Reducing Register Pressure in SMT
Processors through L2-Miss-Driven Early
Register Release

JOSEPH J. SHARKEY

Assured Information Security Inc.

and

JASON LOEW and DMITRY V. PONOMAREV
State University of New York, Binghamton

The register file is one of the most critical datapath components limiting the number of threads
that can be supported on a simultaneous multithreading (SMT) processor. To allow the use of
smaller register files without degrading performance, techniques that maximize the efficiency
of using registers through aggressive register allocation/deallocation can be considered. In this
article, we propose a novel technique to early deallocate physical registers allocated to threads
which experience L2 cache misses. This is accomplished by speculatively committing the load-
independent instructions and deallocating the registers corresponding to the previous mappings
of their destinations, without waiting for the cache miss request to be serviced. The early deal-
located registers are then made immediately available for allocation to instructions within the
same thread as well as within other threads, thus improving the overall processor through-
put. On the average across the simulated mixes of multiprogrammed SPEC 2000 workloads,
our technique results in 33% improvement in throughput and 25% improvement in terms of
harmonic mean of weighted IPCs over the baseline SMT with the state-of-the-art DCRA pol-
icy. This is achieved without creating checkpoints, maintaining per-register counters of pend-
ing consumers, performing tag rebroadcasts, register remappings, and/or additional associative
searches.

Categories and Subject Descriptors: C.1 [Processor Architectures]: Other Architecture Styles—
Pipeline processors.

General Terms: Performance, Design

Additional Key Words and Phrases: Simultaneous multithreading, register file

This research was supported by NSF through Award CNS 0720811 and by Intel.

Author’s addresses: Joseph J. Sharkey, Assured Information Security Inc., Rome NY (this work was
done while Joseph Sharkey was a PhD student at SUNY Binghamton); Jason Loew and Dmitry
V. Ponomarev, Department of Computer Science, State University of New York, Binghamton, NY
13902-6000; email: jsharke@ainfosec.com, jloew@cs.binghamton.edu, dima@cs.binghamton.edu.
Permission to make digital or hard copies part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2008 ACM 1544-3566/2008/11-ART13 $5.00 DOI 10.1145/1455650.1455652 http://doi.acm.org/
10.1145/1455650.1455652

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

13:2 . J. J. Sharkey et al.

ACM Reference Format:
Sharkey, J. J., Loew, J., and Ponomarev, D. V. 2008. ACM Trans. Architec. Code Optim. 5,
3, Article 13 (November 2008), 28 pages. DOI = 10.1145/1455650.1455652 http://doi.acm.org/
10.1145/1455650.1455652

1. INTRODUCTION

Simultaneous multithreading (SMT) is an important architectural paradigm
for increasing microprocessor throughput in an area-efficient manner by shar-
ing the key datapath resources among the instructions from multiple threads
of control [Marr et al. 2002; Tullsen et al. 1996]. One such shared resource in
an SMT datapath is the physical register file (RF), which needs to be sized very
generously to support the full architectural register state of each thread as well
as to provide a sufficient number of additional registers for renaming, typically
all within a common RAM structure. For example, for an ISA with 32 archi-
tectural registers, 128 registers are needed to maintain the precise state for
a four-threaded SMT, in both integer and floating point RFs. When renaming
registers are taken into account, the total number of entries within each RF
can reach several hundred. The large access delays, high power consumption,
and significant design complexity associated with such RFs are major factors
limiting the number of simultaneous threads that can be supported by an SMT
machine, especially at high-frequency implementations. Pipelining the access
to large RFs over several cycles requires multiple levels of bypass and also
lengthens the branch resolution and the load-hit speculation loops [Borch et al.
2002].

An alternative to building large RF's is to use a smaller number of registers
in a more efficient fashion. The higher efficiency of using physical registers
in an SMT processor can be achieved by addressing two related issues: (1)
how to distribute the available registers among the threads, and (2) how to
manage these registers to provide a larger supply of them for distribution. We
generically refer to these two key aspects as register distribution and register
management.

Register Distribution. This issue is addressed in the recent literature
through a series of proposals, such as I-Count [Tullsen et al. 1996], STALL
[Tullsen et al. 2001], FLUSH [Tullsen et al. 2001], DCRA [Cazorla et al. 2004],
and Hill-Climbing [Choi and Yeung 2006] techniques. I-Count gives fetching
(and thus register allocation) priority to threads with fewer not-yet-executed
instructions. The FLUSH mechanism completely squashes a thread that
experienced a long-latency L2 cache miss, releasing all physical registers
allocated to this thread and assigning them to other threads while the cache
miss is being serviced. The STALL mechanism simply blocks further resource
allocations to such threads, without squashing the in-flight instructions.
FLUSH generally provides higher performance than STALL [Tullsen et al.
2001], but it also incurs nontrivial overheads, because the squashed instruc-
tions have to always be refetched, rescheduled, reexecuted, and all shared
resources have to be reallocated to these instructions again. Consequently,

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

Reducing Register Pressure in SMT Processors . 13:3

the first allocations, performed prior to the discovery of a cache miss, just
waste the resources, even for the load-independent instructions that executed
without problems. The DCRA policy takes a different approach and instead
allocates more resources to memory-bound threads, attempting to help their
performance. The Hill-Climbing mechanism further improves on DCRA by
observing the impact of resource distribution decisions at run time and feeding
this information back to the front end of the pipeline to guide future allocations.

Register Management. All of the above approaches still work within the tra-
ditional register management framework. Traditional register allocation and
deallocation mechanisms, both on superscalar and SMT processors, are very
conservative—a physical register allocated to the destination of an instruction
is released only when the next instruction (from the same thread) writing to the
same destination architectural register commits. Several techniques have been
proposed in the literature (all in the domain of superscalar processors) to relax
these conditions and achieve higher efficiency of register usage. These tech-
niques can be broadly classified into three groups: late allocation mechanisms
[Gonzales et al. 1998; Monreal et al. 2004], early deallocation mechanisms
[Lipasti et al. 2004; Martinez et al. 2002; Monreal et al. 2002; 2004] and
register-sharing mechanisms [Balakrishan and Sohi 2003]. While it is possi-
ble to trivially extend at least some of these approaches to an SMT machine,
the complexity of the resulting solution (which is already high in superscalars)
could further escalate on SMT if the modifications to the thread-specific re-
sources are required. In particular, these techniques often require wake-up tag
rebroadcasts, register remappings, additional associative searches within the
issue queue and the rename table, deadlock avoidance techniques and/or peri-
odic creation of full register file checkpoints. In this article, we seek solutions
for improving the register-management mechanisms, but without incurring
the complications of the aforementioned designs. Moreover, the scheme that we
propose can be used in conjunction with all of these techniques, as it exploits
different opportunities for optimizing register usage.

Our solution is motivated by the observation that the primary reason for hav-
ing a large number of physical registers in the RF, especially on SMT processors,
is the capability to buffer a sizable number of in-flight instructions following
a load that misses into the L2 cache. Figure 1 compares the performance of a
four-threaded SMT machine with perfect L2 cache and one with the realistic
L2 cache of 2MB for various RF sizes. As shown in the graph, the performance
saturates at 200 registers in the former case, and at around 300 registers in
the latter case (details of our simulation framework are provided in Section 3).
Consequently, if the registers assigned to the instructions waiting for the reso-
lution of the L2 cache miss were not tied up, a much smaller RF would be suf-
ficient to maintain the same performance level. Alternatively, a considerably
higher performance would be realized using the similarly sized RFs. As the
L2 cache misses are relatively more frequent on SMT (because the caches are
shared among multiple threads) and physical registers are relatively scarcer
compared to a superscalar, it is important to consider techniques for optimiz-
ing the RF usage under the L2 cache misses. A technique to perform such lazy

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

13:4 . J. J. Sharkey et al.

1.2 +—| —e— Perfect L2

(1)'2 [|—=—2mBL2 —* ¢ e
0.6 ~r
0.4

0.2 —
0.0 | -
160 200 256 300 INF

RF Size

Fig. 1. Throughput IPC relative to the respective machine with infinite number of registers.

deallocation of registers in the shadow of L2 cache misses is the main contribu-
tion of this article. As detailed in Section 2, the timing and the conditions for this
deallocation are disjoint from those used by the previous schemes; therefore,
our technique can be used either by itself or even in conjunction with previous
proposals.

The key statistics that provided an inspiration for this work is that the ma-
jority of the instructions in the shadow of the long-latency loads are, in fact,
load-independent [Karkhanis and Smith 2002; Sarangi et al. 2005]. These load-
independent instructions release their issue queue entries fairly fast, but then
pile up in the reorder buffer, waiting for the cache miss to be serviced. Therefore,
the only shared resources within the SMT datapath that remain allocated to
these instructions are the physical registers—those are not released until the
cache miss is serviced and the process of instruction commitment resumes. We
note that neither STALL nor FLUSH is designed to specifically exploit this be-
havior. While STALL does not release the already allocated resources, FLUSH
does so aggressively, but incurs inefficiencies of having to refetch and reexecute
all flushed instructions, even those that are independent of the long-latency
load.

