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Abstract—Partitioning plays an important role in PDES
performance due to the high communication cost in parallel
platforms and the fine-granularity of most simulation models.
Traditionally, models are partitioned by deriving the static
communication graph of objects and applying graph partition-
ing to reduce the mincut while load balancing the number of
objects. However, many, if not all, models exhibit great diversity
in their dynamic behavior: objects communicate with each
other with diverse frequencies that are commonly power-law
distributed. Similar diversity exists in the activity of objects and
the processing requirements of events. In this paper, we argue
that partitioning based on static graphs ignores these effects,
leading to poor partitioning. We explore how partitioning based
on dynamic information should be approached and explore
policies that focus on communication cost, load balancing and
both. We show that on multicore clusters, dynamic partitioning
achieves up to 4x better performance than static partitioning.
On the AMD magnycours, where the communication latency
is low, dynamic partitioning results in a 2x performance
improvement over static partitioning for some of our models.
Our future work considers how to derive the dynamic weights
(in this study, we do that through profiling), and how to balance
the importance of communication and computation in a way
that is informed by the underlying architecture.
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I. INTRODUCTION

Parallel Discrete Event Simulation (PDES) is a fine
grained application with dynamic dependencies: its perfor-
mance and scalability is highly impacted by the cost of
communication between the processors of the host parallel
machine. Communication is used to transfer event messages
to objects on other processing elements, as well as to imple-
ment synchronization algorithms (e.g., GVT for optimistic
simulation, or lookahead messages for conservative simu-
lation). The high message sending and receiving overhead
slows down event processing. Moreover, the high latency
causes events to be late, causing rollbacks (in optimistic
simulation) or slow simulation progress.

Partitioning is one of the primary approaches to reducing
the impact of communication: by mapping often communi-
cating objects to the same processor or to nearby processors,
communication frequency and distance is reduced. Another
goal of partitioning is to maintain a balanced workload
across the different simulation processes. For partitioning
purposes, the simulation model is represented as a graph,
where every vertex is a simulation object and every edge

represents the fact that the two objects communicate during
the simulation. A graph partitioning tool is then used to
partition the graph to minimize the cut size (to reduce
communication) while maintaining balanced partition sizes
(to maintain load balancing) [1], [2].

With few exceptions, partitioning research has focused on
graph based partitioning where all objects and edges are con-
sidered identical. The advantage to this approach, which we
call static partitioning, is it requires only information about
the static simulation topology. In practice, this topology
often does not reflect the dynamic behavior of the simulation
model. In particular, some edges in the communication graph
may be significantly more important than others because the
connected objects communicate frequently, or because the
events are more critical (little look-ahead available between
the event generation and its consumption); minimizing the
impact of remote communication requires taking this in-
formation into account. Moreover, some simulation objects
require more computational resources, such as processing
and memory, than others either because they become active
more frequently or because processing their events requires
more computation; effective load balancing must take this
information into account. Finally, at a higher semantic
level, it is likely that dependency patterns play a role in
determining effective partitioning.

We argue that taking the dynamic model behavior into
account is critical to effective partitioning of simulation
models. We motivate the need for incorporating this in-
formation by providing the evidence from real models that
both edges and objects have substantially different behavior.
Thus, given this information, partitioning can much better
localize the most important dependencies, and load balance
in a way that takes into account the behavior of objects,
rather than just their counts.

The primary goal of this paper is to make the case
for dynamic partitioning by quantifying the size of the
opportunity for different types of models and with respect to
different architectures. We develop a configurable synthetic
benchmark that allows control of the distribution of commu-
nication and object activity. This configurable benchmark
allows the abstraction of the dynamic behavior of real
models. We observe and extract the dynamic properties of
the model through a profiling run. The information is then
represented in the form of a weighted graph. We develop



a number of strategies for partitioning to show the relative
impact of communication and load balancing.

