using short-length gadgets to limit the undesirable
side effects on the program state.

All existing tools for automatic gadget discovery [15],
[31] therefore limit the gadget size to at most five instruc-
tions and only consider usable the gadgets that perform
one operation (and one state update). The work of [26]
also used gadget sizes of at most five instructions for
implementing the shellcodes in ROP-style attack. Signa-
ture based detection relies critically on these threshold
values, so it is important to verify that they hold.

3.1 Gadget Analysis for JOP Attack

The size of a usable gadget is limited by the side-effects
that the gadget has on the program state (including
memory locations and registers). Large gadgets typically
overwrite many registers and/or memory locations, thus
corrupting the state and making attack continuation very
difficult or impossible. This is especially true for the
gadgets that are comprised of unintended instructions.
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Fig. 4. Gadget length and state changes statistics for
standard C library.

To understand the side-effect properties of the JOP
gadgets, we performed extensive gadget analysis within
the code base of several libraries. Our gadget discovery
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Fig. 5. Gadget length and side effect analysis: top figures show the total number of gadgets of a given length while
the bottom figure shows the gadgets for the same length with the shown number of side effects.

algorithm starts with building the gadget trie as de-
scribed by Shacham et al. [15]. In a gadget trie, indirect
jump instructions are represented as nodes immediately
under a dummy root node. A child node under an
indirect jump represents a possible decoding of an in-
struction preceding the parent instruction. Since multi-
ple possible instructions (all but one unintended) can
precede an indirect branch, the trie can branch leading
to multiple gadgets ending at the same indirect branch.
Once the trie is constructed, the algorithm traverses
the nodes starting with an indirect branch toward its
children, and every path along this traversal represents
a possible gadget.

Signature detection relies critically on the observation
that usable gadgets are short allowing us to distinguish
attacks from normal programs where the distance be-
tween indirect branches are significantly longer. We base
our approach to the usability of gadgets on the number
of state updates that a gadget performs. State updates
are register limiting instructions such as register writes
or indirect memory accesses (which force registers to be
a specific value in order to prevent illegal accesses). We
contend that longer gadgets that make multiple state
updates are difficult to use without destroying the attack
state.

Figure 4 shows the total number of gadgets discovered
by the algorithm in the standard C library (libc), as well
as the number of gadgets that remain after we remove
the gadgets that do more state changes than each given
threshold. Figure 5 shows the same gadget statistics for
other common libraries. The top part of the figure shows
the total number of gadgets of a given length (each
length is a separate figure). The bottom part shows the
number of gadgets present (of the same length as the
corresponding top figure) with at most one state update.
While a significant number of gadgets of various sizes
obviously exist in the libraries, there are no gadgets of
size eight instructions or more that perform less than
two state updates (to memory or registers).

Figure 6 shows the average number of side effects as
the gadget length increases. It also shows the minimum
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Fig. 6. Number of side effects as gadget length increases.

number of side effects in gadgets of that length found
across all the libraries we studied. As the gadget length
grows the number of side effects grows linearly making
them increasingly more difficult to use.

Even at a threshold of 7, there exists only one gadget
with a single state update in libc, and another one in
libglib-2.0. Upon further examination, we found both of
these gadgets not to be usable because they use unin-
tended instructions that cannot be used. Since no suit-
able gadgets of seven instructions or more were found
in multiple libraries, a threshold of seven instructions
can be used by SCRAP to identify a gadget. However,
using this length as a hard threshold represents a strong
assumption: the attacker may be able to tolerate some
of the side-effects in a long gadget, allowing her to use
it as a delay gadget and bypass the detection. We later
relax this assumption to build signature detectors that
are resilient to the presence of some longer gadgets.

4 STEALTH JOP ATTACKS: CONCEALING AT-
TACK PATTERNS WITH DELAY GADGETS
From the discussion in the previous section, it appears
that simple signature-based detection can be effectively
applied to protect against JOP attacks. However, when
designing security solutions it is important to assume
that the attacker is aware of the particular defense that is
implemented and consider possible attack modifications
that would bypass this protection.
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All JOP and ROP variations developed to date only
considered the functional requirements of the attack.
Therefore, all gadgets used by the attackers were per-
forming some useful part of the attack code. In addition,
to avoid the necessity of dealing with gadget side-effects,
the existing automatic tools for generating JOP and ROP
attacks only consider small gadget sizes. Signature-based
approaches are effective under these assumptions, as
shown in [26] and also by the analysis in the previous
section.

