
Trade-offs in Transient Fault Recovery Schemes for 
Redundant Multithreaded Processors 

Joseph Sharkey1, Nayef Abu-Ghazeleh1, Dmitry Ponomarev1, Kanad Ghose1,  
Aneesh Aggarwal2 

 
1 Department of Computer Science 

1 Department of Electrical Engineering 
State University of New York at Binghamton 

{jsharke, nayef, dima, ghose}@cs.binghamton.edu, aneesh@binghamton.edu 

Abstract. CMOS downscaling trends, manifested in the use of smaller 
transistor feature sizes and lower supply voltages, make microprocessors more 
and more vulnerable to transient errors with each new technology generation. 
One architectural approach to detecting and recovering from such errors is to 
execute two copies of the same program and then compare the results. While 
comparing only the store instructions is sufficient for error detection, register 
values also have to be compared to support fault recovery.   In this paper, we 
propose checkpoint-assisted mechanisms for efficient fault recovery that 
dramatically reduce the number of register values to be compared for detecting 
soft errors and perform comprehensive investigation of these and other existing 
recovery schemes from the standpoint of performance, power and design 
complexity.  

1   Introduction and Motivations 

The continuous downscaling of CMOS technology leads to smaller transistor 
feature sizes and the use of lower supply voltages with each new process generation, 
making the microprocessor chips more vulnerable to soft (or transient) errors. It is 
projected that the rate at which the transient errors occur will grow exponentially [14] 
and will soon represent one of the most significant issues in the design of future 
generation high-performance microprocessors. One popular approach to addressing 
these challenges is to execute two copies of the same program and then compare the 
sequence of results generated by each thread [1, 4, 5, 6, 7, 8, 10, 11]. Any discrepancy 
between the two result sequences indicates the occurrence of a transient error. Such 
redundant execution can be implemented in the framework of a superscalar processor. 
However, despite the well-known fact that the execution of just a single thread leaves 
the processor resources fairly underutilized, running two simultaneous copies while 
sharing all resources results in very significant performance degradations [1, 6, 9]. 

Alternatively, a Simultaneous Multithreaded (SMT) processor naturally provides 
multiple contexts that can be used to execute two copies of the same program (which 
we call the main thread and the verification thread) with less impact on performance 
[4, 7, 8, 11]. Several solutions have been proposed in recent literature to employ SMT 
support for redundant multithreading, including the schemes that just detect the 
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transient errors [7] as well as those that support recovery capabilities [11]. The key to 
avoiding performance loss in the redundant multithreaded environment is to use 
staggered execution, i.e. to delay the execution of the verification thread by a number 
of instructions (defined as slack in the rest of the paper) behind the main thread. With 
growing memory latencies, a larger amount of slack between the two threads can help 
in hiding the memory access delays experienced by the main thread. To take 
advantage of the staggered execution, the slack is built and maintained during the 
normal execution and it is consumed (the verification thread catches up with the main 
thread) on L2 cache misses. Another advantage of maintaining a sufficient amount of 
slack is that the actual branch outcomes supplied by the main thread can be used by 
the verification thread instead of branch predictions.  This, in turn, eliminates the 
execution of the wrong-path instructions from the verification thread, further 
increasing the execution efficiency and reducing the contention for the use of shared 
datapath resources. 

The basic scheme to provide the transient fault detection capabilities in an SMT 
processor, called SRT (Simultaneously and Redundantly Threaded processor) was 
introduced in [7]. In SRT, only the results (addresses and data) of the store 
instructions are compared, because any faults in the registers eventually propagate 
through the dependency chains to a store. However, if the capability to recover from 
such faults is also essential, then not only the values to be stored into the memory, but 
also all values written into the register file need to be verified. Otherwise, the 
recovery to a precise verified state following a transient error may be impossible, as 
such a state may never exist.  In this paper, we perform a comprehensive study of the 
trade-offs in the design of fault recovery schemes, encompassing the issues of 
performance, energy and design complexity. These schemes include the previously 
published methods, as well as the ones that are proposed here. We begin by 
describing the architecture of the baseline SRT machine used for fault detection. 

