EA-PLRU: Enclave-Aware Cache Replacement

Atsuko Shimizu
Binghamton University
ashimizl@binghamton.edu

Mohit Joshi
Binghamton University
mjoshi7@binghamton.edu

ABSTRACT

In SGX-based systems, cache lines belonging to enclaves must be
encrypted when they are evicted from the last-level cache, and de-
crypted on a cache miss before they are brought into the cache from
memory. Because encryption and decryption introduce overheads
in terms of performance, memory pressure and power consump-
tion, it is important to reduce the frequency of LLC misses and
replacements of enclave lines. We consider a system where enclave
and non-enclave applications co-exist in the system and share the
last-level cache. To decrease the frequency of encrypt/decrypt op-
erations, we introduce a new cache replacement policy that slightly
favors enclave lines over non-enclave lines. Specifically, we modify
the last level of pseudo-LRU replacement logic, so that it favors
an enclave line over a non-enclave line regardless of how recently
each line has been accessed. We also add a probabilistic component
to this new policy to balance performance and make replacement
policy non-deterministic and therefore resilient to side-channel
attacks that exploit predictable patterns of cache line replacement.

CCS CONCEPTS

+ Computer systems organization — Processors and mem-
ory architectures; « Security and privacy — Security in hard-
ware.

KEYWORDS

Cache Replacement Policies, Secure Enclaves, Intel SGX, Pseudo-
LRU

ACM Reference Format:

Atsuko Shimizu, Daniel Townley, Mohit Joshi, and Dmitry Ponomarev. 2019.
EA-PLRU: Enclave-Aware Cache Replacement. In Proceedings of the 8th
International Workshop on Hardware and Architectural Support for Security
and Privacy (HASP °19), June 23, 2019, Phoenix, AZ, USA. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3337167.3337172

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HASP 19, June 23, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7226-8/19/06...$15.00
https://doi.org/10.1145/3337167.3337172

Daniel Townley
Binghamton University
dtownlel@binghamton.edu

Dmitry Ponomarev
Binghamton University
dima@cs.binghamton.edu

1 INTRODUCTION

Isolated execution systems have recently emerged as a promis-
ing solution for protecting secrets from potentially compromised
or malicious system software layers. Modern operating systems
and hypervisors contain millions of lines of code and multiple ex-
ploitable vulnerabilities are discovered in them every year. Even a
single exploit in the system software can allow the attackers to eas-
ily obtain privilege escalation and render many defenses ineffective.
Rather than trusting vulnerable system software to provide protec-
tion, isolated execution systems introduce specialized hardware to
ensure the privacy and integrity of critical user data [1, 7, 9, 19].

Intel Software Guard Extensions (SGX) [1, 9, 19] is the most
prominent industry implementation of isolated execution paradigm.
SGX allows sensitive parts of application code to run in secure
enclaves that are inaccessible to operating systems, hypervisors,
and other software modules. Dedicated SGX hardware performs
memory permission checks and only allows accesses to enclave
memory pages from inside enclave code. In addition, while the
enclave data resides in the clear in the caches, it is encrypted and
integrity checked when it leaves the on-chip caches, and is stored
in memory in encrypted form. On a cache miss, the enclave data
is decrypted and its integrity is verified before the data is brought
back into the cache.

Applications that use SGX support can co-exist in the system
with regular applications that do not require additional security. In
a multi-core or a many-core system, many applications belonging
to these two classes will share the last-level cache (LLC). As a result,
the LLC houses memory lines that have variable access latencies
to bring them into the cache: the lines belonging to enclaves have
longer latencies due to the need to decrypt them on the way to the
LLC, while the lines belonging to regular applications have lower
latencies. According to our experiments on a Intel Skylake processor
equipped with SGX, there is about a 100-cycle difference between
the cache miss latency of an enclave line and a non-enclave line.

Traditional cache replacement policies are not designed to take
this disparity in the cache miss costs into account, and instead base
the replacement decisions mostly on the recency information. For
example, least-recently-used (LRU) replacement selects (within a
selected cache set) a cache line that has not been accessed for the
longest duration in the past. As true LRU policy is fairly complex to
implement in hardware for higher-associativity caches, commercial
implementations often rely on a simpler pseudo-LRU (PLRU) policy
[4, 8]. PLRU divides the cache ways into two halves and marks
each half as either a cold or a hot half. The hot half is the one that
contains the way where the most recent access within the set had

https://doi.org/10.1145/3337167.3337172
https://doi.org/10.1145/3337167.3337172

HASP ’19, June 23, 2019, Phoenix, AZ, USA

occurred. Recursively, each half is further divided into equal halves
and hot/cold statistics are kept at those levels. The victim is selected
by following the cold path. This replacement scheme is similar in
performance to true LRU, but is much simpler to implement, as it
does not require the total ordering of cache ways in terms of their
access recency.

To account for different costs and latencies of cache misses in
an SGX system, we propose Enclave-Aware PLRU (EA-PLRU) — a
simple modification to PLRU that slightly favors enclave lines over
non-enclave lines in terms of making replacement decisions within
PLRU policy. Specifically, we propose modifying the last level of
PLRU selection tree, so that if the choice is between an enclave
line and a non-enclave line, the non-enclave line is selected as a
victim, leaving the enclave line in the cache and potentially avoiding
its costly replacement and future cache miss. We conservatively
assume that the costs of encryption upon eviction of an enclave
line can be hidden (encryption is performed in the background on
the way to memory) and do not impact the number of execution
cycles. The only additional penalty that we target arises when an
LLC miss to an enclave line occurs - this requires the decryption
operation before the data can be brought into the cache.

