Branch Regulation:
Low-Overhead Protection from Code Reuse Attacks

Mehmet Kayaalp, Meltem Ozsoy, Nael Abu-Ghazaleh and Dmitry Ponomarev
Department of Computer Science
State University of New York at Binghamton
{mkayaalp, mozsoy, nael, dima} @cs.binghamton.edu

Abstract

Code reuse attacks (CRAs) are recent security exploits
that allow attackers to execute arbitrary code on a com-
promised machine. CRAs, exemplified by return-oriented
and jump-oriented programming approaches, reuse frag-
ments of the library code, thus avoiding the need for explicit
injection of attack code on the stack. Since the executed
code is reused existing code, CRAs bypass current hard-
ware and software security measures that prevent execution
from data or stack regions of memory. While software-
based full control flow integrity (CFI) checking can pro-
tect against CRAs, it includes significant overhead, involves
non-trivial effort of constructing a control flow graph, re-
lies on proprietary tools and has potential vulnerabilities
due to the presence of unintended branch instructions in
architectures such as x86—those branches are not checked
by the software CFI. We propose branch regulation (BR),
a lightweight hardware-supported protection mechanism
against the CRAs that addresses all limitations of software
CFI. BR enforces simple control flow rules in hardware at
the function granularity to disallow arbitrary control flow
transfers from one function into the middle of another func-
tion. This prevents common classes of CRAs without the
complexity and run-time overhead of full CFI enforcement.
BR incurs a slowdown of about 2% and increases the code
footprint by less than 1% on the average for the SPEC 2006
benchmarks.

1 Introduction

Software security exploits have been steadily increasing
in frequency and impact. In the past, one of the most preva-
lent attack vectors was code injection: a buffer overflow
vulnerability is used to inject attack code on the stack, while
simultaneously overwriting the function return address or
a function pointer to point to the entry of the injected
code [1,2]. A number of approaches to protect against such
attacks were devised, including software and hardware ap-
proaches [3—7]. These efforts have culminated in the recent
deployment of hardware memory protection mechanisms
that do not allow a memory page to be both writable and
executable at the same time (the so called W & X protec-
tion). As a result, classical code injection attacks no longer
represent feasible threats in modern systems.

In response to the mechanisms to prevent code injec-
tion attacks, new attacks have been developed that rely on
reusing existing code, without the need for code injection.
An early example of code reuse attacks (CRA) is the return-
into-libc attack [8] which allows a libc function to be called.
While powerful, return-into-libc attacks do not allow the at-
tacker to perform arbitrary computation. A recently pro-
posed CRA, called Return-oriented programming (ROP)
[9], allows attackers to execute arbitrary code on victim ma-
chines. In this attack, the attacker overflows the stack with
a sequence of return addresses that point to specific code
snippets (called gadgets) in the program under attack. Each
gadget ends with a return instruction to trigger the execu-
tion of the next gadget pointed to by the next return address
on the stack. ROP was shown to be Turing-complete on a
variety of platforms [10-14]. Automated tools have been
developed that allow unsophisticated attackers to construct
arbitrary malicious programs using ROP [15-18].

Since the introduction of ROP, several defense mecha-
nisms have been proposed. Solutions include monitoring
the rate of the return instructions [19], monitoring the pat-
tern of return instructions [20], or rewriting the existing
code to eliminate all returns [21]. In response to these de-
fenses, a new class of attacks that does not rely on return
instructions has been proposed [22-24]. In these jump-
oriented programming (JOP) attacks, the attacker chains
the gadgets by using a sequence of indirect jump instruc-
tions, rather that return instructions, thus bypassing the de-
fense mechanisms designed for ROP. These attacks repre-
sent critical exploit strategies that can compromise any ma-
chine running software with a buffer overflow vulnerability.
Both ROP and JOP attacks can be mitigated by enforcing
full Control Flow Integrity (CFI) [25]. However, the CFI
approach is a heavy-weight solution that has several impor-
tant drawbacks, as we discuss in more detail in Section 2.

In this paper, we propose Branch Regulation (BR) - a
new low-overhead solution for defending against the ROP
and JOP attacks. BR checks the legitimacy of program
control flow in a light-weight fashion, avoiding both the
analysis complexity and the run time overhead of full CFL
Specifically, instead of constructing and checking the com-
plete Control Flow Graph (CFG), we check only if a branch
instruction targets an address within the same function, or
targets the starting address of another function. Thus, arbi-
trary branches that cross function boundaries are prevented,

severely limiting JOP and ROP attacks.

We demonstrate that BR makes the great majority of
functions immune to code reuse attacks because they lack
a critical dispatcher gadget (discussed in Section 6.1). We
also demonstrate that the remaining functions by them-
selves are not sufficient for carrying out a successful at-
tack; even though they contain some functional gadgets,
they lack one or more of the ingredients needed for the at-
tack. In addition to performance advantages, the hardware-
assisted checks used in BR supports the checking of un-
intended branches-branches that occur in the middle of
an instruction in variable-length ISA such as the x86.
Software approaches such as the CFI implementation by
Abadi et al [25] cannot perform checks for such unintended
branches.

BR has the following key properties.

e It eliminates all vulnerable code in the examined li-
braries if the attacker relies on the execution of a sys-
tem call instruction. Even if the attacker does not rely
on a system call, BR reduces the number of available
gadgets to 1% of what is available in the entire code
base, with significant restrictions on how these remain-
ing gadgets can be used.

e It comes at a performance cost of slightly over 2% and
increases the code size by less than 1% for SPEC 2006
benchmarks.

e It does not require complex binary rewriting or con-
struction of a full control flow graph of a program. In-
stead, BR requires only simple binary annotations that
can be readily derived from the symbol tables in the
ELF binaries.

e With simple hardware support, BR also performs
checks for wunintended branches (in variable
instruction-length architectures, like x86) thus
closing the potential security vulnerability of purely
software-based solutions.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the background and related work. We
present the threat model in Section 3. BR is introduced in
Section 4, and the implementation details are presented in
Section 5. We present our approach for analyzing BR se-
curity in Section 6, and evaluate BR’s security in Section 7.
Section 8 presents the performance evaluation of BR. Fi-
nally, Section 9 offers some concluding remarks.

2 Background and Related Work

In this section we provide background related to the evo-
lution of CRAs. We also review related work.

2.1 Buffer Overflow and Code Injection

Buffer overflows are one of the most common software
exploits in languages without type safety such as C/C++.
Stack smashing is a buffer overflow attack on a stack-
allocated buffer [1], allowing the attacker to overwrite the
return address of the function with the address of the mali-
cious injected code. Several approaches were developed to
defeat stack smashing attacks [3—5,26-28]. Despite these
approaches, buffer overflow vulnerabilities remain preva-
lent. Hardware solutions have been proposed to protect

against stack smashing [6,29-31]. StackGhost uses the reg-
ister window feature of the Sun Sparc architecture to verify
that return addresses have not been overwritten [32]. Data
execution prevention (DEP) prevents code from executing
from pages allocated for stack or data [33,34]. While soft-
ware implementations of DEP are possible, W & X page
protection schemes are now commonly supported by CPUs.

2.2 Return Oriented Programming

Protection mechanisms such as DEP are now available in
all major operating systems and make it impossible to per-
form code injection attacks. Adversaries have reacted by
devising new attacks that bypass DEP. Techniques such as
return-to-libc attacks, where the attacker subverts the con-
trol flow to call a function in the standard C library, can not
be prevented by DEP because they execute valid code in
valid code memory segments. However, return-to-libc does
not provide a clear way for arbitrary attack code execution,
because only regular library functions can be executed.

