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ABSTRACT
Parallel Discrete Event Simulation (PDES) harnesses the
power of parallel processing to improve the performance and
capacity of simulation, supporting bigger models, in more
details and for more scenarios. PDES engines are typically
designed and evaluated assuming a homogeneous parallel
computing system that is dedicated to the simulation ap-
plication. In this paper, we first show that the presence of
interference from other users, even a single process in an
arbitrarily large parallel environment, can lead to dramatic
slowdown in the performance of the simulation. We define a
new metric, which we call proportional slowdown, that rep-
resents the idealized target for graceful slowdown in the pres-
ence of interference. We identify some of the reasons why
simulators fall far short of proportional slowdown. Based on
these observations, we design alternative simulation schedul-
ing and mapping algorithms that are better able to tolerate
interference. More precisely, the most resilient simulators
will allow dynamic mapping of simulation event execution
to processing resources (a work pool model). However, this
model has significant overhead and can substantially im-
pact locality. Thus, we propose a locality-aware adaptive
dynamic-mapping (LADM) algorithm for PDES on multi-
core systems. LADM reduces the number of active threads
in the presence of interference, avoiding having threads dis-
abled due to context switching. We show that LADM can
substantially reduce the impact of interference while main-
taining memory locality reducing the gap with proportional
slowdown. LADM and similar techniques can also help in
situations where there is load imbalance or processor het-
erogeneity.

Categories and Subject Descriptors
I.6.8 [Simulation and Modeling]: Types of Simulation—
Discrete event, Parallel
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1. INTRODUCTION
Discrete Event Simulation (DES) is an efficient simulation

methodology used in domains where changes of state occur
at discrete times. It is widely used in a range of application
domains such as the simulation of computer and telecom-
munication systems, war-gaming, transport systems, opera-
tional planning and biological simulations. Parallel Discrete
Event Simulation (PDES) [12] harnesses the computational
power and resources of parallel computing to improve the
performance and capacity of DES, allowing the simulation
of larger models, in more details, and for more scenarios.

PDES simulators have traditionally been designed under
the assumption of a homogeneous environment with no in-
terference from other co-located applications. Interference
from other applications as well as other noise in the system
creates competition for the available resources leading to po-
tential slow downs in parallel applications [20, 31, 27, 22].
In the presence of interference, we expect an application to
slow down proportionately to the reduction in its share of the
resources: a metric introduced in this paper which we call
proportional slowdown. Surprisingly, we found the impact of
interference on PDES to far exceed proportional slowdown,
even when the amount of interference is small. For exam-
ple, when evaluating a multi-threaded fixed-mapping PDES
engine, we discover that even 1 external load can result in
a performance slowdown of a factor of up to 3.9 for an 8-
way simulation on the core i7 platform, and up to 2.8 for a
48-way simulation on an AMD Magny-Cours platform.

A primary reason for the disproportionately high cost of
interference is related to the granularity of the operating sys-
tem (OS) scheduler. In particular, when the OS schedules an
interfering process on a core, it has to context switch one of
the simulation threads out, making it inactive. As a result,
this thread is stalled, while, assuming optimistic simulation,
other simulation processes surge forward. Eventually, when
the OS schedules the process again, its late events cause
rollbacks throughout the simulation: thus, most of the time
on all processes is lost, and additional inefficiency results
from the overhead of rollbacks. The problem continues to
occur whenever the noise process is scheduled. Describing
and characterizing this behavior in the presence of noise is
one of the contributions of this paper.

It is important to note that this problem differs signifi-
cantly from load-balancing problem that can be solved with
dynamic object migration [23, 15]: unless all objects are mi-



grated away from a context switched thread, the problem
persists. Moreover, the problem happens at the granularity
of the OS scheduler: a thread stops execution completely
while it is context switched out, only to return to normal
execution later. The victim thread typically changes based
on affinity settings and OS scheduler decisions.

Carothers et al. noted that interference from external
loads can pose significant performance slowdown [7], but
did not elaborate on the reasons, or propose solutions to
this problem. More recently, Malik et al. [19] studied the
problem of executing PDES in a cloud environment where
many applications are scheduled on the same infrastructure
and co-interfere with each other. The impact of the problem
was extensive, and they proposed the use of a master-worker
model to provide flexibility of assigning available computa-
tional threads to execute the available simulation events.
Flexible mapping of workers to work can provide resilience
to interference as well as load imbalance, but could result in
poor locality as simulation state moves frequently between
hardware threads, rather than staying with one thread, and
reaping the benefits of caching. To the best of our knowl-
edge, no prior work in PDES has analyzed the impact of
interference on PDES, explained the slowdown, or proposed
solutions to it.

The goal of this paper is to develop alternative organi-
zations to PDES simulation that are more resilient to the
impact of external interference. In conventional PDES im-
plementations a simulation model is partitioned across mul-
tiple processing elements (PEs). Each PE (a group of LPs)
is executed by a process (or thread). In many existing PDES
simulators such as ROSS [3] and WarpIV [30], the mapping
between PEs and processes (or threads) is established at the
initialization of simulation, and does not change during the
simulation (the so called fixed-mapping, or FM, scheme).
FM can achieve optimal performance in a load balanced
simulation in the absence of external interference, primarily
because it promotes locality of memory references, and be-
cause it incurs little overhead for scheduling [14]. However,
FM suffers in the presence of interference because a stalled
thread remains responsible for simulating its objects leading
to poor performance.