2. Baseline Architecture 

The baseline redundant multithreaded processor that we use for our evaluations is 
based on the SRT model of [7] for transient fault detection. We assume that both main 
and verification threads perform separate register allocations, so that the register file 
is also protected. To introduce the slack between the execution of the two threads, we 
implemented the slack fetch mechanism described in [7]. The address and data of 
each store instruction are verified before the store is permitted to update the memory. 
To verify the address and data of store instructions, an ordered non-coalescing queue, 
called the store buffer (SB) is used, as in [7]. The SB is shared between the threads to 
synchronize and verify store values as they retire in program order. Data from the 
store buffer is forwarded to subsequent loads only when the store is retired in the 
thread issuing the load. The work of [7] proposes two alternatives for the input 
replication of load data. We implement the load value queue (LVQ) – which was 
shown to provide superior performance [7]. When a load commits from the main 
thread, it writes both its address and data into the LVQ. Subsequently, when the same 
load issues in the verification thread, the address is verified and the data is read from 
the LVQ (i.e., the verification thread does not access the D-cache). This increases 
performance because the verification thread does not experience cache misses and 



does not compete for the cache ports. Finally, to eliminate the wrong-path instructions 
in the verification thread, we use the branch outcome queue (BOQ) [7]. This buffer 
delivers the committed branch outcomes from the main thread to the verification 
thread, effectively providing near oracle branch prediction for the verification thread 
(except in the case where a transient fault causes an incorrect branch resolution in the 
main thread).  

3. Transient Fault Recovery Schemes for SMT 

In this section, we describe several possible transient fault recovery schemes that 
provide recovery capabilities on top of SRT. 

3.1. SRT+: Augmenting SRT with Full Register Checking 

The first technique that we consider is a trivial augmentation to SRT to check all 
register values in addition to the data and the addresses of all store instructions. To 
reduce the pressure on the register file, this requires the addition of a queue (called 
Register Value Queue – RVQ), where the register results produced by the main thread 
are written after they are committed. These results are removed from the RVQ only 
after they are verified by the trailing thread. In this scheme, all register values are 
checked and an instruction that caused the transient fault can be identified precisely at 
the earliest possible opportunity. However, a large RVQ is needed to support sizable 
slack and significant energy is expended in the course of verifying all of the produced 
register values – those that have to be written to the RVQ, read from it, and compared. 

3.2. SRTR and Dependence-Based Checking Elision (DBCE) 

The next technique that we examine is called SRTR (SRT with Recovery) and it 
was introduced in [11].  In addition to checking the store instructions, the SRTR 
scheme also validates register values, but in contrast to SRT+ it does so selectively. 
To reduce the pressure on the RVQ and the number of verifications, the authors of 
[11] also proposed Dependence-Based Checking Elision (DBCE) – a mechanism to 
limit verifications to only the instructions at the end of short dependency chains, 
avoiding (or eliding) the verification of the other register values.  As reported in [11], 
about 35% of all register checks are avoided (elided) on the average across SPEC 95 
benchmarks using the DBCE scheme.  

The original SRTR scheme requires that the result verification occurs prior to 
instruction commitment (using the writeback-to-commit time), thus putting a limit on 
the amount of slack that can be maintained. To accommodate a relatively short slack, 
the SRTR scheme uses the branch predictions (rather than the branch outcomes as in 
SRT) from the main thread to feed to the verification thread. As a result of the small 
slack and the use of branch prediction in the verification thread, the SRTR scheme has 
some performance overhead compared to the SRT design and also incurs some 
additional changes in the datapath mainly stemming from the need to support 
speculative instructions in the verification thread. The performance challenges faced 



by the SRTR scheme will only be exacerbated in the environments with lower branch 
prediction accuracies and/or D-cache hit rates as well as higher memory latencies. 

We observe that it is possible to move the verification actions in the SRTR/DBCE 
scheme to the post-commit stages by committing the instructions from the main 
thread and establishing the RVQ entries at that time, just as in SRT+ scheme. The key 
is not to allow the commitment of any instruction from a dependency chain in the 
verification thread until the entire chain is verified. The state of the verification thread 
then can be used to restart the execution following the detection of a fault. This 
modification allows the DBCE scheme to be used with larger slack and use branch 
outcomes instead of branch predictions to avoid the execution of wrong-path 
instructions by the verification thread. 