We study the partitioning strategies on two multi-core
architectures: a dual quad-core Intel Xeon cluster, and a 48-
core AMD Magny-cours system. The two platforms differ
significantly in a number of ways, including the relative
cost of communication to computation and the behavior of
the memory subsystem. We discover that dynamic behavior
based partitioning can outperform static partitioning by a
factor of 4x on the cluster, and up to 2x on the Magny-
cours system. The best performance is achieved by the
partitioning strategy that emphasizes both communication
cost and load balancing; this strategy consistently leads to
effective partitions for different model types and simulation
platforms.

The remainder of the paper is organized as follows. Sec-
tion II motivates the need for partitioning that is sensitive to
the dynamic model behavior by showing that such behavior
exists in real models. We overview partitioning based on
model behavior and introduce the partitioning strategies in
Section III. In Section IV, we design a configurable synthetic
benchmark that enables simulation behavior and structure
to be configured independently to reflect the dynamic prop-
erties of observed real world models. Section V describes
our experimental environment. Section VI then exercises our
benchmark and partitioning approaches on two multi-core
platforms to provide an estimate of the possible range of
benefits. Section VII presents some related work. Finally
we present our concluding remarks and future work in
Section VIII.

II. MOTIVATION: DYNAMIC BEHAVIOR AND STATIC
STRUCTURE

Real world simulation models exhibit dynamic activity
patterns which static partitioning approaches are unable to
exploit. Many phenomena exhibit skew in their behavior
often in a way that does not correlate with their structure.
In this section, we present two representative examples to
demonstrate that such activity patterns exist.

A. Protein-Protein Interaction Networks

Systems biology is the study of the functional biological
systems observed through the use of both wet lab and dry
lab experiments. However, due to cost, most experiments
are observed in labs first and then simulated to acquire
further results [3]. One particular area in systems biology
that exhibits interesting communication patterns is protein-
protein interaction networks. In these networks, the degree
of connectivity between proteins follows a power law distri-
bution [4]. Another interesting aspect of protein interaction
networks is how likely two connected proteins will interact.
An example of the distribution of protein-protein interaction
likelihood can be found in table I. In this table an interaction
score of 2 means that two proteins are twice as likely to

interact than arbitrary routine pairs [5]. Clearly, a large
skew in interaction can be observed; this impacts both the
communication between these objects, as well as the amount
of processing they do.

B. P2P Networks

We also analyzed a P2P networking simulation benchmark
and observed similar trends. In particular, Table II shows
percentages of communicating object pairs and percentage
of total communication instances when we only consider
the object pairs that communicate at least the number of
times defined by the communication frequency threshold
parameter that is shown in the first column of this table.
The results present the average communication frequencies
(second row), as well as the communication frequencies
observed at various other thresholds (including 10 standard
deviations away in the last row). Even at this high threshold
value, a significant percentage of all communication events
is encountered (16%), while the number of distinct object
pairs that contribute to it is very small (less than one tenth
of one percent of all communicating object pairs).

The conclusion is that the communication patterns exhibit
high skew, and the communication graph has a small number
of edges with very high weights (activities) and a much
larger number of edges with smaller weights. Clearly, the
information about the structure alone is not sufficient to
capture these dynamics.

As the two examples above demonstrate, skewed, and
even power-law distributed behavior, is quite common in
real models. Quite often, this behavior does not match the
structure (or is even hidden by it). As a third example, the In-
ternet topology is known to display power-law connectivity
(structure) [6]. Commonly held understanding [7], translated
into widely used simulation models [8], assumed that the
core of the network is where the highest degree nodes
existed. However, it was later shown that the edge routers
have the highest degrees (to connect end customers) while
core routers had small degrees due to the difficulty of scaling
the number of interfaces on high speed routers [9]. Thus,
structure would not identify core routers as the most active,
potentially partitioning neighboring core routers apart, or
failing to account for their disproportionate activity when
load balancing.

Traditionally, PDES partitioning has been focused on
static partitioning which can exploit the structural properties
of the models. However, as we have shown, the activity
patterns can differ significantly from the underlying static
connectivity. Static partitioning can be ineffective or even
harmful for such models. This is the motivation behind the
work in this paper.



