
Trade-offs in Transient Fault Recovery Schemes for
Redundant Multithreaded Processors

Joseph Sharkey1, Nayef Abu-Ghazeleh1, Dmitry Ponomarev1, Kanad Ghose1,
Aneesh Aggarwal2

1 Department of Computer Science

1 Department of Electrical Engineering
State University of New York at Binghamton

{jsharke, nayef, dima, ghose}@cs.binghamton.edu, aneesh@binghamton.edu

Abstract. CMOS downscaling trends, manifested in the use of smaller
transistor feature sizes and lower supply voltages, make microprocessors more
and more vulnerable to transient errors with each new technology generation.
One architectural approach to detecting and recovering from such errors is to
execute two copies of the same program and then compare the results. While
comparing only the store instructions is sufficient for error detection, register
values also have to be compared to support fault recovery. In this paper, we
propose checkpoint-assisted mechanisms for efficient fault recovery that
dramatically reduce the number of register values to be compared for detecting
soft errors and perform comprehensive investigation of these and other existing
recovery schemes from the standpoint of performance, power and design
complexity.

1 Introduction and Motivations

The continuous downscaling of CMOS technology leads to smaller transistor
feature sizes and the use of lower supply voltages with each new process generation,
making the microprocessor chips more vulnerable to soft (or transient) errors. It is
projected that the rate at which the transient errors occur will grow exponentially [14]
and will soon represent one of the most significant issues in the design of future
generation high-performance microprocessors. One popular approach to addressing
these challenges is to execute two copies of the same program and then compare the
sequence of results generated by each thread [1, 4, 5, 6, 7, 8, 10, 11]. Any discrepancy
between the two result sequences indicates the occurrence of a transient error. Such
redundant execution can be implemented in the framework of a superscalar processor.
However, despite the well-known fact that the execution of just a single thread leaves
the processor resources fairly underutilized, running two simultaneous copies while
sharing all resources results in very significant performance degradations [1, 6, 9].

Alternatively, a Simultaneous Multithreaded (SMT) processor naturally provides
multiple contexts that can be used to execute two copies of the same program (which
we call the main thread and the verification thread) with less impact on performance
[4, 7, 8, 11]. Several solutions have been proposed in recent literature to employ SMT
support for redundant multithreading, including the schemes that just detect the

mailto:ghose%7D@cs.binghamton.edu

transient errors [7] as well as those that support recovery capabilities [11]. The key to
avoiding performance loss in the redundant multithreaded environment is to use
staggered execution, i.e. to delay the execution of the verification thread by a number
of instructions (defined as slack in the rest of the paper) behind the main thread. With
growing memory latencies, a larger amount of slack between the two threads can help
in hiding the memory access delays experienced by the main thread. To take
advantage of the staggered execution, the slack is built and maintained during the
normal execution and it is consumed (the verification thread catches up with the main
thread) on L2 cache misses. Another advantage of maintaining a sufficient amount of
slack is that the actual branch outcomes supplied by the main thread can be used by
the verification thread instead of branch predictions. This, in turn, eliminates the
execution of the wrong-path instructions from the verification thread, further
increasing the execution efficiency and reducing the contention for the use of shared
datapath resources.

The basic scheme to provide the transient fault detection capabilities in an SMT
processor, called SRT (Simultaneously and Redundantly Threaded processor) was
introduced in [7]. In SRT, only the results (addresses and data) of the store
instructions are compared, because any faults in the registers eventually propagate
through the dependency chains to a store. However, if the capability to recover from
such faults is also essential, then not only the values to be stored into the memory, but
also all values written into the register file need to be verified. Otherwise, the
recovery to a precise verified state following a transient error may be impossible, as
such a state may never exist. In this paper, we perform a comprehensive study of the
trade-offs in the design of fault recovery schemes, encompassing the issues of
performance, energy and design complexity. These schemes include the previously
published methods, as well as the ones that are proposed here. We begin by
describing the architecture of the baseline SRT machine used for fault detection.

