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Abstract—The emergence of manycore architectures with
shifting balance between computation and communication
overhead can have a tremendous impact on performance and
scalability of fine-grained parallel applications such as PDES.
It may also be necessary to rethink the design philosophy of key
PDES subsystems, that were traditionally focussed on hiding
long communication delays.

In this paper, we perform extensive evaluation of PDES on
Tile64Pro - a new 64-core chip from Tilera. For our studies,
we use the recently developed multithreaded version of the
popular ROSS simulator and show that the performance of
this simulator (with many optimizations proposed) scales by
a factor of 27X when it is executed on 56 cores of the Tilera
chip for Phold benchmark with 20% remote communication.
We also evaluate the impact of performance optimizations that
we propose on both conservative and optimistic versions of the
simulator and also analyze the sensitivity to various simulation
parameters. Finally, we explore the issues of object placement
and model partitioning on Tilera architecture.

I. INTRODUCTION

Performance aspects and bottlenecks of Parallel Discrete
Event Simulation (PDES) have been extensively studied for
traditional cluster computing environments, where long com-
munication latencies across the cluster elements pose signif-
icant challenges to PDES scalability on these platforms. Re-
cently, continuing emergence of multicore processors and the
potential of these architectures to drastically minimize the
impact of communication-related issues motivated several
studies that examine performance and scalability of PDES
in these environments [1], [2]. For example, the work of
[2] demonstrated the advantages of using multithreaded (as
opposed to multiprocess) implementation of ROSS simulator
[3] on a quad-core Intel Core i7 machine and on a AMD
Magny-cours system [4] composed of four 12-core chips
for the total of 48 cores. Several optimizations were also
proposed that allowed almost 3x performance improvement
for the multithreaded version over baseline MPI-based im-
plementation of ROSS [2].

These previous studies were limited to the architectures
with modest numbers of cores per chip, which is represen-
tative of what is available on the market today. However, as
the degree of integration continues to increase with smaller
transistor feature sizes and newer fabrication technologies,
current multicore architectures can soon be replaced by
many-core designs with the number of cores per chip in

tens, hundreds or even thousands [5], [6]. In fact, some
researchers believe that the number of cores available on a
chip will double every 18 months, calling it a ”new Moore’s
Law” [6]. While these many-core chips are not yet widely
available, some examples already exist. For example, Intel
recently announced the prototype of an 80-core chip [5].
Another example is the 64-core Tilera Tile64 chip [7] that
utilizes a tiled CPU and cache architecture and employs a
two-dimensional mesh network as an interconnection fabric
between the cores. We view the Tilera architecture as an
example of a future manycore chip, and the main goal of
this paper is to study PDES performance on this platform.
We believe that this paper represents the first study of its
kind and the lessons learned will be generally useful for
PDES implementations on future manycores systems.

Compared to mainstream multicore processors and their
clusters, the Tilera architecture has a number of unique
features that have direct impact on performance and scal-
ability of PDES (or any other fine-grain parallel application
in general). First, a significantly higher degree of core
integration allows a larger number of parallel threads to
communicate efficiently without leaving the chip boundaries,
thus creating potential for better scalability. Second, the
Tilera architecture features a more balanced communication-
computation infrastructure, where the communication bot-
tlenecks are significantly reduced and computation cycles
emerge as a more significant bottleneck. The reasons for this
are slower processing cores (which increases the fraction
of time spent on computation) and well-optimized mesh
interconnection network that promotes both low latency and
high throughput communication among the cores. These
factors have tremendous implications on an application such
as PDES, which was traditionally designed with the goal of
hiding long communication latencies.

The starting point of our exploration of PDES behavior
on the Tilera platform is the multithreaded implementation
of ROSS simulator [3] that was developed in a recent work
[2]. Multithreaded PDES directly exploits the presence of
shared levels of memory hierarchy on the chip (the shared
L2 cache in the case of the Tilera) and eliminates delays due
to multiple message copying operations and synchronization
delays involved in polling of the queues that are inherent in
MPI-based implementations. The work of [2] showed that
multithreaded implementation significantly outperforms the



MPI-based design on platforms such as Intel Core i7 and
AMD Magny-cours. In this paper, we demonstrate that a
multithreaded simulator also significantly outperforms the
MPI-based version on the Tilera, especially when a number
of performance optimizations are introduced.