Table T
PROTEIN-PROTEIN INTERACTION

Interaction Number of Protein-Protein Interactions
Score Cut off Above Cut Off Score
0.25 79441
1 37606
2.5 25598
25 5394
250 1232
2500 498
* Source:http://www.compbio.dundee.ac.uk/www-
pips/dbStats.jsp
Table II
P2P NETWORK SIMULATION
Communication Number of Percentage of Number of Percentage of
Frequency Communicating | Communicating | Communication | Total Comm.
Threshold Object Pairs Object Pairs Instances Instances
1 37020 100 645436 100
17 (Avg) 6396 17 586740 90
131 (Avg + stddev) 1260 34 358556 55
245 (Avg + stddev  2) 116 0.3 169224 26
1157 (Avg + stddev * 10) 26 0.07 100672 16

III. DYNAMIC PARTITIONING BASED ON MODEL
BEHAVIOR

We have motivated the need to incorporate dynamic model
behavior into partitioning decisions. In this section, we con-
sider the problem of how to implement such a partitioning
scheme.

A. Overview and Scope

There are two primary challenges that must be addressed.

1) Extracting dynamic model behavior. Obtaining dy-
namic activity information is not straightforward; it
requires either profiling the model, static analysis of
the model, or hints from the model developers.

2) Partitioning based on dynamic information. Once the
behavior information is obtained, the second step is
to exploit it in partitioning algorithms. Our approach
annotates both the edges and the objects of the con-
nectivity graph with weights derived from the dynamic
information. The weighted graph is then partitioned.
We discuss the approach in more detail in the remain-
der of this section.

In this paper, our focus is on the second problem: once
the dynamic model information is available, how do we
exploit it to produce better partitioning. We obtain the
dynamic model information through profiling. The reason
for focusing only on the partitioning problem is that it allows
us to evaluate the size of the available opportunity. Once
we establish that dynamic model behavior based partitioning
can yield superior performance, our future work will address
the first problem to enable practical exploitation of behavior
information in partitioning.

B. Fartitioning Approach

We profile the models to obtain the dynamic communi-
cation pattern between the objects, as well as the activity
pattern of the objects themselves. This communication in-
formation is used to derive weights for the edges in the static
connectivity graph. Similarly, the object activity is used to
derive weights for the vertices in the same graph. We can
now apply partitioning on the weighted graph; by minimiz-
ing the weighted mincut, the partitioning tool minimizes
the dynamic cutsize (the number of remote messages, rather
than remote edges). Similarly, by load balancing the object
weights, the run-time is load balanced across PEs (rather
than the number of objects across PEs).

To evaluate the importance of dynamic partitioning, and
the relative importance of object weights to edge weights,
we investigate the following six partitioning strategies:

1) Random: Random partitioning does not take into
consideration any connectivity or activity information.
It places an equal number of arbitrary objects on
each processor regardless of their relationships to each
other. Random strategy represents a baseline of no
partitioning algorithms applied to determine object
placement.

2) Static: Static scheme partitions a static connectivity
graph, using static information for both edges and
objects. All edges and objects are treated equally
regardless of the their varying importance. Static parti-
tioning represents the baseline of existing partitioning
approaches.

3) Object-Only: Object-only partition strives to balance
total weight of all the processors. It does not, however,
consider inter-object relationships. Thus, it considers



dynamic object weights, but ignores connectivity in-
formation. This strategy is expected to perform well
when the impact of balanced object workload is much
more important than the inter-object communication.

4) Activity: This strategy takes into account the dynamic
edge activity information, but only the static object
weights (e.g., all objects have the same weight). The
weight of the edge indicates the importance of the
relationship between two objects, for example, as
a function of how often they communicate or the
criticality of these events (lookahead available between
generation and execution time of the event). In mod-
els dominated by communication costs, this strategy
performs well.

5) Object-Activity: This strategy takes into account both
the dynamic object and edge weights. It is expected
to provide the best performance across different simu-
lation models as it minimizes communication as well
as balances the workloads.