2. Baseline Architecture

The baseline redundant multithreaded processor that we use for our evaluations is
based on the SRT model of [7] for transient fault detection. We assume that both main
and verification threads perform separate register allocations, so that the register file
is also protected. To introduce the slack between the execution of the two threads, we
implemented the slack fetch mechanism described in [7]. The address and data of
each store instruction are verified before the store is permitted to update the memory.
To verify the address and data of store instructions, an ordered non-coalescing queue,
called the store buffer (SB) is used, as in [7]. The SB is shared between the threads to
synchronize and verify store values as they retire in program order. Data from the
store buffer is forwarded to subsequent loads only when the store is retired in the
thread issuing the load. The work of [7] proposes two alternatives for the input
replication of load data. We implement the load value queue (LVQ) – which was
shown to provide superior performance [7]. When a load commits from the main
thread, it writes both its address and data into the LVQ. Subsequently, when the same
load issues in the verification thread, the address is verified and the data is read from
the LVQ (i.e., the verification thread does not access the D-cache). This increases
performance because the verification thread does not experience cache misses and

does not compete for the cache ports. Finally, to eliminate the wrong-path instructions
in the verification thread, we use the branch outcome queue (BOQ) [7]. This buffer
delivers the committed branch outcomes from the main thread to the verification
thread, effectively providing near oracle branch prediction for the verification thread
(except in the case where a transient fault causes an incorrect branch resolution in the
main thread).

3. Transient Fault Recovery Schemes for SMT

In this section, we describe several possible transient fault recovery schemes that
provide recovery capabilities on top of SRT.

3.1. SRT+: Augmenting SRT with Full Register Checking

The first technique that we consider is a trivial augmentation to SRT to check all
register values in addition to the data and the addresses of all store instructions. To
reduce the pressure on the register file, this requires the addition of a queue (called
Register Value Queue – RVQ), where the register results produced by the main thread
are written after they are committed. These results are removed from the RVQ only
after they are verified by the trailing thread. In this scheme, all register values are
checked and an instruction that caused the transient fault can be identified precisely at
the earliest possible opportunity. However, a large RVQ is needed to support sizable
slack and significant energy is expended in the course of verifying all of the produced
register values – those that have to be written to the RVQ, read from it, and compared.

3.2. SRTR and Dependence-Based Checking Elision (DBCE)

The next technique that we examine is called SRTR (SRT with Recovery) and it
was introduced in [11]. In addition to checking the store instructions, the SRTR
scheme also validates register values, but in contrast to SRT+ it does so selectively.
To reduce the pressure on the RVQ and the number of verifications, the authors of
[11] also proposed Dependence-Based Checking Elision (DBCE) – a mechanism to
limit verifications to only the instructions at the end of short dependency chains,
avoiding (or eliding) the verification of the other register values. As reported in [11],
about 35% of all register checks are avoided (elided) on the average across SPEC 95
benchmarks using the DBCE scheme.

The original SRTR scheme requires that the result verification occurs prior to
instruction commitment (using the writeback-to-commit time), thus putting a limit on
the amount of slack that can be maintained. To accommodate a relatively short slack,
the SRTR scheme uses the branch predictions (rather than the branch outcomes as in
SRT) from the main thread to feed to the verification thread. As a result of the small
slack and the use of branch prediction in the verification thread, the SRTR scheme has
some performance overhead compared to the SRT design and also incurs some
additional changes in the datapath mainly stemming from the need to support
speculative instructions in the verification thread. The performance challenges faced

by the SRTR scheme will only be exacerbated in the environments with lower branch
prediction accuracies and/or D-cache hit rates as well as higher memory latencies.

We observe that it is possible to move the verification actions in the SRTR/DBCE
scheme to the post-commit stages by committing the instructions from the main
thread and establishing the RVQ entries at that time, just as in SRT+ scheme. The key
is not to allow the commitment of any instruction from a dependency chain in the
verification thread until the entire chain is verified. The state of the verification thread
then can be used to restart the execution following the detection of a fault. This
modification allows the DBCE scheme to be used with larger slack and use branch
outcomes instead of branch predictions to avoid the execution of wrong-path
instructions by the verification thread.