A CRA that allows arbitrary code execution was recently
devised. Return-oriented programming (ROP) [9] attacks
are mounted as follows. The attacker identifies gadgets,
which are sequences of instructions in the victim program
(including any linked in libraries) that end with a return.
Sufficient gadgets can be identified to allow the composition
of arbitrary attack code. The attacker uses a buffer over-
flow vulnerability to inject a sequence of return addresses
corresponding to a sequence of gadgets. When the func-
tion returns, it returns to the location of the first gadget. As
that gadget terminates with a return, the return address is
that of the next gadget, and so on. ROP executes instruc-
tions only from the code segment and therefore is not pre-
vented by DEP. A Turing-complete set of gadgets has been
demonstrated on a number of architectures and operating
systems [10—14]. Compilers have been built to ease the de-
velopment of ROP attacks, making them accessible to un-
sophisticated attackers.

Because of the seriousness of ROP attacks, a number of
mitigation techniques have already been proposed. Davi et
al. proposed the use of a reference monitor to detect the re-
peated execution of a small number of instruction sequences
followed by a return [19]. Chen et al. monitor return prop-
erties to detect possible ROP attacks [20]. Li et al propose
rewriting binaries to eliminate the use of returns, completely
preventing return-oriented attacks [21]. Bania proposed a
number of compiler and binary rewriting approaches to pro-
tect from ROP [35]; the proposed ideas are preliminary, and
most of the proposed techniques rely on validating the call-
return behavior.

An interesting and effective recent approach was devel-
oped by Onarlioglu et al. who rewrite away all unintended
control flow paths [36]. They further protect intended
branches through a combination of pointer encryption and
stack cookies. Stack cookies are function-specific markers
pushed on the frame. Additional code is inserted after every
branch to check this cookie. Thus, a branch to another func-
tion is possible, but subsequent indirect branches would be
detected (allowing return-to-libc attacks, but preventing ba-
sic ROP and JOP attacks). However, if gadgets are available
in a function to replace the cookie before leaving, this pro-
tection can be defeated. The approach cannot protect legacy

binaries; it also increases the code footprint by over 25%.

In order to preserve the integrity of return addresses writ-
ten to the data stack by return instructions, several previ-
ous efforts targeted separation of return addresses from the
data stack and enforced address matching for call-return
pairs [6,29-31]. When deployed, these techniques are
able to thwart ROP attacks, but are not sufficient to protect
against other types of CRAs, particularly the ones described
in the next subsection.

2.3 Jump-Oriented Programming

The above solutions detect or prevent ROP attacks by
monitoring the behavior of call and return instructions. Re-
cently, a variation of the ROP attack was proposed that in-
stead uses branch instructions (jumps) to transfer control
between the gadgets. This attacking technique is called
Jjump-oriented programming (JOP) [22-24]. JOP requires
a critical dispatcher gadget that orchestrates the sequence
in which other gadgets are called. The authors demon-
strated that dispatcher gadget is fairly common in stan-
dard libraries, allowing Turing-complete functionality to be
composed using this approach. Since no known defenses
against ROP prevent JOP attacks, there is a critical need for
techniques that prevent JOP attacks with low overhead.

2.4 Control Flow Integrity (CFI)

Our work is most related to recent work on using a
reference monitor to track and enforce control flow in-
tegrity [25]. In particular, Abadi et al. observed that most
rootkits and other malware change the control flow graph
(CFG) of the original program [25]. Thus, CFI attempts
to prevent these attacks by ensuring that any control flow
change is consistent with the original program CFG; this
is the invariant it attempts to preserve. If a branch that is
not present in the CFG is encountered, the system stops
the process and signals a CFI violation thwarting the at-
tack. Enforcing full CFI at the branch level should com-
pletely protect from ROP and JOP attacks; this is a promis-
ing approach to address the problem. With aggressive opti-
mization, the CFI performance overhead is non-negligible,
but moderate: an average of 16% performance penalty for
SPEC 2000 benchmarks was reported in [25]. Our own be-
havioral model of CFI shows 22% performance loss for a
larger set of benchmarks from SPEC 2006 suite.

Unfortunately, CFI requires expensive static analysis,
profiling, or deep binary analysis to build the CFG. No prac-
tical tool that analyzes a binary to form a complete CFG
(including ”Vulcan”, reported to be used in [25]) is publicly
available to the best of our knowledge. In addition, it is un-
clear how CFI will operate in a system with shared libraries
and where functions may be bound late or even dynami-
cally. Furthermore, the existing software implementation
of CFI also suffers a weakness on x86 and similar ISAs that
feature variable instruction lengths: unintended control flow
instructions can occur in the middle of multi-byte ISA in-
structions. These unintended instructions are not protected
because no inline code can be inserted to check them. We
show in Section 4.2 that for libc, these unintended branches
far outnumber the legitimate ones. The technique presented
in this paper uses hardware-supported checks to address this
issue.

2.5 Other Defense Approaches

A number of other solutions have been proposed to pre-
vent or limit attacks on software vulnerabilities. Memory
bounds checking (MBC) techniques attempt to eliminate
buffer overflow vulnerabilities by checking every memory
access against the base and bound of the associated data
structure [37-39]. MBC is a promising solution that ad-
dresses the root problem. However, the hardware costs or
performance overhead of MBC schemes is significant. In
addition, MBC affords limited protection for legacy bina-
ries and externally linked or loaded components. Other is-
sues related to memory aliasing and handling of variable
length argument lists also hinder the practical adoption of
MBC.

Data flow integrity [40] uses static, compile-time analy-
sis to infer the data flow graph of a program and instrument
the program to enforce conformance with this graph. Using
similar analysis, WIT [41] associates instructions with their
allowed target objects and enforces integrity of each write
operation.

Dynamic Information Flow Tracking (DIFT) taints the
information coming from insecure sources, and dynami-
cally tracks and propagates the taint through processor reg-
isters and memory locations. If a tainted address is used
for writing into the stack, a security exception is raised.
The drawback is that DIFT is a heavy-weight approach that
entails a significant redesign of the processor datapath and
memory system if implemented in hardware [42—44], or in-
curs a substantial performance overhead if implemented in
software [45,46]. In addition, DIFT solutions may suffer
from false positives, where the tainted state of the system
rapidly expands in a domino fashion.

A different approach to protection against code injection
attacks uses randomization. Address space layout random-
ization (ASLR) [47] positions the program’s memory at a
random offset in memory. ASLR (and other optimized heap
allocation models [48, 49] make it difficult for an attacker
to guess the correct address of the malicious code. How-
ever, successful attacks can be mounted if the addresses are
leaked (e.g., format string attacks allow attackers to peek
at the stack [50]), or by creating many copies of the mali-
cious code to increase the chance of reaching it (heap/stack
spraying) [51].

Related to our work, Champagne and Lee [52] intro-
duce the idea of valid function entries as part of the Bastion
framework for software security within a virtualized envi-
ronment. The function entries are setup at startup time and
used to ensure legal control flow at runtime. Although the
approach is similar, we believe the context and application
are quite different. Moreover, it is interesting that a similar
approach is useful for two different security applications.

3 Threat Model and Assumptions

We assume that the attacker has full control over data
and stack memory regions. This assumption is consistent
with published CRAs that make use of stack/heap buffer
overflows and/or string formatting bugs to overwrite a re-
turn address, a function pointer or a non-local jump buffer
(that is placed in memory by a call to set jmp [53]). In

addition, we assume that the attacker is able to modify the
program counter as well as other registers upon the initi-
ation of the attack, as it can be achieved by overwriting a
non-local jump buffer. We also assume execution preven-
tion for writable memory that forces the attacker to reuse
existing code.

