
Type-Specialized Staged Programming with Process Separation

Yu David Liu
SUNY Binghamton

davidl@cs.binghamton.edu

Christian Skalka
The University of Vermont

skalka@cs.uvm.edu

Scott Smith
The Johns Hopkins University

scott@cs.jhu.edu

Abstract
Staging is a powerful language construct that allows a program
at one stage to manipulate and specialize a program at the next.
We propose 〈ML〉 as a new staged calculus designed with novel
features for staged programming in modern computing platforms
such as embedded systems. A distinguishing feature of 〈ML〉 is a
model of process separation, whereby different stages of compu-
tation are executed in different process spaces. Our language also
supports dynamic type specialization via type abstraction, dynamic
type construction, and a limited form of type dependence. 〈ML〉 is
endowed with a largely standard metatheory, including type preser-
vation and type safety results. We discuss the utility of our language
via code examples from the domain of wireless sensor network pro-
gramming.

Categories and Subject Descriptors D Software [D.3 Program-
ming Languages]: D.3.3 Language Constructs and Features

General Terms Design, Languages, Theory.

Keywords Staged Programming, Type Specialization, Polymor-
phism.

1. Introduction
The power of generic programming is realized through formal
mechanisms of abstraction. From features as fundamental as func-
tion parameterization to more recent schemes such as metapro-
gramming, generic programming produces code that is more flex-
ible, safe, and efficient by allowing principled generalization over
and recombination of program elements [13]. In this paper, we ex-
plore a programming language design that combines generic pro-
gramming mechanisms to obtain code efficiency and to support
useful design patterns for programming embedded systems, espe-
cially software for wireless sensor networks (WSNs). In particular
we explore staged programming and type genericity as principled
techniques to organize and optimize program code through deploy-
ment steps in embedded systems.

1.1 Staging Deployment Steps with Process Separation
In [13] staged programming is identified as a so-called metapro-
gramming species of generic programming. There is a long history
of explicit support for staging in programming languages [35, 9,
8, 31, 3, 26, 25, 5, 34]. These language designs all admit program

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
WGP’09, August 30, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-510-9/09/08. . . $10.00

code itself as a data type, and support generalization and composi-
tion/specialization of code via some form of code abstraction. Since
running of code-as-data is also typically supported, program stag-
ing allows a principled definition of program generation. The lan-
guage we present in this paper, 〈ML〉, is an extension of a core-ML
calculus with support for program staging. It borrows ideas from
previous systems but provides unique support for using staging to
define deployment cycles in a multi-tier embedded systems archi-
tectures. WSNs in particular are composed of a vast number of sen-
sor nodes (so-called motes) of limited resources connected to one
or more hubs – larger computers running e.g. Linux, and the typi-
cal sensor network deployment occurs in two stages, with the first
stage running on the hub controlling the deployment of mote code
at the second stage [15, 11, 18, 19]. Hence, along with previous au-
thors [32] we argue that staging abstractions provide a principled
means to express typical design patterns in embedded systems such
as WSNs. Furthermore, staging offers significant efficiency bene-
fits for WSNs since it allows inlining of pre-computed (on the hub)
data and functionality in specialized “later stage” code (for mote
deployment). This is important since energy and computational re-
sources in such a power-constrained environment are precious.

Since we view stages as models of deployment steps in a multi-
tiered hardware setting, it follows that each stage must be envi-
sioned as executing within a distinct process space. While the 〈ML〉
model is closely related to MetaML [35], a well known extension of
ML with support for staging, it differs fundamentally from that sys-
tem in part because cross-stage persistence is disallowed in 〈ML〉.
In essence, cross-stage persistence is a feature that allows values
to migrate freely between stages through standard function abstrac-
tion and application. This is especially problematic in a multi-tiered
embedded system with mutable state, since sharing memory be-
tween processes is not feasible and hence memory references can-
not be sensibly interpreted between process spaces (i.e. stages). We
prevent cross-stage persistence through a novel static type analy-
sis. At the same time, we allow composition and specialization of
stateful code by allowing values to be “lifted” between stages in
a principled manner that incorporates a form of data serialization
(a.k.a. marshalling). It is important to consider state in this setting
since embedded systems languages such as nesC [11] make heavy
use of it.

