
Can PDES Scale in Environments with Heterogeneous
Delays?

Jingjing Wang, Ketan Bahulkar, Dmitry Ponomarev and Nael Abu-Ghazaleh
Computer Science Department

State University of New York at Binghamton
{jwang36, kbahulkar, dima, nael}@cs.binghamton.edu

ABSTRACT
The performance and scalability of Parallel Discrete Event
Simulation (PDES) is often limited by communication la-
tencies and overheads. The emergence of multi-core pro-
cessors and their expected evolution into many-cores offers
the promise of low latency communication and tight mem-
ory integration between cores; these properties should sig-
nificantly improve the performance of PDES in such envi-
ronments. However, on clusters of multi-cores (CMs), the
latency and processing overheads incurred when commu-
nicating between different machines (nodes) far outweigh
those between cores on the same chip, especially when com-
modity networking fabrics and communication software are
used. It is unclear if there is any benefit to the low latency
among cores on the same node given that communication
links across nodes are significantly worse. In this study,
we examine the performance of a multi-threaded implemen-
tation of PDES on CMs. We demonstrate that the inter-
node communication costs impose a substantial bottleneck
on PDES and demonstrate that without optimizations ad-
dressing these long latencies, multi-threaded PDES does not
significantly outperform the multiprocess version despite di-
rect communication through shared memory on the individ-
ual nodes. We then propose three optimizations: message
consolidation and routing, infrequent polling and latency-
sensitive model partitioning. We show that with these opti-
mizations in place, threaded implementation of PDES signif-
icantly outperforms process-based implementation even on
CMs.

Categories and Subject Descriptors
I.6.8 [Simulation and Modeling]: Types of Simulation—
Discrete event, Parallel

General Terms
Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSIM-PADS’13, May 19–22, 2013, MontrÃl’al, QuÃl’bec, Canada.
Copyright 2013 ACM 978-1-4503-1920-1/13/05 ...$15.00.

Keywords
PDES, Cluster of Multi-cores, Multi-thread

1. INTRODUCTION
Communication latency represents one of the major chal-

lenges in scaling many important classes of parallel appli-
cations, especially those that exhibit fine-grained communi-
cation and synchronization patterns, such as Parallel Dis-
crete Event Simulation (PDES). The emergence of multi-
core processors and the trend of increasing the number of
cores per processor offer a significant advantage for PDES
applications: the low communication latency between cores
allows for faster communication, and the tight memory in-
tegration allows for more efficient communication abstrac-
tions that reduce the software overheads of communication.
Unfortunately, these advantages are limited to small scales:
for large scale PDES applications that require more cores
than is available on a single node1, it is necessary to use a
cluster of multi-cores (CMs). In such an environment, the
communication delays and software overheads for communi-
cation across machines (inter-node communication) can be
substantially higher than those between cores on the same
machine (intra-node communication).

To understand and quantify this impact, we investigate
the performance of PDES [16] on CMs. Specifically, the
question that we address in this paper is the following: In
the presence of heterogeneous delays, do fine-grained appli-
cations such as PDES benefit from the low latency available
between some cores, or are they limited by the performance
of the slowest links? To explore this question, we perform
experiments on a cluster of multi-core nodes connected using
Gigabit Ethernet and using MPI for communication across
nodes. For cores on the same node, we explore the use of
both MPI as well as more efficient communication exploit-
ing the shared memory hierarchy between the cores on the
same node. We show that the remote communication across
nodes plays a critical role in determining the performance of
PDES. The message processing delay on the communicat-
ing thread becomes a performance bottleneck of PDES. As
a result, much of the available processing time is consumed
in sending and receiving these events. Moreover, the high
communication latency results in many messages arriving
late, slowing down the simulation progress even further by
causing rollbacks.

Therefore, we argue that the impact of the heterogeneous

1In this paper, we use node to mean a single multi-core
machine.

delays must be considered as a first class design consider-
ation when developing PDES algorithms to run on CMs.
We demonstrate three techniques that significantly reduce
the impact of the heterogeneous delays. The first technique
we investigate is consolidated message routing between ma-
chines. In particular, to reduce the impact of message send-
ing and receiving overheads, we combine messages originat-
ing from different cores on one machine to different cores on
another machine to amortize the software overhead of pro-
cessing them. Dedicated communication threads combine
the messages on the sending side, without delaying mes-
sages. On the receiving side, the communication threads
extract the individual messages and route them to the ap-
propriate core using shared memory. We further improve
the performance of the receiver communication thread by
adjusting the frequency of polling for message arrival; with
message consolidation, the number of messages is reduced,
allowing us to reduce the frequency of the expensive polling
operation. Combined, these two optimizations allow the
threaded PDES implementation to achieve a 4.5X improve-
ment in performance compared to the process-based imple-
mentation.

To further highlight the need for algorithmic awareness of
the CM topology, we implement model partitioning in PDES
in a way that is aware of the high cost of inter-node com-
munication. In particular, we modified a recently proposed
partitioning algorithm [1] to first partition across machines
(minimizing the model communication between machines)
and then partition the work across the cores on the same
machine. We compare this strategy to one that partitions
between the cores without consideration to the high com-
munication latency between machines. Again, significant
improvement in performance (up to 44% in some scenarios)
is achieved by simply informing the partitioning tool of the
communication cost hierarchy.

The remainder of the paper is organized as follows. Sec-
tion 2 provides background information about the multi-core
cluster environment we use, as well as PDES simulator. In
this section, we also analyze the impact of the heterogeneous
communication latencies on CMs for PDES. In Section 3,
we focus on optimizations to help overcome this impact for
PDES application. Section 4 presents an experimental eval-
uation of PDES performance. In Section 5, we overview
some related work. Finally, in Section 6 we present some
concluding remarks.

2. IMPACT OF HETEROGENEOUS CM LA-
TENCIES ON PDES PERFORMANCE

In this section, we first present some background regarding
clusters of multi-cores (CMs) used in our experiments. We
follow this by evaluating PDES performance on CMs. The
goal of these experiments is to show the large impact that
the heterogeneous latencies present in these environments
on PDES performance.

2.1 Multi-cores and Clusters of Multi-cores
In our experiments we use a cluster of 4-core Intel core i7

machines (Figure 1), running Debian 6.02 distribution for
each node. Each core has private L1 and L2 caches, and
shares the L3 cache with other cores. In addition, Simulta-
neous Multi-Threading (SMT) is employed on each node to
increase the degree of available parallelism (SMT is called

Hyper-Threading on Intel processors). More precisely, each
core has two hardware threads which share most of the core
pipeline structures, as well as the L1 and L2 caches. With 4
cores, each supporting two hardware threads, each node can
execute up to 8 concurrent hardware threads. The nodes
are connected using a Gigabit-Ethernet network.