In this paper, we explore interference-resilient execution of
PDES on two multi-core platforms: a quad-core Intel core i7
system, and a 48-core AMD Opteron Magny-Cours platform
with Non-Uniform Memory Access (NUMA) latencies. We
first propose a dynamic-mapping (DM) scheme that is capa-
ble of dynamically changing the mapping between PEs and
threads during the simulation. In particular, each thread
attempts to work on a PE in a round-robin fashion. For
correctness, each PE can only be mapped to one thread at a
time. As a result, DM has limited opportunities to solve the
problem: a thread is often switched out while in the mid-
dle of processing events on a PE. Other threads thus cannot
assist and execute the PE until the thread gets scheduled
again and releases the lock, causing the PE to lag far be-
hind of others. Thus, although some performance benefit
can be obtained, we discovered that the baseline DM can-
not effectively solve the interference problem.

To address this problem, we propose an adaptive DM
scheme that reduces the number of active threads when in-
terference is detected. As a result, the number of threads is
again matched to the available hardware contexts, and the
simulation does not have to suffer extended periods when

one of its threads is switched out. In this context, the re-
maining threads have to service a number of PEs that is
larger than them. Having the threads switch in round robin
fashion among the PEs, promotes load balanced operation
but leads to poor locality as PEs move among threads caus-
ing cache interrogation. More precisely, the Locality Aware
Adaptive DM (LADM) scheme creates a schedule where
each thread is primarily associated with one PE, but spends
a portion of its time helping one other PE. The proportion
of time is chosen so that the total active time each PE re-
ceives remains balanced, avoiding straggler objects. Since
each thread works on a limited number of PEs (two under
reasonable interference conditions), locality is kept high.

LADM has the following key characteristics:

1. In the absence of external loads, LADM incurs small
performance loss (less than 5%) compared with the op-
timal FM implementation on both the Intel core i7 and
AMD Magny-Cours machines. The loss includes the
overhead of detecting interference, but also the cost of
rate misprediction of interference; a problem we hope
to address with more careful design of the detector.

2. LADM can substantially reduce the impact of inter-
ference, thus reducing the gap with proportional slow-
down.

3. LADM can successfully detect performance anomalies
caused by external loads during the simulation without
user interaction.

4. LADM exhibits good locality of memory references on
both multi-core platforms.

As a result, LADM is able to achieve 2-4X improvement
in performance in the presence of interference on both a 4-
core (8 hardware threads) Intel core i7 and a 48-core AMD
Magny-cours machine.

The remainder of the paper is organized as follows. Sec-
tion 2 provides background information regarding both PDES
simulator and two multi-core platforms we used in our exper-
iments. We then define proportional slowdown to quantify
the PDES performance in the presence of external loads in
Section 3. In Section 4, we show the actual impact of exter-
nal loads on the performance of fixed-mapping PDES simu-
lators. We then explain why the performance of PDES sim-
ulator with FM implementation suffers considerably when
the simulation is interfered by external loads. In Section 5,
we provide a design overview of the baseline DM mechanism.
In Section 6, we provide the details of our LADM scheme
that can address the limitations in the baseline DM imple-
mentation. Section 7 presents an experimental evaluation.
In Section 8, we overview some related work. Finally, in
Section 9 we present some concluding remarks.

2. BACKGROUND
In this section, we first overview the multi-threaded simu-

lator used in this paper. We follow by providing an overview
of the two multi-core platforms used in the experiments: a
quad-core Intel core i7 system, and a 48-core AMD Opteron
Magny-Cours.

2.1 ROSS-MT: A state-of-the-art Multi-thread
PDES Simulator

We use a recently developed multi-threaded version [17] of
the Rensselaer’s Optimistic Simulation System (ROSS) [3].



ROSS is a state-of-the-art PDES simulation engine which
supports both conservative and optimistic simulations. The
multi-threaded ROSS (ROSS-MT) encapsulates each group
of objects as a PE and assigns each PE to a thread (i.e.,
it uses Fixed Mapping). The thread-based implementation
allows optimizing communication using fast shared memory
operations.

In ROSS-MT, a simulation model is partitioned across
multiple PEs. Each PE processes the events in time-stamp
order, and communicates with others via time-stamped events.
In the optimistic simulation, ROSS-MT leverages efficient
reverse computation [4], instead of the more conventional
state saving [21], to undo incorrectly processed events in
case of rollbacks. The events for each PE are executed re-
peatedly within a simulation loop until the simulation time
of the PE reaches the simulation completion time. During
each iteration, a designated number of events (batch size)
can be processed before moving to the next iteration. Global
virtual time (GVT) is computed every GVT interval, which
is a configurable variable.

2.2 Multi-core Platforms
We use two multi-core platforms with significantly differ-

ent CPU and memory organizations. The first is a quad-
core Intel core i7 system. In this platform, each core has
private 32 KB L1 and 256 KB L2 caches, and shares 8MB
L3 cache with other cores. With Hyper-Threading enabled,
each core can simultaneously execute two hardware threads
which share both L1 and L2 caches. The second architec-
ture we use is an AMD 48-core machine. It consists of
four AMD Opteron 12-core chips, connected with Hyper-
Transport links. Each chip has two dies, with each die hold-
ing six cores. Each core has private 64 KB L1 and 512 KB
L2 caches, and shares 6MB L3 cache with other cores on
the same die. In addition, the memory accesses to different
memory regions on this platform have non-uniform memory
access (NUMA) latencies [9].