C. hMetis Partitioning Tool

We use the hMetis partitioning package [10] for graph
partitioning. hMetis is a state of the art partitioning tool
implementing both bi-partitioning and k-way partitioning
for general weighted graphs. hMetis works by first creating
a mincut partition, and then attempts to exchange objects
to satisfy the load balance requirement. As a result, it is
not necessary to normalize the edge and object weights to
each other since they are not jointly optimized. The load
imbalance constraint is specified by providing an imbalance
factor to inform the partitioning tool of how much imbalance
can be tolerated.

All of the partitioning strategies other than Random and
Object-Only use hMetis. For Object-only, we use a simple
bin packing heuristic where the next largest weight object
is assigned to the processor with the least total weight.

IV. BENCHMARK AND EXPERIMENTAL METHODOLOGY

PDES performance evaluations often use synthetic bench-
marks, such as PHOLD [11], [12], because of the lack of
large scale portable models to enable comparison across
simulators and infrastructures. In PHOLD, the PEs are
allocated an equal number of objects, and each object is
initialized with the same number of events (on average).
During simulation, each object randomly picks a target
and sends an event to that target. Upon receipt, the target
picks another object and sends an event. The total event
population is preserved at all times. PHOLD is simple,
and is generally effective for testing system performance
in a controlled way. Extensions of PHOLD [13] to control
remote communication percentage, as well as more general
synthetic models [14] have been proposed. However, the
behavior remains different from dynamic models and it is
difficult to use them to evaluate model-related algorithms

and techniques. Other environments [15] appear promising
in that they take in the model topology and activity, but are
specific to a simulation environment and were not available
to us.

We developed a configurable synthetic benchmark that
enables composition of abstract models with various struc-
ture and dynamic properties to represent real world models.
Importantly the model allows independent specification of
topology and dynamic behavior. We describe the model in
the remainder of this section.

A. Topology

Topology defines the static structure of the simulation:
which objects communicate to what other objects. Without
loss of generality, we implemented two classes of topology:
(1) Hierarchical models create a tree hierarchy of object
groups. Objects have dense connectivity to nearby objects
in the tree, there are sparse connections between remote
objects. Structurally, this model is similar to systems such
as road transport networks where there is dense network of
roads inside a city while on a second inter-city level they
are connected with a sparse highway network. The model
is controllable in the number of levels in the tree, and the
connectivity intensity at each level; and (2) Uniform model,
on the other hand, does not exhibit structural variations
in connectivity. It’s unclear whether such models exist in
practice, but we wanted to be able to evaluate partitioning
performance when the structure carries no clustering infor-
mation (which may help or harm partitioning depending
on the dynamic behavior of the model). The model is
configurable in the intensity of connectivity.

B. Dynamic Behavior

To represent various communication patterns, we use a
Pareto distribution to control activity. The Pareto distribution
allows us to controllably vary the activity pattern, creating
skew that is independent of the underlying topology. In
addition, the Pareto distribution is also optionally applied
to object computation requirements to simulate different
workload for each object. The distribution can be configured
so that at one end nearly uniform distribution is obtained,
while at the other, a heavy tailed distribution is obtained
where some edges (or objects) have much higher importance
than others. The Pareto distribution is described as follows.

—(UH* - UL* — H*)] """
(HL)

Frequency =

where, U is uniformly distributed on (0, 1) , H is the upper
bound while L is lower bound.

Figure 1 shows the frequency distributions at 6 values of
parameter . The communication pattern becomes gradually
skewed with the increasing value of «. These communica-
tion levels however indicate the frequency of messages at
each level in the topological model.



—*— Alpha=-5 —+— Alpha=-3 —*— Alpha=-1 —&— Alpha=-0.5 —¢— Alpha=0.5 —&— Alpha=1

Cumulative Communication %

0 T T T T T
0 2 4 6 8 10 12
Neighbor Distance (in clusters)

Figure 1. Communication Frequency Distributions

C. Benchmark Example

To ground the description above, and to provide a de-
scription of the simulation model used in the experimental
section, we describe how we instantiate a hierarchical model
example. A primary parameter in this model is number of
Levels (L) in the hierarchy. At the leaf level, we start with
a predefined number of objects x. Every subsequent level
consists of two of the clusters below it. Therefore, the total
number of objects in this model is z”. A third parameter
controls the number of neighbors each object has at each
level. During initialization the object randomly chooses that
many neighbors from the cluster at corresponding level and
guarantees that the communication will be forwarded to one
of these neighbors. As the candidate group size increases
at upper levels but the number of edges remains the same,
the density of edges is higher at lower level groups while it
gradually reduces at higher levels. This creates a hierarchical
static connectivity structure.