3.3. Checkpoint-Assisted Fault Recovery Schemes

In this paper, we propose novel schemes to further reduce the number of register
values that need to be verified to guarantee recovery to a safe state compared to what
is proposed by the DBCE scheme. The philosophy of the DBCE is to support a
rollback to the latest checked and committed instruction following the detection of a
fault and to begin the re-execution from that point. While such an approach
completely avoids unnecessary re-executions of already verified instructions, the
datapath complexities and performance overheads involved are non-negligible. In
essence, from the standpoint of precise state reconstruction, the SRTR scheme treats
transient faults like branch mispredictions or exceptions because it maintains the
results of all unchecked instructions, just as the results of all speculative instructions
are maintained for branch misprediction recovery or interrupt handling.

However, even in current and future technologies, the absolute rate at which
transient faults will occur is very low, several orders of magnitude smaller than, for
example, the rate of branch mispredictions or exceptions. Therefore, it is unnecessary
to start the re-execution at the exact instruction that caused transient fault; even if the
rollback occurs to a point which requires several tens of thousands of instructions to
be re-executed, there is almost no impact on performance. The key question here is
not how far to rollback and how many instructions to re-execute (within reasonable
distance), but how to guarantee that a precise and completely verified register and
memory state is always available and can be constructed at any point. In the rest of
this section, we describe two checkpoint-based mechanisms to facilitate such a
recovery. After the detection of an error, the processor state is rolled back to a
complete and fully-verified register and memory state checkpoint and the execution
restarts.

 3.3.1 Lifetime-Based Checking Elision (LBCE)

It has been noticed by several researchers that most of the register instances in a
datapath are short-lived [19]. A value produced by the instruction X is short-lived
(SL) if the architectural register allocated as a destination of X has been renamed
again before the value generated by X is committed. In [20], it was shown that about
84% of all produced values are short lived. Using this notion of short-lived values,

[20] proposes lifetime-based checking elision (LBCE) in which the verifications of
control-independent short-lived (CISL) values are avoided. Only the non-CISL results
are saved within the RVQ after the instruction commitment and are verified against
similar values produced by the verification thread.

To support the capability to recover to a precise and completely verified state
following a detection of a transient fault, LBCE relies on the creation of the periodic
register and memory state checkpoints. To buffer a large number of store instructions
between two consecutive checkpoints, we use the approach described in [21] and also
used in a few others works. The memory updates received between two consecutive
checkpoints are stored within the local cache hierarchy, but their propagation to the
main memory is avoided until it is safe to do so. Each cache line updated in this
manner is marked as volatile, using one extra bit for each cache line. When a
processor needs to rollback to a checkpoint, all cache lines marked volatile are
invalidated using a gang-invalidate signal. When the new checkpoint is created, all
volatile bits set since the creation of previous checkpoint are cleared. A recent paper
[23] also describes how to correctly incorporate caches with the volatile lines into a
multiprocessor system.

Since transient faults are very infrequent events, we can create checkpoints at very
large intervals. In fact, a checkpoint can be created on demand, when one of the sets
within the cache has all its lines in Volatile status and a cache miss occurs that targets
this set. At this point, the creation of a new checkpoint is initiated and, once the
checkpoint is created, the volatile bits can be cleared. However, as the percentage of
volatile lines in the cache increases, the victim selection algorithm becomes less
flexible (the volatile lines cannot be replaced). In the worst case, this effectively
transforms the cache into direct-mapped structure and degrades the cache hit rates. In
order to avoid such performance degradations caused by the lower D-cache hit rates,
we also force the checkpoint creation every 100000 instructions. Therefore, 100000
instructions are re-executed after transient fault detection in this scheme in the worst
case. In the result section, we quantify the percentage of checkpoints created for these
various reasons. We also show that the average number of instructions between two
consecutive checkpoints is generally very large. A recent paper [24] also showed that
in commercial workloads the I/O operations could occur more frequently, effectively
requiring the creation of a checkpoint at that instant. To support these situations, in
the results section we also evaluate the performance of the LBCE scheme with
smaller checkpointing periods, as low as 500 instructions.

For more details of the LBCE technique, including the hardware implementation to
detect the CISL values, we refer the reader to [20].