Despite these conservative assumptions, we demonstrate that
EA-PLRU effectively redistributes the cache misses slightly in favor
of enclave applications, but without impacting the overall number
of cache misses. While the performance of non-enclave applica-
tions somewhat degrades, this is more than compensated for by
the reduction of LLC misses for enclave applications, which experi-
ence a higher miss cost. To better control this trade-off and avoid
starvation of non-enclave applications, we also add a probabilistic
component to EA-PLRU, where the enclave-favoring policy at the
last level of the PLRU tree is used with a given probability; oth-
erwise, a normal recency-based PLRU decision is made. We show
that probabilistic EA-PLRU performs even better than determinis-
tic EA-PLRU. The probabilistic policy has an additional benefit of
thwarting recently introduced side-channel attacks that are based
purely on the knowledge of the cache replacement policy [3]. The
non-determinism at the last level of the PLRU tree makes it very
difficult, if not impossible for the attacker to reverse-engineer the
cache replacement algorithm and mount an attack.

To demonstrate the potential of EA-PLRU, we evaluated this new
policy on an in-house trace-driven simulator of a multi-level cache
hierarchy. The memory access traces were obtained from Intel’s
Pin tool [12]. While in this paper we only present the results for
the experiments where the entire application is executed inside an
enclave, our framework also supports scenarios where only the
critical pieces of application code are executed in an enclave. We
also use measurements from a real Intel Skylake processor equipped
with SGX capabilities to determine the costs of LLC misses for
enclave and non-enclave lines, and use these measurements to
create an analytical performance model to estimate the impact
of EA-PLRU on the number of cycles required by our simulated
applications. The key benefits of the proposed EA-PLRU policy
are the following:

o EA-PLRU redistributes the LLC misses between enclave and
non-enclave applications in a controlled manner to achieve

Shimizu, et al.

:Selection :
iTree

bememmeeeaad LR A,

Cache
S

Figure 1: Operation of the Pseudo-LRU replacement policy

a performance improvement of about 3% on the average
according to our analytical model.

o The probabilistic version of EA-PLRU adds non-determinism
to replacement decisions, making it difficult to reverse-engineer
replacement policies and perform side-channel attacks based
on knowledge of cache replacement policies.

e EA-PLRU adds a storage overhead of less than 0.2% to the
LLC (assuming an LLC with 64-byte lines), as only one bit
is required per cache line to indicate if a line belongs to an
enclave or not.

e EA-PLRU requires only a minimal change to the existing
PLRU policy and can be easily integrated into current de-
signs.

2 BACKGROUND

In this section, we provide some background on PLRU replacement
policy, and also briefly describe SGX architecture and its perfor-
mance overheads.

2.1 Pseudo-LRU cache replacement

Our implementation and evaluation of EA-PLRU uses the widely-
adopted binary tree-based pseudo-LRU (PLRU) policy as a baseline
cache replacement strategy. PLRU replacement policy approximates
the Least Recently Used (LRU) strategy for set-associative caches.
Given a cache set whose lines are fully occupied, LRU replaces
the line whose contents were accessed least recently. In general,
cached data has a high degree of temporal locality, meaning that
the most recently accessed lines are the most likely to be accessed
in the future. The LRU strategy exploits this property by retaining
the cache lines most likely to be accessed, thus reducing unneces-
sary evictions and improving overall cache performance. While the
hardware needed to implement true LRU is prohibitively complex
for larger associativity caches, PLRU replacement logic is architec-
turally simple, and is thus frequently deployed in commercial cache
architectures [4, 11].

Figure 1 shows the widely-used binary tree implementation of
PLRU. Rather than maintaining total ordering of cache lines in
a set according to their recency, PLRU implements a tree whose
nodes point, with increasingly fine granularity, away from the
portion of the cache set where the most recent access occurred.
This tree structure is encoded as a series of bits that are stored for
each cache set and updated whenever the set is accessed. When
a replacement occurs, PLRU uses the path defined by the nodes
to select a cache line for replacement, resulting in replacement
decisions that reproduce or closely approximate the operation of
true LRU.

EA-PLRU: Enclave-Aware Cache Replacement

For example, Figure 1-A shows the PLRU logic for a simple four-
way cache. Bit 0, representing the root of the tree, initially points
toward the portion of the set containing lines 0 and 1, while bits
1 and 2, which are leaves in the tree, point to cache lines 0 and
2, respectively. Thus, when a new access occurs, the tree selects
cache line 0 for replacement. Since line 0 is now the most recently
accessed node, PLRU inverts all the bits along the selection path
to point away from line 0. The resulting configuration is shown in
Figure 1-B. The next time the line is accessed, PLRU will follow the
selection bits to line 2, and update the selection bits as shown in
Figure 1-C. Note that this final configuration designates line 1 as
the next line to be replaced, preserving the more recently-accessed
contents of line 0.