3. IDEAL SLOWDOWN UNDER INTERFER-
ENCE

Consider a PDES simulation running with Np threads on
a multi-core platform. Let Nc be the total count of hardware
threads such that all these threads can execute at the same
time; hardware threads refers to cores, or hardware contexts
in the case of Simultaneous Multi-Threaded (SMT) proces-
sors. Suppose that an external interfering load can start and
terminate at any time during the simulation. Thus, to mea-
sure performance more accurately, we divide the simulation
into n small intervals [Xj−1, Xj ] indexed by j. In addition,
let Ntotal be the total number of software threads execut-
ing on the machine (i.e., the number of PDES threads, as
well as the number of external loads running concurrently)
during the interval j. We assume that the operating system
scheduler fairly allocates its CPU resources to each thread.
In other words, each load obtains ( Nc

Ntotal
) of the available

CPU time on average during the interval j, assuming that
Ntotal loads compete for Nc CPUs. Therefore, the expected
PDES slowdown under such conditions during the interval
j is approximated by:

Sj =
Ntotal

Nc
=

Np + Ne

Nc
(1)

where Ne is the number of external loads running concur-

rently with PDES during the interval j. Note that the above
reasoning assumes that threads are computation bound and
are therefore available to run whenever the scheduler sched-
ules them. We call Sj the proportional slowdown during the
interval j, since Sj increases proportionately to the number
of interfering load processes. We assume that Ntotal is al-
ways greater than or equal to Nc, and the interference from
external loads on PDES performance occur if Ntotal > Nc.

The run time of the entire PDES simulation in the pres-
ence of external loads can be approximated by adding up
the expected run time across all intervals. Let Tj be the ex-
ecution time required for the interval j of a FM simulation
without interference. By multiplying Tj by the correspond-

ing Sj , we obtain T
′
j , defined as the execution time required

for the interval j of the simulation in the presence of external
loads. Therefore,

Tideal =

n∑
j=1

T
′
j =

n∑
j=1

Tj × Sj (2)

denotes the ideal runtime of the entire simulation in the
presence of external loads. Tideal represents a best case sce-
nario where the presence of interference merely reduces the
amount of available resources and results in a slowdown pro-
portional to this reduction. We will show that in practice,
the impact is significantly worse than Tideal because of the
dependencies between the threads belonging to one applica-
tion.

4. MEASURED IMPACT OF INTERFERENCE
In the previous section, we defined proportional slowdown

as a metric that expresses the ideal slowdown of an applica-
tion in the presence of interference from external processes.
In this section, we evaluate the slowdown experienced by
both the ROSS-MT and WarpIV PDES simulators, showing
that both far exceed proportional slowdown. In the next
section, we start exploring approaches to improve the per-
formance of simulation in the presence of interference.

4.1 PDES Slowdown Under Interference
For most of the experiments, we use the Phold simulation

model [13], which equally distributes a number of simula-
tion objects among PEs. We use a controllable version of
Phold that allows specifying the communication percentage
between different objects on different cores. The simulation
consists of 8 PEs running on the Intel core i7 platform, and
48 PEs running on the AMD 48-core machine, with 1000 ob-
jects per PE. Each PE was also mapped to a different thread,
thus all CPU resources were used by ROSS-MT threads in
the absence of external loads. In addition, we selected a
GVT interval of 128 on both platforms, with a batch size of
24 events. Although the results are somewhat sensitive to
the GVT interval (as a small GVT interval acts as a throttle
to the simulation [26]), these values are in the range where
ROSS-MT is most efficient across a range of models.

We use a CPU-intensive process as the external load;
the process repeatedly performs computation within a tight
loop. Thus, the process when active competes continuously
for CPU cycles with the ROSS-MT threads. In the exper-
iments, the external load is started with ROSS-MT, and
executes for the duration of the simulation. Thus, propor-
tional slowdown from 1 external load can be calculated by
Equation 1 to be 9

8
for the core i7 and 49

48
for the AMD
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Figure 1: The Relative Slowdown of ROSS-MT caused by External Loads

Magny-cours. In these experiments, we do not set the CPU
affinity for either ROSS-MT or the noise process, providing
the OS scheduler complete freedom in scheduling the pro-
cessing threads to the hardware resources.

Figure 1(a) and Figure 1(b) show the relative slowdown
experienced by ROSS-MT as the number of external loads
increases, on the Intel core i7 system and AMD Magny-
Cours machine respectively. The relative slowdown is cal-
culated by dividing the execution time of simulation in the
presence of interference by the one without interference. We
show these results as the percentage of remote communica-
tion is increased, which increases the dependencies among
the different PEs. ROSS-MT with 0% remote communica-
tion performs close to proportional slowdown: since there
are no dependencies between PEs, if a PE is delayed it does
not affect the progress at other PEs. The OS scheduler does
not always context switch out the same thread; thus, all
threads make progress with their computation. In contrast,
the interference from external loads dramatically degrades
the performance of ROSS-MT even when a small amount of
remote communication exists, far beyond proportional slow-
down. For example, even 1 external load can result in a per-
formance slowdown in ROSS-MT of a factor of up to 3.9 on
the Intel core i7 machine, and up to 2.8 on the AMD Magny-
Cours machine; these values far exceed the ideal slowdown
of 1.125 and 1.02 for the core i7 and the Magny-cours re-
spectively.