3.3.2 An RVQ-Free Recovery Scheme (RVQ_F)

We will now describe the checkpoint-assisted recovery scheme that completely
eliminates the RVQ from the datapath. In this scheme, the decision to create a
checkpoint can be triggered at the time of committing an arbitrary instruction from the
main thread. At this point, the main thread is stalled and the verification thread is
allowed to completely catch up (consume the slack). At that time, the contents of the
architectural register state from both threads can be compared against each other, and
if any mismatch occurs, then a transient fault is detected. Otherwise, new checkpoints

of the register file and commit-time rename table can be created. Also, the volatile bit
in the cache can be cleared.

Table 1: Comparison of the key features of the transient fault recovery schemes. Quantitative

comparisons are provided in the results section.

 SRT+ SRTR LBCE RVQ_F
Checkpoints required No No Yes Yes
RVQ required Large Medium Small None
Additional Logic Needed None Track and form

dependency chains
Detect short-lived values None

Transient-Fault Detection
Latency

Short Short Short to medium Large

of register verifications All register
values

~65% of register values ~ 30% of register values Only on checkpoint
creation

Useful work lost on every
fault

None None Small to medium High

Reasons for stalling the main
thread

RVQ is full RVQ is full RVQ is full Checkpoint creation

While this scheme simplifies the datapath compared to the LBCE technique from

the previous section, it incurs some performance overhead. First, the main thread
needs to stall during the checkpoint creation – that is not required by the LBCE.
Second, the bulk-comparison of the architectural registers will require a number of
cycles to be wasted: for example, for 64 architectural registers (as in the Alpha ISA),
the comparisons will consume 16 cycles (if 4 comparisons can be performed per
cycle). For small checkpointing periods, these overheads can be significant; we
evaluate the sensitivity of these schemes to the checkpointing frequency in the results
section. Finally, the RVQ_F scheme is likely to delay the detection of transient errors,
as the detection can only occur during the checkpoint creation. In the next section, we
compare all of the described techniques in terms of their performance, energy
consumption, complexity and other metrics. Table 1 summarizes the key features of
the four transient fault recovery schemes examined in this paper. A detailed
quantitative comparison of the schemes follows later.

Table 2: Simulated processor configuration.

Parameter Configuration
Machine width 4-wide fetch, 4-wide issue, 4-wide commit
Window size 64 entry issue queue, 64 entry load/store queue, 128-entry ROB
Pipeline Depth 5 cycles fetch to dispatch, 3 cycles issue to execute
Function Units and
Lat (total/issue)

4 Int Add (1/1), 2 Int Mult (3/1) / Div (20/19), 2 Load/Store (2/1), 4 FP Add (2),
2 FP Mult (4/1) / Div (12/12) / Sqrt (24/24)

Phys. Registers 300 combined integer and floating-point
L1 I–cache 64 KB, 4–way set–associative, 32 byte line
L1 D–cache 64 KB, 4–way set–associative, 32 byte line
L2 Cache unified 1 MB, 8–way set–associative, 128 byte line
Memory latency 100 cycles
TLB 64 entry (I), 128 entry (D), fully associative

4 Simulation Methodology

For estimating the performance impact of the schemes described in this paper, we
used M-Sim [12] – a significantly modified version of the Simplescalar 3.0d simulator

[1] that separately models pipeline structures such as the issue queue, re-order buffer,
and physical register file, both for superscalar and SMT machines [5,6]. The SRT
model described in Section 2 was implemented in this framework. The details of the
studied processor configuration are shown in Table 2.
We simulated a total of 24 integer and floating point benchmarks from the SPEC
2000 suite [3], using the precompiled Alpha binaries available from the Simplescalar
website [1]. Predictors and caches were warmed up for the first 1 billion instructions
and the statistics were gathered for the next 100 million instructions.

5 Results and Discussions

Figure 1 compares the performance of the transient fault recovery schemes that
rely on the RVQ. Results are presented in terms of harmonic means across all
simulated SPEC 2K benchmarks. The first variation is the SRT scheme which only
supports fault detection – this represents an upper bound on the performance, as there
is no recovery overhead. The other lines correspond to the SRT+, the DBCE scheme,
and the LBCE scheme with various checkpointing periods. The number next to the
LBCE label in the ledged signifies the checkpointing period (number of instructions)
used for the corresponding configuration.