In terms of performance optimizations, we propose to
adapt three techniques introduced in [2] such that they
exploit the features of the Tilera. We also propose some
new optimizations that utilize the APIs available from the
Tilera Multicore Components (TMC) library; more details
on these are provided in Section 3.

When all optimizations are considered, multithreaded
ROSS executing the basic Phold model on 56 cores of the
Tilera chip (the maximum number of cores that we could
use; the other eight cores are reserved for the OS tasks)
achieved a speedup of 27X for Phold benchmark at 20%
remote events. This compares to only about 18X speedup
achieved by the MPI implementation of ROSS. Next, we
study the individual impact of the proposed performance op-
timizations, both for conservative and optimistic simulation.
Finally, we address the issues of object placement and model
partitioning in the context of the Tilera TilePro64 platform.
Our results demonstrate that while Tilera’s mesh network
exhibits non-uniform core-to-core latencies, the degree of
non-uniformity is minimal. Compounded by the fact that the
balanced nature of Tilera architecture makes the applications
running on it more tolerant to communication delays to
begin with, the minimal non-uniformity in latencies make
the PDES performance almost insensitive to the placement
strategies (i.e. whether the frequently communicating ob-
jects are placed on the nearby or on the distant cores).
Furthermore, we demonstrate that the model partitioning
strategies that just balance the computational load among
the cores (these partitions are much easier to derive), very
closely approach the performance of partitioning schemes
that try to optimize the number of remote communica-
tions (through communication graph mincut), as well as
balance the workload. These results are important in that
they demonstrate that PDES can exhibit great scalability
on the Tilera platform with minimum investment in object
placement and partitioning decisions.

In summary, the main contributions and the key results of
this paper are the following:

• We demonstrate that the Tilera architecture is an
extremely effective platform for supporting scalable
PDES applications, especially when the simulation
engine is redesigned to take advantage of the shared
memory hierarchy. In particular, the multithreaded ver-
sion of ROSS simulator executing Phold benchmark can
achieve up to 27X speedup when executing on 56 cores
of Tilera chip for Phold 20% remote communication.

• We show that this level of speedup can be achieved with
very simple model partitioning and object placement
strategies. Specifically, we demonstrate that the par-

titioning that just balances the computation workload
among the various cores achieved nearly the same level
of performance compared to partitioning that mini-
mizes inter-core communication (while also attempting
to preserve workload balance as much as possible).
Furthermore, we show that PDES on Tilera is prac-
tically insensitive to the object placement among the
processing cores, as long as the overall computational
balance is maintained.

• We study the impact of various performance optimiza-
tions proposed in this paper on both conservative and
optimistic simulation on Tilera and also explore per-
formance sensitivity to various simulation parameters,
such as the GVT interval. For example, our results show
that the latency of computing the GVT on Tilera is
minimum, and therefore it is advantageous to compute
GVT more frequently for optimistic simulation, espe-
cially for the models prone to rollbacks.

The remainder of this paper is organized as follows.
Section II reviews the Tilera architecture and describes per-
formance optimizations considered in this paper. Section III
overviews ROSS simulator and its multithreaded implemen-
tation. In Section IV, we present experimental methodology
followed by the results of our performance evaluation of
ROSS on the Tilera platform. Section V reviews the related
work. Finally, Section VI offers our concluding remarks.

In the rest of the paper, we perform detailed evaluation of
ROSS-MT (with its optimizations) on the Tilera platform.