We first use an MPI-based Ping-Pong benchmark to eval-
uate the communication latency in this environment. There
are three types of communication in such CMs : intra-core,
inter-core, and inter-node, as shown in Table 1. The intra-
core communication occurs between two hardware threads
on the same core, while inter-core communication happens
among different cores on the same node. Inter-node com-
munication is the communication over the network. Table 1
shows these three types of communication latency under
different message sizes on the multi-core cluster connected
through a Gigabit Ethernet switch. At any message size,
the latency of inter-node communication is approximately
two orders of magnitude larger than that of other two types
of intra-node communication.

Node 1

L2 Cache(256KB)

L1 Cache (32KB)

Thread
1

Thread
2

Core 1 Core 2

Thread
1

Thread
2

L2 Cache(256KB)

L1 Cache (32KB)

L2 Cache(256KB)

L1 Cache (32KB)

Thread
1

Thread
2

Core 3 Core 4

Thread
1

Thread
2

L2 Cache(256KB)

L1 Cache (32KB)

L3 Cache (8192KB) NetworkNetwork

Figure 1: A cluster of Intel Core-i7 nodes

Message Size (Bytes) intra-core inter-core inter-node
4 0.22 0.24 62.38
32 0.25 0.25 62.23
256 0.28 0.3 64.82
1024 0.35 0.38 78.06
8192 1.17 1.42 150.63
16K 2.37 2.88 268.61

Table 1: Heterogeneous Latency on the Cluster of
Core-i7 Nodes (µSecs)

2.2 PDES Performance on CMs
We use a Parallel Discrete Event Simulation (PDES) en-

gine to study the impact of heterogeneous latencies on CMs.
PDES is an important application as it supports efficient
simulation of large scale models in many domains includ-
ing computing and telecommunication systems. In PDES,
a simulation model is partitioned across multiple processing
elements (PEs). Each PE processes the events destined to
it in time-stamp order. For correct simulation, synchroniza-
tion is needed to ensure that events generated from other
PEs are also executed in the correct order [2, 16]. In conser-
vative simulation, PEs must wait for assurance from other
PEs that it is safe for them to process an event. In contrast,

0% remote 20% remote 40% remote 60% remote 80% remote 100% remote
0% regional 7.3 sec 44.7 sec 70.3 sec 95.6 sec 117.5 sec 141 sec
20% regional 10.9 sec 44.4 sec 70.7 sec 95 sec 117.5 sec N/A
40% regional 12.3 sec 44.9 sec 71.2 sec 95.4 sec N/A N/A
60% regional 12.8 sec 45.5 sec 71.9 sec N/A N/A N/A
80% regional 14.3 sec 47.3 sec N/A N/A N/A N/A
100% regional 15.3 sec N/A N/A N/A N/A N/A

Table 2: Effect of Heterogeneous Latency for baseline ROSS-CMT

0% remote 20% remote 40% remote 60% remote 80% remote 100% remote
0% regional N/A 100% 100% 100% 100% 100%
20% regional 0% 72.5% 82.3% 86% 87.3% N/A
40% regional 0% 58.5% 70% 75.5% N/A N/A
60% regional 0% 48.9% 60.6% N/A N/A N/A
80% regional 0% 41.9% N/A N/A N/A N/A
100% regional 0% N/A N/A N/A N/A N/A

Table 3: The Rollback Percentage caused by remote events

optimistic simulation allows each PE to proceed without ex-
plicit synchronization. However, if an event is received with
a time-stamp earlier than the current simulation time (a
straggler event), the simulation is rolled back to a simulation
time before that of the straggler event and re-executed. In
both types of simulation, communication latency and soft-
ware overheads play a critical role in determining perfor-
mance. These overheads determine how fast event messages
are communicated affecting simulation progress. The high
latency also influences synchronization which has substantial
effect on the progress rate and efficiency of the simulation.

We use the Rensselaer’s Optimistic Simulation System
(ROSS) as the simulation engine for our studies. ROSS is
a highly efficient state-of-the-art simulator, that uses pro-
cesses for each PE. Processes communicate with messages
using the MPI library [6]. In the original ROSS simulator
(ROSS-MPI), two message copy operations are needed for
each message even when the PEs are on the same node,
with access to shared memory. Message copies significantly
increase the overhead of communication. In order to solve
this performance bottleneck, a multi-threaded ROSS simu-
lator (ROSS-MT) was implemented for a single multi-core
shared memory node [19]. ROSS-MT uses message pointers
to exchange messages and can avoid the message copying,
forming, and other MPI overheads.

ROSS-MT is limited to a single node. To reach higher
scales, an extended version of ROSS-MT, called ROSS-CMT,
was recently developed to support CMs [33]. In ROSS-CMT,
in order to avoid the overhead when multiple threads in-
voke MPI functions simultaneously, only one communica-
tion thread on each node performs communication across
the network. The communication thread looks up the out-
put queue of each thread in a round robin fashion, and sends
remote events to the corresponding destination nodes. Once
the communication thread at the receiver side probes (or
polls) the event successfully, it then inserts the pointer of
this event to the input queue of the destination thread. Gen-
erally speaking, ROSS-CMT performs better than ROSS-
MPI on CMs, however, the delay of message processing at
the side of communication thread imposes a performance
bottleneck [33]. In this paper we use ROSS-CMT to study
the impact of the heterogeneous latencies on CMs. Differ-
ent from [33], this work provides three optimizations to hide
high latency of inter-node communication for ROSS-CMT.

Finally, we offer a detailed performance analysis of the op-
timized ROSS-CMT, by comparing it with both baseline
ROSS-CMT and ROSS-MPI on CMs.

To characterize the impact of CMs on ROSS-CMT, we
use the classical Phold benchmark [17]. Phold is a stan-
dard benchmark used in performance evaluation of PDES. It
consists of a number of simulation objects distributed among
multiple PEs. In our experiments, each PE is mapped to one
thread in ROSS-CMT, or one process in ROSS-MPI. During
execution each object randomly picks up a target and sends
a time-stamped event message to the target. Upon receipt of
the event, a new event may be generated to another target.
Phold is controllable; allowing the percentage of communi-
cation between different objects to be specified to control
the ratio between local, regional and remote events. Phold
is a synthetic model with simple dependencies among ob-
jects, which allows us to study behavior under controlled
conditions.