0.92

0.97

1.02

1.07

1.12

1.17

16 32 64 128 INF

RVQ Size

C
om

m
it

IP
C

SRT

DBCE

SRT+

LBCE_500

LBCE_1K

LBCE_5K

LBCE_10K

LBCE_100K

Figure 1: Harmonic mean of commit IPC for various redundant multithreaded architectures for

various sizes of the RVQ.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

am
m

p

ap
pl

u

ap
si ar
t

bz
ip

2

cr
af

ty

eo
n

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

ga
p

gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

m
gr

id

pe
rlb

m
k

sw
im

tw
ol

f

vo
rte

x

vp
r

w
up

w
is

e

Av
er

ag
e

LBCE DBCE

Figure 2: Percentage of register verifications elided using the LBCE and DBCE schemes.

For these experiments, the target slack of 256 instructions (shown to be optimal in
[7] and also confirmed by our experiments) was used. Because not all instructions are
verified through the RVQ (loads, stores and branches are not), the performance
saturates for all schemes at the RVQ size of 128 entries, with the saturation in the

LBCE scheme occurring at much smaller RVQ sizes. The SRT+ scheme results in
significant performance losses compared to simple SRT at smaller RVQ sizes. For
example, the average performance losses are 21%, 19% and 15% for the RVQ sizes
of 16, 32 and 64 entries respectively. The DBCE reduces the performance overhead of
SRT+ and lowers the performance degradations to 18%, 16%, and 4.9% respectively
for 16, 32 and 64-entry RVQ compared to the SRT+ design. Next, the LBCE scheme
with the small checkpointing period of 500 lowers these percentages further to 10%,
5% and 1.6%. Finally, the LBCE scheme with a large checkpointing period of
100,000 instructions lowers these percentages to 1.4% 0.5% and 0.3%. Notice that the
LBCE scheme with larger checkpointing periods provides better performance as the
overhead of checkpoint creation is small. In summary, a 16-entry RVQ with the
LBCE scheme provides almost the same performance as the SRT without any
recovery overhead or as the SRT+ with 128-entry RVQ.

The reason for the performance improvements in both the DBCE and the LBCE
schemes for small RVQ sizes is that many of the register verifications are elided and
therefore fewer instructions require entries in the RVQ. Figure 2 presents the
percentage of register verifications that are elided using the LBCE and DBCE
schemes. While the LBCE scheme elides 76.1% of the verifications, the DBCE
scheme elides about 32% of the verifications for the Spec2000 benchmarks (the
results in [11] showed 35% for the Spec95 benchmarks). The larger percentage of
register value checks that are elided by LBCE are manifested in higher IPCs.

Table 3: Number of cycles when the leading thread stalls because the RVQ is full.

 16-entry RVQ 32-entry RVQ 64-entry RVQ 128-entry RVQ 256-entry RVQ
SRT+ 81700029 79098756 72103164 32808131 281531
DBCE 75477795 72893922 53269057 8252604 38
LBCE_10K 36841417 24369222 6297368 315680 0

Table 4: Average number of read and write ports to the RVQ used by the various schemes.

 # RVQ write ports used per cycle # RVQ read ports per cycle
SRT+ 2.9447 2.9447
DBCE 2.0505 2.0505
LBCE_100K 0.4898 0.4898
LBCE_10K 0.5045 0.5045
LBCE_5K 0.5219 0.5219
LBCE_1K 0.6417 0.6417

The size of the RVQ has a profound influence on the overall performance of the

schemes that require a RVQ, as shown in Table 3. Whenever the RVQ is full, the
main thread is stalled and the verification thread is run, preventing further progress of
the main thread momentarily. As seen from Table 3, the LBCE scheme has a
significant advantage over the others that use a RVQ, as it stores only the non-CISL
values. At about an RVQ size of 256 entries, both DBCE and LBCE avoid any stalls
of the main thread. In contrast, some stalls still occur for the SRT+ scheme at this
RVQ size. Therefore, a smaller RVQ size is sufficient for the LBCE scheme to
provide similar performance.