1.2 Type Genericity
Another sort of genericity we explore in this paper is genericity
by type as defined in [13]. We support type genericity in two
related dimensions: first, we allow specialization of the types of
declared variables through a form of parametric polymorphism, and
second, we allow dynamically construction of types of programs by
introducing type-indexed terms, i.e. by treating types as first class
values.

The usefulness of these features is determined by common de-
sign patterns in embedded systems such as WSNs. For example,
upon deployment, WSNs can initially refine node address sizes via

locally unique address assignment protocols that aim to minimize
node address sizes. This allows bandwidth reduction during com-
munications, by reducing message sizes [29]. We envision that type
genericity will work in conjunction with program staging in 〈ML〉
to maximize program efficiency in this scenario. We can leverage
our 〈ML〉 staging abstraction to formalize the interaction between
address assignment protocols and subsequent network communica-
tions, while our support for type specialization will allow message
structure types to be dynamically defined by address assignment
and passed as type parameters to network communication stages.
We use this scenario as a running example throughout the remain-
der of the paper.

The work presented here is foundational. While our ultimate
goal is to port these ideas to realistic languages for programming
embedded systems such nesC, our current goal is to explore them
in a theoretical setting comprising a simple core calculus and asso-
ciated metatheory. We are especially concerned with establishing
type safety results in the core language model. Our language, type
theory, and metatheory are presented in the following Sections 2
through 5. To illustrate how our proposed system can support WSN
applications programming we present and discuss an extended ex-
ample in Sec. 6.

2. The Core Language
In this Section we define and discuss the core 〈ML〉 syntax and
semantics. We will later discuss the type system in Sec. 3 and then
the addition of mutation and state in Sec. 4.

2.1 〈ML〉 Syntax and Semantics
The 〈ML〉 language syntax is defined in Fig. 1, including values
v, expressions e, evaluation contexts E, types τ , type coercions ∆,
and type environments Γ. Expression forms directly related to type
genericity, including type abstraction Λt 4 τ.e, a “type let” tlet,
type-as-terms and casting, are discussed more in Sec. 3. Our initial
focus is on our three expression forms for staged computation. The
form 〈e〉 represents the code e, which is treated as a first class value.
The form run e evaluates e to code and then runs that code (in its
own process space). The form lift e evaluates e to a value, and
turns that value into code, i.e. “lifts” it to a later stage. We omit the
“escape” operator, e.g. ~e of MetaML; since this form is common
in staged programming languages we discuss this design choice
more below.

In order to prevent cross-stage persistence, central to our ap-
proach is the definition of term substitution. Our substitution should
ensure “stage conformity”, i.e. we can only substitute code into
code, and code stage levels should be coordinated in substitution.
To achieve this we define 〈e〉[〈e′〉/x] = 〈e[e′/x]〉, and make
〈e〉[e′/x] be undefined if e′ is not code. This definition forces free
variables in 〈e′〉 to be instantiated with code only, and as a conse-
quence bound and free variables in e′ have a different meaning: the
bound variables range over non-code expressions and the free vari-
ables range over code expressions. More completely, substitution
e[e′/x] can be defined by case analysis on e, with interesting cases
as follows:

x[e′/x] = e′

y[e′/x] = y if x 6= y
〈e〉[〈e′〉/x] = 〈e[e′/x]〉

(e1e2)[e′/x] = (e1[e′/x])(e2[e′/x])
(λx : τ.e)[e′/x] = λx : τ.e
(λy : τ.e)[e′/x] = λy : τ.e[e′/x] if x 6= y

(Λt 4 τ.e)[e′/x] = Λt 4 τ.(e[e′/x])
...

We can similarly define type substitutions τ [τ ′/t] in a standard
manner.