3.3. Checkpoint-Assisted Fault Recovery Schemes 

In this paper, we propose novel schemes to further reduce the number of register 
values that need to be verified to guarantee recovery to a safe state compared to what 
is proposed by the DBCE scheme.  The philosophy of the DBCE is to support a 
rollback to the latest checked and committed instruction following the detection of a 
fault and to begin the re-execution from that point. While such an approach 
completely avoids unnecessary re-executions of already verified instructions, the 
datapath complexities and performance overheads involved are non-negligible. In 
essence, from the standpoint of precise state reconstruction, the SRTR scheme treats 
transient faults like branch mispredictions or exceptions because it maintains the 
results of all unchecked instructions, just as the results of all speculative instructions 
are maintained for branch misprediction recovery or interrupt handling.  

However, even in current and future technologies, the absolute rate at which 
transient faults will occur is very low, several orders of magnitude smaller than, for 
example, the rate of branch mispredictions or exceptions.  Therefore, it is unnecessary 
to start the re-execution at the exact instruction that caused transient fault; even if the 
rollback occurs to a point which requires several tens of thousands of instructions to 
be re-executed, there is almost no impact on performance. The key question here is 
not how far to rollback and how many instructions to re-execute (within reasonable 
distance), but how to guarantee that a precise and completely verified register and 
memory state is always available and can be constructed at any point. In the rest of 
this section, we describe two checkpoint-based mechanisms to facilitate such a 
recovery. After the detection of an error, the processor state is rolled back to a 
complete and fully-verified register and memory state checkpoint and the execution 
restarts. 

 3.3.1 Lifetime-Based Checking Elision (LBCE) 

It has been noticed by several researchers that most of the register instances in a 
datapath are short-lived [19]. A value produced by the instruction X is short-lived 
(SL) if the architectural register allocated as a destination of X has been renamed 
again before the value generated by X is committed. In [20], it was shown that about 
84% of all produced values are short lived. Using this notion of short-lived values, 



[20] proposes lifetime-based checking elision (LBCE) in which the verifications of 
control-independent short-lived (CISL) values are avoided. Only the non-CISL results 
are saved within the RVQ after the instruction commitment and are verified against 
similar values produced by the verification thread. 

To support the capability to recover to a precise and completely verified state 
following a detection of a transient fault, LBCE relies on the creation of the periodic 
register and memory state checkpoints. To buffer a large number of store instructions 
between two consecutive checkpoints, we use the approach described in [21] and also 
used in a few others works. The memory updates received between two consecutive 
checkpoints are stored within the local cache hierarchy, but their propagation to the 
main memory is avoided until it is safe to do so. Each cache line updated in this 
manner is marked as volatile, using one extra bit for each cache line. When a 
processor needs to rollback to a checkpoint, all cache lines marked volatile are 
invalidated using a gang-invalidate signal.  When the new checkpoint is created, all 
volatile bits set since the creation of previous checkpoint are cleared. A recent paper 
[23] also describes how to correctly incorporate caches with the volatile lines into a 
multiprocessor system. 

Since transient faults are very infrequent events, we can create checkpoints at very 
large intervals. In fact, a checkpoint can be created on demand, when one of the sets 
within the cache has all its lines in Volatile status and a cache miss occurs that targets 
this set. At this point, the creation of a new checkpoint is initiated and, once the 
checkpoint is created, the volatile bits can be cleared. However, as the percentage of 
volatile lines in the cache increases, the victim selection algorithm becomes less 
flexible (the volatile lines cannot be replaced). In the worst case, this effectively 
transforms the cache into direct-mapped structure and degrades the cache hit rates. In 
order to avoid such performance degradations caused by the lower D-cache hit rates, 
we also force the checkpoint creation every 100000 instructions. Therefore, 100000 
instructions are re-executed after transient fault detection in this scheme in the worst 
case. In the result section, we quantify the percentage of checkpoints created for these 
various reasons. We also show that the average number of instructions between two 
consecutive checkpoints is generally very large. A recent paper [24] also showed that 
in commercial workloads the I/O operations could occur more frequently, effectively 
requiring the creation of a checkpoint at that instant. To support these situations, in 
the results section we also evaluate the performance of the LBCE scheme with 
smaller checkpointing periods, as low as 500 instructions. 