Next, we examine the impact on dynamic power dissipation within the RVQ of our
technique. We compare two configurations that achieve the same performance,
specifically a 32-entry RVQ with LBCE scheme and 128-entry RVQ with SRT+
scheme. The savings in dynamic power of LBCE scheme comes from two sources.

First, much fewer access to the RVQ are performed because 76% of the checks are
elided, and second the size of the RVQ is significantly smaller. Combined, these two
artifacts result in 89.1% savings in dynamic power within the RVQ compared with
the SRT+ design. Of course, additional power would be dissipated in the auxiliary
datapath structures required by the LBCE scheme, which will somewhat lower these
reported savings. However, if the point of comparison is the DBCE mechanism, then
it also requires additional power to detect and form the dependency chains in both
threads. A more detailed power related analysis of these mechanisms is beyond the
scope of this paper.

1.00
1.02

1.04
1.06
1.08
1.10
1.12

1.14
1.16

500 1K 5k 10k 100k

Checkpoint Period

C
om

m
it

IP
C SRT

RVQ_F

LBCE_32RVQ

LBCE_16RVQ

Figure 3: Harmonic mean of commit IPC for various transient fault recovery schemes for various

checkpointing intervals.

Additionally, because many of the register verifications are elided, fewer reads and
writes to the RVQ are performed each cycle with the LBCE scheme compared to the
DBCE and SRT+ techniques. Table 4 presents the average number of read ports and
write ports used per cycle to the RVQ for the various transient fault recovery
schemes. The SRT+ technique, with allocates an RVQ entry for each and every
register value, uses nearly 3 read ports and 3 write ports each cycle on average.
Comparatively, the DBCE scheme uses only 2 read ports and 2 write ports on average
each cycle and the LBCE technique uses less than one. This allows for a reduction in
the number of ports to the RVQ with the LCBE scheme in addition to the reduction in
RVQ size – which provides additional energy and power savings.

Now, we examine the checkpoint-based transient fault recovery solutions. Figure 3
presents the harmonic mean of commit IPC for the RVQ_F and LBCE schemes (the
only two schemes that rely on checkpointing) for various checkpointing periods. The
SRT scheme that does not provide recovery is also shown for comparison. For the
small checkpointing periods, LBCE outperforms RVQ_F because the overhead of the
frequent checkpoint creations offsets the advantages offered by the RVQ_F scheme.
For example, the LBCE scheme with a 32-entry RVQ outperforms the RVQ_F
scheme by 4% for a checkpointing period of 1000 instructions and 8% for the
checkpointing period of 500 instructions. On the other hand, for large checkpointing
periods, the RVQ_F scheme provides better performance. For the period of 100K
instructions, the RVQ_F scheme outperforms the LBCE scheme by 1.5%.

90

110

130

150

170

190

210

230

IntAverage FP_Average Average

C
om

m
it

Sl
ac

k
SRT+ DBCE LBCE RVQ_F

Figure 4: Effective slack length measured in number of instructions at commitment.

The RVQ_F is quite efficient for large checkpointing frequencies because it elides
most of the register checks (other than the ones that are needed for checkpoint
creation) by the nature of the scheme. For example, for checkpointing period of
100000 instructions, 99.8% of all register verifications are elided. For 500-instruction
checkpointing period, the percentage of elided checks is about 80%.

The next metric that we examine is the effective slack length as measured at
commit time. The results for the 64-entry RVQs are presented in Figure 4. For this
configuration, the LBCE scheme achieves a slack of 207 instructions, on the average
– more than twice that of the processor with the basic SRT+ which achieves a slack of
only 101 instructions. The DBCE scheme achieves the slack of 135 instructions.
These results show that the LBCE technique can maintain a large slack, and take
advantage of it, with a small RVQ size. In fact, the amount of the effective slack in
the LBCE scheme even with 16-entry RVQ is almost the same as the effective slack
of the SRT+ scheme with infinite RVQ (again, the results of Figure 1 can be used to
understand why that is the case). Finally, the RVQ_F scheme achieves an average
slack of 210 instructions.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

am
m

p

ap
pl

u

ap
si ar
t

bz
ip

2

cr
af

ty

eo
n

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

ga
p

gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

m
gr

id

pe
rlb

m
k

sw
im

tw
ol

f

vo
rte

x

vp
r

w
up

w
is

e

av
er

ag
e

% Periodic % Forced

Figure 5: Breakdown of the percentage of checkpoints created periodically versus the percentage of
forced checkpoints due to cache behavior for the LBCE and RVQ_F schemes. Results are presented
for the checkpointing period of 100000 instructions.