The operational semantics of 〈ML〉 are then defined in Fig. 2 in
terms of substitutions, as a small-step reduction relation →. This
relation is defined in a mutually recursive fashion with its reflex-
ive, transitive closure denoted→?. Note that the RRUN rule mod-
els process separation by treating the running of code as a sepa-
rate and complete evaluation process; this separation will become
more clear when we consider mutation and state in Sec. 4. The
user-supplied function δ axiomatizes our interpretation of program
constants c. The semantics of casting are predicated on a notion of
typing defined in the following section.

x ∈ V, t ∈ T
v ::= c | x | λx : τ.e | Λt 4 τ.e | 〈e〉 | τ
e ::= v | (τ)e | e e | tlet t 4 τ = e in e | run e | lift e
E ::= [] | Ee | vE | tlet t 4 τ = E in e | (E)e | (v)E

τ ::= t | γ | type[τ] | 〈·τ ·〉 | Πt ◦∆.τ | τ → τ

∆ ::= ∅ | ∆; t 4 τ

Γ ::= ∅ | Γ;x : τ

Figure 1. 〈ML〉 Term and Type Syntax

RCONST
δ(c, v) = e

c v → e

RAPP
(λx : τ.e)v → e[v/x]

RTLET
tlet t 4 τ = τ ′ in e→ e[τ ′/t]

RCAST
v : τ

(τ)v → v

RAPPΠ

(Λt 4 τ.e)τ ′ → e[τ ′/t]

RRUN
e→? v

run 〈e〉 → v

RLIFT
lift v → 〈v〉

RCONTEXT
e→ e′

E[e]→ E[e′]

Figure 2. 〈ML〉 Core Operational Semantics

2.2 Discussion
For the convenience of our discussion, all examples below only
consider two stages, which we call the meta stage and the object
stage, following standard terminology in meta programming. 〈ML〉
in fact supports arbitrary stages.

Exploiting MetaML-style staging Two primitive MetaML ex-
pressions are directly reflected in 〈ML〉, namely the bracket expres-
sion 〈e〉, and the execution expression run e. Indeed a canonical
MetaML example, a staged list membership testing function, can
be written in 〈ML〉 as in Fig. 3. Rather than testing membership
directly, the execution of the function produces a piece of member-
ship testing code, which is often more efficient.

The ability to specialize code is very useful for resource-
constrained platforms, such as wireless sensor networks. In this
particular usage, we imagine that the meta stage is on the hub that
creates code to deploy and run on the sensors, and the object stage

member : 〈·int·〉 → int list→ 〈·bool·〉
member x l =

if l = nil then 〈false〉 else
let h = lift (hd l) in
let tl = member x (tail l) in
〈x = h||tl〉

run(member〈sense_data〉[0, 1])

Figure 3. 〈ML〉 Definition of member Function

is the sensor node execution environment. For example, suppose
each sensor node needs to frequently test membership of the result
of sense_data in a fixed list of say [0, 1]. Rather than invoking
a standard membership function at each sensor node and incur-
ring the run-time overhead of stacks and if . . . then . . . else, we
only need to execute the program in Fig. 3 on the hub (a computer
with far fewer resource constraints). What will be deployed to in-
dividual sensor nodes is only the argument of the run expression,
member 〈sense_data〉 [0, 1], which will be evaluated on the hub
to:

〈sense_data = 0 || sense_data = 1 || false〉
Value Migration via Lift and Run The semantics of 〈ML〉
substitution-based term reduction itself disallows cross stage per-
sistence; for example the term (λx : uint.〈x〉)3 is stuck since 3
cannot be substituted into the code 〈x〉. But it is of course neces-
sary to allow migration of values across stages. For our purposes
lifting a value from the meta to the object language and running
object code from the meta level are sufficient and indeed function
as duals. For example in Fig. 3, the expression lift (hd l) lifts the
value of the meta-stage to the object-stage, which subsequently can
be compared with a value in that stage (x = h).