However, what if the attacker is aware of the
signature-based protection and modifies the attack to
distort its execution patterns from those expected by
the defense? One approach for accomplishing this is to
introduce a delay gadget in the middle of the attack. The
purpose of a delay gadget is not to execute any part of
the attack code, but rather perform some spurious com-
putations in a way that would not corrupt the machine
state needed by the attack. At the same time, the gadget
would be long enough to reset the gadget count used
by the signature detector, before an attack is detected.
In this section, we introduce such delay gadgets and
demonstrate how the attack shown in the background
section can be modified to incorporate it.

The analysis in the previous section showed that long
gadgets have too many side effects to be usable; how-
ever, it is possible to create a small sized delay gadgets
by using a call to a function. Since most functions
have no side effects, they represent an ideal vehicle
for implementing delay gadgets without destroying the
program state. If a function call results in executing
a larger number of instructions the signature based
attack detector will reset (assuming that this is a valid
program), allowing the attacker to continue the attack.
In the remainder of this section, we demonstrate how to
implement a delay gadget using a function call (using
atoi()).

Gadget Gadget Function

g3

call, [ecx-0x56000a00]

Delay
add bl, bh
inc ebx
add dh, bh
jmp edi

TABLE 2
Delay gadget used in stealth JOP attack.

An example of a delay gadget that makes a call to the
atoi() function is shown in Table 2, this gadget was
found in the libc library. atoi() executes many more
instructions than the typical JOP gadgets, bypassing
signature based detection. When atoi() returns, some
registers such as eax, ecx, and edx may have been
altered and do not contain data that is meaningful to
the attack. However, by convention, other registers such
as ebx, esi, edi, esp, and ebp are saved. As long
as the delay gadget ends with an indirect jump based
on one of these saved registers, the attack can return to
the dispatcher gadget which can recover from any side
effects caused by the delay.

This new attack, which we call Stealth-JOP, is mounted
using the same series of gadgets as our previous exam-
ple, but with delay gadgets called periodically to avoid
detection. Our previous JOP attack jumped from the
dispatcher gadget to a functional gadget, and then back
to the dispatcher. The Stealth-JOP attack example jumps
from the dispatcher to a functional gadget, and then to
the delay gadget. After the delay gadget has executed,
the control returns to the dispatcher. Thus, there is no
sequence in the code with multiple consecutive short
gadgets, making DROP-like signature detection fail. At
the same time, the attacker is able to execute arbitrary
code using the short functional gadgets.

In addition to considering delay gadgets through func-
tion calls, it is important to note that if even one gadget
of length higher than the detection threshold in DROP
can be used (or at least tolerated) in an attack, then
an attacker can exploit this gadget to bypass signature
detection. We build the basic SCRAP detectors first
assuming that the gadget lengths derived in Section 3
represent hard limits; that is, every gadget that makes 2
side effects or more is not usable. However, it is highly
likely that a motivated attacker will be able to find at
least some longer gadgets whose side effects can be tol-
erated; we were able to identify multiple such gadgets in
constructing our attacks. We then relax this assumption
and develop more sophisticated signature detectors in
Section 10, that are able to tolerate the presence of some
longer gadgets and still detect an attack.

5 THREAT MODEL, ASSUMPTIONS AND LIMI-
TATIONS
We use standard CRA assumptions on the attacker’s
access to memory; this could be obtained using a buffer
overflow, a string formatting attack, or a non-local jump
buffer (using setjmp and longjmp [40]). We assume
that the system has NX support for writable memory
such that code injection attacks are not possible.

We assume that the attacker can find arbitrary gadgets
limited only by the attack lengths as per the analysis
we showed in Section 3. Later we relax this assumption
by allowing the use of longer gadgets. Throughout the
paper, we present real attacks constructed from existing
library code. However, rather than assume security due
to our inability to find gadgets in the current version of
the libraries, we make the assumption of the existence of
arbitrary gadgets such that the defense works with any
future code base, and not just the ones we used for the
analysis.

We assume that the vulnerability exploited to initiate
the attack does not lead to a privilege escalation. If priv-
ilege escalation is achieved from the initial vulnerability,
then a CRA attack is not necessary. The attacker may
seek to obtain privilege escalation through the CRA.