Next, we evaluate the impact of the checkpointing mechanism used by LBCE and
RVQ_F in order to support recovery from transient faults. Recall that there are two
triggers for the creation of checkpoints in these schemes. Checkpoints are created
periodically, or when required due to the absence of non-volatile data in the cache set
for victim selection. Figure 5 presents the data on the percentage of checkpoints
created due to each of these triggers. As seen from the graph, 69% of the created
checkpoints are induced periodically. The percentage of checkpoints that are created
due to the absence of non-volatile lines in the accessed set of the cache is relatively
small on the average, but can be quite high for the memory bound programs. For
example, applu, art, swim, and twolf all experience high levels of memory traffic and
therefore incur more such checkpoints.

It is conceivable that the use of volatile bits in the cache can somewhat degrade the
cache hit rates because of the additional constraints imposed on the cache replacement
policies. However, our results indicate that this impact is minimal. On the average, the
L1 D-cache hit rates decreased from 94.6% to 94.5%, and the largest decrease was
2.3% observed on ammp.

6 Related Work

A popular approach for concurrent error detection and recovery is to execute two
copies of the same program and then compare the results [1,4,5,6,7,8,10,11]. Ray,
Hoe, and Falsafi [6] propose mechanisms for performing such redundant execution
within a superscalar processor. Smolens et. al. [9] study the performance impact of
redundant execution and identify the various bottlenecks that limit the performance in
such environments. The DIVA design of [1] supplemented the out-of-order core with
simple in-order checker logic. The fault-tolerant architectures in [4,7,8,11] use the
inherent hardware redundancy in SMT and CMP architectures for concurrent error
detection. While the SRT scheme described in [7] only aims at detecting transient
faults using the SMT support, the follow up study of [11] augments the work of [7] by
adding the recovery capability. The resulting scheme, called SRTR (SRT with
Recovery) is perhaps the closest in spirit to the proposal. We extensively discussed
the SRTR scheme and contrasted it to techniques proposed here throughout the paper.
RMT explored the design space of using multithreading for fault detection [15], and
was extended by CRTR [16] to provide fault recovery using CMPs. The concept of
partial soft error coverage was introduced in [5], where the redundant execution is
only performed during the low-ILP phases of the main program, when the resources
are sufficiently underutilized. In [2], the execution of the redundant thread only
happens when the main thread experiences the L2 cache miss or the verification
buffer is full. Several industrial designs support fault tolerance. The Compaq NonStop
Himalaya [12] employs off-the-shelf microprocessors in lock-step fashion and
compares the outputs every cycle. The IBM S/390 [18] uses replicated, lock-stepped
pipelines within the processor itself.

7 Summary and Concluding Remarks

The choice of the best transient fault recovery scheme is dictated by the
checkpointing interval as well as datapath complexities that can be tolerated. We can
expect aggressive modern out-of-order processors to use checkpoint-based recovery
mechanisms. Some of the schemes studied in this paper assume the existence of such
a facility. There is always a tradeoff between the performance, the complexity, and
the energy consumption that guide the choice of the soft error detection and recovery
scheme. The main conclusions of our study, in the light of such considerations, are as
follows.

If large checkpointing intervals can be tolerated, then the RVQ_F scheme provides
the best performance because of the least number of register values comparisons –

only the architectural register values need to be compared at the time of checkpoint
creation. Furthermore, RVQ_F scheme eliminates the need for an RVQ and all
associated overhead. However, at smaller checkpointing intervals, the LBCE
mechanism is more attractive because it achieves better performance for a smaller
RVQ size relative to SRT+ and DBCE. Furthermore, the data on the usage of read and
write ports shows that the LBCE technique can not just use a smaller RVQ compared
to SRT+, but it can also use fewer register file ports, thereby reducing the overall
power dissipation (and the overall complexity) of the verification logic. If a large
RVQ can be supported, then schemes that do not rely on checkpointing, such as SRT+
and DBCE, are both reasonable choices.