2.2 Intel SGX

Intel Software Guard Extensions (SGX) [2, 5, 10, 18] protects sec-
tions of critical code by isolating them in secure enclaves. SGX uses
dedicated hardware to protect enclave memory from manipulation
by software running outside the enclave, including system soft-
ware that would otherwise have unrestricted access. In this way,
SGX protects critical user data from tampering by an untrusted OS,
limiting the trusted computing base to the CPU hardware with its
associated SGX components.

Addtitionally, SGX protects against physical attacks on the mem-
ory and interconnect by encrypting data as it leaves the on-chip
cache hierarchy. This operation is performed by the SGX Memory
Encryption Engine (MEE), which also decrypts and integrity-checks
enclave data as it is read into the cache. While the encryption of
outgoing data could be performed in parallel to other computations,
the decryption of incoming data imposes a measurable delay in
addition to existing cache-miss penalties, making last-level cache
evictions for enclaves significantly more expensive than those for
regular programs. While these variations in eviction cost can have
significant implications for cache performance, current cache re-
placement policies make no distinction between enclave and non-
enclave memory. EA-PLRU introduces a replacement policy that
takes into account the heightened cost of moving enclave memory
in and out of the caching hierarchy, thus improve performance for
mixed workloads that include SGX enclaves.

3 EA-PLRU DESIGN

In this section, we present the implementation details of the new
replacement policy.

3.1 Enclave-Aware Probabilistic Cache
Replacement

EA-PLRU limits enclave encryption overheads by increasing the
retention of enclave memory lines in the cache hierarchy. This
is accomplished by preferentially evicting non-enclave memory
during cache replacement, effectively substituting (comparatively)
inexpensive non-enclave memory evictions for enclave memory
evictions that could lead to additional cryptographic overhead.
EA-PLRU implements this strategy using a simple heuristic that
can be easily integrated into existing PLRU cache designs. Specifi-
cally, this scheme retains the structure of the PLRU selection tree,
and applies the baseline selection logic for all non-leaf nodes, but

HASP ’19, June 23, 2019, Phoenix, AZ, USA

e poa

- [1]EEel[- [o][- fo] [[a[- [1][- o]0l
ol - 3]l Jo]f - - [l 3] Jolf - 1]

Figure 2: Example of EA-PLRU

modifies the selection logic at the leaf nodes to favor enclave-owned
cache lines. To distinguish between enclave and non-enclave mem-
ory, EA-PLRU logically extends each cache line with a enclave bit
that is set to one if line belongs to an enclave, and to zero if it is a
regular line. If both lines referred to by a leaf selection bit are either
enclave or non-enclave, then the least recently used line is evicted,
as in the baseline policy. If, however, one of potential victim line
belongs to an enclave and the other belongs to a regular application,
EA-PLRU selects the non-enclave line for eviction regardless of its
recency.

Figure 2 shows the operation of EA-PLRU in a simple four-way
cache, over three consecutive memory reads by an enclaved pro-
cess. In Figure 2-A, the higher level selection policy selects the first
pair of cache lines for replacement, according to the baseline PLRU
policy. Line 0 currently contains data from an enclave and is the
least recently used in this pair, while the data in line 1 originated
from a non-enclaved application. Because the lines contain differ-
ent enclave bits, the alternate allocation policy is used, and the
non-enclave line in the pair is selected for eviction even though
line 0 is less recently used. In this case, the modified update logic
forgoes the usual inversion of the leaf node, as line 0 is still the
least-recently used. In Figure 2-B, the nodes have been updated to
indicate the most recent access to line 1, and the next replacement
is thus directed to the pair including lines 2 and 3. Currently, data
from a non-enclaved program occupies both of these lines, and the
selection bit points to line 3. Since the enclave bits are false for
both lines, the default PLRU policy is used, and the incoming line
displaces line 3. In Figure 2-C, the replacement bits again point to
line 0 as the least recently used. Since both of lines 0 and 1 now
contain enclave data, the default policy is again applied, and the
enclave evicts its own data according to PLRU. Figure 2-D shows the
final state of the selection logic after this operation has completed.

The baseline EA-PLRU replacement strategy achieves the objec-
tive of retaining more enclave cache lines in memory, but tends to
impose excessive overheads on non-enclaved programs that can
lead to overall performance degradation. To balance the caching re-
quirements of enclave and non-enclave programs, EA-PLRU applies
the modified strategy only to a designated fraction of replacements,
randomly reverting to the default PLRU policy in to provide ade-
quate service to non-enclaved programs. The relative frequencies
with which the modified and baseline strategies are used can be
adjusted to meet the requirements of various workloads. Although

HASP ’19, June 23, 2019, Phoenix, AZ, USA

Victim Way

PLRU Bits

|
L .. lel{ .. Je]
Way 1

Rnd Logic

Figure 3: EA-PLRU integration with baseline pLRU hard-
ware

deterministic selection of the replacement strategy would also be
possible, randomization greatly simplifies integration with baseline
PLRU hardware, and has the added benefit of hindering a certain
class of cache side-channel attacks.

3.2 Hardware Implementation

The heuristic strategy used by EA-PLRU greatly simplifies the sys-
tem’s integration into the baseline PLRU logic. As shown in Figure
3, EA-PLRU interposes a selector that chooses the victim specified
by the enclave-aware replacement policy, or by the baseline LRU
logic. If the enclave bits in the referenced cache lines are different,
and a signal from the randomization logic is high, the line whose
enclave bit is zero is selected as the victim. This selection is accom-
plished by taking the logical AND of the enclave bit of the first set
and the inverted enclave bit of the second way. The output of this
operation will indicate the position of the non-enclave set. If the
signal from the randomization is low or the enclave bits for the two
sets are the same, the line specified by the baseline policy is chosen
for eviction.

