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o Emerging many-core architectures have a potential to significantly
accelerate PDES

o Manycores differ substantially in their core architectures, inter-core
connectivity and memory hierarchy design

o Goal: understand PDES performance on manycores systematically,
without being limited by existing designs

o Approach: simulation-based study using cycle-accurate full-system
performance simulator with PDES as benchmark
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Simulating PDES: Questions to Answer

o What is the optimal trade-off between the core count and the cache
size for PDES?

o What kind of cores provide the best performance/complexity point?

o What is the performance impact of heterogeneous architectures?
o Can better PDES partitioning help?
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Simulation framework: MARSS
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o Models both inorder and out-of-order cores
o Provides flexible configurations for the on-chip cache hierarchy
o Supports full-system simulation

@ Can switch between detailed simulation and emulation mode
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Modeling Power, Area and Delays
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o MCcPAT tool (Jouppi et al., MICRO 2009) estimates the area
requirements of the individual cores

o CACTI tool provides latencies for differently sized last-level caches

o Multithreaded ROSS (ROSS-MT) with Phold model serves as the
benchmark
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Models for Evaluating the Impact of Cache Size and Core

Type/Count

o Model 1: Area-unconstrained homogeneous systems with fixed-size
shared L3 cache and variable number of cores
o Three types of cores considered:

o Large out-of-order core (Large OoO)
o Small out-of-order core (Small O00O)
o Small in-order core

o Model 2: Area-constrained homogeneous systems, with a trade-off
between the size of the on-chip cache and the number of cores
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Core Types and their Parameters

Large OoO | Small OoO | Small In-order
Issue Width 6 3 2
Commit Width 4 3 N/A
ROB Size 168 64 N/A
Instruction Queue Size 32 32 16
ALU 6 3 1
FPU 6 3 1
Load Queue Size 48 24 N/A
Store Queue Size 96 24 N/A
Private L1-1 Cache Size 32KB 32KB 32KB
Private L1-D Cache Size 32KB 32KB 32KB
Private L2 Cache Size 256KB 256KB 256KB
Core Size (sqmm) 19.6154 13.0023 5.2573

o Core size: Large 00O > Small OoO > Inorder core
o Processing speed: Large OoO > Small OoO > Inorder core
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Area-unconstrained Systems with Fixed L3 Cache Size

X109
18 -B-Large OoO
- Small 000
16 —*=Inorder
14

=
[N}

Total Cycles
-

0+
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Cores

o Large OoO cores provide similar performance with small OoO cores,
but significantly outperform in-order core
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Area-constrained Systems: Tradeoff between L3 Cache

Size and Core Counts
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o A larger number of in-order cores results in higher performance

@ With more cores, L3 cache becomes smaller and the cache hit rate
decreases. However, impact on PDES is small.
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Performance Impact of Higher Memory Pressure
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o We added memory operations during each event processing in the
Phold model
o L3 cache has a limited impact on simulation performance for these
models
o High locality in the private L1 and L2 caches

o The number of accesses to L3 is small
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Performance Impact of Core Heterogeneity

o Area-constrained heterogeneous system composed of multiple types of
cores

o Workload partitioning: map different number of simulation objects to
different cores using a specific ratio

Ratio Objects on Each Larger Core
10 =
Objects on Each Smaller Core
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Heterogeneous System with Large and Small OoO Cores
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o Ratio=1: best performance is achieved at this ratio
o Ratio=2: performance improves when more larger cores are used

o Ratio=4: execution time is dominated by the rollbacks
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Heterogeneous System with Large OoO and In-order Cores
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o Ratio=1 or 2: Performance degrades when the number of in-order
cores gets smaller
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Heterogeneous System with Small OoO and In-order Cores
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o Similar trend to the system of large OoO and in-order cores
o Large OoO and small OoO have similar performance

o Need to determine the best-performing partitioning ratio
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Conclusions

o For area-unconstrained design, small out-of-order cores provide the
best performance/complexity trade-off for the same size of the
last-level cache

o For area-constrained design, the best performance is achieved with
the largest possible number of simple in-order cores

@ The shared L3 cache has a minimal performance impact for
Phold-style PDES applications

o Core heterogeneity negatively impacts PDES performance because it
distorts the simulation synchrony. Even if efficiency is high,
performance is constrained by the smaller cores. Not clear if
heterogeneity-aware partitioning can help — further studies are
needed.
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o Determine the optimal partitioning strategy for heterogeneous systems

o Use reproducibility of simulation results to study causes of rollbacks in
optimistic simulation and other subsystems of the PDES engine

o Evaluation of power/performance trade-offs in the architecture design
space

o Evaluation of dedicated hardware support for accelerating critical
PDES subsystems
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Thanks!!

Q&A
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