The problem is not specific to ROSS: we were able to
demonstrate similar trends, and even worse slowdown, on
the WarpIV PDES simulator [30]. Table 1 show 4-way opti-
mistic and conservative simulations interfered by 1 external
load on a quad-core processor; due to export control re-
strictions on WarpIV, we had to run this experiment on a
quad-core Xeon machine. Somewhat surprisingly, the sim-
ulation almost stops when the external load takes 100% of
the time on one core (a situation which occurred some times,
a decision that the linux scheduler makes). We believe this
situation is due to the fuzzy barrier used in GVT computa-
tion in WarpIV [16]. At any given time, one thread is not
executing and the fuzzy barrier condition is not met. How-
ever, even when the external load gets a lower scheduling
priority and shares one of the CPU cores with a PDES pro-
cess, the WarpIV simulation still experiences a performance
slowdown of a factor of about 2. The situation was the same
for both conservative and optimistic simulation.

Table 1: Execution Time of a 4-way Simulation on
a Quad-core Processor using WarpIV Simulator

Optimistic Conservative

No External Load 6 sec 10 sec
1 External Load takes

50% CPU of a core 12 sec 19 sec
1 External Load takes
100% CPU of a core > 4.7 hours > 40 hours

4.2 Explaining the Impact of Interference
Table 2 and Table 3 show the efficiency of ROSS-MT

achieved on the two multi-core platforms. The interferences
from even one external load substantially reduces the effi-
ciency of the simulation (from around 95% to around 61%
on the Intel core i7 platform). Additional interfering pro-
cesses further degrade efficiency.

To understand the drop in efficiency and the resulting
slowdown, we first explain the event processing mechanism
within ROSS-MT. As is typical with most PDES simula-
tors, each thread is assigned a unit of work comprising of
a group of objects (PE). The groups of objects assigned to
each thread are selected, often via a partitioning algorithm
(e.g., [2]), to minimize costly communication and to load
balance computation. Each thread is responsible for pro-
cessing all events whose destination is an object in its PE
group. Thus, the mapping of work to threads is fixed.

Consider a 2-way simulation of ROSS-MT, with 1 LP per
PE, as seen in Figure 2. PE 1 and PE 2 are executed by
thread 1 and thread 2 respectively. Suppose an external
load starts and interferes with thread 2 at wall clock time
t1, after a GVT computation phase (which requires bar-
rier synchronization in ROSS). Once the interfering noise
process is scheduled, thread 2 is context switched out and
stops execution, while thread 1 continues. Thread 2 does
not get scheduled again until the noise process exhausts its
OS quantum (or otherwise, some other hardware context be-
comes available); the OS quantum is typically in the 10s of
milliseconds, sufficient for Thread 1 to execute several mil-
lion CPU cycles. At a wall clock time t2 (t2 > t1), thread
2 resumes execution, and PE 2 sends an event e1 to PE 1.
Due to the large pause in execution, this event is most likely
a straggler as PE 1 has executed far ahead of PE 2 limited



Table 2: Efficiency of 8-way Simulation on the Intel Core i7 machine
Remote Communication Number of External Loads

(%) 0 1 2 3 4 5
0 100% 100% 100% 100% 100% 100%
5 94.6% 61.0% 51.4% 48.0% 45.3% 42.3%
10 96.3% 51.6% 46.0% 42.9% 40.8% 38.3%
20 96.8% 49.8% 43.6% 40.9% 38.8% 36.8%

Table 3: Efficiency of 48-way Simulation on the AMD Magny-Cours machine
Remote Communication Number of External Loads

(%) 0 1 12 18 24 30
0 100% 100% 100% 100% 100% 100%
5 95.9% 78.5% 47.0% 44.5% 45.4% 42.1%
10 96.4% 65.7% 41.7% 39.5% 39.0% 38.0%
20 96.9% 66.5% 41.5% 39.0% 36.6% 35.9%

only in the ROSS case by the GVT computation interval; in
other simulators, the degree of optimism can be unbounded.

Upon receiving e1, PE 1 is rolled back to a simulation time
before that of e1, and then is re-executed. Thus, not only is
processing time lost at PE 2 while it is context switched out,
but most of the time available to PE 1 is also wasted, which
explains why the slowdown exceeds proportional slowdown.
The overhead of large rollbacks in terms of state restoration
(or reverse computation), sending anti-messages, and other
data structure restoration exacerbates the inefficiency. This
effect exists whenever any of the simulation threads is con-
text switched out, leading to the type of slowdown that we
observe.

Thread 1

LVT

External 
Loads

1. At t1,  thread 2 
stops execution 
because of 
context switch   

  GVT synchronization

2. At t2, thread 2       
resumes execution, 
and PE 2 sends e1 
to PE 1

3. PE 1 is rolled back 
and re-executed 

PE 1 PE 1 PE 1

Thread 2

LVTPE 2 PE 2

Figure 2: A Rollback caused by Interferences from
External Loads

Note that the effect also holds if we use conservative sim-
ulation. A thread that is context switched out is not able to
update the lookahead at other LPs, preventing them from
proceeding. In fact, this problem generalizes to any parallel
application with dependencies.