The randomization logic, shown in Figure 4, is also relatively
simple. As a basis for a random signal, a randomization register
(a) is populated from an entropy source, such that each bit has an
equal chance of being 0 or 1. These bits are then combined (b) to
generate random signals that are true with varying frequencies.
For example, a signal that is true in 1/8 cases can be generated
by taking the logical AND of the bits in a three-bit randomization
register: the random numbers 111 will produce a randomization
signal of 1, while 000-110 will produce a randomization signal
of 0, meaning that enclave-aware replacement will be applied to
1/8 (12.5%) of evictions. Other gate configurations can be used to
produce additional probabilities. To tune EA-PLRU to meet the

l'.all # | # | #I i'{—l:.-)--_[f;-}— T5%
- —12.5% | (d)
25%

I

L 50%

Figure 4: EA-PLRU randomization logic

Shimizu, et al.

MPKI normalized (1 enclave thread)

MPKI

75 % " 1008 %

8.5 l

gee parest 1bm mef
Benchmarks

(@)

MPKI normalized (2 enclave threads)
1.35

1.2 4 25 % 50 % "5 % " 108 %

o i
&
=
i l. II
0.6
gee mef

(b) Benchmarks

MPKI normalized (3 enclave threads)

parest 1bm

25 % 50 % =75 % " 100 %

=
&
3
1 l.. II
gcc mcf

(C) Benchmarks

parest 1bm

Figure 5: MPKI of workloads with 4 threads.

requirements of specific workloads, a multiplexer (c) controlled by
a configuration register can select one of several random signals
generated from the randomization register. The resulting signal (d)
serves as the randomization input for the EA-PLRU selection logic.

The impact of EA-PLRU in terms of added hardware complexity
is minimal. For a typical LLC with 64 byte lines, such as the LLC in
current Intel designs, the storage overhead for the enclave bits is
less than 0.2%. The modified selection logic entails a small increase
in logical depth relative to the baseline replacement policy, and
delays incurred due to this extension, if any, will be almost entirely
masked by LLC fetch latencies, which typically exceed 100 cycles.
Additionally, the randomization logic itself can be pipelined to
pre-compute randomization bits, completely removing it from the
critical path of the replacement logic.

4 EVALUATION METHODOLOGY AND
RESULTS

In this section, we first describe how we estimated the additional
cost of SGX decryption operation on an LLC miss. Then we show
the results of our performance evaluation that assess the cache
performance in isolation. We estimate the overall impact on the ex-
ecution time by incorporating the additional SGX-related costs into
a simple performance model. While these results are preliminary
and the model is simple, the results demonstrate the performance
potential of our new replacement policy.

4.1 Estimating Cache Miss Costs in SGX

Cache misses for an enclave have an additional overhead when com-
pared to non-enclave misses. In general, the performance overheads
of SGX can result from two main sources. First is the overhead added
due to the encryption and decryption from the Memory Encryp-
tion Engine. The second is the overhead associated with entering
and exiting an enclave. In addition, extra security measures such

EA-PLRU: Enclave-Aware Cache Replacement

MPKI normalized (2 enclave_threads)
1.52 1.38 1.27

gec ametpp perlbench nab parest buaves 1bm et
(a) Benchmarks

MPKI normalized (4 enclave Lhreadsg
1.65 31

25 % S0% = 75% ® 100%

gee mef amnetpp nab perlbench parest bwaves 1bm
(b) Benchmarks

MPKL normalized (6 enclave threads)

124 = 5% 0% m75% mo100%

Ecc mef parest omnetpp nab perlbench bwaves 1bm

Benchnarks
©

Figure 6: MPKI of workloads with 8 threads.

as integrity tests and memory usage limitations may also affect
performance.

We evaluated the memory encryption overhead of cache misses
by creating a micro-benchmark consisting of 2 million load instruc-
tions. Experiments were performed on a Dell Desktop machine
with 8-core Intel i7-7700 (SkyLake) CPU at 3.60GHz, using 7.5GB
RAM and running on an Ubuntu 16.04 operating system. We used
Intel SGX Linux 2.3 SDK libraries to create enclave programs.

Our experiment calculates the difference between the number
of cycles incurred while serving a cache hit and a cache miss for a
similar environment. In order to calculate the number of CPU cycles
required by this microbenchmark, we used the serializing CPUID
instruction along with RDTSC instruction to start the timestamp
counter, and execute RDTSCP instruction to stop timestamp counter,
only when all instruction before it complete, followed by CPUID
instruction. The difference between the counter readings provides
the number of cycles executed by this code; this is a standard prac-
tice that is used to measure fine-grain timing [20]. In this section,
we will describe our process while referring to Listing 1.