References
1. T. Austin, “DIVA: a reliable substrate for deep submicron microarchitecture design,” Proc. Micro-32,

1999.
2. Qureshi, M., et al, “Microarchitecture-Based Introspection: A Technique for Transient Fault Tolerance in

Microprocessors”, in DSN 2005.
3. J. G. Holm, and P. Banerjee, “Low cost concurrent error detection in a VLIW architecture using

replicated instructions” Proc. ICPP-21, 1992.
4. M. Gomaa, et. al., “Transient-Fault Recovery for Chip Multiprocessors,” Proc. ISCA-30, 2003.
5. M. Gomaa, T.N.Vijaykumar, “Opportunistic Transient Fault Detection”, ISCA 2005
6. J. Ray, J. Hoe, and B. Falsafi, “Dual use of superscalar datapath for transient-fault detection and

recovery,” Proc. Micro-34, 2001.
7. S. Reinhardt, and S. Mukherjee, “Transient fault detection via simultaneous multithreading,” Proc.

ISCA-27, June 2000.
8. E. Rotenberg, “AR-SMT: A microarchitectural approach to fault tolerance in microprocessors,” Proc.

29th Intl. Symp. On Fault-Tolerant Computing Systems, 1999.
9. J.Smolens, et. al., “Efficient Resource sharing in Concurrent error detecting Superscalar

microarchitectures ,” Proc. Micro- 37, 2004.
10. K. Sundaramoorthy, Z. Purser, and E. Rotenberg, “Slipstream processors: Improving both performance

and fault tolerance,” In Proc. Micro-33, December 2000.
11. T. Vijaykumar, I. Pomeranz, and K. Cheng, “Transient-fault recovery using simultaneous

multithreading,” Proc. ISCA-29, 2002.
12. J. Sharkey. “M-Sim: A Flexible, Multi-threaded Simulation Environment.” Tech. Report CS-TR-05-

DP1, Department of Computer Science, SUNY Binghamton, 2005.
13. D. Tullsen, et al. “Exploiting Choice: Instruction Fetch and Issue on an Implementable Simultaneous

Multithreading Processor.” in Proc International Symposium on Computer Architecture, 1996.
14. P. Shivakumar, et al. “Modeling the Effect of Technology Trends on the Soft Error Rate of

Combinational Logic”, in Proc DSN, 2002.
15. S. Mukherjee, et al. “Detailed Design and Evaluation of Redundant Multithreading Alternatives”, in

Proc ISCA 2002.
16. M. Gomaa, et al. “Transient-fault Recovery for Chip Multiprocessors” in Proc ISCA 2003.
17. Compaq zComputer Corporation, “Data Integrity for Compaq Non-Stop Himalaya Servers”, 1999.
18. T. Slegel, et al. “IBM’s S/390 G5 Microprocessor Design”, IEEE Micro, 1999.
19. D. Ponomarev, et al., “Reducing Datapath Energy through the Isolation of Short-Lived Operands”,

Proc. PACT 2003.
20. N. Abu-Ghazeleh, et al., “Exploiting Short-Lived Values for Low-Overhead Transient Fault Recovery”,

Proc. ASGI 2006.
21. J. Martinez, et al., “Cherry: Checkpointed Early Resource Recycling in Out-of-Order Processors”, Proc.

MICRO 2002.
22. O.Ergin, et al., “Increasing Processor Performance through Early Register Release”, Proc. ICCD 2004.
23. M. Kirman, et al., “Cherry-MP: Correctly Integrating Checkpointed Early Resource Recycling in Chip

Multiprocessors”, Proc. MICRO 2005.
24. J. Smolens, et al, “Fingerprinting: Bounding Soft-Error Detection Latency and Bandwidth”, Proc.

ASPLOS 2004.

	Configuration