For more details of the LBCE technique, including the hardware implementation to 
detect the CISL values, we refer the reader to [20]. 

3.3.2 An RVQ-Free Recovery Scheme (RVQ_F) 

We will now describe the checkpoint-assisted recovery scheme that completely 
eliminates the RVQ from the datapath. In this scheme, the decision to create a 
checkpoint can be triggered at the time of committing an arbitrary instruction from the 
main thread. At this point, the main thread is stalled and the verification thread is 
allowed to completely catch up (consume the slack). At that time, the contents of the 
architectural register state from both threads can be compared against each other, and 
if any mismatch occurs, then a transient fault is detected. Otherwise, new checkpoints 



of the register file and commit-time rename table can be created. Also, the volatile bit 
in the cache can be cleared. 

 
Table 1: Comparison of the key features of the transient fault recovery schemes. Quantitative 

comparisons are provided in the results section. 

 SRT+ SRTR LBCE RVQ_F 
Checkpoints required No No Yes Yes 
RVQ required Large Medium Small None 
Additional Logic Needed None Track and form 

dependency chains 
Detect short-lived values None 

Transient-Fault Detection 
Latency 

Short Short Short to medium Large 

# of register verifications All register 
values 

~65% of register values ~ 30% of register values Only on checkpoint 
creation 

Useful work lost on every 
fault 

None None Small to medium High 

Reasons for stalling the main 
thread 

RVQ is full RVQ is full RVQ is full Checkpoint creation 

 
While this scheme simplifies the datapath compared to the LBCE technique from 

the previous section, it incurs some performance overhead. First, the main thread 
needs to stall during the checkpoint creation – that is not required by the LBCE. 
Second, the bulk-comparison of the architectural registers will require a number of 
cycles to be wasted: for example, for 64 architectural registers (as in the Alpha ISA), 
the comparisons will consume 16 cycles (if 4 comparisons can be performed per 
cycle). For small checkpointing periods, these overheads can be significant; we 
evaluate the sensitivity of these schemes to the checkpointing frequency in the results 
section. Finally, the RVQ_F scheme is likely to delay the detection of transient errors, 
as the detection can only occur during the checkpoint creation.  In the next section, we 
compare all of the described techniques in terms of their performance, energy 
consumption, complexity and other metrics. Table 1 summarizes the key features of 
the four transient fault recovery schemes examined in this paper. A detailed 
quantitative comparison of the schemes follows later. 

  
Table 2: Simulated processor configuration. 

Parameter Configuration 
Machine width 4-wide fetch, 4-wide issue, 4-wide commit 
Window size 64 entry issue queue, 64 entry load/store queue, 128-entry ROB 
Pipeline Depth 5 cycles fetch to dispatch, 3 cycles issue to execute 
Function Units and 
Lat (total/issue) 

4 Int Add (1/1), 2 Int Mult (3/1) / Div (20/19), 2 Load/Store (2/1), 4 FP Add (2), 
2 FP Mult (4/1) / Div (12/12) / Sqrt (24/24) 

Phys. Registers 300 combined integer and floating-point  
L1 I–cache 64 KB, 4–way set–associative, 32 byte line 
L1 D–cache 64 KB, 4–way set–associative, 32 byte line 
L2 Cache unified 1 MB, 8–way set–associative, 128 byte line 
Memory latency 100 cycles 
TLB 64 entry (I), 128 entry (D), fully associative 

4   Simulation Methodology 

For estimating the performance impact of the schemes described in this paper, we 
used M-Sim [12] – a significantly modified version of the Simplescalar 3.0d simulator 



[1] that separately models pipeline structures such as the issue queue, re-order buffer, 
and physical register file, both for superscalar and SMT machines [5,6]. The SRT 
model described in Section 2 was implemented in this framework. The details of the 
studied processor configuration are shown in Table 2. 
We simulated a total of 24 integer and floating point benchmarks from the SPEC 
2000 suite [3], using the precompiled Alpha binaries available from the Simplescalar 
website [1]. Predictors and caches were warmed up for the first 1 billion instructions 
and the statistics were gathered for the next 100 million instructions.  