On top of this topology, we use the Pareto distribution
with the specified o parameter to control the frequency of
communication at each level. The steeper the curve, the
more intensely we skew the communication frequency. For
example, if we use a=-5 then most of the communication
will be forwarded to the neighbors in nearest cluster. On the
other hand, if we use a=1, most of the communication will
be forwarded to the neighbors in the farther clusters.

V. EXPERIMENTAL SETUP

In this section, we describe our experimental environ-
ment and methodology. Several PDES kernels have been
developed over the years, both in academia [16], [17], [18],
[19] and industry [20]. For our studies, we use Rensselaer’s
Optimistic Simulation System (ROSS) simulator developed
at RPI [19]. ROSS is a state-of-the-art simulation engine
with support for conservative and optimistic time warp sim-
ulations. However, little support is provided for partitioning
or dynamic load balancing. Default strategies to distribute
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Figure 2.  AMD Magny-cours (Total 48-cores)

objects in round robin fashion one object at a time, or a
block of objects at a time are provided.

We have implemented support in ROSS to collect dynamic
behavior information and to implement partitioning. Once
we collect the dynamic behavior information, we use it
to generate the weighted model graph. We use hMetis to
partition the graph, and use its output to generate an object
mapping file. We implemented a manual object placement
scheme that reads the object mapping data and places objects
on the corresponding processors.

We evaluate partitioning using two modern platforms. The
first platform is a cluster of dual quad-core Intel Xeons.
The second platform is an AMD Magny-cours machine,
with four AMD opteron 12-core chips connected with a
hyper-transport connection (Figure 2). The Magny-cours
cores are tightly integrated providing low communication
latency between the cores, but has Non-Uniform Memory
Access (NUMA) latencies. Thus, the two environments have
a different balance between the cost of communication and
computation, and significantly different memory hierarchies,
which affects load balancing decisions.

VI. PERFORMANCE EVALUATION

In this section we present a number of experiments to
evaluate the impact of dynamic partitioning on simulation
performance.

A. Impact of Topology

In the first experiment, we show the performance of
dynamic behavior based partitioning for different activity
patterns overlayed on top of the two different static topolo-
gies. Figure 3 shows the execution times with Static and
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Activity partitioning strategies for Hierarchical and Uniform
models with all six frequency distributions (Refer to Figure
1). The results show that, in the case of Hierarchical model,
for the first four Alpha values static connectivity based
partition performs equally well as the activity partitioning. In
these cases, activity patterns match the underlying structure
making Static partitioning effective. However, for last two
Alpha values activity differs significantly from the underly-
ing connectivity. This information is captured and utilized
by Activity partition and results in 20 to 40% benefit over
Static partitioning.

Partitioning for the Uniform model reveals more about
the connectivity-activity interplay. Since the Uniform model
does not have a partitionable static connectivity pattern, the
activity patterns influence the model behavior even in case
of smaller Alpha values; the emergent dynamic pattern can
be identified and used to partition the model. Thus, the
effectiveness of partitioning is a function of the dynamic
behavior of the model, regardless of the static relationships.

In the next experiment, we study the impact of dynamic
partitioning on a Hierarchical fine-granularity, communica-
tion intensive application. Figure 4(a) shows the execution
times for three partitioning strategies: Random, Static and
Activity. For this scenario, activity-based partitioning sub-
stantially outperforms static partitioning by a factor of 2x on
4 nodes and 4x on 32 nodes. To explain this performance,
Figures 4(b) and 4(c) show the static and dynamic mincut
achieved by the partitions. The mincut represents the cut size
once the graph is partitioned. The static cutsize considers all
edges of equal weight (1). In contrast, the Active cutsize
takes into account the frequency of communication on
each edge. While static partitioning achieves a better static
mincut, Activity partitioning achieves substantially better
dynamic mincut size. In effect, the number of communicated
messages reflected by the Active mincut, is greatly reduced,
resulting in the better performance achieved in comparison

to static partitioning.