5. CAN DYNAMIC MAPPING HELP?
To address the destructive behavior that occurs in the

presence of interference, we first attempt dynamic mapping
(DM) of threads to PEs. More specifically, in this scheme,
we periodically remap the threads to different PEs (recall

that each PE encapsulates a group of objects in the simu-
lation). The intuition behind DM is that it allows active
threads to rotate across the different PEs, avoiding having
a PE lag far behind the others.

Recall that each thread in ROSS-MT executes a loop that
repeatedly performs the simulation tasks such as sending
and receiving events and event processing. To implement
DM, we add a new step at the beginning of the loop where
a thread determines which PE to associate itself with; the
base implementation simply rotates threads in a round-robin
fashion across the PEs. Consider the example as shown in
Figure 2. After thread 2 finishes the execution of PE 2 for
an iteration, it then switches to PE 1. Thus, in principle,
the active thread alternates working on PE 1 and PE 2,
reducing the LVT difference between them. Alternative ba-
sis for scheduling PEs to threads are possible (for example,
attempting to work on the PE with the lowest LVT).

Note that a side-effect of remapping threads to PEs is
a loss of data locality: FM permanently maps a hardware
thread to a unit of work, and the caches for the core are
populated with the data relevant to it. As DM remaps work
across cores, the PE data must be brought to each new core
(from shared lower level caches or main memory).

A second, more serious, limitation of DM is its limited
opportunity for assisting performance. More precisely, for
correctness, two threads cannot be attached to the same PE
concurrently, which prevents remapping from being able to
assist if the context switched thread happens to hold the
lock on the PE. We implemented efficient synchronization
using a condition variable and a spin lock for each PE. More
precisely, a PE status is checked (without locking); if the
status is busy, the thread moves on to the next PE. If the
status is free, the thread acquires the spin lock for the PE,
and checks if it is still free. If it is, the thread sets the PE to
busy, and is admitted to work on the PE. Once the iteration
is over, it sets the PE status to free and moves on again to
the next PE.

Thus, DM is limited if the first thread is switched out
while in the middle of processing a batch since the PE will
be marked as busy until the thread is scheduled again. Since
this is the common case, DM cannot effectively solve the
problem. Figure 3 shows the performance of original FM
ROSS-MT in comparison to the baseline DM version for
both the Intel core i7 (Figure 3(a)) and the AMD Magny-



0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

E
xe

cu
ti

o
n

 T
im

e 
(S

ec
o

n
d

s)

Remote Communication (%)

 

 

FM

Baseline DM

Ideal Runtime

(a) Intel Core i7 System

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

E
xe

cu
ti

o
n

 T
im

e 
(S

ec
o

n
d

s)

Remote Communication (%)

 

 

FM

Baseline DM

Ideal Runtime

(b) AMD Magny-Cours System

Figure 3: Performance of FM vs. Baseline DM (Interfered by 1 External Load)

Cours (Figure 3(b)) platforms. In particular, the entire sim-
ulation is interfered by 1 external load. We find that DM
achieves up to 10% performance improvement over FM on
the Intel core i7 platform. Moreover, DM can achieve better
performance than FM on the Magny-cours only under high
remote communication (> 20%). The gap remains substan-
tial with respect to ideal runtime (Equation 2).

Table 4: Efficiency of FM vs. Baseline DM on the
Intel Core i7 System (Interfered by 1 External Load)

Remote Comm (%) 20 40 60 80 100
FM 49.9% 47.1% 47.8% 48.6% 46.7%

Baseline DM 50.7% 49.5% 49.8% 51.2% 49.7%

Table 5: Efficiency of FM vs. Baseline DM on the
AMD Magny-Cours System (Interfered by 1 Exter-
nal Load)

Remote Comm (%) 20 40 60 80 100
FM 67.0% 62.9% 61.1% 58.5% 56.8%

Baseline DM 87.3% 87.9% 88.5% 88.3% 88.3%

The efficiency of a simulation interfered by 1 external
load is shown for both the Intel core i7 (Table 4) and the
AMD Magny-Cours (Table 5) platforms. While the results
of AMD Magny-Cours system show improvements in effi-
ciency of the baseline DM in comparison to the FM version
are observed, the efficiency remains low especially for the
core i7. In most cases, DM was not able to help because the
context switched thread held the PE lock.

6. LOCALITY AWARE ADAPTIVE DM
DM offers only limited relief from the slowdown experi-

enced in the presence of interference. In addition, DM expe-
riences poor cache locality, because of transient short term
association between threads and PEs. In this section, we
propose a locality-aware adaptive DM (LADM) scheduler
that is capable of addressing limitations of DM.

6.1 Adapting the Number of Threads
The first improvement to DM, which we call adaptive DM

(ADM), adjusts the number of work threads to the available
hardware contexts: when a noise process is detected, the

number of active threads is reduced to avoid experiencing
expensive context switches. Thus, only active threads are
allowed to execute PEs. Supporting ADM requires two main
mechanisms: one to detect the presence of interference, and
another to adjust the number of active threads. Finally, a
third mechanism is required to check if the interference is
no longer there and to reactivate idle threads. We discuss
these mechanisms in the remainder of this subsection.