The new stealth JOP attack proposed in this paper uses
delay gadgets to obfuscate the JOP execution pattern. We
explored the use of function calls as delay gadgets be-
cause of the limited side-effects that they generate. Our
analysis also showed traditional gadgets are ineffective
beyond a certain length because of the presence of state



7

updates. However, there is a possibility that additional
patterns of generating delay gadgets may exist (e.g., a
loop gadget), although we have not been able to find
and exploit such gadgets. We believe that the detection
logic can be extended to capture such delay patterns as
well.

6 EXPRESSING ATTACK SIGNATURES IN FOR-
MAL LANGUAGE
In this section, we formalize the attack pattern as a
context-free grammar. This formal description is used as
the basis for the hardware implementation of SCRAP
logic. We encode executions of instructions as strings of
symbols denoting types of instructions, called signatures.
The attacks are then formalized as formal languages of
signatures. The alphabet used in this section is given in
Table 3.

Symbol Instruction
w Indirect Jump
x Indirect Call
y Call
z Return
a All Other

TABLE 3
Signature alphabet.

6.1 Expressing Attacks Without Delay Gadgets
We observe that basic CRAs, such as ROP and JOP
attacks, can be expressed as a formal language defining
an attack as the following regular expression that uses
POSIX Extended Regular Expressions:

RN,S = (a {0, N} (w|x)) {S, }

Here, w denotes an indirect jump and x denotes an
indirect call, while a denotes any other type of instruc-
tion. N is a parameter that specifies the number of
instructions that a gadget can have, while S specifies the
number of consecutive gadgets considered as an attack.
For example, in R5,3 case, three consecutive gadgets each
having no more than five instructions form an attack.

6.2 Expressing Attacks with Delay Gadgets
With the inclusion of function calls as delays, the formal
language defining the attack becomes a context free
language, formalized as the context-free grammar GN,S ,
where again N is the number of instructions that a
gadget can have and S is the number of consecutive
gadgets considered as an attack. The definition of G5,3 =
(V,Σ, Rules,Attack) is given in Figure 7.

The grammar starts with Attack which is expanded
to S = 3 phases, each including a gadget and an
unbounded number of delays. A gadget is the same as
the GN,S regular expression defined above in Section 6.1.
A delay starts with a Call and ends with a Return and a
Body between them which we further define to capture

V ={Attack, P, Gadget, Delays, Delay,

Call, Body, Return, Gadget, Indirect,

NotGadget, NotAttack}
Σ ={w, x, y, z, a}

Rules ={
Attack →P P P

P →Gadget Delays | Delays Gadget

Gadget →Indirect | a Indirect | a a Indirect |
a a a Indirect | a a a a Indirect |
a a a a a Indirect

Indirect →w | x
Delays →Delay Delays | ε
Delay →Call Body Return

Call →x | y
Return →z

Body →Delays Body | Body Delays

Body →a Body | Body a | ε
Body →NotGadget NotAttack

NotGadget →a a a a a a Indirect | a NotGadget

NotAttack →ε | P | P P}

Fig. 7. Definition of G5,3 = (V,Σ, Rules,Attack).

complex delay gadgets consisting of nested function
calls. Specifically, the delay gadget can have any number
of delay function calls, and any number of unimportant
instructions. It can also include less than S gadgets in
it as long as there is a NotGadget sequence before it.
A NotGadget has more than N instructions before the
Indirect instruction.

The grammar is given for specific N and S values, but
it can be reformulated for any N and S value by simply
changing some of the production rules. Attack has S
number of P expansions and Gadget allows N many a’s
before Indirect. NotGadget and NotAttack would also
have to be changed accordingly.

Signature ∈ R5,3? ∈ G5,3?
aaawaawaaw Yes Yes
awaaxaaaaw Yes Yes
awaxaaaaaazaxaw No Yes
awaxaayaazazaxaw No Yes

TABLE 4
Example attack signatures.

Table 4 shows example attack signatures and whether
they are considered as an attack under prior approaches
described in Section 6.1 and under the grammar that
excludes delays. The parts of the signature that are
matched as delays under G5,3 are highlighted.

7 SCRAP: HARDWARE-BASED SIGNATURE
DETECTION

In this section, we demonstrate an efficient hardware
implementation to recognize the formal grammar that
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expresses the attack signatures shown in the previous
section. The proposed logic required by SCRAP is lo-
cated at the commit stage of the pipeline off of the critical
timing path. In the subsections below, we describe the
components of SCRAP, building from a single state ma-
chine towards developing the complete solution. This is
a standard exercise of translating the language grammar
into the hardware implementation; however, because up
to four instructions commit every cycle, we introduce
an optimization that significantly simplifies the logic
without having any adverse impact on the performance.