A Simple Model with No Escape MetaML has an escape expres-
sion ~e that can “demote” e from the object stage back to the meta
stage. For instance, rather than writing

〈x = h || tl〉
as in Fig. 3, MetaML programmers would write the equivalent

<~x = ~h || ~tl>

Intuitively, the call-by-value semantics of our language will enforce
arguments being evaluated first before they are “spliced” together
to form the object code. This is precisely what an object code with
escape expressions inside would do. The previous example shows
that the escape operator in MetaML is perhaps not as essential
as it seems in many practical programming situations: a MetaML
expression 〈C[~e]〉 can be re-written as (λx.〈C[x]〉)(e) where C
is a program context.

The support of an escape-like operator in a meta language –
particularly the support of free variables occurring inside such an
expression – is known to lead to significant complexities for static
type checking [26, 5, 34]. Since most of the programs we are
interested in can be written with the aforementioned encoding in
mind, we choose not to support the escape operator in our language.

3. Types and Type Specialization
In this Section we focus on our type system, again beginning
with formalities and then moving on to higher level discussion.
Briefly, our goals in this type theory are to support type genericity
as discussed in Sec. 1.2, and also to statically disallow cross-
stage persistence. We delay our definition of type validity and
associated metatheory until Sec. 5, aiming first to provide a basic
understanding of the system.

3.1 Types in Terms
As discussed in Sec. 1.2, type specialization is essential for our en-
visioned application space. This specialization has two dimensions:
first, we should be able to specialize the types of procedures, and
second, we should be able to dynamically construct types of pro-
grams based on certain conditions.

For the first purpose we posit a form of bounded type abstrac-
tion, denoted Λt 4 τ.e; the application of this form to a type value
may result in type specialization of e. We use a bound on the ab-
straction to provide a closer type approximation (hence better static
optimization of code) in the body of the abstraction.

For the second purpose we introduce types as values, and a tlet
construct for dynamically constructing types. We introduce this
latter form to obtain a clear separation of types and expressions
and promote well-typed type construction. We have discussed the
usefulness of these forms in Sec. 1.2, and examples in Sec. 3.2 and
Sec. 6 will further illustrate them.

Since type abstractions can be applied to first class type values,
a System-F≤ style approach where type instantiation arguments
are statically declared is not sufficient for our system. Rather, we
assign to type abstractions a restricted form of type dependence
[20], hence the Π type syntax of type abstractions. Intuitively, in
a call-by-value semantics our Λ abstractions are applied to “fully
constructed types” at run time; statically, we have that the type of
applied Λ abstractions depends on the first-class type argument.
We observe that type dependence and program staging have often
been used to achieve program efficiency in other contexts such as
compiler optimization [7, 2].

3.1.1 Type Forms and Type Coercions
As usual we must define a different type form for each class of
values in our language. In addition to a Π type form for type
abstractions, we have standard term function type forms τ → τ and
base types γ for user-defined constants. We also introduce a type
form type[τ], that represents the type of dynamically constructed
type values. Intuitively, type[τ] represents the set of all types that
are subtypes of τ , considered as values. Since we consider code a
value, type-of-code has a denotation 〈·τ ·〉, where τ is the type of
value that will be returned if the code is run.

The Π type form of type abstractions comprises a subtyping
coercion ∆ which is a function from type variables to types. In a
type Πt◦∆.τ the coercion ∆ expresses the type variable bounds on
t, and also expresses bounds related to tlet-declared type variables
in the body of the abstraction (that may escape their static scope). In
any type Πt ◦∆.τ we consider Π to bind all variables in dom(∆),
and we equate types up to α renaming of these variables.