The presence of noise is detected as follows. During ex-
ecution, each active thread periodically monitors its total

event processing time (the period is set to
Tgvt

4
simula-

tion loop iterations in our implementation, where Tgvt is
the GVT interval). The average processing time per event
(APTE) of each active thread is calculated by dividing the
total event processing time by the corresponding number of
processed events. A performance anomaly is decided if the
rate of maximum APTE to minimum APTE is beyond a
user-defined threshold. After the mechanism decides a per-
formance anomaly, the status of the thread with maximum
APTE will be configured as ”inactive”. Each thread checks
its status at the beginning of the simulation loop, and in-
active threads idle. We discover that the threshold plays
an important role in the performance of simulation. If the
value of the threshold is too large, then the performance
anomaly is not reliably detected when interference from ex-
ternal loads exist. On the other hand, too small a value
can cause ADM to incorrectly inactivate a PDES thread in
an interference-free environment. We use a threshold of 1.8,
which we empirically found to work effectively on both plat-
forms.

The final mechanism checks if the noise has disappeared,
and hardware contexts are again available. One inactive
thread is re-activated periodically. If noise remains present,
then the deactivation logic detects that and deactivates the
thread. Thus, the reactivation period must be significantly
larger than the detection period to avoid too frequent test-
ing: (we use 10 × Tgvt, 40 times larger than the detection
period).

ADM can reduce the effect of interferences from external
loads, and thus significantly improves the performance of the
simulation in the presence of external loads. Consider an 48-
way simulation interfered by 1 external load on the 48-core
AMD Magny-Cours machine, for example. Once a perfor-
mance anomaly is successfully detected, the simulation is
then executed by 47 active threads. The OS scheduler will
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Figure 4: Performance of ADM on the Intel Core i7 System (Interfered by 1 External Load)

later assign each thread to a different core, thus reducing
interferences between PDES threads and the external load.

6.2 Improving the Data Locality
To improve the data locality, we modified the ADM sched-

uler to increase locality: we call this implementation locality-
aware adaptive dynamic-mapping (LADM). Similar to FM,
at the initialization of simulation, each thread is assigned
to a primary PE, and maintains this assignment in the ab-
sence of interference to maximize locality. Once interference
is detected and a thread (or more) is deactivated, the PE
assigned to the inactive thread is marked as an orphan until
such a time where its thread is reactivated. The remaining
active threads divide their time between their primary PEs
and orphan PEs.

In particular, after each event processing iteration on its
primary PE, each active thread checks PEs on the orphan
list in a round-robin fashion; it selects an orphan that is
currently behind its primary PE in the number of process-
ing iterations (alternatively, LVT may be used). The status
of the selected PE is then checked, and the spin lock for it
is acquired if its status is free. Once the thread is admit-
ted to work on the PE, it executes Nbatch iterations before
switching back to its primary PE. We set Nbatch to 10 in our
simulations. The thread returns to its primary PE if all the
orphan PEs have caught up with it. Unlike ADM, the PEs
whose primary thread is active remain exclusively processed
by that thread, and only orphan PEs experience a loss of
locality.

6.3 The Expected Runtime of LADM
Suppose that the simulator is configured with Np threads

at the initialization of simulation, where Np equals with the
total count of hardware threads on the multi-core platform.
In addition, we divide the simulation into n small intervals
[Xj−1, Xj ] indexed by j. Let Nj be the number of external
loads running concurrently with PDES during the interval
j of the simulation. Once LADM detects Nj (Nj < Np)
external loads, the simulation is then executed by (Np - Nj)
active threads during the interval j. The expected runtime
of the entire simulation is thus approximated by:

Texpected =

n∑
j=1

Np

Np −Nj
× Tj (3)

where Tj is the execution time required for the interval j
of a FM simulation without interference. Moreover, LADM
allows at least 1 active thread to execute the simulation if
Nj ≥ Np.

It is important to note that LADM does not achieve pro-
portional slowdown. ADM schedulers simply give up hard-
ware contexts that are in contention to avoid a situation
where they are context switched. Because of this conserva-
tive behavior, it is possible for interference loads to crowd-
out the simulation threads resulting in significant slowdown
under high interference. However, the OS scheduling policy
will cause inefficient operation if more threads are running
than there are available hardware contexts. To approach
proportional slowdown, alternative OS scheduling policies
are needed.

7. PERFORMANCE EVALUATION
This section presents a performance evaluation of ADM

and LADM in comparison to FM. Most of the experiments
use the Phold benchmark [13], with 1000 objects per PE. For
some experiments, we use Personal Communication Services
(PCS) system to show that the technique transitions to real
models [6].

7.1 Evaluation of ADM
In the first experiment, we evaluate the performance of

ADM without the data locality optimization. Figure 4 and
Figure 5 show the performance of ADM compared to FM
and baseline DM on the core i7 and Magny-Cours platforms
respectively. In this experiment, we introduce the interfering
load at the start of the simulation, and it runs for the dura-
tion. In Figure 4(a) and Figure 5(a), we see the execution
time as a function of the percentage of remote communi-
cation (the communication between PEs). ADM achieves
better performance than FM on the core i7, but only out-
performs FM at high remote communication (≥ 20%) per-
centages.