II. TILERA TILE64PRO ARCHITECTURE OVERVIEW

TilePro64 is a power-efficient 64-core processor from
Tilera. It uses switched, on-chip mesh interconnect providing
coherent dynamic distributed cache. The processor chip is
comprised of 64 power efficient cores (tiles) arranged in the
form of an 8x8 matrix. Tiles are connected by six mesh
networks forming tight integration of cores. The cache co-
herence across the cores and the memory provides efficient
and scalable platform for shared memory applications. The
role of the mesh network is to move data between cores,
memory and I/O providing low latency and high bandwidth.

The iMesh Interconnect consists of two classes of net-
works: the first class comprises a set of software-visible
networks for application-level streaming and messaging,
while the second consists of the networks used by the
memory system to handle memory requests, exchange cache
coherency commands and support high performance shared
memory communication. Dedicated Switch Engines are
used to implement the iMesh Interconnect, allowing for a
complete decoupling of data routing from the Processing
Engines. The Switch Engine contains six physical mesh
networks. The Static network (STN) switches scalar data
between tiles with very low latency. The other five are
dynamic networks, which facilitate streaming and packet
data transfer among tiles and I/O devices. Of the five



Figure 1. Architecture of the Tilera Processor (used with permission from Tilera Corporation).

dynamic networks, namely the UDN, TDN, MDN, CDN
and IDN, only the User Dynamic Network (UDN) is visible
to the user. The others are used to satisfy cache misses from
external memory and other tiles, for DMA transfers, for I/O,
and for various other system-related functions

A single processing tile has a 32-bit 5-stage VLIW
pipeline with L1 instruction and data caches, L2 combined
data and instruction cache, and a routing engine for the mesh
networks. The 64KB L2 caches from each of the cores form
a distributed L3 cache accessible by any core and I/O device.
Static branch prediction and in-order execution further re-
duce area and power required. Translation look-aside buffers
are present on each core and support memory protection for
virtual memory. Each memory controller reorders memory
read and write operations to the DIMMs to optimize memory
utilization. Cache coherence is maintained by each cache-
line having a home core. Upon a miss in its local L2 cache,
a core needing that cache-line goes to the home cores L2
cache to read the cache-line into its local L2 cache. Two
dedicated mesh networks manage the movements of data
and coherence traffic in order to speed the cache coherence
communication across the chip. To enable cache coherence,
the home core also maintains a directory of cores sharing
the cache line, removing the need for power hungry bus-
snooping cache coherency protocols. Because the L3 cache
leverages the L2 cache at each core, it is extremely power
efficient while providing additional cache resources. Figure 1
shows the I/O devices, 10G and 1GB Ethernet, and PCI-e,
connecting to the edge of the mesh network. This allows
direct writing of received packets into on-chip caches for
processing and vice-versa for sending We believe this feature
can be exploited by PDES in a clustered environment.

The Tilera platform provides the iLib library which allows
parallel programming and provides APIs similar to MPI

for message send-receive, all reduce operation and barrier
synchronization primitive. We use MPI library implementa-
tion (provided by ISI from University of California Santa
Barbara) which acts as a wrapper for iLib APIs and makes
MPI application portable on Tilera platforms. iLib internally
uses User Data Network (which is iMesh) and provides
buffering mechanism for message send-receive.

III. OVERVIEW OF ROSS SIMULATOR AND ITS
MULTITHREADED IMPLEMENTATION

In this section, we first describe the baseline MPI-based
ROSS simulator [3] that we used for this study. Then, we
present the design overview of the multithreaded version
of ROSS (called ROSS-MT) [2]. Finally, we review the
performance optimizations that were previously proposed to
accelerate ROSS-MT and discuss their adaptation to Tilera.

In ROSS simulator, the smallest unit of simulation is
called Logical Process (LP), which represents an object
in the simulation model. Maintaining a single list of all
processed events of all LPs within a processing element (PE)
results in excessive false rollbacks. In order to reduce false
rollbacks, ROSS introduces a notion of Kernel Processes
(KPs). LPs are grouped among KPs, rather than grouping
all LPs on a single PE. Each PE thus has a number of KPs
and each KP in turn refers to a group of LPs. A list of
processed events will be associated with each KP instead of
PE, this in turn reduces the number of false rollbacks.