We propose a mechanism to release physical registers allocated to threads
which experience L2 cache misses by speculatively committing the load-
independent instructions and early deallocating the previous mappings of their
destination registers. The instructions committed speculatively in this fashion
remain in the ROB until the load miss is serviced and the actual commitment
occurs. The early released registers can be made available to the instructions
within the same thread to support higher memory-level parallelism (MLP) by
overlapping multiple cache misses), as well as to the instructions from other
threads, thus directly exploiting the thread-level parallelism (TLP) and improv-
ing the overall throughput. The specific nature of the register assignments to
threads is still dictated by the best-performing underlying resource distribution
policies, such as DCRA or Hill-Climbing—our mechanism just provides more
registers for the distribution.

The key novel features behind our design include the following:

e The physical registers are reclaimed lazily, only in the shadow of long last-
level cache misses. (Although the technique can in principle be generalized to
deallocate registers under any long-latency event, in this article we only focus

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

Reducing Register Pressure in SMT Processors . 13:5

on the L2 cache misses). Barring interrupts and exceptions, load-independent
instructions executed in the shadow of the missing load are properly commit-
ted (and the physical registers are released) after the cache miss is serviced.
Recognizing that exceptions and interrupts are rare, we propose to pseudo-
commit such load-independent instructions and perform respective register
deallocation activities earlier, as soon as the cache miss is detected.

The register reclamation process is only performed along the correctly re-
solved control flow paths (i.e., we never early deallocate a register if the
corresponding instruction may be subject to a branch misprediction). In
particular, if an unresolved (unexecuted) conditional branch instruction is
encountered in the course of examining the instructions in program order
for possible register deallocation, the entire process stops. Such approach
allows us to decouple the mechanism for branch misprediction and excep-
tion handling and allow for a much higher overhead in restoring the values
of the deallocated registers (as the restoration occurs only on exceptions or
interrupts).

In order to correctly execute the load-dependent instructions, neither the
previous instances of their destinations nor the previous instances of their
sources are early released.

To maintain the precise state on interrupts and exceptions, the values of

the early released registers can either be saved and restored through periodic
register file checkpointing or they can be saved directly within the ROB en-
tries of the instructions that triggered corresponding early deallocations—this
mechanism avoids the need for checkpointing and we used it for quantifying
our results.

The key characteristics and performance implications of the proposed mech-

anism are as follows:

It does not incur tag rebroadcasts, register remappings, associative searches
and rename table modifications, does not require per register consumer coun-
ters. Instead, it relies on a simple off-the-critical-path logic at the back end
of the pipeline to identify the early deallocation opportunities and save the
values of the early deallocated registers for precise state reconstruction.
Although it provides some performance benefits even in a single-threaded
execution environment (5% IPC gains for 64-entry RFs), the real advantages
come in SMT processors with multiple threads due to the more-frequent L2
cache misses and higher pressure on the register file. For a 4-way SMT ma-
chine with 256 integer and 256 floating point registers, the proposed mech-
anism results in 25% improvements in fairness compared to the baseline
processor with DCRA resource distribution policy.

It is complementary to all existing late register allocation and early register
deallocation schemes and can be used in conjunction with those mecha-
nisms, as it exploits previously unexplored early register deallocation op-
portunity. However, even by itself, it outperforms some previously proposed
early deallocation schemes (e.g., physical register inlining) on SMT, although
results in slightly lower gains during single-threaded execution.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

13:6 . J. J. Sharkey et al.

e It works synergistically with recently proposed resource allocation policies
for SMT, such as DCRA [Burger and Austin 1997] and Hill-Climbing [Cazorla
et al. 2003]. Although those policies control the distribution of available re-
sources among threads, our technique effectively provides more resources
(physical registers) to be used by these policies. As a result, we achieve
additional 25% gains on top of DCRA, and 26% gains on top of Hill-Climbing
for 256-entry RFs in terms of the fairness metric.

The early register deallocation mechanism described here was first proposed
in the conference version of Sharkey and Ponomarev [2007]. In this article, we
extend the work of Sharkey and Ponomarev [2007] by presenting the following
set of additional results:

e Comparison of various resource allocation and register management policies
in terms of fairness metric (Figure 4).

e Detailed per-benchmark results of various schemes in terms of fairness met-
ric (Figure 5)

e Statistics about the number of registers released during each pass through
the ROB during the early deallocation stage (Figure 7).

e Performance sensitivity to the ROB size (Figure 8(b)), L2 cache size
(Figure 10(a)) and memory latency (Figure 10(b)).

e Performance sensitivity to the degree of datapath superscalarity and also the
sizes of the key datapath resources (Figure 12).

The rest of the article is organized as follows. Section 2 reviews the related
work. Our simulation methodology is presented in Section 3. We motivate the
proposed technique and present its details in Section 4. Section 5 presents the
results and we conclude in Section 6.

2. RELATED WORK

Although most of the related work was briefly described in Section 1, this sec-
tion provides a more-detailed analysis of some prior efforts in the areas of SMT
resource distribution, aggressive register management, and checkpointed pro-
cessor architectures, all of which provided an inspiration for this work.

SMT Resource Distribution. The use of shared as well as partitioned re-
sources in an SMT processor can be indirectly controlled by instruction fetch-
ing mechanisms. Several such mechanisms (I-Count [Tullsen et al. 1996],
FLUSH and STALL [Tullsen, et al. 2001]) were discussed in Section 1.
FLUSH++ [Cazorla et al. 2003] combines the benefits of STALL and FLUSH
and uses the cache behavior of threads to dynamically switch between these
two mechanisms. The data gating technique of El-Moursy and Albonesi [2003]
avoids fetching from threads that experience an L1 data miss. In Cazorla
et al. [2004], a resource distribution policy (called DCRA) exercising a more
fine grained dynamic control over the shared SMT resources (such as physical
registers) was proposed. DCRA first classifies the threads according to their de-
mands for the resources and, based on this classification, determines how the
resources should be distributed among the threads. The Hill-Climbing approach

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

Reducing Register Pressure in SMT Processors J 13:7

[Choi and Yeung 2006] observes the impact of resource distribution decisions on
the performance and uses this information to improve future decisions. We ap-
ply the proposed mechanism on top of both DCRA and Hill-Climbing and show
that serious additional performance gains can be realized in either case. In
fact, our mechanism works synergistically with the best-performing resource
distribution techniques: it does not take away their advantages, but instead
supplies more physical registers to enable more effective register distribution.

Register File Optimizations. Researchers have exploited the inefficiencies in
register usage to reduce the number of registers in three major ways. One set
of solutions delays the actual allocation of physical registers until the time that
the result is written back [Gonzales et al. 1998; Monreal et al. 2004]. These
schemes avoid tying up destination physical registers between the time of in-
struction dispatch and instruction writeback by allocating a physical register
only at the time of writeback and using separate tags to satisfy the data de-
pendencies. The major drawback of the late allocation schemes is in the form
of nontrivial increases in the datapath complexity due to the need to: (1) sup-
port several levels of register mapping tables, (1) perform various associative
searches on the rename table and issue queue after the reassignment of map-
pings and (3) avoid potential deadlocks. The second set of techniques aim at
reducing the register file pressure by using the early deallocation of physi-
cal registers [Lipasti et al. 2004; Martinez et al. 2002; Monreal et al. 2002,
2004; Ergin et al. 2004]. Although these mechanisms differ in the timing and
manner of register deallocation, the additional logic needed to support pre-
cise state reconstruction and guarantee correctness of the execution is fairly
complex, sometimes requiring additional accesses to the rename table [Lipasti
et al. 2004] or register state checkpointing support [Ergin et al. 2004; Martinez
et al. 2002]. Furthermore, these schemes need to maintain accurate counters of
pending consumers to ensure that deallocation occurs only after all such con-
sumers are issued. The technique of Monreal et al. [2004] deallocates a register
after commitment of its last consumer, Ergin et al. [2004] deallocates a register
right after commitment of the instruction itself, and Lipasti et al. [2004] and
Martinez et al. [2002] attempt to deallocate registers after the result is pro-
duced. None of these mechanisms directly exploit the L2 cache misses to opti-
mize register file. Although it is possible to implement some of these techniques
on SMT to reduce the number of registers, the complexity of the resulting so-
lution will be at least as high as on a superscalar and in some cases (when
modifications to the thread-specific resources are involved) even higher. The
solution to register file optimization proposed in this article takes advantage of
a previously unexploited opportunity for early register deallocation. Because of
this, our technique works synergistically with the previous schemes for register
optimization (including those that deallocate registers early) and can be used
in conjunction with those mechanisms to provide additional performance ad-
vantages, especially in SMT machines. A detailed performance analysis of such
synergies is presented in Section 5. Finally, the third set of solutions reduces
the number of registers through the use of register sharing [Balakrishan and
Sohi 2003].

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

13:8 . J. J. Sharkey et al.

To the best of our knowledge, only one prior effort specifically addressed the
issue of RF scalability in a multicontext environment [Oehmkr, et al. 2005]. In
that work, a technique to virtualize logical register contexts by automatically
saving the values of unused registers to memory and restoring them back on
demand was proposed. The scheme of Oehmkr et al. [2005] requires modifica-
tions to the rename stage of the pipeline and also results in the insertion of
additional load and store instructions into the pipeline to implement fills and
spills and has a few other implications on the complexity of the datapath de-
sign. The work of Lo et al. [1999] investigated compiler support for efficient
register management in SMT.