The behavior can be partially explained by the high cost
of lower level cache accesses on the Magny-cours relative
to the core i7. At 100% remote communication, for exam-
ple, ADM can achieve a speedup of 2.8X against FM on
the core i7 machine, and 1.8X on the Magny-Cours plat-
form. ADM performs closer to the ideal runtime (predicted
by proportional slowdown) on the core i7 platform than on
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Figure 5: Performance of ADM on the AMD Magny-Cours System (Interfered by 1 External Load)
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Figure 6: Performance of Locality-aware Adaptive Dynamic-Mapping Scheme (No External Load)

the Magny-Cours machine. Thus, the benefit from ADM
is offset somewhat by the increased cache misses and the
poorer locality that results from continuous re-mapping of
the work. The locality aware version of ADM attempts to
address this issue.

As described in Section 6, the baseline DM will experience
poor efficiency when contention becomes heavy, while ADM
can reduce such contention by inactivating some threads.
To demonstrate this, we present efficiency of correspond-
ing simulations (as shown in Figure 4(b) and Figure 5(b)).
Clearly, the baseline DM exhibits a poor efficiency similar
with FM on the core i7 machine, but can achieve relatively
better efficiency on the Magny-Cours machine. In contrast,
ADM can achieve efficiency of over 90% on both platforms.

7.2 The Impact of Data Locality
In ADM, each active thread moves to the next free PE

in a round-robin fashion at the beginning of the simula-
tion loop, even when there is no interference. Thus, ADM
can lead to poor cache locality, as each thread accesses dif-
ferent PEs causing their state to be interrogated between
caches. LADM improves data locality by associating threads
with primary PEs. Only orphan PEs (those whose primary
thread is inactive) experience a loss of locality as their events
are processed by the other active threads.

The next experiment evaluates the performance of FM,
ADM and LADM in the absence of external loads to mea-

sure the overhead of the mechanisms when they are not
needed. As seen in Figure 6, LADM performs up to 11%
better than ADM on the core i7 machine, and up to 53% on
the Magny-Cours machine. In addition, LADM incurs small
performance loss (less than 5%) relative to the FM version.
The overhead is partially due to the extra checking that
LADM does; however, we also noticed that rarely, LADM
incorrectly detects the presence of interference. We believe
that there is room for improving the interference detection
algorithm in future work.

In the next experiment, we consider a scenario with 1 ex-
ternal interfering process (Figure 7). At high remote com-
munication (≥ 20%), LADM outperforms the original FM
by a factor of up to 2.8X on the core i7 machine, and up
to 2.2X on the Magny-Cours machine. In addition, LADM
performs up to 43% better than ADM on the Magny-Cours
machine, due to the fact that LADM can achieve better data
locality. Figure 8 shows the cache miss rates, demonstrating
how LADM has substantially lower cache miss rates than
ADM.

7.3 Impact of Event Processing Granularity
In the next experiment we modify the Phold model to

increase the granularity of event processing time. In partic-
ular, a new parameter, called EPC, is defined to control the
amount of computation for each event processing in Phold.
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Figure 7: Performance of Locality-aware Adaptive Dynamic-Mapping Scheme (1 External Load)
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Figure 8: Cache Performance of 48-way Simulation on the AMD Magny-Cours System

A higher value of EPC gives more computation load increas-
ing the ratio of computation to communication.

We evaluate the performance of FM and LADM as the
number of external loads is increased, for both the Intel
(Figure 9) and AMD Magny-Cours (Figure 10) platforms at
remote communication percentage of 40%. As seen in Fig-
ure 9 and Figure 10, LADM performs better than FM on
both platforms when the simulation is interfered by exter-
nal loads. In addition, the gap with the ideal performance
is decreased as EPC increases. Moreover, the gap between
LADM and the ideal performance on the Magny-Cours ma-
chine is larger than that on the core i7 machine. We believe
that the penalty of a cache miss on the AMD Magny-Cours
machine is high, due to its NUMA characteristics.

Another interesting observation is that FM performs closer
to LADM as EPC increases. We discover that FM is capa-
ble of achieving relatively better efficiency at higher EPCs.
As each event requires more time for processing in the case
of higher EPC, the advance rate of each PE in FM is more
balanced than that in the case of lower EPC.

7.4 Performance Evaluation of PCS Model
In this experiment, we study a model of a Personal Com-

munication Services (PCS) system [6]. The PCS model sim-
ulates how a cellular provider infrastructure handles a num-
ber of mobile phone calls. In this model, an event represents
a mobile phone call, sent from one cell phone tower to an-

other. Each cell phone tower has a fixed number of chan-
nels. Upon receiving a call, the cell phone tower assigns an
available channel to the call, and later releases the allocated
channel when the call completes. If all channels are busy,
the call is blocked. In addition, the call is handed-off to the
destination cell phone tower if the call’s connected portable
is leaving the area of the cell phone tower [6, 5].