5   Results and Discussions 

Figure 1 compares the performance of the transient fault recovery schemes that 
rely on the RVQ. Results are presented in terms of harmonic means across all 
simulated SPEC 2K benchmarks. The first variation is the SRT scheme which only 
supports fault detection – this represents an upper bound on the performance, as there 
is no recovery overhead. The other lines correspond to the SRT+, the DBCE scheme, 
and the LBCE scheme with various checkpointing periods. The number next to the 
LBCE label in the ledged signifies the checkpointing period (number of instructions) 
used for the corresponding configuration. 
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Figure 1: Harmonic mean of commit IPC for various redundant multithreaded architectures for 

various sizes of the RVQ. 
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Figure 2: Percentage of register verifications elided using the LBCE and DBCE schemes. 

For these experiments, the target slack of 256 instructions (shown to be optimal in 
[7] and also confirmed by our experiments) was used. Because not all instructions are 
verified through the RVQ (loads, stores and branches are not), the performance 
saturates for all schemes at the RVQ size of 128 entries, with the saturation in the 



LBCE scheme occurring at much smaller RVQ sizes. The SRT+ scheme results in 
significant performance losses compared to simple SRT at smaller RVQ sizes. For 
example, the average performance losses are 21%, 19% and 15% for the RVQ sizes 
of 16, 32 and 64 entries respectively. The DBCE reduces the performance overhead of 
SRT+ and lowers the performance degradations to 18%, 16%, and 4.9% respectively 
for 16, 32 and 64-entry RVQ compared to the SRT+ design. Next, the LBCE scheme 
with the small checkpointing period of 500 lowers these percentages further to 10%, 
5% and 1.6%. Finally, the LBCE scheme with a large checkpointing period of 
100,000 instructions lowers these percentages to 1.4% 0.5% and 0.3%. Notice that the 
LBCE scheme with larger checkpointing periods provides better performance as the 
overhead of checkpoint creation is small. In summary, a 16-entry RVQ with the 
LBCE scheme provides almost the same performance as the SRT without any 
recovery overhead or as the SRT+ with 128-entry RVQ. 

The reason for the performance improvements in both the DBCE and the LBCE 
schemes for small RVQ sizes is that many of the register verifications are elided and 
therefore fewer instructions require entries in the RVQ. Figure 2 presents the 
percentage of register verifications that are elided using the LBCE and DBCE 
schemes. While the LBCE scheme elides 76.1% of the verifications, the DBCE 
scheme elides about 32% of the verifications for the Spec2000 benchmarks (the 
results in [11] showed 35% for the Spec95 benchmarks). The larger percentage of 
register value checks that are elided by LBCE are manifested in higher IPCs. 

 
Table 3: Number of cycles when the leading thread stalls because the RVQ is full. 

 16-entry RVQ 32-entry RVQ 64-entry RVQ 128-entry RVQ 256-entry RVQ 
SRT+ 81700029 79098756 72103164 32808131 281531 
DBCE 75477795 72893922 53269057 8252604 38 
LBCE_10K 36841417 24369222 6297368 315680 0 

 

Table 4: Average number of read and write ports to the RVQ used by the various schemes. 

 # RVQ write ports used per cycle # RVQ read ports per cycle 
SRT+ 2.9447 2.9447 
DBCE 2.0505 2.0505 
LBCE_100K 0.4898 0.4898 
LBCE_10K 0.5045 0.5045 
LBCE_5K 0.5219 0.5219 
LBCE_1K 0.6417 0.6417 

 
The size of the RVQ has a profound influence on the overall performance of the 

schemes that require a RVQ, as shown in Table 3. Whenever the RVQ is full, the 
main thread is stalled and the verification thread is run, preventing further progress of 
the main thread momentarily.  As seen from Table 3, the LBCE scheme has a 
significant advantage over the others that use a RVQ, as it stores only the non-CISL 
values. At about an RVQ size of 256 entries, both DBCE and LBCE avoid any stalls 
of the main thread. In contrast, some stalls still occur for the SRT+ scheme at this 
RVQ size. Therefore, a smaller RVQ size is sufficient for the LBCE scheme to 
provide similar performance. 