Checkpointed Processor Architectures. Although the proposed mechanism
does not necessarily rely on creating checkpoints, we draw some inspiration
from several recent proposals that use register file checkpointing and exploit
load-independence to accelerate the execution of single-threaded applications
[Kirman et al. 2005; Mutlu et al. 2003; Sarangi et al. 2005]. There are some
principal differences between our proposal and those prior works and it is
important to highlight them. For example, runahead execution [Mutlu et al.
2003] unblocks the ROB when the missing load reaches the ROB head, creates
a full register file checkpoint and then allows the following instructions to
pseudocommit. After the load is serviced, the execution resumes from the
checkpoint. The net effect is that some subsequent cache misses are generated
earlier, effectively resulting in cache prefetching and improved performance.
The technique of Kirman et al. [2005] introduced load value prediction on top
of the runahead execution and augmented the benefits of runahead execution
with direct performance advantages on the correct predictions. Unless the value
prediction is used and it is correct, all instructions executed in the runahead
mode still need to be reexecuted when the cache miss is serviced. In addition,
the complexities and overheads of maintaining the register state checkpoints,
buffering the results of the speculative store instructions, and possibly sup-
porting value prediction/verification logic are considerable, especially in SMT
processors.

In contrast, the registers that are early deallocated by our scheme are always
used by the instructions from the same thread as well as from other threads
for the actual execution. Instructions are never reexecuted and no resource
wastages occur. Most importantly, all pseudocommitted instructions still remain
in the ROB (in contrast to the above mentioned schemes); thus, no speculative
updates of the memory state by the store instructions ever occur and need to
be addressed, avoiding the associated complexities (like the need to maintain
and manage the runahead cache as in Mutlu et al. [2003] and Kirman et al.
[2005]). Although our scheme has a somewhat limited utility if applied to a
single-threaded superscalar machine as the ROB is likely to quickly fill up
and block the forward progress (although we show in the results section that
performance gains can be realized even in that case), the presence of explicit
TLP within a multithreaded processor allows for the progress of other threads
to be sustained and fueled by the early deallocated registers even if the ROB of
the thread that experienced the L2 cache miss becomes full.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

Reducing Register Pressure in SMT Processors . 13:9

Table I. Configuration of the Simulated Processor

Parameter Configuration

Machine width 8-wide fetch, 8-wide issue, 8-wide commit

Window size 64-entry issue queue, 48 entry load/store queue, 128—entry ROB per
thread

Function Units and | 8 Int Add (1/1), 4 Int Mult (3/1) / Div (20/19), 8 4 Load/Store (2/1),

Lat (total/issue) 8 FP Add (2), 4 FP Mult (4/1) / Div (12/12) / Sqrt (24/24)

Physical Registers Separate integer and floating point register files, size as specified

L1 I-cache 32KB, 2-way set-associative, 64-byte line

L1 D—cache 64KB, 2-way set-associative, 64-byte line

L2 Cache unified 512KB, 8-way set—associative, 128-byte line, 10 cycles hit time

BTB 2048 entry, 2-way set-associative

Branch Predictor Per thread 2K entry gShare with 10-bit global history

Pipeline Structure 5-stage front-end (fetch-dispatch), scheduling, 2 stages for register file
access, execution, writeback, commit.

Memory 64-bit wide, 300 cycles access latency

Recent studies by Karkhanis and Smith [2002] and Sarangi et al. [2005]
showed that most of the instructions fitting into the instruction window
following an L.2 miss are load-independent. This result was corroborated by our
experiments and we exploit these statistics directly. Other proposals [Akkary
et al. 2003; Srinivasan et al. 2004] completely eliminate the ROB and instead
use periodic checkpoints, effectively allowing out-of-order commit and more
aggressive use of registers. In contrast, our technique builds on top of traditional
ROB-based architectures, keeping the datapath changes to the minimum. In
addition, efficiently implementing checkpointing on SMT processors requires
additional considerations, as per-thread checkpointing is needed to avoid the
simultaneous rollback of all threads if a global register and memory state check-
point is used.

3. SIMULATION METHODOLOGY

For estimating the performance impact of the schemes described in this ar-
ticle, we used M-Sim [Sharkey 2005]: a significantly modified version of the
Simplescalar 3.0d simulator [Burger and Austin 1997] that supports the SMT
processor model. M-Sim implements separate models for the key pipeline struc-
tures such as the 1Q, the reorder buffer, and the physical register file; it also ex-
plicitly models register renaming. In the SMT model, the threads share the 1Q,
the pool of physical registers, the execution units and the caches, but have sep-
arate rename tables, program counters, load/store queues and reorder buffers.
Each thread also has its own branch predictor. The details of the studied pro-
cessor configuration are shown in Table I.

We simulated the full set of SPEC 2000 integer and floating point bench-
marks, using the precompiled Alpha binaries available from the Simplescalar
website [Burger and Austin 1997]. We skipped the initialization part of each
benchmark using the procedure prescribed by the Simpoints tool [Sherwood
et al. 2002] and then simulated the execution of the following 100 million
instructions. For multithreaded workloads, we stopped the simulations after
100 million instructions from any thread had committed.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

13:10 . J. J. Sharkey et al.

Table II. Simulated Three-Threaded Workloads

Classification Mix Name Benchmarks

3 LOW ILP Mix 1 mgrid, equake, art
Mix 2 twolf, vpr, swim

3 MED ILP Mix 3 applu, ammp, mgrid
Mix 4 gece, bzip2, eon

3 HIGH ILP Mix 5 facerec, crafty, perlbmk
Mix 6 wupwise, gzip, vortex

2 LOW ILP + 1 HIGH ILP Mix 7 parser, equake, mesa

1 LOW ILP + 2 HIGH ILP Mix 8 perlbmk, parser, crafty
2 LOW ILP + 1 MED ILP Mix 9 art, lucas, galgel

1 LOW ILP + 2 MED ILP Mix 10 parser, bzip2, gcc

2 MED ILP + 1 HIGH ILP Mix 11 gzip, wupwise, fma3d
1 MED ILP + 2 HIGH ILP Mix 12 vortex, eon, mgrid

Table III. Simulated Two-Threaded Workloads

Classification Mix Name Benchmarks

2 LOW ILP Mix 1 equake, lucas
Mix 2 twolf, vpr

2 MED ILP Mix 3 gee, bzip2
Mix 4 mgrid, galgel

2 HIGH ILP Mix 5 facerec, wupwise
Mix 6 crafty, gzip

1 LOW ILP + 1 HIGH ILP Mix 7 parser, vortex
Mix 8 swim, gap

1 LOW ILP + 1 MED ILP Mix 9 twolf, bzip2
Mix 10 equake, gcc

1 MED ILP + 1 HIGH ILP Mix 11 applu, mesa
Mix 12 ammp, gzip

Our multithreaded workloads contain a subset of the possible combinations
of the simulated benchmarks. In selecting the multithreaded workloads, we
first simulated all benchmarks in the single-threaded superscalar environment
and used these results to classify them as low, medium, and high ILP, where
the low ILP benchmarks are memory bound and the high ILP benchmarks are
execution bound.

In total, we simulated 12 four-threaded workloads, 12 three-threaded work-
loads and 12 two-threaded workloads. All workloads were created by mixing
the benchmarks with different ILP levels in various ways. Tables II, III, and
IV depict the specific benchmarks that constituted each of our workloads. The
ILP level of each benchmark is also shown.

We used several metrics for evaluating the performance of the multithreaded
workloads throughout this article. The first metric is the total throughput in
terms of the commit IPC rate. However, this metric does not accurately reflect
changes that favor a thread with high IPC at the expense of significantly hin-
dering a thread with low IPC [Luo et al. 2001]. Therefore, we also present the
result using another metric, “harmonic mean of weighted IPCs.” Although the
latter metric is really a performance metric that represents a balance between
performance and fairness, in the rest of the article, we refer to this metric as
“fairness” to be consistent with some previous work [Luo et al. 2001].

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

Reducing Register Pressure in SMT Processors o 13:11

Table IV. Simulated Four-Threaded Workloads

Classification Mix Name Benchmarks

4 LOW ILP Mix 1 mgrid, equake, art, lucas
Mix 2 twolf, vpr, swim, parser

4 MED ILP Mix 3 applu, ammp, mgrid, galgel
Mix 4 Gec, bzip2, eon, apsi

4 HIGH ILP Mix 5 facerec, crafty, perlbmk, gap
Mix 6 wupwise, gzip, vortex, mesa

2 LOW ILP + 2 HIGH ILP Mix 7 parser, equake, mesa, vortex
Mix 8 parser, swim, crafty, perlbmk

2 LOW ILP + 2 MED ILP Mix 9 art, lucas, galgel, gcc
Mix 10 parser, swim, gcc, bzip2

2 MED ILP + 2 HIGH ILP Mix 11 gzip, wupwise, fma3d, apst
Mix 12 vortex, mesa, mgrid, eon

4. L2-MISS-DRIVEN EARLY REGISTER DEALLOCATION

In this section, we describe the details of the proposed mechanism.