Table 2 shows the performance of ROSS-CMT with op-
timistic simulation, under different percentages of regional
and remote communication on 4 nodes, with 8 threads each.
Remote communication refers to traffic across nodes, while
regional communication indicates the communication be-
tween cores on the same node. The rest of the commu-
nication is local and occurs within the same PE. Table 2
shows that the execution time increases substantially as the
remote communication increases; at the case of 80% remote
communication and 20% regional communication, the sim-
ulation runs approximately 10 times slower than 0% remote
communication case with the same percentage of regional
communication. Clearly, the impact of regional commu-
nication for ROSS-CMT is much less than that of remote
communication. For example, at 0% remote communica-
tion, the performance drops only from 7.3 seconds to 15.3
seconds when regional communication increases from 0% to
100%.

Table 3 shows the percentage of rollbacks caused by re-
mote communication. At the case of 20% remote communi-
cation and 20% regional communication, 72.5% of total roll-
backs are caused by remote events. Rollbacks occur when
events are arriving late and the local simulation time pro-
ceeds beyond their simulation time. It is considerably more
likely for a rollback to be triggered by an incoming remote
event, rather than regional event, because of the high la-

tency on the slow communication link used to send the re-
mote events. Thus, it is necessary to consider optimizations
to reduce the cost of remote communication in PDES.

3. MANAGING HETEROGENEOUS COM-
MUNICATION LATENCY

In this section, we discuss the use of three optimizations to
reduce the message communication overheads, and to hide
the inter-node communication latency on CMs. The theme
of these optimizations is to focus on the impact of the ex-
pensive communication links, by reducing the frequency of
communication across them. We first describe the imple-
mentation of message consolidation on ROSS-CMT, where
multiple messages are combined and routed through the slow
links together. Next, we build up on the message consoli-
dation technique by exploiting the observation that fewer
messages now arrive from the distant links. To capitalize on
this, we propose infrequent polling to reduce the frequency
of the expensive operation to check for the incoming mes-
sages. Finally, we investigate making the high cost links
visible to model partitioning in ROSS-CMT to better map
the model around them.

3.1 Optimization 1: Message Consolidation and
Routing

Message send operations across nodes incur significant
overheads including multiple buffer copies and system calls/OS
delays on both the sender and receiver sides. Therefore,
when inter-node communication is frequent, these overheads
can dominate, increasing the message processing latency,
but also potentially delaying critical messages and slowing
down overall application progress.

We address this limitation by employing an optimization
called message consolidation and routing. Message consol-
idation creates designated communication threads on each
node that act as consolidation points for communication. In-
stead of communicating directly, threads prepare their out-
going messages which are then collected by the communica-
tion threads and consolidated when possible to reduce com-
munication overhead. More precisely, each thread maintains
multiple output queues, and queues each remote event into
the appropriate one based on which machine this event will
be sent to. The communication thread looks up every out-
put queue of each thread, and aggregates multiple events
into one message before transmission. At the receiver side,
the messages are deconsolidated and delivered to the appro-
priate thread.

A critical parameter for message consolidation is the num-
ber of messages consolidated in one send. In our approach,
we set a threshold based on the cumulative size of the con-
solidated message. This approach allows us to match the
sent message size to the underlying communication medium
maximum payload size in order to avoid expensive MAC
layer fragmentation. For Ethernet, the maximum payload
size is 1500 bytes, which allows us to aggregate up to 10
event messages in ROSS-CMT. The use of Ethernet jumbo
frames could offer room for higher degrees of consolidation,
especially for applications that have large size messages.

This approach bears some similarity to traditional mes-
sage consolidation (also known as message aggregation) [11].
In these approaches, messages from the same sender to the
same receiver are consolidated to amortize overhead. Often,

the sender artificially delays messages in hope of receiving
additional messages to send to increase the opportunity for
aggregation. In contrast, the proposed optimization com-
bines messages from different senders to different receivers
as long as these messages share the source and destination
nodes. As such, it exposes significantly higher opportunities
for consolidation and avoids the need for delaying messages
in hopes of receiving later messages for consolidation. In
other words, consolidation is not only carried out over time,
it is also carried out across different senders and receivers
sharing the same source and destination nodes. By focusing
consolidation on the slow inter-node links–no consolidation
is carried out between cores on the same node– we achieve
the highest reduction in communication overheads.

3.2 Optimization 2: Infrequent Polling for In-
coming Messages

In ROSS-CMT, each communication thread maintains a
loop for sending and receiving remote messages. The next
loop iteration will be processed if the communication thread
sends or receives a remote message during the current loop
iteration. In order to detect the incoming remote messages,
each communication thread probes (or polls) the network
every iteration. However, probing is an expensive opera-
tion, and probing too aggressively increases overhead, often
discovering that no message is available. To avoid unneces-
sary expensive probes, we implemented infrequent polling in
ROSS-CMT. In particular, the frequency of polling is con-
trolled by a configurable parameter, called polling frequency.
For example, a polling frequency of 4 indicates that a probe
operation occurs after every fourth iterations processed. In
addition, we investigated both static and dynamic polling
strategies. For the static polling strategy, the polling fre-
quency is fixed during the simulation. On the other hand,
the polling frequency can be adjusted in the dynamic polling
strategy based on the behavior of previous probes. It reaches
an effective probing rate that balances the overhead of prob-
ing against the loss of efficiency that may result if some mes-
sages are received late. We also note that message consol-
idation can benefit probing because it reduces the message
frequency, allowing us to probe less frequently.

Infrequent polling has been proposed before for optimiz-
ing the performance of asynchronous applications such as
PDES [29]. However, when applying message consolidation
in a CM environment the behavior is significantly differ-
ent because a single thread polls for a group of simulation
threads making the communication pattern different. The
interplay between message consolidation (which reduces the
number of overall messages) and infrequent polling has not
been studied before.

3.3 Optimization 3: Exposing Heterogeneous
Latencies to Model Partitioning

Partitioning can play a significant role in reducing the
communication overhead for parallel applications [28, 23]; by
keeping the most heavily communicating objects together,
the overhead of communication can be controlled. A joint
consideration of partitioning is maintaining load balancing
between the processing elements by evenly distributing the
work among them.

In an environment with heterogeneous delays, the higher
delays between nodes can be exposed to the partitioning
tool to allow it to make more informed partitioning deci-

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Non−Local Communication (%)

Baseline ROSS−MPI

Message−Consolidated ROSS−MPI

Baseline ROSS−CMT

Message−Consolidated ROSS−CMT

(a) Execution Time Comparison

20 40 60 80 100
0

1

2

3

4

5

6

7

A
ve

ra
ge

 N
um

be
r

of
 E

ve
nt

s
pe

r
M

es
sa

ge

Non−Local Communication (%)

 Message−Consolidated ROSS−MPI

Message−Consolidated ROSS−CMT

(b) Average Number of Events per Con-
solidated Message

Figure 2: Performance of Message Consolidation on 32-Way PDES Simulation

sions. Without this information, the work would be simply
partitioned between the cores without consideration to the
heterogeneous delays between them.