We assume that the vulnerability exploited to initiate the
attack does not lead to a privilege escalation. This assump-
tion is necessary because any defense mechanism could be
thwarted by an adversary with sufficient privileges. Rather,
the attacker’s objective is to use the CRA to achieve privi-
lege escalation.

We do not consider protection for the setjmp and
longjmp C calls. These calls can be more naturally sup-
ported in the operating system. Specifically, BR will gener-
ate an exception for these instructions which can be checked
and allowed by the OS. Similarly, we did not consider the
possibility of functions with multiple entry points (a small
number of such functions occur in the standard C library).
It is possible with a small amount of effort to support such
functions either by chaining annotations or handling the
lookup for them in the OS after BR raises the exception.

Instead of focusing on preventing attacks altogether, our
goal is to render any arbitrary code reuse attack that the at-
tacker manages to initiate useless. With a severely reduced
number of available gadgets, and reduced ability to exploit
these gadgets, arbitrary computation can be avoided. For
example, unless the attacker can find gadgets to execute sys-
tem calls, the damage from any attack is limited to the com-
promised process.

4 Branch Regulation (BR)

In this paper, we propose and investigate Branch Reg-
ulation, a technique that defends against CRAs by enforc-
ing simple control flow invariants present in function-based
programming languages. BR requires little analysis of the
program code, and can be derived directly from the binary,
allowing it to protect legacy code. Its simplicity allows for
practical implementations with small overheads in storage
and execution time. Moreover, by providing simple hard-
ware support, our scheme protects against attacks that ex-
ploit unintended instructions (those starting in the middle
of a legal instructions in variable-length ISAs such as x86).

Figure 1-a shows a simple JOP attack scenario that uses
one dispatcher gadget, two additional gadgets and a system
call instruction (int 80h in x86) that are spread across two
functions. Suppose that the attacker has taken full control
over writable memory, initialized some of the registers, di-
verted the execution to the start of the dispatcher gadget and
the goal of the attack is to execute a system call. For this
example, we can assume that esi points to the dispatcher
gadget, edx points to the system call instruction and ecx
points to a memory location where addresses of gadgets 1
and 2 are stored contiguously. Furthermore, the parameters
for the system call are assumed to be written in appropriate
memory locations by the attacker.

As the dispatcher gadget is executed, the address of the
next gadget to execute is fetched into eax from the array in-
dexed by ecx and the control flow is diverted to that address
by the indirect jump instruction. According to the attacker-

initiated values, control flow follows the numbered arrows
on the left of the figure. After the first hop, gadget 1 sets
ebx as the system call parameter from memory under the
attacker’s control. Similarly, after the third hop, gadget 2
sets eax as the system call ID and jumps to the system call
instruction.

Figure 1-b shows the impact of BR on this attack. Under
BR, the third hop causes an exception since the destination
of the indirect jump initiated in function £1 is in the middle
of another function (£2), which is an illegitimate control
flow transfer in our scheme.

.global f1 .global f1
.type f1, @function .type f1, @function
<br-annotation>
/;a.dd eb>.<, [ecx+ffh] gadget 1 a.dd eb}lc, [ecx+ffh]
AJmp esi jmp esi
2|
1 Y add ecx,04h . add ecx,04h
dispatcher
1T10v eax, [ecx] gadget rflOV eax, [ecx]
Jmp eax jmp eax
.global f2 .global f2
3| .type f2, @function .type f2, @function
<br-annotation>
nl10v eax, [ecx+25h] gadget 2 ITIOV eax, [ecx+25h]
,1Jmp edx Jjmp edx
\t‘int 80h system call ¥ int 80h

a) JOP Attack without BR b) JOP Attack with BR

Figure 1. Impact of BR on CRAs
4.1 Enforcing BR Rules

BR relies on the observation that legal control flow
changes (for simplicity called branches henceforth) target
an address satisfying one of the following cases: (1) an ad-
dress within the same function, as would occur with loops
and conditional statements; (2) the entry point to a new
function, as would occur with a function call; or (3) a return
address generated by a legitimate prior call as in number
(2) above. Thus, BR works by enforcing the following set
of rules on branches (see Figure 2):

RET: A return instruction should point to the address that
is saved by a corresponding call instruction.

Indirect JMP: A branch instruction that uses a computed
target should point to either an entry point of a function, or
a location inside the same function.

CALL: A call instruction should divert execution to the en-
try point of a function.

To support the first rule, we propose maintaining a call
stack for the hardware context being executed, that can only
be modified by call and return instructions. This stack,
called the Secure Call Stack (SCS), can be used to match
the computed return addresses against the stored ones. This
aspect of BR is similar to some prior approaches to protect
against ROP attacks [6,29-31,52]. In order to check for
the last two rules, we need to determine where a function
begins and ends. To support this capability, we augment
each stack entry with function bounds. Therefore, a single

structure can support all three rules. The entry at the top of
the stack is examined on every BR check.

Indirect
Restore Check if Target

Return Address inside
unction Bounds,

es No

Inside Outside
Store Return
Equal Not Equal l
Yes No

sl/)l(v + ;(v

- BR Check Failed

Figure 2. Branch Regulation Checking Flow
4.2 Unintended Branches

We pursue hardware support for BR, for performance
and binary compatibility reasons, but more importantly for
security reasons. As we show in this section, an attacker can
find many unintended instructions in the binary image of an
ISA with variable size instructions such as x86. Specifi-
cally, these are instructions that start at a byte in the middle
of a multi-byte instructions. We show that these instruc-
tions account for a large number of the gadgets exploitable
by attackers. Software approaches do not typically protect
from exploits that use these instructions; for example, an
unintended branch will not appear in the CFG and will not
be checked by the software CFI implementation developed
by Abadi et al [25]. Attackers may bypass the software en-
forcement completely by using gadgets consisting of un-
intended instructions. Hardware support that checks every
branch closes this security vulnerability.

Disassembled code snippet from libc

ompare Computed
Target with Restored
Address

AN
‘ call <_init> lea edi, [ebx-0xE8] lea eax, [ebx-0xE8] sub edi, eax
y . A y N
E833EEFFEF8DBB18FFEFEF8D8318FFFFEF29C7
/W*
dec [ebp-OxE745] dec [ebp-0xE77D] jmp [ecx]
\ J/

N
Gadget with unintended jmp

Figure 3. Example Gadget with Unintended
Branch

To illustrate the concept of unintended branches, a por-
tion of the disassembly of the __1ibc_csu_init function
is shown on the top part of Figure 3. If the decoding starts
after skipping the first four bytes, a different instruction se-
quence can be decoded as shown at the bottom of Figure
3, containing an indirect jump that the programmer did not
intend to execute. One particular property of indirect jump
instructions that makes them easier to discover in an instruc-
tion sequence is that they start with FF —a common byte
used in immediate values (e.g. bit-masks and sign bits of

negative values). In the second lea instruction of the in-
tended code example, the negative immediate value —0xE8
is encoded as FF FF FF 18 in two’s complement with
little endian byte order. The last one of these FF bytes is
adjacent to the opcode of the sub instruction which is 29.
These two bytes can be decoded as an indirect jump which
might be used by an attacker to jump to the memory loca-
tion that ecx points to.