Next, we examine the impact on dynamic power dissipation within the RVQ of our 
technique. We compare two configurations that achieve the same performance, 
specifically a 32-entry RVQ with LBCE scheme and 128-entry RVQ with SRT+ 
scheme. The savings in dynamic power of LBCE scheme comes from two sources. 



First, much fewer access to the RVQ are performed because 76% of the checks are 
elided, and second the size of the RVQ is significantly smaller. Combined, these two 
artifacts result in 89.1% savings in dynamic power within the RVQ compared with 
the SRT+ design. Of course, additional power would be dissipated in the auxiliary 
datapath structures required by the LBCE scheme, which will somewhat lower these 
reported savings. However, if the point of comparison is the DBCE mechanism, then 
it also requires additional power to detect and form the dependency chains in both 
threads. A more detailed power related analysis of these mechanisms is beyond the 
scope of this paper. 
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Figure 3: Harmonic mean of commit IPC for various transient fault recovery schemes for various 

checkpointing intervals. 
 

Additionally, because many of the register verifications are elided, fewer reads and 
writes to the RVQ are performed each cycle with the LBCE scheme compared to the 
DBCE and SRT+ techniques. Table 4 presents the average number of read ports and 
write ports used per cycle to the RVQ for the various transient fault recovery 
schemes. The SRT+ technique, with allocates an RVQ entry for each and every 
register value, uses nearly 3 read ports and 3 write ports each cycle on average. 
Comparatively, the DBCE scheme uses only 2 read ports and 2 write ports on average 
each cycle and the LBCE technique uses less than one. This allows for a reduction in 
the number of ports to the RVQ with the LCBE scheme in addition to the reduction in 
RVQ size – which provides additional energy and power savings. 

Now, we examine the checkpoint-based transient fault recovery solutions. Figure 3 
presents the harmonic mean of commit IPC for the RVQ_F and LBCE schemes (the 
only two schemes that rely on checkpointing) for various checkpointing periods. The 
SRT scheme that does not provide recovery is also shown for comparison. For the 
small checkpointing periods, LBCE outperforms RVQ_F because the overhead of the 
frequent checkpoint creations offsets the advantages offered by the RVQ_F scheme. 
For example, the LBCE scheme with a 32-entry RVQ outperforms the RVQ_F 
scheme by 4% for a checkpointing period of 1000 instructions and 8% for the 
checkpointing period of 500 instructions.  On the other hand, for large checkpointing 
periods, the RVQ_F scheme provides better performance. For the period of 100K 
instructions, the RVQ_F scheme outperforms the LBCE scheme by 1.5%. 
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Figure 4: Effective slack length measured in number of instructions at commitment. 

The RVQ_F is quite efficient for large checkpointing frequencies because it elides 
most of the register checks (other than the ones that are needed for checkpoint 
creation) by the nature of the scheme. For example, for checkpointing period of 
100000 instructions, 99.8% of all register verifications are elided. For 500-instruction 
checkpointing period, the percentage of elided checks is about 80%. 

The next metric that we examine is the effective slack length as measured at 
commit time. The results for the 64-entry RVQs are presented in Figure 4. For this 
configuration, the LBCE scheme achieves a slack of 207 instructions, on the average 
– more than twice that of the processor with the basic SRT+ which achieves a slack of 
only 101 instructions. The DBCE scheme achieves the slack of 135 instructions. 
These results show that the LBCE technique can maintain a large slack, and take 
advantage of it, with a small RVQ size. In fact, the amount of the effective slack in 
the LBCE scheme even with 16-entry RVQ is almost the same as the effective slack 
of the SRT+ scheme with infinite RVQ (again, the results of Figure 1 can be used to 
understand why that is the case). Finally, the RVQ_F scheme achieves an average 
slack of 210 instructions. 
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Figure 5: Breakdown of the percentage of checkpoints created periodically versus the percentage of 
forced checkpoints due to cache behavior for the LBCE and RVQ_F schemes. Results are presented 
for the checkpointing period of 100000 instructions. 
 