As a target object of each event is randomly selected in
the classical Phold model, there is no static communication
structure in it. Thus, we use the hierarchical Phold model
introduced in [1], to study the impact of partitioning on
CMs. In this model, groups of objects are arranged in a hi-
erarchical communication structure. Object groups closer to
each other communicate more often while the farther groups
have progressively less communication. Although this is still
a synthetic model, it exhibits features of real models both
in terms of topology and communication pattern. We use a
partitioning algorithm that first profiles a short simulation
using the hierarchical Phold model and then uses its behav-
ior information (e.g., communication frequency of each pair
of objects) to carry out partitioning [1]. The implementa-
tion uses a state of the art partitioning engine (hMetis [20])
to partition the simulation graph which is annotated with
the profiling information. hMetis uses a multilevel parti-
tioning algorithm for a weighted graph. It first coarsens the
graph by collapsing edges and vertices. After multiple lev-
els of coarsening, partitioning is started from the coarsest
graph. Finally, a partition for the original graph is con-
structed and refined during the uncoarsening and refinement
phase [20]. In our experiment, two types of partitioning
strategies are compared. A latency heterogeneity-sensitive
partitioning computes a node-level partition first and then
each part is partitioned again at the core level. This strategy
ensures that the groups of objects with most communica-
tion will be placed on the same node. It is compared with a
latency-oblivious strategy introduced in [1] where the model
is partitioned across cores, without differentiation between
the heterogeneous latency among them.

4. EXPERIMENTAL RESULTS AND DISCUS-
SION

In this section, we study the effectiveness of the three pro-
posed optimizations on the performance of PDES. Our re-
sults demonstrate that these optimizations allow us to mit-
igate the negative impact of slow communication links on
PDES performance and scalability.

4.1 Message Consolidation
In our first experiment, we evaluate the performance of

ROSS-CMT and ROSS-MPI with and without message con-
solidation, by using the classic Phold [17] benchmark, with
1000 objects for each PE. Figure 2 shows the impact of
message consolidation on a 32-way optimistically synchro-
nized simulation. In Figure 2(a), we see the run time as a
function of the percentage of non-local messages (i.e., the
percentage of Phold event targets that reside on another
core; this includes cores on the same node, as well as cores
on other nodes). As the non-local message percentage in-
creases, message consolidation allows both versions of the
simulation to improve their performance compared to the
case without message consolidation. ROSS-CMT performs
better than the MPI-based implementation with or with-
out message consolidation. The benefits that ROSS-CMT
obtains from message consolidation are significantly higher
than those obtained by ROSS-MPI, because the CMT ver-
sion can consolidate messages originating from any thread
within the same node. In contrast, ROSS-MPI can only
consolidate the messages from one process to another pro-
cess, and as a result, it benefits from consolidation only
slightly in the best case, and it is even harmed in some
cases. These effects are shown in Figure 2(b), which depicts
the average number of events that are consolidated into a
message. Clearly, ROSS-CMT is able to consolidate a sig-
nificantly higher number of messages eliminating the high
per-message sending overhead. At 100% non-local commu-
nication, ROSS-CMT with the message consolidation is ca-
pable of providing a performance gain of 2X against the
baseline ROSS-CMT, and 3X against ROSS-MPI.

In the next experiment, we show the impact of message
consolidation on PDES scalability at 20% remote communi-
cation (Figure 3(a)), and 80% remote communication (Fig-
ure 3(b)) respectively. We fix the total number of objects
(to 60480), and equally distribute them across the PEs. The
simulation is performed on 2 nodes, 4 nodes, and 8 nodes
respectively, with 8 hardware threads used for each node.
Message consolidation achieves a performance gain of up to
2.2X against the baseline, and up to 2.5X against ROSS-MPI
at 80% communication. We also discover that the message-
consolidated ROSS-CMT performs worse than the baseline

2 4 8
0

50

100

150

200

250

E
xe

cu
ti

o
n

 T
im

e
(S

ec
o

n
d

s)

Number of Nodes

(a) 20% Remote Communication

2 4 8
0

50

100

150

200

250

300

350

400

450

500

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Number of Nodes

ROSS−MPI

Baseline ROSS−CMT

Message−Consolidated ROSS−CMT

(b) 80% Remote Communication

Figure 3: Impact of Message Consolidation on PDES Simulation for Different Number of Nodes

0 20 40 60 80 100
−60

−40

−20

0

20

40

60

80

100

120

140

P
er

ce
nt

ag
e

G
ai

n

Non−Local Communication (%)

Message−Consolidated ROSS−CMT

Optimized−Polling ROSS−CMT
Final Optimized ROSS−CMT

(a) Performance Improvement (against
Baseline ROSS-CMT)

20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

S
uc

ce
ss

fu
l P

ro
be

 R
at

e
(%

)

Non−Local Communication (%)

Baseline ROSS−CMT

Message−Consolidated ROSS−CMT

Final Optimized ROSS−CMT

Optimized−Polling ROSS−CMT

(b) Polling Success

Figure 4: Infrequent Polling and Message Consolidation for 32-way PDES

ROSS-CMT with the case of 8 nodes at 20% remote commu-
nication. This is because of a large number of unsuccessful
probe operations, leading to our next optimization.

4.2 Infrequent Polling
In asynchronous parallel applications, a receiver does not

know when to expect communication from a sender, and
has to resort to polling. Polling is an expensive operation
on communication channels that are inter-node. In our next
experiment, we study the performance impact of infrequent
polling strategy applied to PDES, since it is an asynchronous
application. We investigated several polling periods, and se-
lected 4 (poll after processing every 4th iteration) because
it works well across a range of communication frequencies
and simulation scales. We also investigated adapting the
polling frequency, but the effect was minor. Polling also
interplays with message consolidation, since consolidation
reduces the number of communication messages, increas-
ing the chance of unsuccessful polls. Figure 4(a) shows the
percentage gain in performance with infrequent polling on
its own as well as when it is combined with message con-
solidation for a 32-way simulation. Somewhat surprisingly,
there is a large performance drop of about 50% in message-

consolidated ROSS-CMT at the non-local percentage of 0.
We expected some performance loss since the message con-
solidation overhead is incurred, without finding opportuni-
ties for consolidation. While infrequent polling on its own
results in modest improvements in performance (up to 20%),
when combined with message consolidation it significantly
improves performance (up to 120% relative to baseline). As
message consolidation combines messages, they arrive less
frequently, allowing infrequent polling to successfully elimi-
nate message probes. Figure 4(b) shows the successful probe
rate for each of the three simulator versions, as well as the
baseline. We note that the baseline ROSS-CMT has a very
good successful probe rate because of its frequent commu-
nication across the network as each communication point
represents all the threads on that node. In contrast, ROSS-
CMT with message consolidation only has much lower suc-
cessful probe rate than the others, since message frequency
is lower, but still has substantially shorter execution time
(up to 90% improvement) than the baseline ROSS-CMT as
shown in Figure 4(a). We repeated the experiment for a 64-
way simulation (Figure 5(a) and Figure 5(b)), with similar
results.