O intended M unintended O intended M unintended

$ 100% 100%
5 g
S 8% g 8%
D 60% O 60%
o o
% 40% % 40%
& 20% S 20%
e o
e % g
L & 2 S & & & 2
LS ¥ &8¢
A \9% $ \‘\é)’
a) Indirect Branches b) Gadgets

Figure 4. Number of Indirect Branches in the
Binary and Gadgets Generated with Indirect
Branches

As shown in Figure 4, the unintended branch instructions
(and the gadgets constructed using them) far outnumber the
intended branches. For example, 80% of all gadgets that
can be constructed in libc use unintended instructions. The
percentages are even higher for other libraries that we con-
sidered.

S BR Implementation Details

In this section, we describe the details of the BR imple-
mentation. We first discuss how function annotations are
implemented, and then describe the hardware support for
BR.

5.1 Function Annotations

Function limits are easily found in symbol tables of ex-
ecutable formats such as ELF. We propose annotating these
points using a simple binary rewriting scheme to inform the
architecture about the function bound information. We then
check control altering instructions to verify that they target
legitimate destinations per the BR rules.

BR annotation starts with a prefetch instruction to a spe-
cial address to ensure that the annotated code retains binary
compatibility; this is the same approach for implementing
annotations used by CFI [25]. This instruction is followed
by the size of the function. It is unlikely to encounter this se-
quence of bytes inside regular program code. Even though it
is possible for an attacker to write this annotation sequence
inside the program stack, it is not possible to use this se-
quence as an annotation if the system has W ¢ X protection
for the data segment.

Figure 5 explains the use of BR annotations. Each func-
tion starts with the annotation. In the first two cases shown,
the BR checks pass and the access is allowed. In the third
case, the violation is detected and a BR exception is raised.

.global f1
.type fl, @function
<br-annotation>

(1) JMP inside of the function

V Function Base < Target < Function Bound

J mov eax,ecx

a (2) JMP to a new function
7 jmp edx (Function Bound < Target Address)
(59 VTarget = <br-annotation>

“T' .global f2
\ .type f2, @function — . .
%\ <b¥->annotati2n> * (3)JMP to middle of another function

(Function Bound < Target Address)

\, add ecx, 04h .
x Target Address # <br-annotation>

Figure 5. Branch Regulation Checks

The second branch represents a legal use of indirect jumps
since the branch target is an annotation even though the des-
tination address is out of function bounds.

5.2 Architectural Support for BR

At runtime, BR checks are performed in hardware at the
execution stage of the pipeline after the target address of an
indirect branch is computed. Figure 6 shows the architec-
tural layout for BR. To maintain the function bounds meta-
data, BR relies on a Secure Call Stack (SCS), which is a
portion of memory allocated by the OS and accessed by the
hardware upon each call or return instruction. It is similar
to the architected page table mechanism, in the sense that
it serves as a virtually unbounded storage accessible by the
hardware. The metadata maintained in the SCS (base, size,
current index) is part of a process context and is therefore
saved and restored upon a context switch.

The additional hardware includes a new structure, which
we call the Function Bounds Stack (FBS), to serve as a
cache for the legal return addresses and function bounds
that are stored in the SCS. Note that the only purpose of
the FBS is to improve performance. Indeed, BR architec-
ture can be implemented without hardware FBS by looking
up all bounds information in the SCS —we analyze the per-
formance impact of FBS in Section 8. New entries that are
pushed onto the FBS cause the eviction of the oldest entries
and a miss to the FBS occurs only when all FBS entries are
popped off the stack by the return instructions; in this case,
we bring the next function bounds from the top of the SCS
stored in memory.

In addition, BR architecture requires the checking logic
that is used for comparison of target addresses with the base
and bound of the current function. While the base and
bound information of the current function is stored at the
top of FBS, return addresses and function bounds for previ-
ous legitimate call instructions are stored in the rest of the
stack. An FBS entry for a 32 bit architecture is composed
of two 32-bit values, base and bound, and a 32-bit return
address.

By the time a call instruction gets to the execution
stage, the next instruction has already been fetched. The
first 8 bytes of the next instruction are compared against the
BR annotation in order to decide if this is a function call.
If this check succeeds, then the current function’s base and
bound values are pushed onto the FBS along with the return
address for this call instruction. The base and bound values

H Execute H Commit
T 1

T I . — —
i Current BR)
i Func.Bounds Check |
|
! I
I-Cache i Function L | I-Cache
)
| Bounds Exception !
L Stack Logic !

Figure 6. Processor Pipeline with Branch
Regulation Hardware

of the newly called function are updated with the informa-
tion from the BR annotation.

When an indirect jump instruction is executed, its tar-
get address is first compared against the current function
bounds. The jump is allowed to take place if the target ad-
dress is within the function boundary, as the first hop shown
in Figure 5. A failed check signifies a jump outside of the
function boundary. In this case, an additional check is re-
quired to determine if the jump is the same as the call in-
struction check described above. However, there is no need
to store the return address for a jump instruction.

For return instructions, when the return address is com-
puted, it is compared against the value at the top of the FBS;
if the check passes, the bounds for the current function are
popped. If the FBS is empty, then a memory request is gen-
erated to access the SCS (to recover older bounds that were
pushed to the SCS when the FBS was full). The entry that
is retrieved from the memory has the base and bound infor-
mation of the caller function, along with the return address.
The equality of the two return addresses are then checked
by the BR logic.

6 Security Analysis of BR

BR uses the Secure Call Stack (SCS) to track function
bounds and call points allowing us to directly match returns
to calls: this technique defeats return based attacks such as
return-to-libc and ROP. Thus, our concern is Jump-oriented
Programming (JOP) attacks [22—-24]. BR limits the attacker
from selecting arbitrary gadgets across the entire code base
to construct exploit code. Instead, on a system with BR,
the attacker is confined to stay within a function. As a re-
sult, the security analysis can be applied on a function by
function basis. To carry out a JOP attack, the attacker must
find all the necessary ingredients to launch and construct
the attack within the same function; these ingredients in-
clude an exploit to initiate the attack, a Turing-complete set
of gadgets to construct the attack, and a syscall to attack the
system. There is a legitimate concern that a large function
may still contain all these ingredients, allowing the attacker
to mount a successful CRA.

Since it is very difficult to prove that a set of gadgets
is not Turing-complete, we approach the problem by iden-
tifying the critical ingredients for a JOP attack and show-
ing that they do not exist within a single function in the
examined code bases. We focus our analysis first on iden-
tifying the critical dispatcher gadget needed for a JOP at-
tack. We derive the conditions necessary for a dispatcher

gadget. All functions that do not have these conditions are
guaranteed to be safe due to the absence of a dispatcher;
we call the remaining functions Dispatcher-Gadget Poten-
tial (DGP) functions. The presence of the conditions does
not necessarily mean that there is a dispatcher. Thus, we de-
veloped a tool to identify dispatcher gadgets; the functions
that contain dispatchers are called Dispatcher-Gadget Con-
firmed (DGC) functions. Note that additional DGP func-
tions may contain a dispatcher since the detection algorithm
may miss some elaborate dispatcher gadgets. We focus fur-
ther analysis on DGC functions only.

We analyze DGC functions for the presence of other in-
gredients. In general, BR provides security because it sub-
stantially limits the scope of the attack, making it extremely
difficult (impossible for the libraries that we studied) to find
all the ingredients necessary for an attack. For example,
we analyze DGC functions for the presence of system call
instructions without which the damage from the attack is
limited to the compromised program. We show that none of
the DGC functions in the libraries we analyzed has a system
call. Another important ingredient is the presence of suffi-
cient gadgets to build interesting attacks. We analyze this
property and show that most DGC functions include only a
small number of gadgets. Moreover, many of the gadgets in
these functions are not usable for reasons such as the pres-
ence of side effects in the gadget that interfere with the dis-
patcher or interrupt the control flow, or because unintended
instructions, which account for the majority of gadgets, are
inherently more difficult to use. Another critical ingredient
is the presence of a vulnerability to initiate the attack in the
same function (we did not study the prevalence of vulnera-
bilities).