Next, we evaluate the impact of the checkpointing mechanism used by LBCE and 
RVQ_F in order to support recovery from transient faults. Recall that there are two 
triggers for the creation of checkpoints in these schemes. Checkpoints are created 
periodically, or when required due to the absence of non-volatile data in the cache set 
for victim selection. Figure 5 presents the data on the percentage of checkpoints 
created due to each of these triggers. As seen from the graph, 69% of the created 
checkpoints are induced periodically. The percentage of checkpoints that are created 
due to the absence of non-volatile lines in the accessed set of the cache is relatively 
small on the average, but can be quite high for the memory bound programs. For 
example, applu, art, swim, and twolf all experience high levels of memory traffic and 
therefore incur more such checkpoints. 



It is conceivable that the use of volatile bits in the cache can somewhat degrade the 
cache hit rates because of the additional constraints imposed on the cache replacement 
policies. However, our results indicate that this impact is minimal. On the average, the 
L1 D-cache hit rates decreased from 94.6% to 94.5%, and the largest decrease was 
2.3% observed on ammp. 

6   Related Work 

A popular approach for concurrent error detection and recovery is to execute two 
copies of the same program and then compare the results [1,4,5,6,7,8,10,11]. Ray, 
Hoe, and Falsafi [6] propose mechanisms for performing such redundant execution 
within a superscalar processor. Smolens et. al. [9] study the performance impact of 
redundant execution and identify the various bottlenecks that limit the performance in 
such environments. The DIVA design of [1] supplemented the out-of-order core with 
simple in-order checker logic. The fault-tolerant architectures in [4,7,8,11] use the 
inherent hardware redundancy in SMT and CMP architectures for concurrent error 
detection. While the SRT scheme described in [7] only aims at detecting transient 
faults using the SMT support, the follow up study of [11] augments the work of [7] by 
adding the recovery capability. The resulting scheme, called SRTR (SRT with 
Recovery) is perhaps the closest in spirit to the proposal. We extensively discussed 
the SRTR scheme and contrasted it to techniques proposed here throughout the paper. 
RMT explored the design space of using multithreading for fault detection [15], and 
was extended by CRTR [16] to provide fault recovery using CMPs. The concept of 
partial soft error coverage was introduced in [5], where the redundant execution is 
only performed during the low-ILP phases of the main program, when the resources 
are sufficiently underutilized. In [2], the execution of the redundant thread only 
happens when the main thread experiences the L2 cache miss or the verification 
buffer is full. Several industrial designs support fault tolerance. The Compaq NonStop 
Himalaya [12] employs off-the-shelf microprocessors in lock-step fashion and 
compares the outputs every cycle. The IBM S/390 [18] uses replicated, lock-stepped 
pipelines within the processor itself. 

7   Summary and Concluding Remarks 

The choice of the best transient fault recovery scheme is dictated by the 
checkpointing interval as well as datapath complexities that can be tolerated. We can 
expect aggressive modern out-of-order processors to use checkpoint-based recovery 
mechanisms.  Some of the schemes studied in this paper assume the existence of such 
a facility.  There is always a tradeoff between the performance, the complexity, and 
the energy consumption that guide the choice of the soft error detection and recovery 
scheme. The main conclusions of our study, in the light of such considerations, are as 
follows. 

If large checkpointing intervals can be tolerated, then the RVQ_F scheme provides 
the best performance because of the least number of register values comparisons – 



only the architectural register values need to be compared at the time of checkpoint 
creation. Furthermore, RVQ_F scheme eliminates the need for an RVQ and all 
associated overhead. However, at smaller checkpointing intervals, the LBCE 
mechanism is more attractive because it achieves better performance for a smaller 
RVQ size relative to SRT+ and DBCE. Furthermore, the data on the usage of read and 
write ports shows that the LBCE technique can not just use a smaller RVQ compared 
to SRT+, but it can also use fewer register file ports, thereby reducing the overall 
power dissipation (and the overall complexity) of the verification logic.  If a large 
RVQ can be supported, then schemes that do not rely on checkpointing, such as SRT+ 
and DBCE, are both reasonable choices. 
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