4.3 Latency-Sensitive Model Partitioning

0 20 40 60 80 100
−60

−40

−20

0

20

40

60

80

100

120

P
er

ce
nt

ag
e

G
ai

n

Non−Local Communication (%)

Message−Consolidated ROSS−CMT

Optimized−Polling ROSS−CMT
Final Optimized ROSS−CMT

(a) Performance Improvement (against
Baseline ROSS-CMT)

20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

S
uc

ce
ss

fu
l P

ro
be

 R
at

e
(%

)

Non−Local Communication (%)

Baseline ROSS−CMT

Message−Consolidated ROSS−CMT

Final Optimized ROSS−CMT

Optimized−Polling ROSS−CMT

(b) Polling Success

Figure 5: Infrequent Polling and Message Consolidation for 64-way PDES

2X2 4X4 6X6 8X8
0

50

100

150

200

250

300

350

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Number of Partitions

LOP

LSP

LOP−MCIP

LSP−MCIP

(a) Execution Time Comparison

2X2 4X4 6X6 8X8
0

10

20

30

40

50

60

70

80

90

100

R
em

o
te

 M
es

sa
g

e
P

er
ce

n
ta

g
e

(%
)

Number of Partitions

LOP

LSP

(b) Remote Message Percentage

Figure 6: Performance Evaluation of Different Partitioning Strategies

Figure 6 shows the impact of partitioning sensitive to het-
erogeneous latencies on CMs. In Figure 6, the number of
partitions N x T indicates that N nodes are used with T
threads per node. Each partition is mapped to one thread.
This experiment uses a hierarchical Phold model [1]. The
model is initialized with 4 initial events per object. In our
experiment, four types of partitioning strategies are com-
pared. A Latency-Sensitive Partitioning (LSP) computes a
node-level partition first and then each part is partitioned
again at the core level. This strategy ensures that the groups
of objects with most communication are placed on the same
node. It is compared with a Latency-Oblivious Partitioning
(LOP) where the latency heterogeneity is ignored and the
partitioning tool tries to minimize all communication be-
tween cores. The remaining two strategies combine the par-
titioning with both Message Consolidation and Infrequent
Polling (MCIP).

Figure 6(a) demonstrates the impact of each of these strate-
gies with the hierarchical model described above. It shows
that the benefit of LSP increases as the number of partitions
increases. LSP performs 15% better than LOP in the case
of 16 partitions while up to 44% better in the case of 64

partitions. In addition, MCIP optimization is orthogonal to
partitioning strategies and significantly improves the perfor-
mance both in the case of LSP and LOP. Figure 6(a) also
indicates that LSP and MCIP optimizations when used to-
gether (LSP-MCIP) provide the best performance of these 4
strategies compared here. Figure 6(b) shows the percentage
of remote messages across nodes out of the total messages
among partitions in the case of LSP and LOP. LSP places
the most communicating object groups on the same node as
indicated by the significant reduction in the percentage of
remote messages.

4.4 Scalability Analysis of PDES
The next experiment shows the scalability of the simulator

as the number of hardware threads per node is increased (
Figure 7(a) with remote percentage of 20% and Figure 7(b)
with remote percentage of 80%). In particular, the simu-
lation is performed on 8 nodes, and each PE is mapped to
one hardware thread. The total number of PEs used on the
x-axis is increasing as we increase the number of hardware
threads used on each node. In the case of 8 PEs on the
x-axis, the three versions have a similar performance with
each other because they each have a single thread or a pro-

0 8 16 24 32 40 48 56 64
0

50

100

150

200

250

300

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Number of PEs (8 Nodes)

ROSS−MPI

Baseline ROSS−CMT

Final Optimized ROSS−CMT

(a) 20% Remote Communication

0 8 16 24 32 40 48 56 64
0

50

100

150

200

250

300

350

400

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Number of PEs (8 Nodes)

ROSS−MPI

Baseline ROSS−CMT

Final Optimized ROSS−CMT

(b) 80% Remote Communication

Figure 7: PDES Scalability as Number of Hardware Threads per Node is Increased

2 3 4 5 6 7 8 9
0

50

100

150

200

250

300

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Number of Nodes

ROSS−MPI

Baseline ROSS−CMT

Final Optimized ROSS−CMT

(a) 20% Remote Communication

2 3 4 5 6 7 8 9
0

50

100

150

200

250

300

350

400

450

500

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Number of Nodes

ROSS−MPI

Baseline ROSS−CMT

Final Optimized ROSS−CMT

(b) 80% Remote Communication

Figure 8: PDES Scalability for Different Number of Nodes

cess on each node communicating through MPI. However,
as the number of hardware threads per node is increased,
ROSS-CMT is able to take advantage of the more efficient
communication among threads on the same node avoiding
the use of MPI, achieving over 2.8X speedup over ROSS-
MPI for a 64 way simulation at 20% remote percentage (the
improvement is a more modest 1.5X in the case of 80% re-
mote percentage).

When message consolidation and infrequent polling are
used, the optimized version of ROSS-CMT is able to scale
much better, achieving about 4X improvement in perfor-
mance over ROSS-MPI at both 20% and 80% remote event
percentages. In addition, the performance of optimized ROSS-
CMT exceeds that of baseline ROSS-CMT by a factor of
1.4X to 2X.

In the next experiment we show the scalability of the sim-
ulator as we increase the number of nodes used with a fixed
number of hardware threads used per node (6 hardware
threads). Figure 8(a) and Figure 8(b) show the scalabil-
ity for optimistic simulation at 20% and 80% remote com-
munication percentage respectively. We start with 2 nodes
since it is impossible to create remote message traffic when
only one node is used. Again, performance and scalability
of the optimized ROSS-CMT are significantly better than

the ROSS-MPI, achieving about 4X speedup at 80% remote
message percentage and about 4.5X at 20% remote commu-
nication. In addition, in this experiment the performance
of optimized ROSS-CMT exceeds that of baseline ROSS-
CMT by a factor of up to 2X. Figure 9(a) and Figure 9(b)
show the speedup of optimistic simulation against sequen-
tial simulation at both 20% and 80% remote communication
percentages. Clearly, the optimized ROSS-CMT achieves
better speedups than both baseline ROSS-CMT and ROSS-
MPI. For example, at the case of 9 nodes, the speedup of
optimized ROSS-CMT is 3.7X at 20% remote percentage,
and 2.2 at 80% remote percentage.