Each process (PE) maintains a queue of the outgoing
remote events. When an LP sends a message to another
remote LP, an event message is first queued in to Output
Queue (Outq) of the sender PE. Events are then dequeued
from Outq and sent to destination PE asynchronously based
on the buffer availability. Posted sends and Posted re-
ceives buffers are used for asynchronous message passing.



Nonblocking MPI Isend and MPI Irecv calls are used for
message passing in combination with MPI Testsome and
MPI Iprobe APIs. Once the event message is successfully
received at the destination process, it is queued in to priority
queue at the receiver side. The event scheduler is responsible
for maintaining priority queue of the pending events and
also for performing event processing. To support rollbacks,
ROSS uses a reverse computation mechanism (instead of
traditional incremental state saving techniques), where each
event handler is paired with a reverse computation handler
to undo events in case of rollbacks.

A. ROSS-MT Performance Optimizations and their Adapta-
tion to Tilera

To address some of the performance inefficiencies of MPI-
based ROSS, we recently implemented its multithreaded ver-
sion (called ROSS-MT). Here, we present a brief overview
of ROSS-MT design and refer the readers to [2] for more
details. In ROSS-MT, each thread has a PE associated with
it. Furthermore, each thread has its own input queue, a
memory manager, an event scheduler and a free event queue
for fossil collection. Since all threads share the address
space, the activity involved in sending of an event is reduced
to simply queueing the pointer of the event to the destination
PE. The input queue associated with each PE contains event
messages from other PEs. The receiver thread dequeues
events from the input queue and inserts them into the event
priority queue for processing. The sender thread keeps a
copy of each message sent so that it can generate canellation
messages from the local copy in case of a rollback.

After careful analysis of the performance bottlenecks in
ROSS-MT, we also introduced several performance opti-
mizations [2]. We briefly describe these optimizations below
and also outline some modifications that we made to adapt
them to the Tilera platform evaluated in this paper.

The first optimization targets efficient cache usage for
free memory management. ROSS implements its own free
memory management to avoid unecessary use of the mem-
ory allocation library. We introduced the Last-In-First-Out
(LIFO) approach to message allocation from the free queues.
In this scheme, the most recently freed message is used from
each free memory sub-pool. This policy improves cache
performance and significantly reduces the number of cache
misses. For this paper, we also added a new optimization
by enabling a thread-specific heap feature available in the
Tilera(TMC) library to enhance the local cache usage.

The second optimization introduced in [2] is the dis-
tributed locking for the input queue. We observed that on
the traditional multicore platforms evaluated in [2] lock
contention among the threads for the shared input queue
becomes a significant bottleneck. To reduce this contention,
the input queue is split into multiple input queues and a
group of senders share an input queue. However, maintaining
too many queues increases the overhead needed to poll them.

Therefore, there is a trade-off between the lock contention
overhead (in case of too many threads sharing a queue) and
queue polling overhead. Our previous study [2] showed that
due to the much higher impact of the lock contention in
traditional Intel and AMD multicore systems, the optimal
performance was achieved when one queue was used for
each sender and receiver (meaning that queue polling over-
head was relatively low on those systems).

In contrast, on Tilera we observed that the lock con-
tention is a much lesser issue due to efficient inter-core
communication network and that the queue polling over-
head (which requires the extra core cycles) is dominant.
Therefore, the optimal number of senders sharing a queue
needs to be reconsidered, if this optimization is used on
Tilera. Specifically, our experiments demonstrate that a
single input queue can be shared by eight senders and
one reciever without experiencing any lock contention. In
order to futher reduce lock-unlock overhead on Tilera,
we use the Spin queued mutex primitive supported by
the Tilera (TMC) library. Spin queued mutex are special
spin locks that require a smaller number of cycles compared
to pthread mutex to implement lock and unlock operations.