7.1 The SCRAP State Machine

The SCRAP state machine is shown in Figure 8. We use
a counter to keep track of the current gadget length, and
a comparator to decide whether the counter is above the
gadget length threshold. When a gadget end is detected
(w or x event in the language), the gadget length is used
to transition through the shown finite state machine. The
remaining step to implement the push down automata
is to note that when a call instruction is encountered,
we push the current state number to the shadow stack.
This number is restored when a return instruction is
encountered.

saturating counter

0 0 0 0 0 0

T1 0 0 1 0 0 0

a: increase counter
w, x: if counter < T1, output S

else output L

x, y: push the state

z: pop the state

q0start q1 q2 q3 qa

L

L L L

S S S S

1
Fig. 8. The state machine for SCRAP.

7.2 Integrating State Counters into Secure Call
Stack

As we discussed previously, a shadow call stack is a
mechanism that has been proposed to defend against
simple ROP attacks [28]–[30], [41]. SCRAP relies on a
hardware implementation of the call stack, which is
backed up by a larger software stack. In our design,
each entry of the hardware stack is augmented with
the counter that keeps track of the number of potential
attack gadgets that executed consecutively. This makes
it possible to track the information about the state of the
attack even across function calls, eliminating their use as
delay gadgets.

7.3 The SCRAP Microarchitecture

We now describe the microarchitectural changes needed
for an out-of-order superscalar processor to implement

SCRAP. First, as the instructions are decoded, the infor-
mation about the relevant instruction types is extracted
and placed in the Reorder Buffer (ROB) entries allocated
for the instructions. For this purpose, all instructions
are classified into five types, as defined by the attack
grammar in Section 6, thus requiring a new 3-bit wide
field within each ROB entry to carry this information.
When the instructions reach the commit stage of the
pipeline, this information is used to update the SCRAP
state machine counters.

The complexity of the counter update logic depends
on the superscalar width (i.e. how many instructions
commit per cycle) and also on the thresholds on the
gadget length and the number of consecutive gadgets
used by SCRAP. To simplify the logic, to ensure that
only one counter update can be performed per cycle,
and also to ensure that in a single cycle we operate on
the counters within a single entry of the secure stack, we
propose a technique called Commit Throttling.

7.3.1 Simplifying SCRAP through Commit Throttling
To simplify the SCRAP state machine counter update
logic, we propose Commit Throttling (CT), which allows
only one of the following instructions to be committed
in a single cycle: CALL, indirect CALL, indirect jump,
and RET. The number of these instructions in typical
programs is small (less than 5% combined according
to our analysis based on the binary instrumentation of
SPEC 2006 benchmarks). When encountering the second
instruction from this list in the co-committing group in
the same cycle, the commit logic blocks and delaying
the commit the second instruction to the next cycle. An
additional requirement that we impose is that whenever
a return instruction is encountered, the commit process
also stops to ensure that we always operate on the
counters within the same stack entry in each cycle.
The impact of CT optimizations on the performance is
negligible (less than 0.03% on the average for SPEC 2006
benchmarks), but it allows us to significantly limit the
number of different instruction patterns coming out of
the commit stage in a single cycle in terms of their impact
on the SCRAP detection state. We present details of our
implementation in Section 11.

7.4 Allowing software configuration of SCRAP
We allow the SCRAP detector thresholds to be config-
urable using a privileged system call that sets the detec-
tion machine state. We build large detector allowing up
to 10 gadgets in a row to be detected. The configuration
can be changed to GN,S by changing the T1 threshold
register to N and by marking the Sth state in the detector
to be the finish state detecting the presence of an attack.

The choice of software configurability is made for
two reasons. First we observed significant divergence
in application behavior. Without software configurability,
we are forced to use the worst case thresholds that do not
generate false positives across any applications. Many
applications do not use indirect branch and call instruc-
tions frequently, and can benefit from lower thresholds
which further increase the difficulty of attacks. At the
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same time, we want to protect against the potential of
an application that does generate false positives against
our thresholds. If the thresholds are fixed in hardware,
then such an application cannot be supported.