4.1 Motivation and Overview

To motivate our technique, we begin by examining a short code fragment ob-
tained from the execution of the equake benchmark from the SPEC 2000 suite.
Consider the sequence of instructions depicted in Figure 2, the oldest of which
is a load (Idt instruction on line 1 that missed into the L2 cache. For each
register-to-register instruction, the destination register is shown last. Both
the original and the renamed version of each instruction are shown, as well
as the previous mappings of the destination architectural registers. In the
normal course of operations (i.e., without early register deallocation), when
an instruction commits, it deallocates the previous mapping of its destina-
tion, using the information that is available from the commit-time rename
table.

In the example of Figure 2, only 5 out of the 28 instructions that follow the
missing load are load-dependent—those are the shaded instructions shown on
lines 8, 12, 13, 14, and 15. The execution of all other instructions will complete
well before the L2 cache miss triggered by the [/d¢ instruction from line 1 is
serviced. In the absence of branch mispredictions, exceptions and interrupts,
the commitment of the load-independent instructions and the corresponding
release of their previous mappings are only delayed because of the long latency
to service the L2 cache miss. When the miss is finally serviced and the 1dt in-
struction on line 1 commits, all subsequent instructions will also commit and
the previous commit-time mappings of the corresponding destination architec-
tural registers will be deallocated. For example, when the ldg instruction on
line 2 commits, physical register prO is deallocated, and when addq on line
3 commits, the register pr5 is deallocated, and so on. The inefficiency of this
approach is that both pr0 and pr5 will be deallocated only after the L2 cache
miss is serviced—possibly hundreds of cycles after the new instances of their
corresponding architectural registers, the results of the ldq and addg instruc-
tions are produced. In many situations, the registers like pr0 and pr5 in the

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

13:12 J. J. Sharkey et al.
Source Code Renamed Code Old mapping

1 1dt £13,0(xr27) 1dt pf32,0 (pr27) pfl3
2 1dg r0,0(x0) 1dg pr32,0(pr0) pro

3 addg r5,rll,r5 addg pr5,prll,pr33 pr5

4 1dt £8,0(r5) 1dt pf33,0(pr33) pfs

5 addg rl17,rll,r17 addqg prl7,prll,pr34 prl7
6 addg r6,rll,r6 addg pr6,prll,pr35 pré

7 mult £24,f2,£24 mult pf24,pf2,pf34 pf24
8 addt £13,£13, f15 addt pf32,pf32,pf35 pfls
9 1dt £11,0(r17) 1dt pf36,0(pr34) pfll
10 1dt £17,0(re6) 1dt pf37,0 (pr3s5) pf17
11 addg r0,r11,r13 addg pr32,prll,pr36 prl3
12 subt £13,f24,£f13 subt pf32,pf34,pf38 pf32
13 mult £15,f11,f11 mult pf35,pf36,p£f39 pf36
14 mult £13,£f17,£13 mult pf38,pf37,pf40 pf38
15 subt £11,£13,f6 subt pf39,pf40,pf4l pf4l
16 bsr r26,0x120012520 bsr pr26,0x120012520 ---

17 1lda r30,-16(r30) lda pr37,-16(pr30) pr30
18 1ldg u r31,0(r30) 1ldg u pr38,0(pr37) pr31l
19 1dah r28,-8193(r29) ldah pr39,-8193 (pr29) pr28
20 stg r26,0(r30) stq pr40,0(r37) pr26
21 bis r31,r31,r31 bis pr38,pr38,pr4l pr38
22 1dt f£0,-16792(r29) 1dt pf42,-16792 (pr29) pfo

23 1dt £17,-2680(r28) 1dt pf43,-2680 (pr39) p£37
24 cmptle fl6,f0,f1 cmptle pfl6,pf42,pfi4 pfl

25 fbeqg f1,0x120012580 fbeq pf44,0x120012580 ---

26 1ldg r26,0(r30) 1dg pr42,0(pr37) pr4o0
27 cpys £31,£31,f0 cpys pf3l,pf31,pf4e pf42
28 1lda r30,16(r30) lda pr43,16(pr30) pr37
29 ret r31, (r26) ret pr44, (pr42) pr4l

Fig. 2. Example code sequence from the equake benchmark. The 1dt instruction on line 1 is a

load that missed into the L2 cache. Load-dependent instructions are shown in the shaded boxes.
For each register-to-register instruction, the destination register is shown last. Both original and
renamed instructions are shown.

above example will remain allocated for a large number of cycles only to sup-
port recovery to a precise state in case of very infrequent interrupts and/or
exceptions—all their consumers would have read the values and all potentially
intervening branches would have been resolved.

We propose to deallocate the previous mappings of the destinations of load-
independent instructions (such as registers pr0 and pr5) without waiting for the
long-latency load to commit, and make these registers immediately available
for the allocations to the instructions from the same thread as well as from
other threads. To support precise interrupts, the values of the deallocated reg-
isters are instead saved within the ROB entries of the instructions that trigger
their early deallocations using the storage for the instruction address (or pos-
sibly elsewhere, as detailed later). To guarantee the correct execution of load-
dependent instruction in the presence of early register deallocation, we ensure
that neither the destinations nor the sources of the load-dependent instructions
are early released. For example, the subt instruction on line 12 requires regis-
ters pf32 and pf34 as the sources and it writes the result into register pf38. Our
technique thus guarantees that none of these registers will be early released,

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

Reducing Register Pressure in SMT Processors . 13:13

even if such opportunity was available. For example, we do not early release the
previous mapping (register pf37) of the load-independent instruction /dt on line
23, because pf37 is used as a source by the load-dependent instruction mult on
line 14. We accomplish this by using a lightweight off-the-critical-path logic at
the back end of the pipeline, and the execution core remains almost unaffected.
We now describe the implementation details of this scheme.

4.2 Identifying Registers for Early Deallocation

When a load instruction that missed into the L2 cache from any thread reaches
the head of the corresponding ROB, the process of early register deallocation
(ERD) from that thread begins. When a thread enters the ERD phase, further
fetches from that thread can continue or they can be blocked to ensure that the
early deallocated registers are only distributed to other threads. Our results
showed that continuing fetching achieves significantly higher performance, as
it also exploits the memory-level parallelism by allocating more registers to the
thread that experienced L2 cache miss in addition to speeding up the execu-
tion of other threads. Again, the specific policy for allocating these registers is
dictated by the existing resource distribution mechanisms, such as DCRA.

When a thread enters the ERD phase, its ROB entries are examined one-
by-one in program order (starting at the missing load and examining up to W
entries per cycle where W is the commit width from this ROB), and the registers
that can be early deallocated are identified. When all instructions in the ROB
are examined, the process is repeated because several more load-independent
instructions may have completed their execution during the first pass, thus
opening up new opportunities for early deallocation which were not available
during the first pass. Such passes through the ROB can continue until the cache
miss is resolved, but in practice, just a few passes are sufficient to reap most of
the benefits of this scheme, as we quantify in the Section 5.

The following activities are incurred during each pass through the ROB
in the ERD phase. To identify the registers that can be early released, we
maintain a bit-vector called Don’t_Release with one bit per physical register.
The Don’t_Release bits identify the sources and the destinations of the load-
dependent instructions and prevent the early release of their previous in-
stances. When a thread enters the ERD phase, all of these bits are reset to
zero. These bits are also cleared in the beginning of every new pass through
the ROB in the ERD phase. As instructions in the ROB are examined and
an instruction that has not yet completed its execution is encountered, it is
assumed that this instruction is dependent on the long-latency load, and the
Don’t_Release bits corresponding to both its source and destination registers
are set to one to ensure that all of the source values necessary to execute this
instruction as well as the destination register to writeback the result are still
available when this instruction executes. This is important because, if a source
register A of a load-dependent instruction X is early released, then A may be
reallocated to another instruction (e.g., Y), and Y can complete the execution
and writeback the result into A before X is scheduled. Since X and Y can be-
long to two different threads, these interactions are very difficult to control,

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

13:14 . J. J. Sharkey et al.

and, therefore, the mechanism based on Don’t_Release bits is needed to prevent
such instances. Once the Don’t_Release bits are set for the registers of a not-yet-
executed instruction, no further actions are triggered and the next instruction
in the ROB is examined.

When aload-independent instruction that executed without raising an excep-
tion is encountered in the course of examining the ROB during the ERD phase,
the Don’t_Release bit corresponding to the previous mapping of the destination
architectural register (e.g., Register X) is examined. The information about the
previous mapping of the destination register is often readily available from the
ROB itself in processors that support “walk-back” and “walk-forward” branch
misprediction recovery methods [Akkary et al. 2003]. If, however, the previ-
ous mapping is not available from the ROB (i.e., checkpoint-based recovery
is used), then the commit-time rename table can be consulted to obtain that
information.

Ifthe Don’t_Release bit of register X is set to 0, then X is immediately released
and the commit-time rename table is updated (as if this instruction were com-
mitting as normal). However, before this occurs, the value stored in X will be
read from the register file and stored elsewhere so that it can be resurrected
later to reconstruct the precise register state on interrupts or exception. To
ensure that relatively more frequent branch mispredictions do not require ad-
ditional handling, we stop the ROB examination in the course of ERD phase
at the first unresolved branch instruction. When such a branch is encountered,
the new pass begins from the head end of the ROB. If a branch is dependent
on the load, then the early release of registers will never occur for instructions
following this branch, even on subsequent passes through the ROB. However,
if the branch is independent of the load and was merely delayed in the issue
queue due to other data dependencies, it will eventually resolve and subsequent
passes will release the registers for instructions following the branch.