Finally, the third optimization proposed in [2] targets
efficient barrier synchronization. This is important, because
barrier synchronization and all-reduce operation are key
components for GVT computation - a critical PDES sub-
system. ROSS-MT implementation uses its own library for
barrier synchronization and all-reduce operation. Our library
uses pthread barrier which uses atomic instructions directly
supported by the ISA to optmize barrier operation. We
observered that barrier synchronization based on condition
variables and pthread mutex has very high overhead at high
degree of parallelism.

In the rest of the paper, we perform detailed evaluation of
ROSS-MT (with its optimizations) on the Tilera platform.

IV. PERFORMANCE EVALUATION OF ROSS-MT AND
ROSS-MPI ON TILERA

In this section, we present performance evaluation of fully
optimized ROSS-MT (multithreaded ROSS) and ROSS-MPI
(MPI based ROSS) on Tilera. First, we discuss the evaluation
environment, and the simulation benchmark that we use.

A. Experimental Setup and Benchmark

We used the basic Phold benchmark for the initial set
of experiments, because it allows us to easily explore a
wide range of application characteristics using configurable
parameters such as percentage of remote communications,
Event Processing Computational granularity (EPC) and the
number of objects per PE. We can also control event popu-
lation by configuring the number of events generated during
the initialization of each LP (referred to as start events). We
use the above mentioned parameters for evaluating different
aspects of scalability of our implementation. Later, to access



the performance impact of various partitioning strategies, we
use a more restricted version of Phold, where non-uniform
communication patterns are introduced to make the model
sensitive to partitioning choices. This model is described
later in this section.

B. ROSS-MT Scalability Analysis
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Figure 2. Speedup at 20% Remote Communication
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Figure 3. Speedup at 40% Remote Communication

Our first experiment was to study the scalability of the
Phold model executed on Tilera as the number of cores used
for simulation increases from one (sequential simulation) to
56 (the maximum number of cores available to us). For this
experiment, we used 56000 total objects with equal number
of objects per PE. We performed the experiments for three
different values of remote communication percentage: 20%,
40% and 100%. The baseline for these experiments (the case
with 1 core) represents the ROSS simulator running in the
optimized sequential mode, without any of the overheads
necessary for parallel simulation. The sequential ROSS
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Figure 4. Speedup at 100% Remote Communication

simulator has an option of using a calendar queue or splay
tree for the critical event queue [8]; we experimented with
both data structures and selected the splay tree because it
provided better performance. The sequential simulation run-
time was 444 seconds with the splay tree, and 470 seconds
with the calendar queue.

As shown in Figures 2, 3 and 4, ROSS-MT is signif-
icantly more scalable than ROSS-MPI. For example, for
20% remote events, ROSS-MT exhibits the speedup of
27X at 56-way parallelism, while ROSS-MPI shows the
speedup of 18X at a similar setting. For 40% remote events,
the respective speedups are 24X and 12X, and for 100%
remote events the speedups are still significant, especially for
ROSS-MT - 20X and 7X respectively. Note that ROSS-MT
generally maintains better scalability trends than ROSS-MPI,
the difference between the two increases as the percentage
of remote events goes up. The main reason for better
scalability on Tilera compared to the traditional multicore
architectures is reduced lock contention overhead on Tilera
due to the more efficient nature of the communication
network. Compared to the MPI implementation, ROSS-MT
also saves processing cycles used for message probing in
MPI based implementation.

Finally, we observed that the speedup achievable on Tilera
is not constrained by the extra pressure on the commu-
nication network (and thus higher latencies), but instead
is limited by the increased processing delays due to the
software overhead of processing remote events. More results
demonstrating this effect are presented later.

Next, we evaluate the impact of the performance opti-
mizations for ROSS-MT (described in previous sections)
executing on Tilera. These optimizations are driven by the
observation that the scalability is limited by three major
factors: barrier synchronization, NUMA issues and lock
contention on the shared queue. In order to study the
importance of each of these optimizations on the Tilera



platform, we did a thorough analysis of each optimization.
As discussed in previous sections, we also evaluated the role
of PER THREAD HEAP optimization. Our analysis are
performed for both conservative and optimistic simulation.
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Figure 5. Impact of Optimizations with Increasing Remote Percentage for
Optimistic Simulation

Figure 5 depicts the results for the optimistic simulation.
Here, NUMA and barrier optimizations play a smaller role.
Barrier synchronization implementation based on condition
variables and pthread mutex (as in the baseline ROSS-
MT) scales reasonably well on Tilera due to lowered lock
contention and a relatively low cost of remote cache access.