8 PERFORMANCE EVALUATION OF SCRAP
For evaluating the performance impact of SCRAP, we
used PTLsim [42] - a cycle-accurate x86 processor simu-
lator. We simulated a 4-wide issue out-of-order core with
64KB L1 data and instruction caches, 512KB L2 cache
and 2 MB L3 cache. Memory latency was assumed to be
100 cycles. We used 17 C and C++ SPEC CPU2006 [43]
benchmarks for our experiments. The benchmarks were
compiled using GCC-4.2 compiler on a x86 machine
running Ubuntu with kernel version 2.6.24.

Each benchmark was simulated for 2 billion commit-
ted instructions after fast-forwarding for the first 100
million instructions.

First, we studied the impact of the Commit Throttling
optimization. We discovered that there was negligible
slowdown due to CT (less than 0.1% on average). To
explain this slowdown, we show in Figure 9 the per-
centage of cycles where CT initiated a commit block.
The cost of most of these stalls is hidden by out-of-
order execution, resulting in the observed low impact
on overall performance.

For a 4-entry hardware buffer of the secure call stack,
the performance overhead of SCRAP is just over 1% on
the average and it is less than 6% for all benchmarks as
shown in Figure 10. This includes the overhead of stalls
due to CT cycles as well as the overhead of the overflow
of the hardware call stack buffer.

The additional memory requirement for SCRAP (and
also the secure call stack) is shown in Figure 11. SCRAP
uses small counters that easily fits in a byte, but using
word-long counters is preferable for alignment purposes.
The results show that, even with longer counters, mem-
ory footprint of SCRAP is less than a memory page of
4 KBytes.

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
er

lb
m

m
cf

m
ilc

na
m

d
om

ne
tp

p
pe

rlb
en

ch
po

vr
ay

sj
en

g
so

pl
ex

sp
hi

nx
3

xa
la

nc
bm

k

0%

2%

4%

6%

8%

10%

P
er

ce
nt

ag
e 

of
 C

T
 c

yc
le

s

Fig. 9. Percentage of cycles where commit is blocked by
CT.

9 SECURITY ANALYSIS OF SCRAP
In this section, we analyze the SCRAP detection ef-
fectiveness. We first demonstrate that it results in no
false positives for normal programs and then analyze
detection of actual shellcodes.
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Fig. 11. Secure call stack size when using byte- and
word-long SCRAP counters.

9.1 False Positives in Regular Codes
Next, we examine the impact of SCRAP on the exe-
cution of real programs to determine if SCRAP gener-
ates any false alarms during legal program execution.
We used Pin tool [44] to instrument 18 C/C++ SPEC
2006 benchmarks and Apache 2.4.3 Web Server, Firefox
19.0.2 Web Browser, Adobe Flash Player 11.2 and Xpdf
3.03 PDF viewer, for one billion instructions. For instu-
menting Apache, we used Apache benchmarking tool
ab to remotely send thousands of requests to the web
server which serves a static version of the Wikipedia
entry1 with a size of about 65KBs. Firefox benchmark
is instrumented by accessing the same Wikipedia entry
online and Xpdf is instrumented using a PDF version of
the same page. For Flash Player, we used a standalone
version of a Flash cartoon called “The Badger Song”2.

The instumentation results are presented in Figure 12,
which shows the set of benchmarks that have at least one
false positive for given values of N and S. As seen from
these figures, for the thresholds with four consecutive
gadgets and at most seven instructions in each gadget,
none of our benchmarks generated false positives; i.e., a
SCRAP detector G7,4 generates no false positives for the
above applications.

The selection of a SCRAP configuration is a tradeoff
between security (the ability of detecting attacks), and
false positives (flagging legitimate code as an attack).

1. http://en.wikipedia.org/wiki/Scrap
2. http://weebls-stuff.com/songs/badgers/
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Fig. 12. List of benchmarks with non-zero false positive
rates for GN,S for different values of N and S.

Since we only evaluated a subset of possible applica-
tions, it is impossible to claim that false negatives will
never occur. Instead, our results demonstrate that for
some SCRAP configurations that detect all known and
even hypothetical attacks, the rate of false positives is
likely to be very small (even if they exist at all), such that
these false positives can be addressed individually. This,
for example, can be achieved by making exceptions, or
creating the whitelists. For example, one exception could
be made for jump targets that are loaded from read-only
memory. Our preliminary experiments on a Windows
platform show that there is such necessity for Import
Address Tables on Portable Executable format (please
refer to the supplementary document for details).