In the next experiment we show the impact of Event Pro-
cessing Granularity (EPG) for the scalability of PDES. EPG
controls the amount of computation executed for each event.
In our implementation the value of EPG determines the
number of computation loops required for each event pro-
cessing. A higher value of EPG makes the application more
coarse-grained, and gives more computation load to the ap-
plication. Note that most PDES models tend to require rela-
tively small amounts of processing, typically to update state
variables. However, it is possible to have models with signif-
icant event processing, and it is instructive to see how the
ratio of computation to communication influences the per-

2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

S
pe

ed
up

Number of Nodes

ROSS−MPI

Baseline ROSS−CMT

Final Optimized ROSS−CMT

(a) 20% Remote Communication

2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

S
p

ee
d

u
p

Number of Nodes

(b) 80% Remote Communication

Figure 9: Speedup of PDES Optimistic Simulation against Sequential Simulation

0 8 16 24 32 40 48 56 64
0

100

200

300

400

500

600

700

800

900

1000

1100

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Number of PEs (8 Nodes)

ROSS−MPI

Baseline ROSS−CMT

Final Optimized ROSS−CMT

(a) 20% Remote Communication

0 8 16 24 32 40 48 56 64
0

100

200

300

400

500

600

700

800

900

1000

1100

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Number of PEs (8 Nodes)

ROSS−MPI

Baseline ROSS−CMT

Final Optimized ROSS−CMT

(b) 80% Remote Communication

Figure 10: Impact of Event Processing Granularity (EPG=3000)

formance of PDES on CMs. Figure 10(a) and Figure 10(b)
show the three versions of ROSS with EPG value of 3000 un-
der 20% and 80% remote communication respectively. We
find that the baseline ROSS-CMT performs close to opti-
mized ROSS-CMT. This indicates that with a high value
for EPG, the performance of ROSS-CMT is not dominated
by communication.

In the next experiment, we evaluate PDES on a real model
of a Personal Communication Services (PCS) system [8]. In
this model, a cellular provider infrastructure is simulated as
a number of mobile customers use it. A mobile phone call
is simulated as an event, moved from one cell phone tower
to another. Upon receiving a phone call, the cell phone
tower assigns an available channel to the call. Once this
phone call ends, the allocated channel is released. In addi-
tion, another phone call or more may be generated. If all
channels are busy, the call is blocked. Moreover, if a call’s
connected portable is leaving the cell’s area, then the call is
handed-off to the destination cell phone tower [8]. In our ex-
periments, the PCS simulation consists of 57600 cell phone
towers (LPs). In addition, the number of channels per cell
phone tower is fixed at 10. Figure 11(a) shows the PCS scal-
ability of three versions of ROSS simulator as the number
of hardware threads per node is increased. In this exper-
iment, the number of nodes is fixed at 8. At the case of

64-way simulation, the optimized ROSS-CMT exceeds the
baseline ROSS-CMT by a factor of 1.7, and 2 over ROSS-
MPI. Figure 11(b) shows PCS scalability as the number of
nodes is increased, with a fixed number of hardware threads
used per node (6 hardware threads). Clearly, the optimized
ROSS-CMT outperforms both the baseline ROSS-CMT and
ROSS-MPI.

4.5 Experimental Results Summary
In summary, we evaluated the performance of ROSS-CMT

with proposed optimizations on CMs with highly heteroge-
neous delays. We discovered that:

1. Message consolidation significantly improves the per-
formance of ROSS-CMT PDES simulator. It provides
a performance gain of about 3X in ROSS-CMT against
ROSS-MPI at high percentage of remote communica-
tion. However, the overhead of unsuccessful probes
can’t be ignored, especially in the case of low percent-
age of remote communication.

2. Infrequent polling is capable of providing up to another
20% gain in performance of ROSS-CMT.

3. Latency-sensitive partitioning without any of above
optimizations provides up to 44% performance improve-

8 16 24 32 40 48 64
0

50

100

150

200

250

300

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Number of PEs (8 Nodes)

ROSS−MPI

Baseline ROSS−CMT

Final Optimized ROSS−CMT

(a) Different Number of Hardware
Threads per Node

2 3 4 5 6 8
0

50

100

150

200

250

300

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Number of Nodes

ROSS−MPI

Baseline ROSS−CMT

Final Optimized ROSS−CMT

(b) Different Number of Nodes

Figure 11: Scalability Study of PCS Model

ment over latency-oblivious partitioning in the model
we considered.

4. With the proposed optimizations the performance of
the optimized ROSS-CMT exceeds that of non-optimized
ROSS-CMT by a factor of about 2X, and that of ROSS-
MPI by a factor of about 4.5X.

5. RELATED WORK
Communication latency is one of the traditional challenges

to the performance and scalability of parallel applications.
One of the approaches to reduce the impact of this prob-
lem is to develop fast network interconnection fabrics [24].
Multi-threaded implementations of algorithms [27, 14] on
multi-core systems are being increasingly used due to the
fast thread-based communication through shared memory
on such systems. To scale to large size applications using
commodity processing nodes, clusters of multi-cores must be
used; however, high latency on the network becomes a po-
tential bottleneck for the performance in this environment,
especially in some communication-bound applications such
as Parallel Discrete Event Simulation (PDES).

5.1 Parallel Discrete Event Simulation
It has been long-recognized that PDES suffers from com-

munication overheads due to its fine-grained nature [7]. As
a result, significant PDES research exists on optimizing the
communication of PDES applications to improve their per-
formance. Partitioning [13] plays an important role in re-
ducing the communication latencies, by placing the objects
with frequent communication on the same processor before
the execution of the simulation. In [1], both communication
and object activity were profiled first, and then used for a
partition tool [20] to make partitions. However, static par-
titioning may not be efficient because the behavior of some
models may change dynamically. Therefore, run-time object
migration [4, 26] has been proposed to adjust the partitions
at run time and to balance the workload of each processor as
well. El-Khatib et. al. [15] provide three metrics to monitor
the behavior changes of the model for optimistic simulation.
The workload of each processor is evaluated periodically,

and the workload migration occurs once the condition of
dynamic adjustments is satisfied.