Similarly, the NUMA optimization plays a very important
role on AMD and Intel platforms [2]. However, since on the
Tilera chip all cores and the memory controller are tightly
connected in a mesh, the effect of NUMA optimization is
significantly smaller. Further, a low clock rate of Tilera
cores reduces the mismatch between the CPU speed and
the memory access time, thus diminishing the impact of
non-uniformity in the memory access latency. Finally, the
NUMA optimization also has a negative impact of increased
fossil collection overhead. The combination of all these
reasons makes NUMA optimization’s impact on the overall
simulation performance almost negligible.

On the other hand, the distributed queue optimization
plays a major role in increasing the scalability and perfor-
mance of baseline ROSS-MT, with up to 40% reduction
in execution time. Our experiments show that 8 PEs can
share a single queue without lock contention at 100% remote
communication. This implies reduced lock contention as
compared to the AMD Mangycours platform. Enabling the
PER THREAD HEAP feature in the Tilera library reduces
memory management overhead by reducing lock contention
for a central heap. It also promotes local cache access by
placing allocated pages on the same tile.

Figure 6 shows the performance benefits achieved by
each optimization for conservative simulation. As shown
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Figure 6. Impact of Optimizations with Increasing Remote Percentage for
Conservative Simulation

in this figure, barrier and NUMA optimizations have a
noticeable impact. Conservative simulation involves frequent
synchronization of PEs, resulting in higher impact of barrier
synchronization. Advantages of NUMA optimization come
only from the LIFO strategy for conservative simulation.
In addition, conservative simulation does not involve fossil
collection and thus avoids the negative impact on NUMA-
aware optimization. Because of the less frequent access to
the input queue, the distributed queue based optimization
plays a relatively small role in conservative simulation. At
the same time, the use of PER THREAD HEAP shows
significant improvement for both conservative and optimistic
scenarios.

Next, we evaluate performance of ROSS-MT with in-
creased remote communication. For this experiment, we use
the basic Phold model in 56-way configuration with 1000
objects per PE. We fix the GVT interval at 256. Execution
time is measured at different remote percentage for fixed
batch size. We observed that the batch size of 8 is optimal
for both multi-threaded ROSS and MPI-based ROSS. We
set event processing factor to 0 and thus event processing
overhead is limited to creating and sending a new event.

As shown in Figure 7, ROSS-MT significantly out-
performs MPI-based ROSS. With the increase in remote
communication, the execution time for ROSS-MPI grows
linearly. At the same time, the execution time for ROSS-MT
increases slightly with increasing remote communication.
This behavior can be explained by the fact that additional
processing delays introduced for handling remote commu-
nications at both sending and receiving nodes dominate the
actual wire delays through the iMesh network. For ROSS-
MPI, this software overhead of remote message processing
and generation is much higher then for ROSS-MT, leading
to differences in performance. When all communications
are remote (100%), ROSS-MT outperforms ROSS-MPI by
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a factor of more than 3.
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Figure 8. Efficiency at GVT Interval 2048

In the next set of experiments, we analyze the impact of
GVT interval on the event processing efficiency. For this
study, we gradually increase the GVT interval from 256
to 2048. As shown in Figure 8, efficiency of the ROSS-
MT stays noticeably higher than that of ROSS-MPI, even at
relaxed GVT synchronization.

Another important observation specific to Tilera is that
GVT computation cycle is relatively inexpensive due to the
low-latency communication infrastructure. For the model
such as basic Phold (that does not experience many roll-
backs), this is manifested by the fact that the simulation
performance remains relatively constant for different GVT
intervals. Thus, performing more frequent GVT computation
cycles introduces negligible overhead. Again, this example
simply demonstrates that the GVT computation latency
is low and computing GVT more frequently is likely to
provide advantages especially for models with high rollback
probability.