The PCS simulation consists of 36864 cells (LPs) dis-
tributed among 8 PEs on the Intel core i7 machine, and
48 PEs on the AMD Magny-Cours machine. Moreover,
we fixed the number of channels per cell phone tower at
10. Figure 11(a) and Figure 11(b) show the performance of
PCS model in the presence of external loads on the core i7
machine and the AMD Magny-Cours machine respectively.
Clearly, LADM performs better than FM on both platforms.
At the case of 5 external loads, for example, the performance
of LADM exceeds that of FM by a factor of 3.7X on the core
i7 machine. In addition, LADM outperforms FM by a fac-
tor of about 2.5X at the case of 30 external loads on the
Magny-Cours machine.

8. RELATED WORK
In this section, we first overview some prior works in the

context of PDES. We follow this by describing the interfer-
ence problem in the general parallel processing community.
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Figure 9: Impact of Event Processing Granularity on the Intel Core i7 Machine
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Figure 10: Impact of Event Processing Granularity on the AMD Magny-Cours System

8.1 Dynamic load-balancing Approaches for
PDES

Dynamic load-balancing approaches rely on a monitoring
scheme to detect load imbalance, and make dynamic ad-
justment to improve the performance of simulation. These
approaches differ in metrics of detecting load imbalance, and
balancing schemes.

Vitali et al. [29, 28] present a load-sharing scheme devel-
oped for a symmetric multi-threaded optimistic PDES simu-
lator. Each PE is executed by multiple worker threads, in or-
der to improve parallelism of the simulation. The approach
works by allowing a PE that is lagging behind to acquire
additional threads to assist with its computation. Thus,
the approach is on the face of it similar to our approach
in that threads can be redirected to work on lagging PEs.
The approach can effectively foster load balanced simula-
tion, but cannot effectively solve the interference problem,
as other threads cannot assist when threads keep getting
context switched in the middle of event processing.

Wilsey et al. [8] proposed a different approach to support
run-time core frequency adjustment on many-core systems,
with the goal of accelerating the critical path of execution
of the Time Warp simulation. To balance workloads of LPs,
the cores containing LPs with larger rollbacks are under-
clocked, while the cores having LPs with smaller rollbacks
are overclocked. Though this approach may reduce rollbacks
caused by external loads, the performance issue caused by

the interference still exists as LPs can’t advance if their ex-
ecuting thread is switched out.

Carothers et al. [5, 7] designed a scheme to support back-
ground execution of Time Warp. A background central pro-
cess periodically monitors the workload of each processor,
and dynamically determines the set of processors to be used
for the Time Warp Simulation. LPs are then distributed
across these processors, by using object migration which is
widely used in many existing dynamic load-balancing ap-
proaches [24, 10, 18]. Dynamic object migration cannot
solve the interference problem as well unless all objects are
migrated away from a context switched thread.

8.2 Other Approaches to Reduce the Effect of
Interference on PDES

In this paper, we demonstrate that the optimistic fixed-
mapping PDES simulation kernel can suffer considerably in
the presence of interference on the multi-core platforms, due
to excessive rollbacks being generated. Malik et al. [19] ob-
served the same behavior present in the cloud environment.
To reduce excessive rollbacks caused by interference, they
developed a protocol, called TW-SMIP, with the goal of
identifying straggler messages early and thus avoiding fre-
quent rollbacks.

Replication is another approach that is capable of reduc-
ing the effect of interference. As presented in [25], multiple
copies of PDES simulation are executed simultaneously on
heterogeneous workstation cluster. It allows the runtime re-
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Figure 11: Performance of PCS Model

configuration in terms of runtime resource availability, and
thus this approach can adapt to interferences from external
loads.

8.3 Interference in General Parallel Process-
ing

Similar to PDES, most parallel applications have depen-
dencies between executing threads. Thus, when the in-
terference occurs, active threads have to wait for context
switched ones before continuing to execute and the pace of
the execution is determined by the slowest thread. As a
result, the performance of these applications can be sub-
stantially harmed [20, 27, 22]. Two approaches are widely
used to balance workloads of threads at run-time: work-
sharing and work-stealing. In work-sharing, when a thread
completes its task, it grabs a new one from a central work
pool shared across all threads [1]. In contrast, in work-
stealing scheme, once a thread finishes its tasks, it steals
other threads’ tasks [11]. However, neither approach can
solve the interference problem unless a context switched
thread does not hold any task.

9. CONCLUSIONS
In this paper, we demonstrated the sometimes dramatic

slowdown that can result in the presence of external inter-
ference. We presented a new metric, called proportional
slowdown, to measure the idealized slowdown of PDES in
the presence of interference and showed that in practice the
observed slowdowns far exceed it. We proposed to use dy-
namic mapping to allow active threads to work on the PEs
in a fair way, allowing the simulation to continue to pro-
ceed even if one or more threads are context switched. We
then proposed a locality-aware dynamic-mapping (LADM)
scheme that improves the locality of the proposed adaptive
scheme by attempting to keep PEs assigned to their primary
threads. Our experimental results showed that LADM is
significantly better able to tolerate interference than fixed-
mapping implementation, thus reducing the gap with pro-
portional slowdown.

Our future work targets effective approaches for improv-
ing the algorithm of scheduling between PEs and threads.
In the current study, each active thread looks up a PE on
the orphan list in a round-robin fashion. We believe that a
better locality can be achieved if the workloads of PEs on

the orphan list are equally divided, and each workload is as-
signed to a specific active thread. We also plan to improve
the accuracy of the interference detection algorithm.
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