In Figure 5(a) we repeat the experiment for a Hierar-
chical, computation intensive model where event execution
requires substantial time (simulated using a delay loop).
For high granularity models, Activity partitioning does not
clearly outperform Static partitioning. Since the simulation
time is dominated by event processing, the primary consid-
eration for effective processing is load balancing. Figures
5(b) and 5(c) show that the Static and Active Mincuts of
Activity and Static partitions closely follow each other.

In Table III, we show the dynamic load balancing achieved
by the activity based partitioning for the fine-granularity
model. The activity based partitioning only considers the
dynamic communication information, but only load balances
in terms of the object counts. Since object behavior also
varies significantly, we can see in the table that it results
in large deviations in load balance in terms of total object
weights. We need to take into account dynamic resource
usage of the objects.

B. Combined Communication and Load Balancing

Table III indicated that there is further opportunity in case
of Activity partition as it does not consider load balancing.
Object-Activity partitioning strategy is useful where load
balancing is important but we also need to consider com-
munication. Figure 6(a) shows around 25 to 30% benefit
of Object-Activity partition over basic Activity partition in
a communication intensive model. Figure 6(b) shows the
reduction in object deviation in the case of Object-Activity
partition. Object-Only partition which solely focuses on load
balancing does not perform well in this case as it fails to
consider the communication.

Figure 6(c) shows the impact of Object-Only and Object-
Activity partitions in the case of a computation intensive
model. In this model, even though communication patterns
exists, computation plays a more important role in deter-
mining overall performance. This is reflected in up to 3x
benefit of Object-Only partition over Activity and Object-
Activity partition. Object-Activity partition is primarily an
Activity partition with a load balancing component. However
in this case, where the communication is not significant,
the Object-Only partition which purely focuses on load
balancing performs better.

C. Effect of Processing Granularity

Figures 7 and 8 show the comparison of a communication-
bound and computation-bound model on a cluster of multi-
core machines and an equivalent configuration on the AMD
Magny-cours respectively. Figures 7(a) and 8(a) show 4-
way to 32-way execution of a communication-bound model
(Pareto Alpha 1). Despite having slightly slower cores, the
AMD machine was able to achieve significantly better per-
formance than the cluster. This advantage can be explained
by the low communication costs on a multi-core machine, in
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Table III

COMMUNICATION INTENSIVE MODEL: OBJECT DEVIATION

Nodes 4 8 12 16 20 24 28 32
Static 363 333 23484 169 16499 | 16034 | 14907 51
Activity | 87708 | 55720 | 50401 | 68579 | 48606 | 45604 | 40209 | 41287

comparison with the high cost of network communication.
The second observation is that the Object-Activity partition
gives significant benefit on the cluster but not nearly as much
on the multi-core machine where the low latency places a
premium on load balanced partitions. Figures 7(b) and 8(b)
show a computation bound model with a large, 3000 iteration
delay loop for each event. As expected, the execution times
are much higher. In addition, execution times on AMD
Magny-cours are now only 10 to 15% better than those on
cluster. In this case, the communication properties of the
model were the same as the communication-bound model
used here. Therefore this trend indicates that the computation
intensive event processing had much higher impact on the
Magny-cours machine than on the cluster.

VII. RELATED WORK

Several researchers have studied the use of partitioning
to optimize the performance of PDES. In this section, we
review some of the most related works.

Several efforts have targeted partitioning for logic sim-
ulation based on the static model topology. For example,
Cloutier [21] studies the impact of various partitioning
techniques on the performance of time-warp simulation
of logic circuits. Various circuit parameters are used in
partitioning including circuit topology (the netlist), the gate
delays, the relative number of evaluations of the model of
each circuit element, and the relative complexity of the
element models evaluation. For partitioning, they represent
a logic circuit by a weighted directed acyclic hypergraph. In
the first approach, the computation load is distributed to the
processors. The second approach is a mincut algorithm for
weighted hypergraphs which minimizes the communication
load of the simulation.