9.2 Detecting JOP Attacks

With a SCRAP detector G7,4, SCRAP is capable of de-
tecting any JOP attack that does not use a gadget longer
than 7 instructions (8 including the ending control flow
instruction). Thusfar, every published attack, and every
attack automation tool uses gadgets of size 5 or less [15],
[24], [26]. As seen in Section 4, gadgets that call functions
can be used in an attack because they preserve half
of the registers due to assembly convention. However,
SCRAP is capable of detecting attacks that implement
these gadgets, while a JOP version of DROP would fail.
As discussed in Section 3, in general long gadgets that
do not use function calls have too many side effects to
be used in an attack. Therefore, all currently published
attacks would be detected by SCRAP. However, if an
attacker is aware of the SCRAP protection, they may be
able to find longer gadgets whose side effects can be
tolerated or repaired by a subsequent gadget. Thus, we
extend SCRAP in Section 10 to defend against such pos-
sible JOP attacks that manage to use an occasional long
gadget in the middle of the attack to avoid detection.

To further assess SCRAP detection capabilities, we
implemented 140 shell code attacks available from the
Shell-Storm Linux shellcode repository [45]. These shell-
codes ranged in complexity from simple single system
calls, to attacks with multiple system calls, conditional
branches, and loops. Even the most basic attack required
at least 6 gadgets, which is greater than the minimum
number of consecutive gadgets necessary to be detected
by SCRAP. Gadgets longer than 6 instructions were
extremely difficult to incorporate due to side effects.
However, we were able to include a small number of
gadgets of intermediate length, a few instructions longer.
Attacks that use these longer gadgets are defeated by the
improved detector presented in Section 10.

10 TOLERATING LONGER GADGETS
Thusfar, we have assumed that the length of the gadgets
usable by attackers is limited to a hard threshold chosen
in a way that makes false positives impossible. This
assumption is based on the analysis in Section 3 where
we showed that longer gadgets create too many state
updates, making them difficult to use (e.g., Figure 6).
However, it may be possible for attackers to identify
some longer gadgets whose side effects do not com-
pletely destroy the attack state. Such gadgets can be used
as a delay gadget to avoid detection by the basic SCRAP
detector. In our own implementation of shellcodes, al-
though it was difficult, we were able to identify a few
such gadgets that are longer than the detection thresh-
old and could be integrated into an attack successfully,
avoiding detection by the basic SCRAP. These gadgets,
for example, updated registers that were not needed
for the attack, modified a non-critical memory location
while being able to avoid illegal accesses, or had a side-
effect that could be undone by another gadget. Thus, for
practical signature based detection, it is imperative that
we detect attacks even in the presence of some of these
longer gadgets.

In the remainder of this section we propose a new
multi-threshold detector that is able to detect CRAs
quickly, while tolerating the use of longer gadgets. Intu-
itively, the detector assumes that attackers may be able
to find some gadgets longer than the SCRAP thresh-
old whose side-effects can be tolerated or undone by
subsequent gadgets. These intermediate gadgets are not
easy to find or use constructively in an attack since the
number of side effects made by a gadget grows quickly
with the length of the gadget. Side effects also increase
the number of gadgets necessary for an attack; a repair
gadget must be called in order to correct state changes
and a dispatcher gadget must be called in order to reach
the repair gadget.

The new detector detects attacks as a sequence of
gadgets of length T1 or shorter, while allowing the use of
intermediate gadgets (IGs) of length T2 or shorter such
that T2 > T1. Since IGs typically do not advance the
attack but are used only to avoid detection, we do not
advance the gadget count (move closer to detection) like
we do with short gadgets. At the same time we only
reset to the initial state with gadgets of length greater
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than T2. Now, for every other IG the gadget counter
is reduced by one to take advantage of the additional
gadgets necessary to repair side effects. To detect an
attack, we still need S short gadgets (≤ T1) before a
very long gadget (> T2). The state machine for the
multi-threshold detector is shown in Figure 13. We call
a detector of this type GT1,T2,S where S is the gadget
count that is needed to detect an attack. Note that all
three thresholds are software configurable in privilege
mode.