1| // Enclave with Cache Miss/Hit Simulation

2 | ecall (eid, M1) // Entering enclave

3 | asm(clflush(M1)) // Added when testing miss
latencies

4 | ocall() // Exiting enclave

5 | asm(CPUID, RDTSC)// Record Start time

6 | ocall_return // Entering enclave

7 | Load M1[0] //

8 | ecall_return // Exiting enclave

9 | asm(RDTSCP, CPUID) // Record end time

10

11 | // Non Enclave with Cache Miss/Hit Simulation

12 | asm(clflush(M1)) // Added when testing miss
latencies

13 asm(CPUID, RDTSC)

14 | Load M1[0]

15 | asm(RDTSCP, CPUID)

-

Listing 1: Pseudocode for measuring cache hit and
miss costs (in CPU cycles) of enclaves and non-
enclaves.

For enclaves, we begin our experiment making an ECALL, copying
the array to enclave with the enclave id eid and switching to the
enclave (line 2). When running a cache miss simulation, a c1flush

HASP ’19, June 23, 2019, Phoenix, AZ, USA

instruction is executed to flush the cache line (line 3). For a hit
simulation, line 3 is omitted, and execution proceeds directly to
the OCALL in line 4 from the enclave to non enclave mode. An
OCALL is needed to start recording the timestamp, as the RDTSC
and CPUID in line 5 are privileged instructions which cannot be
executed inside an enclave. After starting the timer we return back
to the enclave from non enclave mode (line 6), we perform a read
operation for the first array element (line 7) and then return from
the ECALL, exiting the enclave (line 8). Once we are out of enclave,
the timer is stopped immediately using the RDTSCP followed by
CPUID instructions (line 9). We conducted this same operation of
reading the data while experiencing a cache hit and a cache miss for
an enclave. A similar experiment was conducted to benchmark non-
enclave execution (lines 12-15), while keeping all other conditions
the same. We iterated these instructions 2 million times in each
simulation to establish the average number of cycles for cache
hit/miss scenario.

We determined the miss penalties for enclave and non-enclave
execution by taking the difference in the cycles incurred in their
respective hit and miss simulations. For the enclave simulation, this
operation nullifies the ECALL and OCALL overheads. We established
the cache miss costs specific to SGX memory encryption by taking
the difference the enclave and non-enclave miss penalties. Through
this evaluation, we found that the mean LLC miss penalties for non-
enclave and enclave programs were 246 and 357 cycles, respectively.
SGX encryption thus added an average of 111 cycles to the miss
penalty, an increase of 1.45X relative to non-enclave latencies.

4.2 Experimental Setup

To evaluate the performance of EA-PLRU, we used Intel Pin [12] to
collect traces of memory references of the SPEC CPU 2017 bench-
marks. These memory traces are then fed into our trace-based
cache simulator, which simulated EA-PLRU for 1 billion memory
references. To represent various workloads on an SGX system, our
simulator designated benchmarks as enclave or non-enclave pro-
grams, and applied the EA-PLRU replacement accordingly.

We mix randomly selected SPEC benchmarks and designate
different numbers of enclave programs in each workload, while
varying the total number of threads in a workload and changing
the probability of enclave-aware replacement.

We simulated a three-level cache hierarchy which remained
consistent across all experiments. The L1 cache was split into an
instruction and data cache, each 32KB in size. The L2 cache was 256
KB and the L3 cache was 8MB. The L1 and L2 were private to each
core, while the L3 was shared across all cores. The L3 was inclusive
of the private caches. To calculate the overall cycle penalty due
to cache misses, we used the mean miss penalties for enclave and
non-enclave memory measured in Section 4.1.

4.3 Performance Results and Discussions

We first examine the MPKIs (Misses per Kilo-Instructions) of en-
clave and non-enclave benchmarks in the workloads, then we dis-
cuss the overall performance of each workload. We refer to the
enclave-aware replacement probability as EP, where EP = x means
that the cache was configured such that there is a x% probability

HASP ’19, June 23, 2019, Phoenix, AZ, USA

MPKI normalized (56 enclave threads)
1.48 1.9 1.77

Shimizu, et al.

69 1.67
.29 ¢ 25% w50% W 75% W 100 %
o 1.0
et
454
0.6
& & QSF & ¢§$ 65? Qﬁé éTﬁ & (5} 4ﬁ; & 5§* 5$? 65? 5
& > & ¢ ¥ ¢ o
& ¢ ®
Benchmarks
Figure 7: MPKI of workloads with 16 threads, where 6 of the threads are enclaves.
MPKI normalized (& enclave threads)
163 1.73 1.48 1,93 1.32 76 1.64 1.62
1.25 1
5% = 50% m75% W 100%
1,90
£ 0.75
0.50
& éﬁ QSP & ‘6:$‘ 6§p '§§&y Qs* éa? xﬂp {gé égw q{ﬁ ¥ éfﬁ & (6}’ {fk & 6f? éé? dfg s
& § A G R Y
& & «f o &
Benchmarks
Figure 8: MPKI of workloads with 23 threads, where 8 of the threads are enclaves.
Overall Cycle Penalty (normalized)
1.89 1.02 1.1 1.01

1.000 1.91
0.975 -
8.950 - I I

8.925
=25 % L1414 75 % " olo0 %

=]

Lo

(=}

=
I

4-1 4-2 4-3 8-2 8-4

CPU Cycles (normalized)

&-6

23-12

16-3 16-6 16-9 23-4 23-8

Workload

Figure 9: Overall cycle penalty across different workloads.

of using the EA-PLRU policy for cache line replacement instead of
PLRU.