5.2 Optimizing the communication cost
For PDES applications, several techniques have been pro-

posed at the simulation kernel communication system level
to reduce either the cost or frequency of communication.
Sharma et. al. [29] argue that too aggressive polling strat-
egy for message delivery in asynchronous applications may
harm the performance due to the overhead of unsuccessful
probes. However, it is difficult to predict the optimal polling
frequency at compile-time. Thus, they studied three heuris-
tics for infrequent polling. Message aggregation is often used
to reduce the frequency of the communication by grouping
multiple messages into a single one before transmission. For
example, a dynamic message aggregation approach is pro-
posed in [11], which defines an aggregation window whose
value can be assigned statically or dynamically, with the ob-
jective of controlling the behavior of the message aggregation
in a Time-Warp simulator. Sharma et. al. [30] proposed a
multi-threaded based Time Warp simulator on Clusters of
SMPs (Symmetric Multi-Processors). While, conceptually,
clusters of SMPs are similar to clusters of multi-cores, the
tighter integration on multi-cores makes the environment
significantly different. Moreover, other advances in proces-
sor architectures, communication libraries, and network fab-
ric over the past 15 years substantially influence the relative
latencies and overheads on the two environments.

For other types of applications, message aggregation is
also widely used. For example, in the Simulink application,
message aggregation is used to combine forwarding of mul-
tiple values between two threads into a single message [5].
[9] presents an identity-based aggregate signature algorithm
in a vehicular ad-hoc network application, which aggregates
signatures of multiple messages into one, for the purpose of
security as well as performance efficiency.

The main difference between our proposal and traditional
message aggregation approaches is: In message aggregation,
messages from the same sender to the same receiver are con-
solidated to amortize overhead. In contrast, our proposed
optimization combines messages from different senders to
different receivers as long as these messages share the source

and destination nodes. Thus, it exposes significantly higher
opportunities for consolidation, and can significantly im-
prove the performance of application. Traditional message
aggregation often requires delaying messages to improve op-
portunities for aggregation; in the proposed approach, since
messages are aggregated across multiple senders, there are
ample opportunities for aggregation without delaying mes-
sages.

5.3 Application Study on Multi-cores
The multi-core architecture can substantially reduce the

latency of the intra-machine communication due to its tightly
integrated cores on a single chip. Thus, some researchers
study the performance of applications on emerging multi-
cores and multi-core clusters. Scalability studies of PDES
on a blue gene supercomputer demonstrate that scalability
up to thousands of processors can be achieved due to the
low communication latency [22, 3]. In [21], a multi-process
based PDES kernel is used to evaluate the performance on
both multi-core clusters and traditional clusters, and shows
that a better performance can be achieved on CMs. Wilsey
et al. [12] proposed an algorithm to allow dynamic core fre-
quency adjustment during Time Warp simulations on multi-
cores. This approach can improve the performance of simu-
lation, by overclocking the cores containing LPs with smaller
rollbacks, as well as underclocking the cores having LPs with
larger rollbacks.

In order to achieve better performance on multi-cores,
multi-threaded implementations of PDES simulation engines
are widely used. [19, 18] developed a multi-threaded PDES
kernel and optimized for a standalone multi-core node, where
each thread worked for a different simulation kernel instance.
Chen et al. [10] proposed a different multi-threaded PDES
simulation engine that employed a global event scheduling
mechanism, where each thread selected the smallest time-
stamped event from a global queue shared by other threads.
However, these studies are limited to a single multi-core
node. To support CMs, a multi-threaded MPI simulator
was recently developed, however, very small performance
gain was achieved compared with multi-process based simu-
lator due to the impact of inter-node communication [33]2.
Liu et al. [25] developed a multi-threaded simulator, called
MiniSSF, to support CMs. Different from our approach, two
additional threads were created on each node to send and
receive remote events respectively. In addition, a blocking
receive operation was used to receive remote events. Vi-
tali et al. [32, 31] proposed a load-sharing scheme developed
in a multi-threaded PDES simulator, where the workloads
of each simulation kernel instance were distributed across a
dynamically changing set of threads.

6. CONCLUDING REMARKS
Parallel algorithms went through a phase where the im-

pact of the communication topology was exposed to the pro-
grammer because of the high communication latency. Algo-
rithms were developed in way specialized to the communica-
tion topology on the machine; it was common to have sub-
stantially different algorithms with different communication

2Note that this is a poster that used a preliminary version
of the simulator without characterizing PDES behavior on
CMs, and without any of the optimizations discussed in this
paper.

topologies. This situation changed substantially with the
advent of high performance communication infrastructure
where it became common to abstract communication as an
ideal all-to-all medium, where messages were sent to desti-
nations without regards to the underlying physical topology.
In this paper, we argued that the high delay links necessi-
tate a step back towards algorithms that are aware of the
presence of these high delay links. We explored a set of such
techniques and optimizations that can enable PDES appli-
cation to tolerate the effect of high latency links.

In particular, our goal was to answer the following ques-
tion: in the presence of highly heterogeneous delays on CMs,
do fine-grained applications such as PDES benefit from the
low latency between cores on a single machine, or are they
limited by the communication across machines with rela-
tively higher delay? We illustrate this problem by using
ROSS-CMT PDES simulator. We find that on CMs, for
ROSS-CMT, the network connections impact its performance
and scalability significantly.

We proposed three optimizations to reduce the impact
of communication across machines: consolidated message
routing, infrequent polling, and partitioning aware of the
heterogeneous latency. We discover that the performance of
optimized ROSS-CMT with classical Phold model achieves
a 2X speedup against non-optimized ROSS-CMT, and 4.5X
speedup against the original multi-process ROSS simulator.
Latency-sensitive partitioning can provide up to 44% perfor-
mance improvement against latency-oblivious partitioning
on CMs.

Acknowledgements
This material is based on research sponsored by Air Force
Research Laboratory under agreement number FA8750-11-
2-0004. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the of-
ficial policies or endorsements, either expressed or implied,
of Air Force Research Laboratory or the U.S. Government.
We also gratefully acknowledge support from the National
Science Foundation grants CNS-0916323 and CNS-0958501.

7. REFERENCES
[1] K. Bahulkar, J. Wang, N. Abu-Ghazaleh, and

D. Ponomarev. Partitioning on dynamic behavior for
parallel discrete event simulation. In Principles of
Advanced and Distributed Simulation (PADS), pages
221–230. IEEE, 2012.

[2] M. L. Bailey, J. V. Briner, Jr., and R. D. Chamberlain.
Parallel logic simulation of VLSI systems. ACM
Computing Surveys, 26(3):255–294, sep 1994.

[3] D. Bauer, C. Carothers, and A. Holder. Scalable time
warp on bluegene supercomputer. In Principles of
Advanced and Distributed Simulation (PADS), pages
35–44, 2009.

[4] A. Boukerche and S. Das. Dynamic load balancing
strategies for conservative parallel simulation. In
Principles of Advanced and Distributed Simulation
(PADS), pages 32–37, 1997.