Another aspect of Static Partitioning is Static Analysis,
obtaining the structural information from the model. This
Structural information can be more easily extracted from
models written with certain design methodology or higher
level design languages rather than the one written in general
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purpose programming languages. Reference [22] extracts
such hierarchical structure information from DEVS models
while [1] takes advantage of the design hierarchy of VLSI
modules in Verilog. Instead of partitioning a gate-level
netlist, [1] proposes a design-driven iterative partitioning
algorithm which takes advantage of the design-level hierar-
chy embedded in VLSI module instances. A Verilog instance
is represented by a vertex in the circuit hypergraph and
is flattened to the gate-level if the load balancing was not
achieved by instance level partitioning.

Similar to our work, Nandy et al. [23] attempt to track
model activity but use it for dynamic object migration.
They represent the LPs as nodes with weight indicating
expected execution time for activations of that LP and links
represent communication channels with weight indicating
the expected number of messages. Estimates are obtained by
pre-simulation runs for the sake of abstracting the problem.
They motivate the need for partitioning by presenting a
benefit of 20% and the impact of load imbalance. Though the
remaining paper focuses on a parallel partitioning scheme
based on movement of nodes which yields as good a
partition as a sequential scheme, the overall graph based
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Cluster Performance

abstraction of the simulation is a recurring idea in many
later load balancing studies. Reference [24] presents a static
partitioning and mapping algorithm for conservative parallel
simulations. It assumes the same abstraction mentioned in
[23], and presents a partitioning scheme based on Simulated
Annealing.

Wilson et al. [25] is a good example of load balancing
study in the context of optimistic PDES simulation. Em-
phasizing automation of partitioning decision they compare
three possibilities of balancing workload among the pro-
cessors. The first approach determines the object placement
based only on the computation weight of each object. This
approach concentrates on balancing the workload on the
processors but ignores communication costs. The second
approach, arrange the LPs in a linear chain so as to keep
heavily communicating LPs close to each other in the chain,
thereby increasing the chance that they will be assigned to
the same subchain and hoping that computation and com-
munication are not correlated. The third approach, modifies
the linear chaining algorithm to discourage clustering of
extremes: pairs of computationally heavy-weight objects or
pairs of computationally light-weight objects.
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Figure 8.

A more comprehensive approach to partitioning for dis-
tributed simulations is proposed in [26]. It presents a par-
titioning layer in JAMES 1II, a modelling and simulation
framework. The partitioning process involves a model ana-
lyzer to extract the model properties and an infrastructure
analyzer to obtain the underlying topology of computing
platform. Partitioning algorithms then make use of both sets
of information for mapping the model on the processors.

Thulasidasan et al. [27] argue that dynamic load balancing
presents significant implementation challenges due to object
migration and explores the possibility of static partitioning
for conservative simulation specifically for spatially clus-
tered models with geographic hot-spots where most of the
computation and messaging occurs (e.g. urban regions in
transportation networks). They argue that in such models
CPU load is a greater determinant of parallel simulation
than message passing overhead. In general, dynamic object
migration (e.g., [28], [29]) moves objects during run-time to
achieve better partitioning. Since object migration is done
on-line, with limited local knowledge, it cannot achieve the
effectiveness of dynamic partitioning. However, unlike par-
titioning, object migration can adapt to changing simulation
behavior.

VIII. CONCLUDING REMARKS

In this paper, we presented a case for partitioning based on
dynamic model behavior. Most existing partitioning schemes
only consider the static structure of the model. When ap-
plication behavior exhibits large divergence from this static
model, these approaches cannot effectively reduce commu-
nication or load balance the simulation. We showed that by
taking the dynamic information into account, much more
effective partitioning can result. In environments with high
communication latency, this leads to up to 4x improvement
in run-time for some applications. Up to 2x improvement
was observed in a low-latency multi-core platform. Our
future work targets effective approaches for identifying the
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dynamic model behavior. In the current study, we collected
this information through profiling. However, it is likely that
static analysis, perhaps augmented with limited profiling, can
provide a more attractive approach for estimating the model
behavior.
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