6.1 Dispatcher Gadgets

In ROP and JOP attacks, the attack proceeds as a se-
quence of gadgets separated by returns in ROP or indi-
rect branches in JOP. We may view the stack pointer as
a Gadget-Level Program Counter (GLPC) which is incre-
mented to point to the address of the next gadget. In a JOP
attack, an indirect jump is used to divert the control flow ac-
cording to the GLPC. However, an indirect jump instruction
cannot advance the GLPC to the next gadget address. Thus,
a dispatcher gadget must have the necessary instructions to
both increment the GLPC and to execute an indirect branch
to the new gadget address. Without a dispatcher gadget, a
JOP attack cannot be mounted [22-24].

Formally, a dispatcher gadget includes an iterator that
advances the GLPC to point to the address of the next gad-
get, then either a loader that loads the address into a register
and a register indirect branch which jumps to the address
held in that register; or a memory indirect branch which
jumps to the address held in the memory location pointed to
the GLPC. Note that, the necessary operations defined here
can be carried out in many possible ways. For example, a
pop instruction acts both as an iterator and a loader since
it modifies the stack pointer and loads from the stack. A
dispatcher gadget may also include extra data movement in-
structions, called conveyors, that set the value of a register

using another register or a memory location. Extra derefer-
encing, loading or copying operations are not of importance
as long as the GLPC is altered in a predictable way so that
the attacker knows where and how to place the gadget ad-
dresses in the memory. We use two different approaches
for evaluating whether a function has a dispatcher gadget,
which are explained in the following two subsections.

6.1.1 Identifying Dispatcher-Gadget Potential (DGP)
Functions

For each function, it is safe to assume that a dispatcher gad-
get does not exist if at least one of the following two con-
ditions is true: (i) there are no indirect branches or no valid
instruction preceding an indirect branch: in this case, there
are no viable gadgets; or (ii) there are no instructions that
modify the targets of any of the indirect branches: in this
case, there can be no dispatcher gadget.

As stated previously in the threat model, the attacker has
full control over the register contents and data memory at
the initiation of the attack. However, after initiating the at-
tack, if none of the registers used by indirect branches found
in the function can be modified or no memory location can
be modified (as per the second condition above), then the
number of executable gadgets is limited by the initial val-
ues. A limited number of executable gadgets means that for
any initial state, it is known whether it will halt or not and
therefore it is not Turing-complete. Note that the presence
of the above conditions does not necessarily mean that DGP
functions have dispatcher gadgets. Therefore, as a second
approach we attempt to detect actual dispatcher gadgets in-
side DGP functions.

6.1.2 Identifying Dispatcher-Gadget
(DGC) functions

Confirmed

We adapted the methodology used by prior works to dis-
cover dispatcher gadgets by looking for specific dispatcher
patterns. We extend prior algorithms for dispatcher gad-
get discovery to construct a more flexible discovery algo-
rithm that searches for more complicated dispatcher gad-
gets that have no limits on the number of instructions or
on the number of registers used. This approach covers the
trampolines introduced in [23], all cases explained in [22]
(as well as multi-register schemes) and control gadgets pre-
sented in [24].

The dispatcher discovery algorithm is shown in Algo-
rithm 1. It starts by building the gadget trie as described
in [9]. In a gadget trie, indirect jump instructions are rep-
resented as immediate children of a dummy root node. A
child node of an indirect jump represents a possible decod-
ing of an instruction preceding the parent instruction (an
example gadget trie with its root at the bottom is given in
Figure 8). Once the trie is constructed, the algorithm tra-
verses the nodes starting with an indirect branch toward its
children, trying to identify possible dispatchers as described
in Section 6.1. For memory indirect branches, the algorithm
looks for an iterator that advances the registers used in ad-
dressing the memory. In case of register indirect branches,

an instruction that loads to the register is needed first. If
found, the algorithm then looks for an iterator for the source
registers of loaders. Loading can occur either directly from
memory or through conveying a value from other regis-
ters that are in turn loaded from memory (Algorithm 2).
find_setter function returns the closest instructions on
each path from a node to its descendants that sets a given
target register. Iteration is achieved through arithmetic in-
structions that use the destination also as a source operand.
Addition/subtraction instructions or lea instructions that
explicitly specify the source register as their destination
are considered as potential iterators. find_ iterator
function is identical to the find_loader algorithm, ex-
cept instead of checking for a load operation, it checks if
the setter is an instruction that iterates its target (such as
add/sub/lea) and calls itself recursively.

Algorithm 1: find_dispatcher_gadgets(function)

1 D+ {} // dispatchers
/* for trie building see Galileo in [9] */
2 trie < build_gadget_trie(function)

3 foreach indirect jump: j in trie do
4 if j is a register indirect jump then
5 t <— target register of j
6 foreach loader: lin find_loaders(j,t) do
7 if [is also an iterator then // e.g. pop
8 | D+ Du{i}
9 else
10 foreach source register: r that l uses do
11 | D« DU find_iterators(l,r)
12 end
13 end
14 end
15 else if j is a memory indirect jump then
16 foreach source register: r that j uses do
17 | D+« DU find.iterators(j,r)
18 end
19 end
20 end

21 return D

Algorithm 2: find_loaders(node, target)

L+ {}
S <+ find_setters(node, target)
foreach setter:s in S do
if s loads from memory then
| L+ Lu{s}
else if s is a conveyor then
foreach source register: r that s uses do
| L <« LU findloaders(n,s)
end

// loaders
// setters

// mov

O 00N BN —

10 end
11 end
12 return L

6.2 Other Attack Considerations

Another ingredient needed for the attack is a system call:
without a system call, the attack’s damage is limited to the
process. For example, a system call is needed to achieve
privilege escalation or to communicate critical data.

In addition, even if a dispatcher gadget is found in a func-
tion, the attacker also needs a set of functional gadgets to be
able to perform general computation. These operations in-
clude arithmetic and logical operations and control flow in-
structions. However, a dispatcher gadget that operates on
registers uses some registers as source operands. If one
of these registers is modified by a functional gadget, it is
considered to have a side effect that disrupts the dispatcher
gadget, unless it can be patched up by another functional
gadget. Since each gadget that is useful for the attack can
have multiple unneeded extra instructions before reaching
the indirect jump, with each having their own side effects,
recovering from side effects is difficult when only a limited
number of gadgets is available to the attacker.

Finally, BR does not allow the attacker to move from a
vulnerability to an arbitrary location in the code. In other
words, the attacker must find a vulnerability in the same
function where the code reuse attack will be attempted. This
additional requirement further degrades the attacker’s abil-
ity to launch an attack.

7 Security Evaluation

We implemented a software routine that uses libdisasm
to disassemble code sections of ELF binaries and analyze
them to identify gadgets. As our codebase, we selected the
GNU C Library (libc) and the C mathematics library (libm),
which are commonly linked to programs. Also we evaluated
GNU’s library of cryptographic building blocks (libgcrypt),
the cryptographic library of OpenSSL (libcrypto) and the
Secure Socket Layer library of OpenSSL (libssl), which are
critical in applications communicating over the Internet. We
compiled the libraries on an Intel x86 (32-bit) Ubuntu Linux
3.0.0 machine with GCC-4.6.1.