[5] A. Canedo, T. Yoshizawa, and H.Komatsu. Automatic

parallelization of simulink applications. In Proc. of
CGO, pages 151–159, 2010.

[6] C. Carothers, D. Bauer, and S. Pearce. ROSS: A
high-performance, low memory, modular time warp
system. In Principles of Advanced and Distributed
Simulation (PADS), pages 53–60. IEEE, 2000.

[7] C. D. Carothers, R. M. Fujimoto, and P. England.
Effect of communication overheads on Time Warp
performance: An experimental study. In Principles of
Advanced and Distributed Simulation (PADS), pages
118–125, jul 1994.

[8] C. D. Carothers, R. M. Fujimoto, and Y.-B. Lin. A
case study in simulating pcs networks using time
warp. In Principles of Advanced and Distributed
Simulation (PADS), pages 87–94. IEEE, 1995.

[9] C. Chen, J. Zhang, R. Cohen, and P.Ho. Secure and
efficient trust opinion aggregation for vehicular ad-hoc
networks. In Proc. of VTC, pages 1–5, 2010.

[10] L. Chen, Y. Lu, Y. Yao, S. Peng, and L. Wu. A
well-balanced time warp system on multi-core
environments. In Principles of Advanced and
Distributed Simulation (PADS), pages 1–9. IEEE,
2011.

[11] M. Chetlur, N. Abu-Ghazaleh, R. Radhakrishnan, and
P. A. Wilsey. Optimizing communication in
Time-Warp simulators. In Principles of Advanced and
Distributed Simulation (PADS), pages 64–71. IEEE,
1998.

[12] R. Child and P. Wilsey. Dynamically adjusting core
frequencies to accelerate time warp simulations in
many-core processors. In Principles of Advanced and
Distributed Simulation (PADS), pages 35–43. IEEE,
2012.

[13] J. Cloutier. Model partitioning and the performance of
distributed timewarp simulation of logic circuits.
Simulation Practice and Theory, 5(1):83–99, 1997.

[14] J. Doi and Y. Negishi. Overlapping methods of
all-to-all communication and FFT algorithms for
torus-connected massively parallel supercomputers. In
Proc. of Int’l Conference on Supercomputing, pages
1–9, 2010.

[15] K. El-Khatib and C. Tropper. On metrics for the
dynamic load balancing of optimistic simulations. In
Proc. 32nd Hawaii International Conference on
Systems Science (HICCS), 1999.

[16] R. Fujimoto. Parallel discrete event simulation.
Communications of the ACM, 33(10):30–53, oct 1990.

[17] R. Fujimoto. Performance of time warp under
synthetic workloads. Proceedings of the SCS
Multiconference on Distributed Simulation,
22(1):23–28, 1990.

[18] D. Jagtap, K. Bahulkar, D.Ponomarev, and
N.Abu-Ghazaleh. Characterizing and understanding
pdes behavior on tilera architecture. In Principles of
Advanced and Distributed Simulation (PADS), pages
53–62. IEEE, 2012.

[19] D. Jagtap, N.Abu-Ghazaleh, and D.Ponomarev.
Optimization of parallel discrete event simulator for
multi-core systems. In Parallel and Distributed
Processing Symposium (IPDPS), pages 520–531.
IEEE, 2012.

[20] G. Karypis and V. Kumar. hmetis: a hypergraph

partitioning package. Available on WWW at URL:
http://www.cs.umn.edu/ karypis/metis/hmetis.

[21] K.Bahulkar, N.Hofmann, D.Jagtap, N.Abu-Ghazaleh,
and D.Ponomarev. Performance evaluation of pdes on
multicore clusters. In 14th IEEE/ACM International
Symposium on Distributed Simulation and Real-Time
Applications (DS-RT), pages 131–140, 2010.

[22] K.S.Perumalla. Scaling time warp-based discrete event
execution to 104 processors on a blue gene
supercomputer. In in Proceedings of the ACM
Computing Frontiers, pages 69–76, 2007.

[23] L. Li and C. Tropper. A design-driven partitioning
algorithm for distributed verilog simulation. In
Principles of Advanced and Distributed Simulation
(PADS), pages 211–218. IEEE, 2007.

[24] J. Liu, B. chandrasekaran, J. Wu, W. Jiang, S. Kini,
W. Yu, D. Buntinas, P. Wyckoff, and D. Panda.
Performance comparison of mpi implementations over
infiniband, myrinet and quadrics. In Proc. of
ACM/IEEE conference on Supercomputing, pages
58–71. IEEE, nov 2003.

[25] J. Liu and R. Rong. Hierarchical composite
synchronization. In Principles of Advanced and
Distributed Simulation (PADS), pages 3–12. IEEE,
2012.

[26] P. Peschlow, T. Honecker, and P. Martini. A flexible
dynamic partitioning algorithm for optimistic
distributed simulation. In Principles of Advanced and
Distributed Simulation (PADS), pages 219–228. IEEE,
2007.

[27] R. Preissl, N. Wichmann, B. Long, J. Shalf, S. Ethier,
and A. Koniges. Multithreaded global address space
communication techniques for gyrokinetic fusion
applications on ultra-scale platforms. In Proc. of Int’l
Conference on Supercomputing, 2011.

[28] V. Sarkar and J. Hennessy. Compile-time partitioning
and scheduling of parallel programs. In Proc. of the
SIGPLAN Symposium on Compiler construction,
pages 17–26, 1986.

[29] G. D. Sharma, N. B. Abu-Ghazaleh, U. V.
Rajasekaran, and P. A. Wilsey. Optimizing message
delivery in asynchronous distributed applications. In
Proc. of Euro-Par, pages 1204–1208, 1998.

[30] G. D. Sharma, R. Radhakrishnan, U. V. Rajesekaran,
N. B. Abu-Ghazaleh, and P. A. Wilsey. Time warp
simulation on clumps. In Principles of Advanced and
Distributed Simulation (PADS), pages 174–181, may
1999.

[31] R. Vitali, A. Pellegrini, and F. Quaglia. Assessing
load-sharing within optimistic simulation platforms. In
Proceedings of the 2012 Winter Simulation
Conference. IEEE, 2012.

[32] R. Vitali, A. Pellegrini, and F. Quaglia. Towards
symmetric multi-threaded optimistic simulation
kernels. In Principles of Advanced and Distributed
Simulation (PADS), pages 211–220. IEEE, 2012.

[33] J. Wang, D.Ponomarev, and N.Abu-Ghazaleh.
Performance analysis of a multithreaded pdes
simulator on multicore clusters. In Principles of
Advanced and Distributed Simulation (PADS) (Short
Paper), pages 93–95. IEEE, 2012.