To keep track of the instructions that triggered the early deallocation of
physical registers and avoid duplicate deallocations of the same registers during
the subsequent passes through the ROB, each ROB entry is augmented with
one additional bit, called the Early_Committed bit. This bit is reset to 0 when
the ROB entry is allocated, and is set to 1 if the instruction residing in the
entry triggers early deallocation of the previous mapping of its destination
register. When the long-latency load miss is serviced and the load is marked
as “ready to commit,” then the ERD process stops and the normal commitment
process continues. As the normal commitment process resumes, instructions
whose Early Committed bit is set simply deallocate their ROB entry and do
not update the commit-time rename table or release any registers (as this has
already been done).

While the serial examination of the ROB entries in the course of the ERD
phase may appear to be complex, these accesses reuse the read/write ports that
already exists on the ROB to write the PC values during instruction dispatching
and possibly read them during commitment. Therefore, no new ports are added
for the purpose of ERD. During most of the ERD phase, the ROB will become full
anyway and no other useful activities can be performed on it. Furthermore, the
timings of the ERD-related operations can be significantly extended without

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

Reducing Register Pressure in SMT Processors . 13:15

performance impact, as explained and evaluated later in the article. That
can open up additional opportunities for optimizing circuit-level design of this
logic.

4.3 Saving the Values of the Deallocated Registers

Since the values of the early deallocated registers are only needed on excep-
tions or interrupts, and never on branch mispredictions, perhaps the simplest
way to restore a precise state in these cases (at least in terms of control logic)
is to rely on the creation of periodic checkpoints of the architectural regis-
ters. As interrupts and exceptions are generally rare, such checkpoints can
be created infrequently. Furthermore, the backup storage to implement such
checkpoints can be designed to support only high-latency (multicycle) access, as
the checkpoints will be rarely needed. The mechanics for creating such check-
points are rather simple—specifically, the entries of commit-time rename table
corresponding to a thread can be periodically examined and physical registers
corresponding to all architectural registers can be read (a few at a time) into
the back up storage. While this mechanism is simple to implement in terms
of control logic and has virtually no performance overhead if the checkpoints
are created infrequently, the main overhead lies in the amount of extra stor-
age. For example, for an ISA with 32 integer and 32 floating point registers,
64 registers need to be checkpointed for each thread context. If four threads
are executed simultaneously on SMT, then the total number of checkpointed
registers is 256 (separate checkpoints have to be maintained for each thread).
To eliminate this additional datapath storage, we also propose a new scheme
for saving the values of the deallocated registers, which uses the storage ca-
pabilities of existing datapath structures. Specifically, we attempt to squeeze
the deallocated values within the ROB itself, in place of the PC values which
are no longer necessary after the instruction pseudocommits. This approach
also reduces the overhead of recovery from exceptions or interrupts, because no
instructions have to be reexecuted following exceptions, as would be the case
with checkpointing, especially if checkpoints are separated by large number of
cycles. The rest of the discussions in this section and evaluations assume that
the values of the deallocated registers are stored in the ROB. Due to the port
contention, this approach would result in slightly lower performance than the
checkpointing-based solution with infrequent checkpoints. All additional de-
lays, including port contention, have been fully modeled and taken into account
by our simulations. Microarchitectural details of checkpoint-based mechanism
can be trivially derived from the explanations provided.

To store the values of the early deallocated registers within the ROB, three
opportunities exist, depending on the specific microarchitecture used and the
storage capabilities of the ROB. In processors that maintain full program
counter (PC) values within each ROB entry to support precise interrupts
[Kucuk et al. 2002; Smith and Pleszkun 1985] and the bit width of the PC field
is greater or equal to the bit width of physical registers, the values of the early
deallocated registers can be directly saved within the ROB entry of the instruc-
tion that triggered the deallocation, in place of the PC values. In processors

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

13:16 . J. J. Sharkey et al.

that either maintain only the portions of the whole PC values within the ROB,
or the width of the PC values is smaller than the width of physical registers,
the early register deallocation can simply be limited to the cases when the val-
ues stored in the early deallocated registers can fit within the number of bits
available in the ROB for storing PC. Since previous research showed that a
large percentage of the register values are narrow-width [Lipasti et al. 2004],
the limitation imposed by this restriction does not have a significant impact on
performance (as we detail in the results section).

Although it is difficult to obtain the information as to whether current pro-
cessor implementations actually store the PC bits within the ROB or somehow
reconstruct this value as needed (such details are typically not available pub-
licly), there is at least one recent reference [De Vries 2003] that suggests that
the AMD K8 processors maintain the full PC addresses within the ROB slots.
In such cases, this field can be used directly to store the values of the early deal-
located registers in place of the PC values. In terms of the example of Figure
2, when the instruction ldg on line 2 triggers the early deallocation of register
pr0, the value stored in pr0 will be read from the register file and saved within
the ROB entry of the instruction ldq. Likewise, the value of register pr5 will
be stored within the ROB entry of the instruction addq on line 3. The PC fields
of the ROB entries already have all the necessary write ports that can be di-
rectly used for storing the values. Since the PC values of some uncommitted
instructions in the ROB will be overwritten with the values of the deallocated
registers, the precise state will be available only at the discrete points, asso-
ciated with the instructions with the intact PC values in the ROB. However,
this presents no problems for handling asynchronous interrupts as the specific
instruction to associate the precise state with can be chosen rather freely in
this case, nor does this present problems for exception handling because the
PC field of an instruction’s ROB entry is overwritten if and only if that instruc-
tion had completed the execution without exceptions. Thus, if the PC value is
overwritten, the corresponding instruction can never raise an exception. The
ROB field used for storing the exception codes can also be used (in conjunction
with the PC field) to extend the number of ROB bits available for storing values
of the deallocated registers.

Although this scheme does not require any additional storage, the only caveat
is that, in some architectures, the combined width of the PC and exception code
fields in the ROB may be insufficient to store the full values of the deallocated
registers. The simplest solution to address this issue is to early deallocate a
register only if the value stored in that register fits within the number of bits
available in the ROB. Our experiments showed that limiting early deallocation
to only the registers whose values fit into 36 bits of storage provides performance
within 1% of the width-unconstrained deallocation; therefore, we assume that
36 bits are available in each ROB entry for storing these values. The checking
of the result width can be performed after reading out the register values from
the register files. If the check indicated that the result does not fit in the PC
field within the ROB, then the register is not deallocated.

Since the activities involved in saving the values of the early deallocated
registers within the ROB are rather lengthy (involving the read from the RF,

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

Reducing Register Pressure in SMT Processors o 13:17

examination for the result width and write to the ROB), it is unlikely that all
these actions can be performed within a single cycle. One solution is to pipeline
these activities over several cycles, which has a negligible impact on perfor-
mance and just requires a few intermediate latches to be used. Furthermore,
we also consider further simplifications to the logic by spreading these activities
over several cycles in a nonpipelined manner. As shown in Figure 8(a), the basic
conclusion is that spreading these activities over three cycles and not starting
the deallocation of the next group until the registers triggered by the previous
group are deallocated (nonpipelined implementation) has almost no impact on
performance. In any case, the supply of free registers is replenished at a much
higher rate compared to traditional designs and all early deallocatable regis-
ters are freed up relatively early in the course of servicing a miss, even with
multicycle nonpipelined implementation of the early deallocation logic.

4.4 Reading the Values of the Early Deallocated Registers

Finally, to read the values of the early deallocated registers from the register file
for saving them within the ROB, we use the existing register file read ports and
perform these reads only when the processor issue width is not fully utilized
(i.e., the read ports are not used by the issued instructions). In a sense, the early
deallocation logic acts like another functional unit that competes for the use
of the register file read ports, but with the lowest priority. These effects have
been thoroughly modeled in our simulation environment. Since the issue width
is typically grossly underutilized (even on SMT machine), ample opportunities
for stealing the register read ports are available. In some cases, when the peak
issue width is sustained for a number of cycles, the registers will be deallocated
a few cycles later but still significantly sooner than if they had waited for the
L2 miss to be serviced.

4.5 Restoring the Precise State

The precise state restoration on exceptions or interrupts is trivial, as the ROB
can simply be walked through and correct values can be easily restored. Specif-
ically, the ROB is walked through, starting from the tail end, and the actions
related to early deallocation are undone for each instruction by reading the
stored value of the previous mapping of the architectural register and writ-
ing it to the physical register, which represents the current mapping for that
particular architectural register in the commit-time rename table. This mech-
anism does not require the new register allocations to reconstruct the precise
state; it merely ensures that the physical registers representing the current
commit-time mappings contain the correct values. The process of precise state
restoration, as described, requires the write ports to the register file to restore
correct values. The most complexity-effective solution for providing these write
ports is to stall the rest of the processor when exception or interrupt occurs and
until the precise register state is restored. Since interrupts and exceptions are
generally very infrequent events, stalling the pipeline for a few cycles on these
occasions will have a negligible impact on performance.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

13:18 . J. J. Sharkey et al.