ENOBR [IDGP EDGC [ODGC-SYS ENOBR JDGP EDGC MDGC-SSE [JDGC-SYS

7775 7991 24689 11256
w 2000 @ 5000
§ g
B 1500 § 200
T £ 3000
= 1000 °
% & 2000
8 500 51000 I L
Z o 0 L
Ie) s > o 5 P
§ F & & L &E
S S & ® T & & F
& & & &

a) Eliminating Functions under BR b) Eliminating Gadgets under BR

Figure 7. Analysis of Functions and Gadgets

Figure 7 presents the number of vulnerable functions
(left) and the maximum number of available gadgets (right)
remaining in a vulnerable function. The bars labeled NO
BR represent the baseline case where the entire library is
available to the attacker. Bars labelled DGP and DGC show
the statistics for the DGP and DGC functions respectively.
Bars labelled DGC-SYS refer to the DGC functions with
system call instructions. The DGC-SEE bar in Figure 7-
b shows the number of gadgets left after the gadgets with
side effects are eliminated. Almost 95% of the functions
are safe. For the remaining functions, we discovered 15

dispatcher gadgets in 12 different functions of libc, 3 dis-
patcher gadgets in 3 functions of libcrypto and 2 dispatcher
gadgets in 2 functions of libgcrypt. As shown in DGC-SYS
bar of Figure 7-a, no function that has a dispatcher gad-
get also has a system call in the libraries examined for this
study.

The above analysis demonstrates that BR completely
protects all the libraries that we examined, because no DGC
functions in these libraries have a syscall instruction. To
provide more insight into BR, we continued our analysis of
functions to further illustrate the difficulty of attacks even
if the requirement of executing a system call is not present.
As shown in Figure 7-b, the vulnerable codebase is reduced
by 90% even when only the provably secure functions (non-
DGP) are omitted. It is further reduced almost in half when
we consider only the DGC functions. We examined the
remaining gadgets in these functions and eliminated two
thirds of them due to their side effects on the program state
(see Section 6.2). Even if the system call requirement was
not considered, the remaining potentially vulnerable code
base shown in DGC-SEE bar, is only 1.2% of the entire
code base. Moreover, recall that the attacker must find a
vulnerability in the function that it selects for attack, mak-
ing it further unlikely that these functions can be attacked.

An example gadget trie obtained from the analysis of the
d2i RSANET_2.isra.0 function which is part of the
libcrypto binary is depicted in Figure 8. The trie is con-
structed using an algorithm similar to the Galileo Algorithm
defined in [9], except the gadgets here are ending with indi-
rect jump instructions instead of returns. Each node of the
trie represents an instruction, while a path from one node
all the way down to the root forms a gadget. For exam-
ple, the dispatcher gadget found in this function is repre-
sented as three nodes at the bottom of the middle sub-trie,
pop ecx; Jjg 0x000EOFF3; jmp ecx. The attacker
has to ensure that the conditional branch instruction (jg) is
not taken in order not to change the semantics of the dis-
patcher gadget.

In fixed instruction length architectures, given a byte
stream and either a starting or ending point, there is only
one way of decoding an instruction sequence. However,
for architectures with variable instruction length, a given
byte stream and a starting point has only one meaning as
we decode forward, but a byte stream with a given end-
ing point may have several different meanings as we decode
backwards. These possible different meanings for the same
byte stream and ending point correspond to the branches in
the trie. This characteristic provides the attacker with more
gadgets in variable instruction length architectures.

In the dispatcher gadget shown in the Figure 8, GLPC
is the stack pointer (esp) and ecx is a temporary reg-
ister which is overwritten with the next gadget address.
A leave instruction is equivalent to mov esp, ebp;
pop ebp and when a gadget containing the leave in-
struction is executed, it overwrites the GLPC, leading to a
problem in the dispatcher gadget unless the damage is re-
covered possibly by some other gadgets. The two leave
instructions shown in Figure 8§ are therefore said to have
side effects. Since the nodes above these instructions have
side effects, these gadgets are not usable, and the analysis of
the remainder of this sub-trie can be stopped. The remain-

ing gadgets consist of unintended instructions, which tend
to be more difficult to use and often require complemen-
tary gadgets to prepare operands and fix side-effects; these
complementary gadgets are difficult to find within the same
function.

Similar analysis of other functions reveal that uninten-
tional gadgets are of limited use without complementary
gadgets not present in the same function. Figure 9-a shows
the breakdown of intentional and unintentional gadgets for
libc results, previously shown in Figure 7. The uninten-
tional gadgets account for almost 70% of all gadgets. Ad-
ditionally, we observe that the utility of gadgets is inversely
proportional to gadget length. In a gadget that has many
instructions, intermediate instructions are more likely to
destroy the machine state used by the attacker. Figure
9-b shows the cumulative frequency histogram of gadget
lengths found in the function with the maximum number
of gadgets for DGC-SEE, which has 415 gadgets. This his-
togram shows that only 30% of these gadgets have a single
instruction before the indirect jump. Therefore, 70% of the
gadgets have at least one intermediate instruction and over
30% of the gadgets have at least five intermediate instruc-
tions.

O intended M unintended

24689 —
. 3 100%

4925 al
£ 1500 80%
g =
& 1000 g 6%
° g 40%
& 500 g
E ! 20%
=z

o

0%
1 5 1015 20 25 30 3540 45 50

Q- Q O & &
Y ©) & N
o § 2 2 Gadget Length (instructions)

 Q ¢
< s &

Q Q
a) Intended — Unintended b) Gadget Length Histogram
Breakdown for DGC-SEE

Figure 9. Gadgets for libc-2.14.1 with In-
tended and Unintended Branches

Figure 10 shows the cumulative percentage of gadgets
present, first for all functions in libc, then in DGP, DGC and
DGC-SEE functions. Specifically, the functions are sorted
in order of the number of gadgets available for exploitation,
with the largest number first. The largest number of gadgets
are written (as "max.”) on each figure. Only a few functions
account for most of the remaining gadgets; most functions
have very few gadgets and cannot be exploited. For exam-
ple, even though there are 12 DGC functions, gadgets con-
tained in only four functions with largest number of gadgets
accounts for 96% of all gadgets and 91% when gadgets with
side effects are eliminated (DGC-SEE).

8 Performance Evaluation of BR: Methodol-
ogy and Results

For evaluating the performance of BR, we used PTL-
sim [54] - a cycle-accurate x86 processor simulator. We
simulated a 4-wide issue out-of-order core with 64KB L1
data and instruction caches, 512KB L2 cache and 2 MB L3
cache. Memory latency was assumed to be 100 cycles. We

inc esp Have side

effect \
[ave]] [acd a1, oxco |

add al, 0x00

and al, 0x04

‘add [eax], eax‘

‘ leave ‘ ‘ add al, 0xC9 ‘
[and al, 0x0D | [add bh, al] [add [eax], al] [add al, 0x24 | [eme | [feomi st(0), st(5)]
[add [eax], al| [add al, 0x24] [add al, ch] [or eax, 0xE8000000] [dec [ecx+0x67E82434] | [and al, OxES|
‘add al, ch‘ ‘or eax, OxESOOOOOO‘ A

jg 0x000EOFBE| | std | [mov gdtr, [edi-0x3] | [sta | [3o 0x000E0FF3 | » Dispatcher

)

Figure 8. Gadget Trie of d2i RSA NET_2.1isra.0 Function
g 100%) 100% 1
g v g 0n simulated the hardware structures to model the performance
)0/)0/ .