Intuitively, a coercion ∆ defines upper bounds on a set of type
variables; we require that these bounds are not recursive. Any
coercion induces a set of subtyping relations in a standard manner
extended to comprise also types of type abstractions, code, and type
values; formally we define the subtyping relation ∆ ` τ 4 τ ′ in
Fig. 4. We write ∆; t 4 τ (resp. Γ;x : τ) to denote the function that
maps t to τ (resp. x to τ) and agrees with ∆ (resp. Γ) on all other
points. Abusing notation, we write ∆; ∆′ to denote the pointwise
extension of ∆ with ∆′. To clarify type substitutions, we define:

t′ ∩ dom(∆) = ∅
dom(∆′) = dom(∆) ∀t ∈ dom(∆′).∆′(t) = ∆(t)[τ ′/t′]

(Πt ◦∆.τ)[τ ′/t′] = Πt ◦∆′.(τ [τ ′/t′])

We also make the following definition for brevity in the typing
rules, which is a slight variant of the AND subtyping rule:

ANDSUB
∀t ∈ dom(∆′).∆ ` t[τ/t′] 4 (∆′(t))[τ/t′]

∆ ` ∆′[τ/t′]

CONST
Γ,∆ ` c : κ(c)

VAR
Γ(x) = τ

Γ,∆ ` x : τ

TYPE
Γ,∆ ` τ : type[τ]

APPΠ

Γ,∆ ` e : Πt ◦∆′.τ ′ ∆ ` ∆′[τ/t]

Γ,∆ ` e τ : τ ′[τ/t]

APP
Γ,∆ ` e1 : τ ′ → τ Γ,∆ ` e2 : τ ′

Γ,∆ ` e1e2 : τ

ABS
Γ;x : τ,∆ ` e : τ ′

Γ,∆ ` λx : τ.e : τ → τ ′

ABSΛ

Γ,∆′ ` e : τ ′ ∆ ` t 4 τ ∆ ` ∆′

Γ,∆′ ` Λt 4 τ.e : Πt ◦∆.τ ′

CODE
Γ,∆ ` e : τ

〈·Γ·〉,∆ ` 〈e〉 : 〈·τ ·〉

WEAKEN
Γ,∆ ` e : τ x 6∈ dom(Γ)

Γ;x : τ ′,∆ ` e : τ

RUN
Γ,∆ ` e : 〈·τ ·〉
Γ,∆ ` run e : τ

LIFT
Γ,∆ ` e : τ

Γ,∆ ` lift e : 〈·τ ·〉

CAST
Γ,∆ ` e : τ ′

Γ,∆ ` (τ)e : τ

SUB
Γ,∆ ` e : τ ′ ∆ ` τ ′ 4 τ

Γ,∆ ` e : τ

TLET
Γ,∆ ` e : type[τ ′′] Γ,∆; t 4 τ ′ ` e′ : τ ∆ ` τ ′′ 4 τ ′

Γ,∆; t 4 τ ` tlet t 4 τ ′ = e in e′ : τ

Figure 5. Type Judgement Rules

REFL
∆ ` τ 4 τ

COERCE
∆(t) = τ

Γ ` t 4 τ

CODE
∆ ` τ1 4 τ2

∆ ` 〈·τ1·〉 4 〈·τ2·〉

TRANS
∆ ` τ1 4 τ2 ∆ ` τ2 4 τ3

∆ ` τ1 4 τ3

FN
∆ ` τ ′1 4 τ1 ∆ ` τ2 4 τ ′2

∆ ` τ1 → τ2 4 τ ′1 → τ ′2

TYPE
∆ ` τ 4 τ ′

∆ ` type[τ] 4 type[τ ′]

PI
∆; ∆′ ` τ 4 τ ′

∆ ` (Πt ◦∆′.τ) 4 (Πt ◦∆′.τ ′)

AND
∀t ∈ dom(∆′).∆ ` t 4 ∆′(t)

∆ ` ∆′

Figure 4. Subtyping Rules

The reader will note that bound coercions must be equivalent to
compare Π types via subtyping as specified in Fig. 4. This restric-
tion is imposed to support decidability of typing in the presence of
bounded polymorphism; it is well-known that allowing variance of
type variable bounds in this relation renders subtyping undecidable
[12].

3.2 Discussion
Type Abstraction and Application for Staged Code Our running
example introduced in Sec. 1.2 is that of object level code parame-
terized by a pre-computed address type. In 〈ML〉 this can be written
as

Λaddr_t.〈λaddr : addr_t.e〉
Type theoretically, the construct here is a standard type abstraction
mechanism as is found in System F, with the twist that in 〈ML〉
type arguments can be dynamically constructed, not just statically
declared. In this sense, our type abstraction and application mech-
anism can be viewed as a very simple form of type dependence.