Figure 5 shows the MPKIs of the smallest workload of 4 threads.
Figure 5(a) shows the results for the experiment when gcc runs
as an enclave, while the remaining threads run as non-enclaves.
In the extreme case of EP = 100, gcc’s MPKI decreases by 69%,
while parest, Ibm, and mcf suffer an MPKI increase of 24%, 0.4%,
and 6%, respectively. The performance overhead is negligible up
to EP = 75, where the non-enclave programs experience up to
3% overhead. Figure 5(b) shows gcc and mcf as the two enclave
programs running. At EP = 100, gcc and mcf experience a decrease
in MPKI of 24% and 7%, respectively, while parest and Ibm suffer
an increase of 35% and 0.6%, respectively. Figure 5(c) shows three
enclave programs with Ibm as the single non-enclave program.
gee, mef, and parest have a performance improvement of 19%, 5%,
and 9%, respectively, while Ibm only experiences a 0.6% overhead.
As expected, as there are more enclave programs, each enclave

program experiences a redistributed amount of performance gain.
For example, gcc initially had a 69% performance gain at EP = 100
when it was the only enclave program, but with three enclave
programs running alongside, gcc’s performance gain reduced to
19%.

Figure 6 shows the MPKIs of workloads with 8 threads. Figure
6(a) has gcc and omnetpp as enclave programs. In the extreme case of
EP =100, gcc and omnetpp improves performance by 73% and 85%,
which however, degrades the performance of the remaining non-
enclave programs up to 52%. At EP = 75, the performance overhead
of the non-enclave programs are negligible, with an MPKI increase
of up to 3% while enclaves experience up to a 40% MPKI decrease.
Figure 6(b) adds mcf and nab as enclave programs. EP = 75 was
negligible in previous runs but for the workload in Figure 6(b),
the non-enclave programs, perlbench and parest, suffer up to 28%
and 18%, respectively. At EP = 50, perlbench and parest experience
up to 13% overhead, while the non-enclave programs experience

EA-PLRU: Enclave-Aware Cache Replacement

up to a 11% performance improvement. Figure 6(c) has 6 enclave
programs running, where at EP = 50, the performance overhead
of non-enclave programs go up to 1% and the enclave programs
obtain up to a 24% performance improvement. Again we see a
redistribution of performance gain as more enclave programs are
run. With EP = 50, average performance improvement start at
22% with 2 enclaves and go down to 8% with 6 enclaves. EP = 50
experiences a good performance trade off between the enclave and
non-enclaves in Figure 6(c).

Figure 7 shows a workload with 16 threads, where 6 of those
threads are enclaves. We also ran 16-threaded workloads with 3 and
9 enclave threads, whose overall performance is shown in Figure
9. The non-enclave programs experience overheads between 5% at
EP = 25 and 95% at EP = 100. Even at EP = 25, enclaves still gain
a performance boost of up to 7%.

Figure 8 shows a workload of 23 threads, where 8 of the threads
are enclaves. Workloads of 23 threads with 4 and 12 enclave threads
were also run, but for the sake of space, their overall performance
results are shown in Figure 9. Between EP = 25 to EP = 100,
the non-enclave performance degrades between 5% to 93%, while
enclave performance improves between 8% to 53%. Like the 16-
threaded workload, EP = 25 is a good trade off between enclave
and non-enclave performance.

Finally, Figure 9 shows the overall cycle penalty across increasing
values of EP. As seen consistently in the previous results, enclave
performance improves with higher values of EP while non-enclave
performance degrades. The overall cycle penalty consists of the
total number of non-enclave and enclave cache misses of each
workload, multiplied by their miss costs. Each type of miss (non-
enclave and enclave) has a different cycle penalty. From our studies
described in Section 4.1, on average, each non-enclave cache miss
costs 246 cycles and each enclave cache miss costs 357 cycles. We
used these average cycle penalties in our simulations. The overall
cycle penalties are normalized to only using PLRU (which is equiv-
alent to EP = 0). The overall cycle penalty shows the effect of the
inverse relation of enclave and non-enclave performance changes
caused by EA-PLRU. The workload names in Figure 9 follow the
naming convention x-y, which means that the workload consisted
of a total of x threads, where y of those threads are enclave threads.
For example, the 23-4 workload in Figure 9 consisted of 23 threads
total, where 4 of the 23 threads were enclaves.

As shown in Figure 9, in the extreme case of EP = 100, the 23-4
workload experienced the highest overall performance penalty of
10%. Across all workloads, the overall performance at EP = 75
improves between 1-4%. At EP = 50, we see a performance im-
provement of up to 3%, and at EP = 25, performance improves
up to 1%. As shown in the previous results, non-enclave programs
suffer negligible performance overhead with EP values at 25 and
50. For EP of 75 or less, there is no overall performance degra-
dation. In general, the extreme value of EP = 100 hurts overall
performance when there are significantly less enclave threads over
non-enclave threads, such as in workloads 4-1, 16-3, and 23-4.
Interestingly, in more balanced workloads between non-enclave
and enclave programs, EP = 100 is beneficial overall, even though
non-enclave programs suffer significant overheads. From all of our
results, an EP value between 25-50 improves performance over-
all while causing negligible non-enclave performance overheads

HASP ’19, June 23, 2019, Phoenix, AZ, USA

across all workloads. At EP = 50, non-enclave programs have an
average of 7.1% overhead while the overall performance gain is 3%.
These results encourage the idea of incorporating the workload
characteristics as a metric to dynamically change the enclave-aware
replacement probability in future work, which can potentially im-
prove EA-PLRU.

5 SECURITY BENEFITS OF EA-PLRU

In addition to improvements in cache performance, the replacement
strategy used by EA-PLRU has beneficial side-effects with regards
to security. Specifically, the non-deterministic selection of a replace-
ment strategy in EA-PLRU mitigates cache side-channel attacks
that exploit predictability in traditional replacement schemes.

In a typical side-channel attack, an attacker occupies multiple
cache lines with its own data, and measuring subsequent access
latencies to determine which lines the victim has replaced. Cache
side channels are not addressed by the current SGX security model,
and thus pose a significant threat to SGX systems. Traditional
versions of this attack require the attacker to flood multiple ways
in each target set, an aggressive and anomalous access pattern
that can be easily detected [14, 15, 21]. However, a recent work
exploits the deterministic behavior of existing replacement policies
to target the cache ways the victim is expected to use, greatly
limiting the detectable side-effects of the attack [3]. By introducing
randomness into the replacement policy, EA-PLRU provides an
effective mitigation to this type of attack. Although security is not
the primary focus of the EA-PLRU design, this side-effect is valuable
in light of recent research demonstrating the SGX framework’s
vulnerability to cache side-channels.

6 FUTURE WORK

While the results presented in this paper demonstrate the poten-
tial of EA-PLRU to accelerate SGX caching performance, further
research is required to explore further optimizations. One idea is
to have the enclave-aware replacement probability to be dynamic
depending on the current performance and workloads of enclave
and non-enclave programs. As shown in the results, non-enclave
programs can suffer high overheads if the enclave-aware proba-
bility is too high, and it would be beneficial if the probability can
dynamically adjust to these circumstances. Further performance
benefits can be realized by limiting the number of ways in each
set that can be occupied by non-enclave data, since this data has
priority over enclave data.

7 RELATED WORK

Previous work has proposed alternate cache replacement policies
that address the general problem of variable-latency memory ac-
cesses [13, 24]. These works address differential latencies intro-
duced by the general organization of modern multi-processor ar-
chitectures [13], or by specific properties like memory-level paral-
lelism [24]. In contrast, EA-PLRU specifically addresses variations
in replacement costs arising under SGX. Additionally, EA-PLRU
advances this area of research by proposing a novel, probabilistic
replacement policy that can be easily integrated into widely-used
PLRU logic.

HASP ’19, June 23, 2019, Phoenix, AZ, USA

Randomized or probabilistic alternation between eviction poli-
cies has been used in previous work to attenuate the effects of
aggressive cache replacement schemes [23]. EA-PLRU applies this
strategy to a new replacement algorithm optimized for SGX sys-
tems.

Prior works have described various randomization-based mitiga-
tions to cache side-channel attacks. Random Permutation Cache [25],
for instance, introduced an element of randomness into the line
replacement policy. More recent proposals [22, 26] unpredictably
modify the index used for cache lookups, thus limiting the attackers
ability to target sensitive cache sets. Alternative cache side-channel
defenses generally involve dividing caches into partitions assigned
to specific programs, thus eliminating cache contention entirely
[6, 16, 17]. However, these approaches generally rely on partition-
ing at cache-way granularity, making them difficult to scale, and
also make use of system software support, making them vulnerable
under the threat model assumed by SGX. Future research is needed
to establish how the proposed replacement policy impacts informa-
tion leakage in the caches in general and weather the additional
victimizations of non-enclave lines can somehow be exploited by
attackers.

8 CONCLUDING REMARKS

In SGX-supported systems, enclave and non-enclave applications
often co-exist with each other and share the last-level cache. As
the cache miss costs of enclave and non-enclave programs are
different due to the encryption/decryption overhead encountered
by enclave misses and replacements, it is important to reconsider
classical recency-based cache replacement policies under these
new conditions. In this paper, we proposed EA-PLRU, a new cache
replacement policy that favors enclave lines over non-enclave lines
at the last level of PLRU tree in a controllable manner. We showed
that this policy is extremely simple to implement over existing PLRU
schemes while incurring very low overhead. EA-PLRU provides
performance benefits for enclaves and has a potential to make the
LLC more secure against a class of side-channel attacks that exploits
cache replacement policy. While our current results are preliminary,
they demonstrate that considering non-uniform cache miss costs,
in addition to recency, is a viable approach to developing more
effective replacement policies for LLCs in SGX-equipped systems.

9 ACKNOWLEDGMENTS

This paper was made possible by NPRP grant 8-1474-2-626 from
the Qatar National Research Fund (a member of Qatar Foundation).
The statements made herein are solely the responsibility of the
authors.

REFERENCES

[1] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative
technology for CPU based attestation and sealing. In Proceedings of the 2nd
international workshop on hardware and architectural support for security and
privacy, Vol. 13. ACM New York, NY, USA.

[2] Ittai Anati, Shay Gueron, Simon P Johnson, and Vincent R Scarlata. 2013. Inno-
vative Technology for CPU Based Attestation and Sealing. Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for Security and
Privacy, HASP (2013).

=
)

(13]

[14

[15

[16

=
=

[18

[19

[20

[21]

[22

[23

™
=)

[25

[26

Shimizu, et al.

Samira Briongos, Pedro Malagon, José M Moya, and Thomas Eisenbarth. 2019.
RELOAD+ REFRESH: Abusing Cache Replacement Policies to Perform Stealthy
Cache Attacks. arXiv preprint arXiv:1904.06278 (2019).

Wen-tzer Thomas Chen, Peichun Peter Liu, and Kevin C Stelzer. 2006. Implemen-
tation of a pseudo-LRU algorithm in a partitioned cache. US Patent 7,069,390.
Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. (2016).

Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry
Ponomarev. 2012. Non-monopolizable caches: Low-complexity mitigation of
cache side channel attacks. ACM Transactions on Architecture and Code Optimiza-
tion (TACO) 8, 4 (2012), 35.

Dmitry Evtyushkin, Jesse Elwell, Meltem Ozsoy, Dmitry Ponomarev, Nael Abu
Ghazaleh, and Ryan Riley. 2014. Iso-x: A flexible architecture for hardware-
managed isolated execution. In Proceedings of the 47th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture. IEEE Computer Society, 190-202.

Jim Handy. 1993. The cache memory book. Academic Press, Boston.

Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan
Del Cuvillo. 2013. Using innovative instructions to create trustworthy software
solutions. HASP@ ISCA 11 (2013).

Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Carlos Rozas, Vinay Phe-
gade, and Juan del Cuvillo. 2013. Using Innovative Instructions to Create Trust-
worthy Software Solutions. Proceedings of the 2nd International Workshop on
Hardware and Architectural Support for Security and Privacy, HASP (2013).
Kevin A Hurd. 2000. A 600 MHz 64 b PA-RISC microprocessor. In 2000 IEEE
International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.
00CH37056). IEEE, 94-95.

Intel. [n. d.]. Pin - A Dynamic Binary Instrumentation Tool. https://software.
intel.com/en-us/articles/pin-a-dynamic-binary- instrumentation- tool.

Jaeheon Jeong and Michel Dubois. 2003. Cost-sensitive cache replacement al-
gorithms. In The Ninth International Symposium on High-Performance Computer
Architecture, 2003. HPCA-9 2003. Proceedings. IEEE, 327-337.

Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer Jaleel.
2016. A high-resolution side-channel attack on last-level cache. In Proceedings of
the 53rd Annual Design Automation Conference. ACM, 72.

Mehmet Kayaalp, Khaled N Khasawneh, Hodjat Asghari Esfeden, Jesse Elwell,
Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer Jaleel. 2017. RIC: relaxed
inclusion caches for mitigating LLC side-channel attacks. In Design Automation
Conference (DAC), 2017 54th ACM/EDAC/IEEE. IEEE, 1-6.

Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and
Joel Emer. 2018. DAWG: A Defense Against Cache Timing Attacks in Speculative
Execution Processors. (2018).

Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,
and Ruby B Lee. 2016. Catalyst: Defeating last-level cache side channel attacks
in cloud computing. In High Performance Computer Architecture (HPCA), 2016
IEEE International Symposium on. IEEE, 406-418.

Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday Savagaonkar. 2013. Innovative Instructions
and Software Model for Isolated Execution. Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for Security and Privacy, HASP
(2013).

Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative instructions
and software model for isolated execution. HASP@ ISCA 10 (2013).

Gabriele Paoloni. 2010. How to benchmark code execution times on Intel IA-32
and IA-64 instruction set architectures. Intel Corporation (2010), 123.

Mathias Payer. 2016. HexPADS: a platform to detect 4AIJstealthaAl attacks. In
International Symposium on Engineering Secure Software and Systems. Springer,
138-154.

Moinuddin K. Qureshi. 2018. CEASER: Mitigating Conflict-Based Cache Attacks
via Encrypted-Address and Remapping. 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO) (2018), 775-787.

Moinuddin K Qureshi, Aamer Jaleel, Yale N Patt, Simon C Steely, and Joel Emer.
2007. Adaptive insertion policies for high performance caching. ACM SIGARCH
Computer Architecture News 35, 2 (2007), 381-391.

Moinuddin K Qureshi, Daniel N Lynch, Onur Mutlu, and Yale N Patt. 2006. A
case for MLP-aware cache replacement. ACM SIGARCH Computer Architecture
News 34, 2 (2006), 167-178.

Zhenghong Wang and Ruby B Lee. 2007. New cache designs for thwarting soft-
ware cache-based side channel attacks. In ACM SIGARCH Computer Architecture
News, Vol. 35. ACM, 494-505.

Zhenghong Wang and Ruby B Lee. 2008. A novel cache architecture with en-
hanced performance and security. In Proceedings of the 41st annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Computer Society, 83-93.

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

	Abstract
	1 Introduction
	2 Background
	2.1 Pseudo-LRU cache replacement
	2.2 Intel SGX

	3 EA-PLRU Design
	3.1 Enclave-Aware Probabilistic Cache Replacement
	3.2 Hardware Implementation

	4 Evaluation Methodology and Results
	4.1 Estimating Cache Miss Costs in SGX
	4.2 Experimental Setup
	4.3 Performance Results and Discussions

	5 Security Benefits of EA-PLRU
	6 Future Work
	7 Related Work
	8 Concluding Remarks
	9 Acknowledgments
	References