The false positive rate is increased by this new multi-
threshold detector. Previously, medium length gadgets
reset SCRAP to its initial state, setting all counters to 0,
making it more difficult to detect an attack (but making
it possible for attackers to avoid detection). Figure 14
shows the benchmarks with false positives for all bench-
marks we evaluated. The results show that T1 can be
set to 7, and T2 can be set to a very high length of 25
without any false positives with gadget count, S, of 4.
Gadgets of length 25 in the libraries we examined have
a minimum of 5 side effects and an average of 14 side
effects (Figure 6)–it is extremely improbable that they
can be used without destroying the critical attack state.

saturating counter

0 0 0 0 0 0

T1 0 0 1 0 0 0

T2 1 1 0 0 1 0

a: increase counter
w, x: if counter < T1, output S

else if counter < T2, output M

else output L

x, y: push the state

z: pop the state

q0start

q′1

q1

q′2

q2

q′3

q3 qa

L

L L L

L
L

M

M M M

S S

S

M, L M M

S S S S

1

Fig. 13. State machine for the two-threshold detector.

As a further enhancement, a simple G7,4 SCRAP mod-
ule, as discussed in Section 9, could be used concurrently
with this multi-threshold detector to catch attacks that
use three short gadgets in a row. The overhead of this
approach is linear in the number of detectors since a new
state machine has to be implemented for each detector,
and a space on the stack is needed to save each detector’s
state upon a function call.

11 FPGA IMPLEMENTATION

We implemented the proposed detectors in Verilog HDL
on a Xilinx Spartan-3E XC3S100E FPGA with a 90nm
process, using Xilinx ISE WebPACK 14.1. We evaluated
both designs; baseline SCRAP presented in Section 7 and
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Fig. 14. List of benchmarks with non-zero false positive
rates for two-threshold detector GT1,T2,S for different val-
ues of (T1, T2) and S.

two-threshold SCRAP presented in the previous section.
In order to allow comparison, we also evaluated 8-, 16-,
32- and 64-bit counters on the same technology.

Figure 15 shows the critical path delays of both de-
signs for varying widths. A baseline SCRAP design
shown as (n, s) means it is able to detect GN,S attack
language where N and S are encoded using n and s bits
respectively. Similarly a two-threshold SCRAP shown as
(t1, t2, s), uses t1 and t2 bits for the two threshold values
and s bits for gadget count.

Results for our unoptimized implementation show
that the delay of SCRAP state machine is well under the
cycle period of a superscalar processor. With a timing
oriented design, it can be implemented with a shorter
critical path.
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Fig. 15. Critical path delays for two SCRAP designs with
different widths and various counters for reference.

We further evaluated the dynamic power dissipation
of our FPGA designs, using Xilinx Power Estimator
11.1 for Spartan-3E FPGA Family. We set the ambient
temperature to 65◦C, toggle rate to 0.5 and clock rate to
256MHz. Results are shown in Figure 16. Again, same x-
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axis labels are used as in Figure 15 and also counters of
various widths are presented to allow comparison. Using
the HDL Synthesis Report, we estimated the transistor
count of the SCRAP logic. The largest baseline SCRAP
design (4, 4) has as many transistors as a 32-bit up
counter and the largest two-threshold design (7, 7, 4) has
little less transistors than a 64-bit up counter.
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Fig. 16. Dynamic power dissipations for two SCRAP
designs with different widths and various counters for
reference.

12 RELATED WORK
In this section, we overview different approaches to
protecting against CRA attacks. The related work is
organized into three parts: (1) defenses against buffer
overflow attacks; (2) comprehensive defenses; and (3)
defenses specific to Code Reuse Attacks (CRAs).

12.1 Defenses against Buffer Overflows
Several approaches were developed to defeat buffer
overflows which are necessary to initiate a CRA at-
tack [9]–[11], [46]–[48]. Stackguard [9] and ProPolice [47]
are GCC extensions that use canaries. StackShield sep-
arates return addresses into a separate stack at compile
time making it impossible for stack buffer overflows to
overwrite the return address [48]; similar works save
a copy of the return address and validate it before a
function return [10], [11]. StackGhost uses the register
window feature of the Sun Sparc architecture to verify
that return addresses have not been overwritten [49].
Recently, the advent of the NoExecute (NX) bit and its
support by mainstream operating systems have made
code injection attacks ineffective [13], [14].