8 28;" ALL g 22;’ impact of BR.
w
® 400/0 total = 24689 Lo:: 40(; The binary size increase of CFI and BR is compared in
2 0% 2 a0% .
S % g Lo Figure 11. On the average across all benchmarks, CFI has
g o0 | —max. 1430 § 0% | —max 1430 about 4% increase in the binary size, while BR has less than

K &K K 100 200 300 400 500 600 1% increase. While xalancbmk and omnetpp benchmarks

Functions Functions exhibit about 9% overhead, bzip2 and mcf have no overhead
- - for both CFI and BR.
2 100% g 100%
%vj 80% “g’_ 80% H Control Flow Integrity [J Branch Regulation
T o DGC S DGC-SEE 10%
o — max. 1269 o 8%
2 0% Z 4% =5 max: 415 6
2 2% 2 2%
S 0% S 0%
(@] @]

1234567 89101112
Functions

1234567 89101112
Functions

Figure 10. Gadget Distribution in Functions
in libc-2.14.1

used 18 C and C++ SPEC CPU2006 [55] benchmarks for
our experiments. We performed assembly-level instrumen-
tation of the binaries for both BR and CFI to insert the addi-
tional instructions needed to perform the checks for both
schemes. Note, that due to the high complexity of CFI
technique, we only performed behavioral simulation of it
for comparison purposes, without keeping track of the ac-
tual meta-data or constructing a full CFG. The benchmarks
were compiled using GCC-4.2 compiler on a x86 machine
running Ubuntu with kernel version 2.6.24.

Each benchmark was simulated for 2 billion committed
instructions after fast-forwarding for the first 100 million
instructions. Since Control Flow Integrity [25] technique
relies on the use of Vulcan binary rewriting tool [56] which
is not publicly available, we simulated CFI in the follow-
ing manner. We generated the assembly files (using -S flag)
and instrumented them using a script that inserts the extra
control flow checking instructions described in [25]. Our
goal was to only support behavioral simulation of CFI to
measure its performance and binary overhead compared to
BR. The CFI performance results obtained in this manner
are consistent with what was reported in [25]. For evalu-
ating BR, we similarly inserted the annotations to the as-
sembly files to model the increase in the code size and also

Binary Size Increase
gRER
—
—

-
F—

Y p—

7y —
—

—

s M

7 —

Q ——
p—
—

F—
—

N LN
SELTLEOSELRFIINgEE D
FF T EFLLF TS CETFIKS TS ?
N S IS T &

N & °g
N §

Figure 11. Executable Size Increase

Next, we evaluate the performance impact of BR and
compare it against that of CFIL. For BR, the performance is
sensitive to the size of the hardware Function Bounds Stack
(FBS in 6) - the smaller stack will result in more FBS misses
for the return instructions and more memory accesses. Per-
formance of BR as a function of FBS size is shown in Figure
12.

20%
15%
10%
5%
0%
o 1 2 4 8
FBS Size

Slowdown

16 32 64 128

Figure 12. Effect of FBS Size on Performance

As expected, when the FBS size increases, performance
impact due to BR overhead become smaller. On the av-
erage, the degradation is about 2% for the FBS size of 4
entries and it is about 1% for the FBS size of 8 entries and

above. The remaining degradation in performance is due to
slightly higher number of misses in the instruction and data
cache. The individual benchmark results are presented in
Figure 13 for a system with a 4-entry FBS compared to the
performance overhead of CFI.

H Control Flow Integrity [J Branch Regulation

Al

60%

40%
0% - I] | =B SN | l -
S &

Slowdown

& & SERIESINT OSSP O
wM\Q"’@@@s@a%o@e‘\@&&@@o%“’ﬁé‘ oLe
N SE "L SE 28 L

N $ °F

Figure 13. Performance Overhead of Branch
Regulation

For a 4-entry FBS, performance overhead of BR is
2.14% on the average and it is less than 7% for all bench-
marks. This compares favorably to 22% performance over-
head for CFI on the average across all benchmarks. Figure
14 shows the percentage of relevant control flow instruc-
tions in the dynamic instruction stream. As shown, per-
formance overhead strongly correlates with the number of
control instructions. However, sphinx3, dealll, namd and
Ibm do not behave similarly since FBS performs better for
these benchmarks. Because of the high FBS hit rate in these
benchmarks, it is less likely that a memory access for ob-
taining the function bounds will be required.

g B CALLS @ RETS [JINDIR JMPS

g %

2 6%

2 5%

S %

s 3%

o 2%

"l | M

g N - =

=4

8 SV OEXSO > NN N IR

¢ SREESTELTERXRSTITTEE S

e g% FFoFPLEE EESFe
N S "X LS < K
O IS O X
N 9 &

Figure 14. Prevalence of Calls, Returns and
Indirect Jumps

9 Concluding Remarks

In this paper, we presented Branch Regulation (BR), a
new low-overhead defense mechanism against Code Reuse
Attacks (CRAs). BR limits the target addresses of branches
to be either within the same function or at the start of
another function, with the exception of return statements
that are matched to prior calls. By preserving these sim-
ple invariants, we show that BR dramatically reduces (to
1% of the original number) the ability of the attacker to
find exploitable gadgets needed for the CRA. In addition,
we demonstrated that no CRA (including return and jump-
oriented programming attack) is possible with BR in place
for five sample libraries, including the standard C library
and several cryptographic libraries, when the attacker has
to use a system call instruction as part of the attack.

We demonstrated that the security benefits of BR are
achieved at a very modest cost: about 2% performance loss,
about 1% binary size increase, simple hardware at the exe-
cution stage of the pipeline, and simple binary annotations
based on the information that is readily available from the
symbol tables.

10 Acknowledgements

We would like to thank our shepherd Ruby Lee for
her insight and suggestions, and the anonymous review-
ers for their useful comments; the paper is significantly
improved thanks to them. This material is based on re-
search sponsored by Air Force Research Laboratory under
agreement number FA8750-09-1-0137 and by National Sci-
ence Foundation grants CNS-1018496 and CNS-0958501.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
and endorsements, either expressed or implied, of Air Force
Research Laboratory, National Science Foundation, or the
U.S. Government.

References

[1] Aleph One. Smashing the stack for fun and profit, Nov.
1996.

[2] J. Pincus and B. Baker. Beyond stack smashing: Recent
advances in exploiting buffer overruns. [EEE Security and
Privacy, 2:20-27, July 2004.

[3] A. Baratloo, N. Singh, and T. Tsai. Transparent run-time
defense against stack smashing attacks. In Proceedings of
the USENIX Annual Technical Conf., pages 251-262, 2000.

[4] T. cker Chiueh and F.-H. Hsu. RAD: A compile-time solu-
tion to buffer overflow attacks. In ICDCS’01, 2001.

[5] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and Q. Zhang.
StackGuard: Automatic adaptive detection and prevention
of buffer-overflow attacks. In Proceedings of USENIX Secu-
rity, volume 7, 1998.

[6] J. McGregor, D. Karig, Z. Shi, and R. Lee. A processor
architecture defense against buffer overflow attacks. In Pro-
ceedings of ITRE, pages 243 — 250, aug. 2003.

[71 M. Prasad and T. cker Chiueh. A binary rewriting defense
against stack based overflow attacks. In Proceedings of the
USENIX Annual Technical Conf., pages 211-224, 2003.

[8] S. Designer. “return-to-libc” attack, 1997. Bugtraq.

[9] H. Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In Pro-
ceedings of CCS, pages 552—-61. ACM Press, Oct. 2007.

[10] E.Buchanan, R. Roemer, H. Shacham, and S. Savage. When
good instructions go bad: generalizing return-oriented pro-
gramming to risc. In Proceedings of CCS, pages 27-38.
ACM, 2008.

[11] S. Checkoway, A. J. Feldman, B. Kantor, J. A. Halder-
man, E. W. Felten, and H. Shacham. Can DREs provide
long-lasting security? The case of return-oriented program-
ming and the avc advantage. In Proceedings of EVI/WOTE.
USENIX/ACCURATE/IAVoSS, aug 2009.