Next, we compare the performance of optimistic and con-
servative simulation on Tilera. For conservative simulation,
the lookahead value is set to 1, while optimistic simulation
generates events with time granularity of 1 (similar to
lookahead). We set GVT interval to 2048 for this set of
experiments. As shown in Figure 7, ROSS-MT outperforms
ROSS-MPI by the same factor even for conservative simu-
lation.

C. Stress-testing the iMesh
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Figure 9. ROSS-MT Performance with Increasing Event Population

The iMesh tile interconnect provides low-latency and
high-bandwidth communication among the tiles. The band-
width of the iMesh interconnect is an important factor
affecting the scalability of shared memory applications.
Thus, it is important to evaluate ROSS-MT scalability with
reference to the iMesh bandwidth. The next experiment that
we present is our attempt to saturate the iMesh bandwidth
by increasing event population in the Phold model. To this
end, we used 56-way Phold simulation with 1000 objects
per PE at 100% remote communication, and then gradually
increased the event population by varying the number of
starting events per LP. As shown in Figure 9, the event rate
sustains even for 9 starting events per LP for 100% remote
case. Instead of saturating the iMesh, the additional events
simply exert the extra pressure on the processing cores,
because more core cycles are needed to process the remote
events.

The distributed shared cache feature of the Tilera platform
plays an important role in determining the performance of
highly parallel applications. Thus, it is essential to study the
scalability of ROSS-MT with increasing cache pressure by
increasing per-tile memory demand. In this experiment, we
evaluate the performance of ROSS-MT by gradually increas-
ing the number of LPs per PE to a very high number. As
shown in Figure 10 event rate sustains even for 50000 LPs
per PE at 100% remote communication. Thus ROSS-MT can
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Percentages

scale very well on the Tilera for very large PDES models;
performance is only constrained by the computational power
of the individual cores.

D. Partitioning and Placement Issues
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Figure 11. Performance Comparison of Various Partitioning Strategies

Our previous results reported in this section (especially
the attempt to saturate the iMesh network) suggest that
communication plays a secondary role in defining PDES
performance on the Tilera and that the real bottlenecks are
the processing cores themselves. We now project this vision
into the issue of model partitioning and object placement,
which in traditional architectures play an important role for
PDES performance. In fact, complex partitioning schemes
that accurately balance communication and computation
often provide serious performance gains on those systems.
In addition, careful object placement is also a must.

To understand the impact of model partitioning while
executing PDES on the Tilera, we augmented the Phold
model with the capability to define event processing granu-
larity (EPC) for each event. We also overlaid a hierarchical
topology on top of the objects such that each object com-
municates to a fixed set of other objects to make the model

sensitive to partitioning (simple random Phold is not). With
this enhanced model, we experimented with partitioning
schemes that: a) emphasize reduction in the number of inter-
core events over load balancing, b) balance computational
load without considering the impact on communication;
c) equal emphasis on both; and d) randomly distributes
objects among the cores to act as a baseline for comparison
purposes.

As shown in Figure 11, while the partitioning strategy
that takes into account both computation and communication
achieves the best performance, the partitioning strategy that
emphasizes the computation balance achieves comparable
level of performance (within 10% in all cases considered).
This result corroborates our previous hypothesis about the
computation-dominated nature of the Tilera. The signifi-
cance of this result is that even a simple partitioning scheme
that just balances computation is sufficient to sustain PDES
scalability on the Tilera. This kind of partitioning is much
easier to obtain than a one that optimizes for communication.
For example, the information about event processing is
readily available from the model, while communication
frequencies have to be obtained through profiling. Further-
more, complex graph partitioning tools are needed to derive
communication-optimized partitions. Finally, the same ob-
servations apply to dynamic object migration schemes. It is
much easier to design them if only the information about
the CPU loading needs to be maintained.