4.6 Distributing Early Released Registers to Threads

In SMT processors, the early released registers can be reallocated either to
the instructions within the same thread or to the instructions from different
threads. One alternative is to stall the thread that triggered early deallocations
after the ERD mode is entered, thus ensuring that the available registers will
only be assigned to the instructions from other threads. This is beneficial when
most of the instructions from the thread in question are load-dependent and
they therefore place significant pressure on the issue queue. Fetching further
instructions from this thread in such a scenario is likely to deny the issue
resources to other threads, thus limiting the overall performance. However, if
most of the instructions in the thread that experienced an L2 cache miss are
load-independent, then it is beneficial to continue fetching from this thread to
exploit memory-level parallelism. In the results section, we evaluate both of
these alternatives.

We also propose an adaptive mechanism to decide whether to stall the thread
under L2 miss or not. During each pass through the ROB in the course of
the ERD phase, we keep a count of the number of not-executed instructions,
assuming that all of them are load-dependent. If the count exceeds the value
computed as N/W (where N is the number of issue queue entries and W is the
number of threads), then the thread is stalled. Otherwise, the thread is not
stalled and further fetches continue. Furthermore, we impose the additional
limitation that no more half of the executing threads can be allowed to stall at
the same time, in order to not impede the performance. We show in the results
section that the adaptive technique provides the best overall performance in
the majority of cases. Other than these considerations, the nature of register
distribution is controlled by the DCRA policy.

Of course, if a thread executing in the ERD mode is not blocked, then port
arbitration within the ROB needs to be performed between the instructions
writing the PC values in the course of regular dispatching and the instructions
writing the values of the early deallocated registers in the ERD phase. Since
the early deallocation process of a group of registers can be spread over several
cycles in a nonpipelined fashion without impacting the performance (Section 4.3
and Figure 8), we give the priority for these ROB ports to the newly dispatching
instructions. The number of instructions to be written into the ROB is known
several cycles in advance (after those instructions are fetched), so appropriate
port reservations can be made.

5. RESULTS AND DISCUSSIONS

In this section, we discuss the performance implications of the proposed L2
miss-driven early register deallocation scheme (referred to as L2_ED in the
rest of this section) for both single and multithreaded machines. We also report
various supporting statistics, perform the sensitivity analysis to the memory
latency, the L2 cache size and the ROB size and compare our results with a
previously proposed scheme for early deallocation of registers.

Figure 3 depicts the throughput IPC as a function of the RF size for vari-
ous register management/distribution schemes on a 8-way SMT configured as

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

Reducing Register Pressure in SMT Processors . 13:19

(6]

Q 200 > —C > x

§_ 1.50 M

£

g” 1.00 -

2 o0 =

£

F 0.00 : T T T

160 200 256 300 4000
RF Size
=——DCRA =@—[2_ED_Stall
L2_ED_NoStall ==¢=|2_ED_Adaptive

== FLUSH —@—STALL

Fig. 3. Throughput IPC for various register file sizes.

shown in Table I. The results are presented for the following schemes: baseline
SMT implementing DCRA resource distribution policy (Base_ DCRA), FLUSH
mechanism of [Sarangi et al. 2005], STALL mechanism of [Sarangi et al. 2005]
and the three variations of the L2 ED mechanism proposed in this article.
The three variations of the L2 ED scheme differ in whether threads in the
ERD phases are stalled (L2_ED_STALL) or not stalled (L2_ED_NoStall) or the
stalling decisions are made dynamically based on the pressure that the threads
present to the shared issue queue, as described in Section 4.6 (L2_ED_Adaptive).
The sizes of the RFs (both integer and floating point) are varied from 160
registers (of which 128 are used to embody the architectural state for 4 con-
texts) to infinite number of registers. The best performance is achieved by the
L2_ED_Adaptive scheme for all register file sizes, except for very small RF of
160 registers, at which size it is better to either use L2_ED_Stall or even existing
STALL or FLUSH mechanisms. This is because when the supply of renaming
registers is extremely and unreasonably scarce (i.e., only 32 integer + 32 fp
renaming registers are available for 4 threads), allocating more registers to a
thread that triggered the L2 cache miss to exploit MLP does not justify the
limitations imposed on other threads. For 256-entry RF's, the L2 _ED_Adaptive
scheme outperforms the baseline with DCRA by 33.3% and outperforms
FLUSH by 69%. For 200 registers, these percentages are 71% and 64%,
respectively.

Figure 4 presents similar trends in terms of fairness metric (or harmonic
mean of weighted IPCs). For 256-entry RFs, the L2_ED_Adaptive technique
shows 25% improvement over baseline machine with DCRA policy and 88%
improvement over FLUSH. These gains are 68% and 80% for 200 registers
and 9% and 88% for 300 registers, respectively. In the rest of this section, we
report the results only for the L2 ED_Adaptive mechanism (due to the space
constraints).

Figure 5 presents detailed per-benchmark statistics for 256 integer and 256
floating point registers. Results are shown in terms of the fairness metric for the
same register management schemes that were considered in Figures 3 and 4.
Notice that never stalling a thread with L2_ED_NoStall mechanism performs

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

13:20 . J. J. Sharkey et al.

0.50

£ ouo P — > 7% ¥
@ 035 =
= 030
0 0.25
g 0.20
0.15
= ~
0.10
I.‘IE 0.05 (
0.00 T T T T
160 200 256 300 4000
RF Size
=—&—DCRA =@ 2_ED_Stall
L2_ED_NoStall ==>¢&=L2_ED_Adaptive
== FLUSH —@— STALL

Fig. 4. Fairness metric for various register file sizes.

0711 ODCRA B Flush O Stall OL2_ED_Stall M L2_ED_NoStall OL2_ED_Adaptive
0.6

0.5 4

0.4 4

0.3 4

0.2 4

0.1 4

mix1
mix2
mix3
mix4
mix5
mix6
mix7
mix8
mix9
mix10
mix11
mix12

harmean

Fig.5. Per-benchmark performance results for 256-entry RF's on 4-way SMT; results are presented
in terms of the “fairness” metric of harmonic mean of weighted IPC.

better than the adaptive scheme on some workloads (namely, mixes 5, 6, 8 and
12; i.e., the mixes dominated by high-ILP benchmarks; these benchmarks do
not present a long-term issue queue pressure, therefore it is more beneficial
for performance not to stall them during the ERD phases), but on average,
the adaptive scheme still provides the best performance. At least one of the
variations of the L2_ED scheme outperforms the baseline machine with DCRA
on all examined workloads.

Figure 6 presents the amount of early released registers as a percentage
of all registers that are examined and considered for early deallocation (i.e.,
the destination registers of the instructions in the ROB following a load that
missed into the L2 cache). Just like in Figure 5, these statistics are presented
for each threaded-threaded benchmark mix that we used for 256 integer and
256 floating point registers. Almost 60% of all potentially releasable registers
are actually early deallocated if the harmonic mean across all mixes is con-
sidered, ranging from 40% for mix 1 to 70% for mix 3. This is not surprising
because most of the instructions following the load are load-independent—the
scenario presented by the example of Figure 2 is quite typical. Despite the need
to maintain the sources and the destinations of load-dependent instructions,
the resulting percentage of early released registers is still high.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

Reducing Register Pressure in SMT Processors o 13:21

100%
20% O% released M % not released
80%
70%
60%
50%
40%
30% +—]
20%
10% +—4

-— (V) [o¢] < fe] © I~ (o] (] (@] — [aV) c
X x x x X X X x X T 0% 0% 3
€ 1S € 1S 1S € 1S € 1S g I £ £
©
=
Fig. 6. Proportion of early deallocated registers.
>
z 7 OPass 1 B Pass 2 OPass 3 OPass 4
6
‘: s HBPass 5 OPass 6 B Pass 7 OPasses 8+
(]
[o2)
Q 3
g3 u
u—é 24
2 i AR v e L ||'|| i 0 A7
g IR ol ARG R LR A
§ B g % 2 2@ 2 § ¢ 8
z : ¢ ¢ F ¢ 0§ ¢ Ot o:x o} o:o ¢
€ € € e
©

Fig. 7. Number of registers released during each pass through the ROB during the ERD phase.

Figure 7 presents the distribution of the released registers across the passes
through the ROB during the ERD phase. Each bar corresponds to the num-
ber of registers early released during the corresponding pass. For most of
the workloads, between two and three registers are leased during each pass.
The largest number of registers is released during pass 2. By that time, many
load-independent instructions complete their execution and the previous map-
pings of their destination registers become eligible for early deallocation. An-
other interesting result is that not many registers are released after pass 7
(the column 8 presents the cumulative number of registers released for passes
8 and beyond). Therefore, it is practical to limit the number of passes through
the ROB in the ERD phase to less than 10.

As described in Section 4.6, the early deallocation of registers occurs off the
critical path. Figure 8(a) examines the impact of implementing this logic in a
nonpipelined fashion over one, two, and three cycles. As shown in the graph,
the performance is relatively insensitive to the delay of the early deallocation
logic up to three cycles. For example, for the machine with 256-entry register
files, the performance difference between the early deallocation delay of one
cycle and three cycles is only 4% on the average—still providing more than
20% speedup over the baseline machine with the DCRA policy.

Figure 8(b) presents the sensitivity of the proposed scheme to the size of
the per-thread ROBs. Results are presented in terms of the fairness metric;
the harmonic mean across all workloads is shown. As expected, with smaller
per-thread ROBs the performance gains achieved by the proposed technique are

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

13:22 . J. J. Sharkey et al.