[12] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy.
Return-Oriented Programming without returns on ARM.
Technical report, System Security Lab - Ruhr University
Bochum, 2010.

[13]
(14]

[15]
[16]
(7]

(18]

[19]

[20]

[21]

[22]

(23]

(24]

[25]

[26]

[27]

(28]
[29]

(30]

(31]

(32]

(33]
[34]

A. Francillon and C. Castelluccia. Code injection attacks on
harvard-architecture devices. In Proceedings of CCS, 2008.
F. Lindner. Developments in cisco ios forensics. con-
fidence 2.0. presentation, 20009. http://www.recurity-
labs.com/content/pub/FX_Router_Exploitation.pdf.

T. Dullien and T. Kornau. A framework for automated
architecture-independent gadget search, 2010.

T. A. Edward J. Schwartz and D. Brumle. Q: Exploit hard-
ening made easy. In Proceedings of USENIX Security, 2011.
R. Hund, T. Holz, and F. C. Freiling. Returnoriented rootk-
its: Bypassing kernel code integrity protection mechanisms.
In Proceedings of Usenix Security, 2009.

R. G. Roemer. Finding the bad in good code: Automated
return-oriented programming exploit discovery. Master’s
thesis, University of California, San Diego, 2009.

L. Davi, A.-R. Sadeghi, and M. Winandy. Dynamic
integrity measurement and attestation: towards defense
against return-oriented programming attacks. In Proceed-
ings of ACM STC, pages 49-54. ACM, 2009.

P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie.
Drop: Detecting return-oriented programming malicious
code. In Proceedings of ICISS, pages 163—177. Springer-
Verlag, 2009.

J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram. De-
feating return-oriented rootkits with “return-less” kernels.
In Proceedings of EuroSys, pages 195-208, New York, NY,
USA, 2010. ACM.

T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-
oriented programming: a new class of code-reuse attack. In
Proceedings of ASIACCS, pages 30—40. ACM, 2011.

S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy. Return-oriented program-
ming without returns. In Proceedings of CCS, pages 559-72.
ACM Press, oct 2010.

P. Chen, X. Xing, B. Mao, L. Xie, X. Shen, and X. Yin. Au-
tomatic construction of jump-oriented programming shell-
code (on the x86). In Proceedings of ASIACCS, pages 20—
29. ACM, 2011.

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-
flow integrity. In Proceedings of CCS, pages 340-353.
ACM, 2005.

C. Cowan, S. Beattie, J. Johansen, and P. Wagle. Point-
guardtm: protecting pointers from buffer overflow vulner-
abilities. In Proceedings of USENIX Security, pages 7-7.
USENIX Association, 2003.

H. Etoh and K. Yoda. Propolice: Improved stack-smashing
attack detection. IPSJ SIG notes on computer security, Oct
2001.

Vendicator. Stack shield technical info file v0.7, January
2001. http://www.angelfire.com/sk/stackshield/.

R. B. Lee, D. Karig, J. P. McGregor, and Z. Shi. Enlisting
hardware architecture to thwart malicious code injection. In
Proceedings of SPC, pages 237-252, 2003.

S. Sinnadurai, Q. Zhao, and W. fai Wong. Transparent run-
time shadow stack: Protection against malicious return ad-
dress modifications, 2008.

J. Xu, Z. Kalbarczyk, S. Patel, and R. K. Iyer. Architec-
ture support for defending against buffer overflow attacks.
In Proceedings of Workshop on Evaluating and Architecting
Systems for Dependability, 2002.

M. Frantzen and M. Shuey. StackGhost: Hardware facili-
tated stack protection. In Proceedings of USENIX Security,
pages 5-5. USENIX Association, 2001.

P. Team. Pax non-executable pages design & implementa-
tion. http://pax.grsecurity.net/docs/noexec.txt.

S. Andersen. Part 3: Memory protection tech-
nologies. In Changes to Functionality in Microsoft
Windows XP Service Pack 2. Microsoft Corp., 2004.
http://technet.microsoft.com/en-us/library/bb457155.aspx.

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]
[50]
(51]
(52]

(53]

[54]

[55]
[56]

P. Bania. Security mitigations for return-oriented program-
ming attacks. CoRR, abs/1008.4099, 2010.

K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and
E. Kirda. Gfree: Defeating return-oriented programming
through gadget-less binaries. In Proceedings of ACSAC,
pages 49-58, 2010.

D. Dhurjati and V. Adve. Backwards-compatible array
bounds checking for C with very low overhead. In Proceed-
ings of ICSE, pages 162-171. ACM, 2006.

J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic.
Hardbound: architectural support for spatial safety of the
¢ programming language. In Proceedings of the ASPLOS,
pages 103—114, New York, NY, USA, 2008. ACM.

S. Ghose, L. Gilgeous, P. Dudnik, A. Aggarwal, and C. Wax-
man. Architectural support for low overhead detection of
memory violations. In Proceedings of DATE, 2009.

M. Castro, M. Costa, and T. Harris. Securing software by
enforcing data-flow integrity. In Proceedings of OSDI, pages
147-160. USENIX Association, 2006.

P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro.
Preventing memory error exploits with WIT. Security and
Privacy, IEEE Symposium on, 0:263-277, 2008.

M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: a flex-
ible information flow architecture for software security. In
Proceedings of ISCA, pages 482-493. ACM, 2007.

M. Ozsoy, D. Ponomarev, N. Abu-Ghazaleh, and T. Suri.
SIFT: A low-overhead dynamic information flow tracking
architecture for smt processors. In Proceedings of CF, May
2011.

G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure
program execution via dynamic information flow tracking.
In Proceedings of ASPLOS, pages 85-96. ACM, 2004.

J. Newsome and D. Song. Dynamic taint analysis for au-
tomatic detection, analysis, and signature generation of ex-
ploits on commodity software. In Proceedings of NDSS, feb
2005.

F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu. Lift:
A low-overhead practical information flow tracking system
for detecting security attacks. In Proceedings of MICRO,
pages 135-148. IEEE Computer Society, 2006.

P. Team. Pax address space layout randomization (aslr).
http://pax.grsecurity.net/docs/aslr.txt.

E. D. Berger and B. G. Zorn. Diehard: probabilistic memory
safety for unsafe languages. In Proceedings of PLDI, pages
158-168. ACM, 2006.

O. Whitehouse. An analysis of address space layout ran-
domization on windows vista, 2007.

T. Newsham. Format string attacks, September 2000.
http://julianor.tripod.com/bc/tn-usfs.pdf.

A. Sotirov and M. Dowd. Bypassing browser memory pro-
tections. In In Proceedings of BlackHat, 2008.

D. Champagne and R. B. Lee. Scalable architectural support
for trusted software. In Proceedings of HPCA, pages 1-12.
IEEE Computer Society, 2010.

T. O. Group. IEEE Std 1003.1, 2004.
//pubs .opengroup.org/onlinepubs/
009695399/functions/set jmp.html.
M. T. Yourst. Ptlsim: A cycle accurate full system x86-
64 microarchitectural simulator. In Proceedings of ISPASS,
pages 23-34, 2007.

C. D. Spradling. Spec cpu2006 benchmark tools. SIGARCH
Comput. Archit. News, 35(1):130-134, 2007.

A. Edwards, H. Vo, A. Srivastava, and A. Srivastava. Vulcan
binary transformation in a distributed environment. Techni-
cal report, MSR-TR-2001-50 Microsoft Research, 2001.

http:

