
Green Thieves in Work Stealing

Yu David Liu
SUNY Binghamton

Binghamton NY 13902, USA
davidL@cs.binghamton.edu

Abstract
This paper proposes an energy-efficient approach for pro-
gramming languages that support work stealing. The key in-
sight is that thieves and victims in the work stealing algo-
rithm can coordinate their execution paces for more energy
efficiency, through dynamic adjustment of CPU frequencies.

1. Introduction
Popularized by Cilk [2], work stealing is a classic approach
for achieving load balancing in parallel executions. It is
particularly interesting from a programming language per-
spective because scheduling – a traditionally OS concept –
is meshed with program constructs and their compilations.
Work stealing has been implemented in several industry-
strength languages (e.g. Java [5], X10 [1], Intel TBB [3]),
and remains active in research in the era of multi-core CPUs.

1.1 Work Stealing Overview
The following Cilk program prepares a CRC-enabled packet
given a piece of data:

1 c i l k char * p a c k e t (char * d a t a)
2 { char * crc , body ;
3 c r c = spawn computeCRC (d a t a) ;
4 body = f o r m a t (d a t a) ;
5 sync ;
6 re turn s t r c a t (body , c r c) ;
7 }

From a programmer’s perspective, spawn/sync is simi-
lar to standard fork-join: spawn logically creates a thread,
whereas sync is a local barrier, waiting for all threads
spawned in the same scope to complete. In this example,
computeCRC and format may execute in parallel.

What makes Cilk interesting are some highly stylistic
features of its compilation and runtime. First, Cilk adopts
Lazy Task Creation [6]: when function packet is invoked
and the execution reaches L. 3, the newly created thread is
not going to execute computeCRC, but the continuation of
L. 3, i.e. L. 4-6. This allows the current thread to immedi-
ately execute the most “imminent” code the that would have
been encountered if the execution were serial, i.e. invoking
computeCRC. The continuation thread is lazily created: the

evaluation of the spawn expression merely adds a frame to
the tail of a deque – a per-CPU-core queue-like structure –
and a physical thread is not created until another CPU core
becomes available. An available CPU core is a potential thief
and may steal a frame associated with the deques of other
CPU cores (a victim). The frame being stolen in any deque
must start from the head element.

Second, Cilk compiles each “stealable” unit – e.g. the
packet function – into two binaries, a fast clone and a slow
clone. The fast clone can be conceptually viewed as serial
code with all spawn/sync elided. The only difference is that
checkpoints are inserted before each spawn, and its execu-
tion terminates immediately if the corresponding continua-
tion frame is already stolen, implying the rest of the code is
being executed by other CPU cores. A fast clone bears its
name because every sync is a no-op: when there is no paral-
lelism, there is no need for synchronization. The slow clone
on the other hand is full “concurrent” code with proper syn-
chronizations. As predicated, it starts with program counter
restoration, jumping to the appropriate program point based
on the stolen frame. A Cilk function always starts its execu-
tion as a fast clone, but a thief always executes a slow clone.

1.2 Energy Efficiency in Work Stealing
One key difference between fast clones and slow clones –
whether synchronization exists – also has consequences on
their different energy behaviors. When two threads synchro-
nize, the first thread arriving at the synchronization point
needs to wait for the arrival of the second. Operationally,
the intuitive notion of “wait” translates to spin locks in
Cilk. Also known as busy waiting, spinning is rather in-
efficient from the perspective of energy: there is no ex-
ecution throughput directly related to program progress.
An alternative solution would be to implement blocking
semantics for synchronization: context-switching the first
thread and schedule the core with other threads. This route
– even though possible – would complicate work stealing,
which happens to be about scheduling as well. To make
things worse, blocking itself is energy-inefficient too: con-
text switch comes with a cost, and CPU affinity loss may
lead to significant cache misses, an indicator strongly corre-
lated with high energy consumption.

1

2. Green Thieves
We propose executing the thief thread and the victim thread
at different execution paces. This is made possible by dy-
namically adjusting CPU frequencies, a feature supported
by virtually all CPUs used today (a.k.a. Dynamic Voltage
and Frequency Scaling, or DVFS). Multi-core CPUs (e.g.
Power 7 and AMD Operton), together with semi-customized
CMPs, are increasingly equipped with the ability of perform-
ing DVFS on a per-core basis.

Specifically, our design is guided by the following general
principle:

Green Thief Principle: the thief thread is set to exe-
cute at a slower pace than the victim thread.

Let us now demonstrate why this Principle may lead to
improved energy efficiency. We first consider the case where
a thread spawns a frame for continuation thread, which
includes a sync. Observe that there can only be three cases:

victim
thread

thief
thread

sync
thread

(arrow as time) spawn

Case II Case III

thief
thread

victim
thread

thread
start

Case I

thread
end

steal wait

In Case I, a frame is pushed onto the deque upon spawn.
Before any thief could steal the frame and create a continua-
tion thread however, the thread itself has reached the contin-
uation point. This case is equivalent to a serial execution; no
pace change happens.

In Case II, stealing indeed happens. Despite having the
thief thread executing at a slower pace, it still reaches the
sync point before the victim. The thief thread – a slow
clone – does need to wait, but the duration of wait – hence
useless energy consumption – is reduced compared with
the scenario where the thief had chosen to run faster and
reached the sync point even earlier. In addition, a slower
pace also implies that the frequency of the CPU core is
lower. In a multi-core context, it is known that energy has a
somewhat cubic relation to DVFS scaling [4]. Overall, Case
II is energy-efficient both due to shorter wait and DVFS
downscaling. Note that the overall execution time of the
program is determined by the victim thread, so there is no
performance degradation.

In Case III, stealing happens as well and the victim thread
successfully completes itself before the thief synchronizes
over it – perhaps thanks to the slower pace of the thief thread.
The termination of the victim implies no wait at its end.
The thief does not need to wait as well since the value it
needs has been computed by the victim. Had the thief not
slowed down, there is a likelihood that it would have reached
sync before the victim, which would have been less energy
efficient due to waiting.

For the general case where thief 1 steals from a victim,
thief 2 steals from thief 1, and so on, until thief n finally
reaches a sync point, note that thieves 1, 2, . . . , n execute
on decreasing paces before reaching sync. The key fact used
by the previous case analysis – the thief with sync runs on a
slower pace – transitively hold.

2.1 Design Issues
Thanks to the compilation strategy adopted by Cilk, the
Principle can be directly implemented through compiler-
time DVFS instrumentations over fast/slow clones. An on-
going project is implementing a Cilk variant with this Prin-
ciple. We now discuss two design issues.

First, the Principle only specifies the relative execu-
tion paces, with several implementation choices: 1) slowing
down the thief; 2) speeding up the victim; 3) a combination
of 1 and 2. Scaling factor selection – how much the frequen-
cies should increase/decrease – further enriches the design
space. In addition, observe that a naive implementation that
simply reduces the relative thief/victim pace has the prob-
lem of pace irrevivability: the continuations of the program
would execute at a lower and lower pace which never comes
back up again. In our current design, the execution pace af-
ter sync should be able to revive to the level before the first
spawn happens. Overall, the design space is an exploration
of the well-known trade-off between performance and en-
ergy consumption, a path both analytical and experimental.

Second, the thief and the victim in Cilk conforms to
implicit atomicity: if the two access shared memory areas,
the observable behavior is the same as the two executes
serially. Cilk uses locks to enforce this, which are implicit
synchronization points and may lead to energy inefficiency.
We are addressing this problem by designing: 1) a static
analysis that infers the smallest zone demarcated by the first
lock and the last unlock; 2) a DVFS instrumentation strategy
that allows for the execution the inferred zone at an elevated
execution pace. The philosophy here is to minimize the
possibility of implicit synchronization by quickly running
through the zone of contention.

References
[1] CONG, G., KODALI, S., KRISHNAMOORTHY, S., LEA, D., SARASWAT, V.,

AND WEN, T. Solving large, irregular graph problems using adaptive work-
stealing. In ICPP’08 (2008), pp. 536–545.

[2] FRIGO, M., LEISERSON, C. E., AND RANDALL, K. H. The implementation of
the cilk-5 multithreaded language. In PLDI’98 (1998), pp. 212–223.

[3] INTEL. Threading Building Blocks, http://threadingbuildingblocks.
org/.

[4] ISCI, C., BUYUKTOSUNOGLU, A., CHER, C.-Y., BOSE, P., AND MARTONOSI,
M. An analysis of efficient multi-core global power management policies:
Maximizing performance for a given power budget. In MICRO’39 (Washington,
DC, USA, 2006), IEEE Computer Society, pp. 347–358.

[5] LEA, D. A java fork/join framework. In Proceedings of the ACM 2000
conference on Java Grande (New York, NY, USA, 2000), JAVA ’00, ACM,
pp. 36–43.

[6] MOHR, E., KRANZ, D. A., AND HALSTEAD, JR., R. H. Lazy task creation:
a technique for increasing the granularity of parallel programs. In Proceedings
of the 1990 ACM conference on LISP and functional programming (New York,
NY, USA, 1990), LFP ’90, ACM, pp. 185–197.

2

http://threadingbuildingblocks.org/
http://threadingbuildingblocks.org/

	Introduction
	Work Stealing Overview
	Energy Efficiency in Work Stealing

	Green Thieves
	Design Issues