0.60
@ 0.40 = =A —

E “/X% v
s 0.20 / —e—DCRA —=—1-cycle
0.00 : 2-cycle 3-cycle

160 200 256 300
RF Size
(a)
€ 1.8 —e&— 128-entry ROBs —— 96-entry ROBs
] g 1.6 ‘\\
E “E’ % 1.4 A —#A— 64-entry ROBs
28512 Q.
£ 1 : .
200 256 300
RF Size
()

Fig.8. Performance Sensitivity to (a) multicycle delays in saving the values of deallocated registers
and (b) the ROB size.

somewhat reduced. Still, with 256-entry RF's, the performance improvements
of almost 10% are achieved even for the small 64-entry ROBs.

Figure 9(a) shows the performance sensitivity to the L2 cache size. As ex-
pected, slightly higher performance gains are obtained for the smaller L2
caches, as more opportunities for early deallocation are presented due to more
frequent cache misses. However, the differences between the relative perfor-
mance improvements of the L2 ED scheme compared to the baseline machine
with 512KB and 2MB L2 caches are very small (only 5% for 256-entry RF's).
Therefore, even with the large L2 caches, the L2_ED technique still provides
significant performance advantages.

At first glance, the results and trends presented in Figure 9(a) may ap-
pear somewhat surprising, as larger caches should conceivably provide fewer
opportunities for early register deallocation using our technique (due to the
higher hit rates). To get additional insight into the issue, Table V presents the
L2 cache miss rates for our 12 simulated workloads (combined miss rates are
shown) for the L2 cache sizes of 512KB, 1MB, and 2MB. As shown in the Table V,
for some mixes, there is almost no difference in terms of the miss rates between
512KB and 2MB caches (e.g., mix 1 and mix 3). Typically, the difference is small
for mixes dominated by the low-ILP benchmarks. For those cases, the perfor-
mance of our scheme would not be impacted by larger cache size. On the other
hand, the overall L2 miss rates are lower for the larger cache sizes for the mixes
dominated by high-ILP benchmarks. However, those benchmarks typically do
not require a large number of physical registers to begin with, as the instruc-
tions go through the pipeline smoother. Examination of individual benchmark
behavior results in similar observations. Combined, this two factors results in
a situation where the performance improvements achieved by our scheme are
only 5% lower for 2MB caches than for 512KB caches, as reported earlier.

Figure 9(b) presents the sensitivity of the proposed scheme to the memory
latency. Results are presented in terms of fairness improvement relative to the

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

Reducing Register Pressure in SMT Processors o 13:23

o8 1.8 —o—512KB L2
° ST 16 ——1MB L2
> & g —&—2MB L2
8 EQ 14
_ >
298
1 Q .
8 £ 1.2
1
200 256 300
RF Size
(@
0 @ 1.8 —&— Mem Lat: 300 —#—Mem Lat: 200 [
ot 16 ~— -
e 5 g : Mem Lat: 100 Mem Lat: 60
T EQ 14
_— > .
> g 3 \
512 -
o E ; —
200 256 300
RF Size

(b)

Fig. 9. Performance Sensitivity to (a) L2 cache size and (b) memory latency. Results are shown in
terms of improvement in the Fairness metric with respect to the corresponding baseline machine.

Table V. L2 Cache Miss Rates for the Individual Simulated Benchmark Mixes
(in percentages)
Mix | Mix | Mix | Mix | Mix | Mix | Mix | Mix | Mix | Mix | Mix | Mix
1 2 3 4 5 6 7 8 9 10 11 12
512KB| 57 | 65 | 93 | 29 | 61 | 25 | 29 | 33 | 90 | 46 | 43 | 17
1MB 56 | 47 | 92 | 21 | 61 | 19 | 14 | 17 | 86 | 32 | 30 6
2MB 54 | 38 | 90 | 10 | 45 | 16 | 10 | 13 | 23 | 23 | 15 5

corresponding baseline case. Again, with smaller memory latency the perfor-
mance gains of the L2_ED decrease, as expected, although even for reasonably
small memory latencies (e.g., 60 cycles) substantial benefits of our scheme are
still realized. This is because most early register deallocations occur during
the early cycles of the load miss service duration. For 256-entry RFs, the per-
formance improvements on top of DCRA are 25%, 21%, 12%, and 8% for the
memory latencies of 300 cycles, 200 cycles, 100 cycles, and 60 cycles, respec-
tively. This indicates that, as the memory/processor gap continues to grow, the
relative benefits of our L2_ED technique will commensurately increase and un-
less the memory latencies are extremely short (i.e., 60 cycles), then substantial
performance advantages are still realized.

Figure 10 presents the direct comparison between the L2_ED_Adaptive tech-
nique proposed in this article and physical register inlining (PRI) scheme for
early register deallocation that embeds the narrow-width values directly within
the rename table and deallocates the corresponding destination registers ear-
lier. We implemented both schemes and applied them to the SMT machines with
four, three, and two threads, as well as the single-thread superscalar machine

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

13:24 J. J. Sharkey et al.
0.50
0.40 A /li !
0.30 — ¥
0.20 ‘// —&—Inlining+L2 ER —®@—L2_ER
0.10 - -
0.00 . | —#&—Inlining Base
160 200 256 300
(a)
0.60
0.55 W" =
0.50 &
0.45 / —e— Inlining+L2_ER —®—L2_ER
h e
0.40 : . . —#&—Inlining Base
160 200 256 300
(b)
0.90 — —
0.80 " — =

0.70
0.50 e —o—Inlining+L2_ER —®—L2_ER
0.40 —#— Inlining Base
0.30 ; ; ; . .
96 128 160 200 256 300
(©
1.6 =
15 X
- %
1.3 S —&— Inlining+L2_ER —
1.2 - — —=— Inlining |
11 — —A—12 ER |
'1 Base
48 64 96 128
(@)

Fig. 10. Performance Comparison with Physical Register Inlining for (a) four-threaded workloads,
(b) three-threaded workloads, (¢) two-threaded workloads, and (d) single-threaded (superscalar)
workloads. All results are presented for Fairness metric, except for graph 11(d), which uses IPC.

and present these results in Figure 10, respectively. For the PRI scheme, we
assume that the additional tag buses are allocated to perform the rebroadcasts
of the new mappings, thus not impacting the instruction scheduling. The bot-
tom curve in each figure shows the performance (throughput IPC) of a baseline
SMT machine with DCRA resource distribution. The curves right on top of it
show the performance of the PRI scheme. The next set of curves show the per-
formance of the L2_ED scheme, and finally, the topmost curves show the impact
of combining PRI and L2_ED (recall that these techniques are synergistic

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

Reducing Register Pressure in SMT Processors o 13:25

g_ 4.0 & ¢—|COUNT
S 3.5 5\ ——DCRA
@ 3.0 S A
o . Hill-Climbin
@ 25 AN g
2 20 ~—
< 15
o

1-0 T T T

160 200 REsize 256 300

Fig. 11. Fairness improvement of the L2 _ED mechanism over various fetching and resource dis-
tribution polices for a 4-way SMT processor.

in nature since they exploit different and disjoint early register deallocation
opportunities). As seen from the graphs, the L2 ED scheme significantly
outperforms PRI on all register file sizes for a 4-way SMT. For example, the
gains of L2 ED over PRI are 46% and 8% respectively for 256-entry and 200-
entry RFs. Another way to look at this graph is that applying L2_ED on top of
PRI still provides significant additional performance advantages, although the
opposite is not true.

Similar results are presented for the three-, two-, and one-threaded work-
loads in Figures 10b, 10c, and 10d, respectively. For both 2- and 3-threaded
workloads, the L2_ED technique provides significant additional performance
gains with the DCRA policy and outperforms the PRI scheme for most sizes
of the register files. On the other hand, for the single-threaded processor, the
L2 _ED technique provides performance that is on par with physical register
inlining—about 5% gains for 64-entry RF's. In this case, when both L2 ED and
PRI are used, the resulting synergy achieves an 11% performance gain—nearly
additive.

Figure 11 summarizes the performance advantages achieved by the L2_ED
technique over various fetching and resource distribution polices for a 4-way
SMT. Results are presented in terms of harmonic mean for all studied
workloads. Notice that the individual performance of ICOUNT, DCRA and Hill-
Climbing can not be directly compared against each other using this graph;
the only purpose of this graph is to present the additional gains provided by
the L2_ED scheme over each of these mechanisms. For 256-entry integer and
256-entry floating point register files, the L2_ED technique provides 51% per-
formance improvement on top of ICOUNT, 33% on top of DCRA, and 39% on
top of Hill-Climbing. For 200 registers, these percentages are 71%, 69% and
101%, respectively. Notice that for the very register constrained datapath (to-
ward the left side of the graph) the gains of our scheme compared to DCRA and
Hill-Climbing are much higher than they are compared to ICOUNT because
both DCRA and Hill-Climbing allocate the early deallocated registers more in-
telligently by exploiting the memory behavior of the individual constituents
of the multithreaded workloads. As such, a synergy is present between these
resource allocation techniques and the L2_ED technique that results in very
significant gains for the register-constrained datapath. On the other hand, for
the datapath with the large register files (towards the right hand side of the

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

13:26 . J. J. Sharkey et al.

4-way Normal

2
1.5 4 —e&— Baseline
0 —-— —=— L2_ED_Adaptive
= L2_ED_NoStall
0.5 L2_ED_Stall
0 ; ; ; —%— FLUSH
160 200 256 300 STALL
RF Size
(a)
4-way Reduced
2
B E— —e— Baseline
1.5 -
&) ; —m— L2_ED_Adaptive
= B L2_ED_NoStall
0.5 po g L2_ED_Stall
o) : . . —%— FLUSH
160 200 256 300 o STALL

RF Size
(b)

Fig. 12. Performance for 4-way machines (a) with full-sized datapath resources and (b) with re-
duced resources.

graph), the gains over DCRA and Hill-Climbing are small (as the performance
of those techniques approaches that of the machine with the infinite number of
registers and the RF bottleneck lessens as a result of efficient register distribu-
tion by these schemes), but the gains over ICOUNT remain significant (as the
register file is still a bottleneck at these sizes with ICOUNT policy).

Finally, we also evaluated our scheme in the context of a less aggressive 4-way
superscalar processor. Specifically, we considered two additional configurations:
a 4-way machine with the same datapath resource sizes as in Table I (only the
number of functional units was reduced appropriately), and a 4-way machine
with the number of entries in key datapath queues halved compared to what is
shown in Table I. Results are presented in Figure 12(a,b), respectively.

As shown in these graphs, even for 4-way machines, significant perfor-
mance gains are achieved by our scheme. Specifically, for a 4-way machine
with the same resource configurations as in Table I, L2 ED_Adaptive scheme
outperforms the DCRA by 29% and FLUSH by 37% for 256-entry register files,
and DCRA by 54% and FLUSH by 32% for 200-entry register files. Further-
more, for a 4-way machine with reduced configuration of all datapath queues,
L2_ED_Adaptive scheme outperforms the DCRA by 22% and FLUSH by 34% for
256-entry register files, and DCRA by 40% and FLUSH by 30% for 200-entry
register files. To summarize, sizable performance improvements are realized
even for 4-way processors.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

Reducing Register Pressure in SMT Processors o 13:27

6. CONCLUDING REMARKS

Physical register file is one of the most critical and performance limiting re-
sources in SMT processors that constrains the number of simultaneous threads
that can be supported. In this article, we proposed a novel mechanism for early
deallocation of physical registers to increase the register file efficiency and
provide higher performance for the same number of registers. Our technique
specifically exploits two fundamental trends in multithread processor design:
(1) increasing memory access latencies and, (2) relatively higher number of L2
cache misses due to cache sharing effects.

The early register deallocation scheme proposed in this article has the fol-
lowing key advantages:

e It works synergistically with, and can be applied on top of, existing early
register deallocation/late allocation mechanisms as well as existing SMT
resource distribution polices such as DCRA [Burger and Austin 1997] and
Hill-Climbing [Cazorla et al. 2003].

e Applied to a four-threaded 8-way SMT machine with 256 integer and 256
floating point registers (for the combined 512 registers), it provides additional
gains of 33% (25%) on top of DCRA mechanism, 38% (26%) on top of Hill-
Climbing technique, and 51% (48%) on top of ICOUNT fetching policy in
terms of the throughput IPC (fairness metric).

e It is effective for various memory latencies, L2 cache sizes, ROB sizes, and
lower degrees of datapath superscalarity.

¢ It does not incur tag rebroadcasts, register remappings, associative searches,
rename table modifications; does not necessarily require register file check-
points; does not require per register consumer counters; and involves no
additional storage within the datapath. Instead, it relies on a simple off-
the-critical-path logic at the back end of the pipeline to identify the early
deallocation opportunities and save the values of the early deallocated reg-
isters for precise state reconstruction.

REFERENCES

AxkAry, H., T AL. 2003. Checkpoint processing and recovery: Towards scalable large instruc-
tion window processors. In Proceedings from the 36th Annual International Symposium on
Microarchitecture.

BALAKRISHNAN, S. AND SoHI, G. 2003. Exploiting value locality in physical register files. In Pro-
ceedings from the 36th Annual International Symposium on Microarchitecture.

Borcn, E., ET AL. 2002. Loose loops sink chips. In Proceedings from the 8th International Sympo-
sium on High-Performance Computer Architecture.

BuRrcER, D. AND AusTiN, T. 1997. The SimpleScalar tool set: Version 2.0. (Tech. Report, Dept. of
CS, Univ. of Wisconsin-Madison, June 1997 and documentation for all Simplescalar releases).
CazorLA, F., ET AL. 2004. Dynamically controlled resource allocation in SMT processors. In Pro-

ceedings from the 37th Annual International Symposium on Microarchitecture.

CazoriA, F., ET AL. 2003. Improving memory latency aware fetch policies for SMT processors. In
Proceedings from the 9th International Conference on High Performance Computing.

Caor S. aND YEUNG, D. 2006. Learning-based SMT processor resource distribution via Hill-
Climbing. In Proceedings from the 33rd International Symposium on Computer Architecture.
DE Vries, H. Understanding the detailed architecture of AMD’s 64-bit core. Available at: http:/

www.chip-architect.com/news/2003_09_21 Detailed _Architecture_of_ AMDs_64bit_Core.html.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

13:28 . J. J. Sharkey et al.

Er-Moursy, A. aND ALBoNEsI, D. 2003. Front-end policies for improved issue efficiency in SMT
processors. In Proceedings from the 9th International Symposium on High-Performance Computer
Architecture.

Eraiy, O., ET AL. 2004. Increasing processor performance through early register release. In Pro-
ceedings from the 22nd IEEE International Conference on Computer Design.

GONZALES, A., GONZALES, J., AND VALERO, M. 1998. Virtual-physical registers. In Proceedings from
the 4th International Symposium on High-Performance Computer Architecture.

KarknHanis, T. anp SmiTH, J. 2002. A day in the life of a data cache miss. In Proceedings from
Workshop on Memory Performance Issues.

KirmaN, N, ET AL. 2005. Checkpointed early load retirement. In Proceedings from the 11th Inter-
national Symposium on High-Performance Computer Architecture.

Kucuk, G., ET AL. 2002. Low complexity reorder buffer architecture. In Proceedings from the 16th
International Conference on Supercomputing.

Lipasti, M., ET AL. 2004. Physical register inlining. In Proceedings from the 31st International
Symposium on Computer Architecture.

Lo, J. L., ParekH, S. S., EccErs, S. J., LEvy, H. M., aND TULLSEN, D. M. 1999. Software-directed
register deallocation for simultaneous multithreaded processors. IEEE Trans. Parallel and Dis-
tributed Systems 10, 9, 922-933.

Luo, K., ET aL. 2001. Balancing throughput and fairness in SMT processors. In Proceed-
ings from the 2001 IEEE International Symposium on Performance Analysis of Systems and
Software.

MARTINEZ, J., ET AL. 2002. Cherry: Checkpointed early resource recycling in out-of-order micro-
processors. In Proceedings from the 35th Annual International Symposium on Microarchitecture.

MongeAL, T., ET AL. 2004. Late allocation and early release of physical registers. IEEE Transac-
tions on Computers.

MongeAL, T., ET AL. 2002. Hardware schemes for early register release. In Proceedings from the
31st International Conference on Parallel Processing.

MurtLy, O., ET AL. 2003. Runahead execution: An alternative to very large instruction win-
dows in out-of-order processors. In Proceedings from the 9th International Symposium on High-
Performance Computer Architecture.

MAaRr, D, ETAL. 2002. Hyperthreading technology architecture and microarchitecture. Intel Tech.
J. 6, 1.

OEHMKR, D., ET AL. 2005. How to fake 1000 registers. In Proceedings from the 38th International
Symposium on Microarchitecture.

SArANGI, S., ET AL. 2005. Re-slice: Selective re-execution of long-retired misspeculated instruc-
tions using forward slicing. In Proceedings from the 38th International Symposium on Microar-
chitecture.

SHARKEY, J. M-Sim: A flexible, multi-threaded simulation environment. Available at: http:/cs.
binghamton.edu/~jsharke/m-sim

SHARKEY, J. AND PONOMAREV, D. 2007. An L2-miss-driven early register deallocation for SMT pro-
cessors. In Proceedings from the 21st International Conference on Supercomputing.

SHERWOOD, T., ETAL. 2002. Automatically characterizing large scale program behavior. In Proceed-
ings from the 10th International Conference Architectural Support for Programming Languages
and Operating Systems.

SwmiTH, J. AND PLESZKUN, A. 1985. Implementation of precise interrupts in pipelined processors.
In Proceedings from the 12th International Symposium on Computer Architecture.

SRINIVASAN, S., ET AL. 2004. Continual flow pipelines. In Proceedings from the 10th International
Symposium on Architectural Support for Programming Languages and Operating Systems.

TurLseNn, D.,ETAL. 2001. Handlinglong-latency loads in a simultaneous multi-threaded processor.
In Proceedings from the 34th Annual International Symposium on Microarchitecture.

TuLLseN, D., ET AL. 1996. Exploiting choice: Instruction fetch and issue on an implementable
simultaneous multithreading processor. In Proceedings from the 23rd International Symposium
on Computer Architecture.

Received September 2007; revised March 2008; accepted May 2008

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 13, Publication date: Nov. 2008.