Remote % Nearby placement Random placement

0 8.00 8.03

20 12.18 12.44

40 14.09 16.64

60 14.96 17.18

80 18.57 19.07

100 21.34 21.98

Table I
PLACEMENT OF PAIRED MODEL

In our next experiment, we evaluate the impact of place-
ment of highly communicating PEs on the performance of
ROSS-MT. Due to the mesh topology of tile interconnect,
it is logical to place highly communicating PEs on the
adjacent tiles for higher performance. In order to evaluate
this, we modified the basic Phold, so that communicating
pairs of consecutive PEs are formed e.g. (0,1),(2,3). LPs
in one PE communicate only with other LPs in the same
pair. We measure the execution time of simulation by two
PE placement strategies: Nearby and Random. In Nearby
placement strategy, we place PEs that form a pair on
physically adjacent tiles, while in Random placement PEs
in one pair are placed on physically farthest tiles.

As shown in Table I, such placement variations have a
negligible impact on the performance, confirming once again



that the iMesh is not a bottleneck and that object placement
should be a secondary consideration while running PDES
on the Tilera.

V. RELATED WORK

While there were no previous studies of PDES perfor-
mance on the Tilera platform (to the best of our knowledge),
there were studies of time warp performance and scalability
on the IBM Blue Gene supercomputer [9], [10]. Just like
with Tilera, impressive speedups and performance were
achieved [10], again demonstrating the point that PDES
can scale very well on these emerging platforms. The key
difference between the Blue Gene and Tilera (aside from the
obviously different scale of the design) is that the former
uses fairly powerful Power series cores, while the latter
uses slow energy-efficient cores, thus making computation a
dominant bottleneck. The study of [10] also shows that event
rate drops by 3X at 100% remote events. On the Tilera, the
event rate is sustained even for this high remote percentage.

Previous works have demonstrated the importance of
partitioning to reduce the communication frequency in PDES
(e.g., [11]). Similarly, dynamic partitioning and workload
rebalancing mechanisms have been proposed to repartition
the simulation to recover dynamic behavior changes of
the simulation model for both conservative (e.g., [12]) and
optimistic (e.g., [13]) synchronization protocols.

Fujimoto’s GTW simulator is one of the first shared mem-
ory optimistic PDES implementations. It exploits shared
memory for efficient message communication. GTW also
implemented optimizations such as direct cancellation,
which allows an LP to cancel out erroneously sent remote
events directly, eliminating the need for anti-messages [14].
Similarly, in shared memory, messages can simply be written
into a buffer and become visible to all processors. Fujimoto
and Hybinette also describe an efficient on-the-fly fossil col-
lection algorithm to enable fast reclamation of memory [15].
They also explore efficient buffer management algorithms
for shared memory environments [16].

VI. CONCLUDING REMARKS

We presented detailed characterization and evaluation
of PDES on Tilera Tile64Pro architecture - an exam-
ple of emerging class of many-core designs. In contrast
to traditional communication-dominated parallel computing
platforms (for which classical PDES algorithms and tech-
niques were designed and optimized), Tilera represents a
computation-dominated environment which has significant
implications on PDES.

Specifically, we demonstrated that large speedups can be
achieved on Tilera, especially when designs are optimized
to take into account the presence of on-chip shared memory
hierarchy (as in ROSS-MT). We also demonstrated that
PDES optimizations designed for traditional Intel and AMD
chips do not necessarily work as such on Tilera and need

to be adjusted to take into account the new computation-
communication balance. Furthermore, we demonstrated that
simple partitioning and dynamic object migration schemes
that just take into account the computational balance across
the cores provide performance that is competitive (within
10%) of more complex schemes that also optimize for
communication. Next, we showed that the object placement
across the cores should be a secondary consideration on
Tilera, as there is nearly no performance difference between
various placement schemes for the models that we consid-
ered. Finally, we showed that GVT calculations on Tilera are
inexpensive, meaning that frequent GVT cycles can provide
optimal performance for optimistic simulation, especially for
rollback-prone models.
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