12.2 Comprehensive Defenses
Memory bounds checking (MBC) annotate pointers with
their legal address range and check every memory access
against the base and bound of the associated data struc-
ture [3], [4], [50], [51]. However, the overhead of MBC is
substantial. MBC cannot prevent all memory exploits: it
cannot protect legacy binaries and externally linked or
loaded components. Dynamic Information Flow Track-
ing (DIFT) taints the information coming from insecure
sources, and dynamically tracks and propagates the taint

through processor registers and memory locations. The
drawback is that DIFT is a heavy-weight approach that
entails a significant redesign of the processor datapath
and memory system if implemented in hardware [5], [6],
[52], or incurs a substantial performance overhead if im-
plemented in software [53], [54]. Data flow integrity [55]
derives the data flow graph during compile-time and
instrument the program to enforce conformance with the
flow in the graph; note that this is a dual approach to
control flow integrity.

12.3 CRA Attacks and Defenses
The first CRA attack proposed was the return-into-libc
(RILC) attack [56], where the attacker subverts the control
flow to call a function in the standard C library. Exten-
sions to basic RILC have been proposed to allow a static
chain of libc functions to be called [57] and recently to
allow a general data-dependent form of chaining of libc
functions [58].

Return-oriented Programming (ROP) attacks were re-
cently proposed to execute arbitrary code [15], and the
number of solutions to them were introduced [26]–[30].
We discussed those solutions in detail in earlier sections
of this paper.

The newer defenses against ROP attacks also attempt
to address JOPs. For example, Onarlioglu et al. first
use binary rewriting to remove unintended branches
and returns [59]. To protect intended branches, they use
function-specific markers on each stack frame; they call
these markers stack cookies. They also insert checks after
every branch to check the stack cookie.

Kayaalp et al [41] propose branch regulation, a hard-
ware supported techniques to protect against JOPs. Us-
ing binary rewriting, they insert markers at the begin-
ning of every function, which include a magic number
to mark a legal function entry, as well as the length of
the function. Control flow integrity [36] is an approach
to enforce legal control flow inside of programs; CFI
would identify the illegal control flow necessary for code
reuse attacks. Control Flow Locking [37] lazily enforces
the same property and achieves smaller performance
overhead.

Address space layout randomization (ASLR) [60] ran-
domly offsets the program location in memory. ASLR
and other optimized heap allocation models [61], [62]
hide the correct address of the malicious code hiding the
location of the gadgets. Unfortunately, exploits against
ASLR are known; for example, a a format string attack
can expose the stack location to an attacker allowing the
random offset to be derived [63]. Schwartz et al show
that even a small part of the code being unrandomized
is sufficient to construct CRA attacks [24].

13 CONCLUDING REMARKS

In this paper, we presented SCRAP, a new hardware-
based architecture for protecting against the emerging
class of code reuse attacks (CRAs). We demonstrated
that the latest incarnation of CRAs - jump oriented pro-
gramming (JOP) attacks - have execution patterns that
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are clearly distinguishable from the patterns exhibited
by regular programs. However, we also demonstrated a
new attack that renders previously proposed signature-
based approaches ineffective by introducing delay gad-
gets. Delay gadgets are gadgets whose only purpose is
to obfuscate the execution patterns of the attack without
performing any useful computation. We developed a
complete working JOP attack that incorporates delay
gadgets. We then proposed and developed the SCRAP
architecture for efficiently detecting such stealth JOP
attacks. Our design started from the development of
the formal language describing the stealth JOP attack
signature and then subsequent demonstration of the
hardware implementation. We also proposed a new mi-
croarchitecture optimization to simplify the SCRAP logic
without encountering any performance loss.

In summary, SCRAP architecture protects unmodified
legacy binaries, involves no changes to the software
layers and incurs very small performance degradation:
less than 2% on the average across the SPEC 2006 bench-
marks. We also show that with appropriate selection of
the detection thresholds, SCRAP successfully detects all
JOP attacks used to implement many existing shellcodes,
but at the same time results in no false alarms for the
regular applications. It is therefore an effective and low-
overhead protection, which in the very least increases
the attack complexity dramatically, if not making it com-
pletely impossible. SCRAP can be configured in software
to allow the thresholds to adapt to applications or to
disable protection if it is not desired.

We extended the basic SCRAP detector to allow it
to tolerate the presence of longer gadgets using a two
threshold detector. The new detector can tolerate the
presence of intermediate gadgets of length up to 50 in-
structions, without generating any false positives on the
SPEC 2006 benchmark. We implemented both SCRAP
and the two-threshold SCRAP in a hardware description
language; the required hardware is small and fast. It also
resides at the commit stage and does not affect any of
the critical pipeline stages.
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