Type application can then be performed to produce staged code
with a concrete type, such as

(Λaddr_t.〈λaddr : addr_t.e〉)uint8

This code will be executed on the meta stage, so that when this
code is executed on sensor nodes, variable addr will have uint8
type.

Type Bounds and Subtyping The benefit of static type checking
over staged code has been widely discussed in recent efforts in meta
programming [23, 3, 37, 5, 34]. However, note that type checking
the code above would be restrictive since addr_t can be instanti-
ated with any concrete type, any variable of type addr_t would be
effectively assigned a universal type and hence be unusable.

To address this problem in a familiar fashion, 〈ML〉 allows
programmers to assign a bound on the abstracted type. For instance,
the message send code defined previously can be refined as:

Λaddr_t 4 uint.〈λaddr : addr_t.e〉
With this bound, the type system can assume the type of addr

is at least uint when e is typechecked.
Our form of type abstraction is related to standard bounded

polymorphism of System F≤, except that bounds are not recursive
in our system and also we allow types to be constructed dynami-
cally, as discussed below.

Types as Expressions Unlike System F≤ where types and terms
do not mix, and all type instantiation occurs statically, types are
first-class citizens in 〈ML〉, and can be assigned, passed around,
stored in memory, compared, etc.

The design choice here is driven by our application needs.
In systems programming, it is not uncommon to see conditional
macros used over types, such as

ifdef v typedef T {...} else typedef T{...}

The connection between macros and staged programming is widely
known [10], except that most people – including the macros users
themselves – complain they are not expressive enough. Treating
types as values in 〈ML〉 provides programmers with a flexible way
to define constructs such as the above (so much so that arbitrary
programs are allowed to define how the T above can be typedef-
ed), at the same time preserving static type safety as demonstrated
in Sec. 5. As a result, the static type system of our language differs
from System F≤ and its descendants such as Java generics. That
is, type parameters abstracted by Λ are instantiated not with static

types, but with types as first class values. In this sense the system
incorporates a simple form of type dependence. For example, con-
sider the following 〈ML〉 program:

rtt = tlet tcond 4 uint32 = (if e0 then uint16 else uint32) in
(Λaddr_t 4 uint32.〈λaddr : addr_t.e〉) tcond

Here the tlet . . . = . . . in expression is similar to a let . . . =
. . . in , except that it binds types. The binder tlet serves a crit-
ical purpose in the formalism: any type-valued expression such
as the above if-then-else cannot directly appear in another type;
only its tlet-ed name can. This keeps expressions out of the
type grammar: for example, (if e0 then uint16 else uint32) →
uint32 is ill-formed and such types never can be written. As-
suming the return type of a typical send function is an ACK of
fixed result_t type, our language will type the example above
as rtt : 〈·tcond → result_t·〉, under type constraint tcond 4
if e0 then uint16 else uint32.

Notation type[uint] means any type less than uint; type[τ] in
general has the following meaning:

type[τ] = {τ ′ | τ ′ 4 τ}

These range types are used to type type-valued expressions; for
example, in typing the above we would need to show:

if e0 then uint16 else uint32 : type[uint32]

which is straightforward since uint16 4 uint32.

Casting To “close the loop” on runtime-dependent types as de-
fined above we need to find a way to put initial members in these
types in spite of not knowing what value (type) they will be at
runtime. The runtime condition is crucial to define a member of
a runtime-decided type in the code, for example the e0 condition
in the above example. In this example, the rtt function must take
some value v : tcond as argument, where tcond is a type whose
value depends on the runtime value of e0. Conditional types have
been defined [1, 28] which are suited for this purpose, but for this
simple presentation we opt for a typecast which is more expressive
but incurs a runtime check. For this particular example we could
write:

rtt((tcond)5)

which will cast 5 to tcond, which at the time the cast runs will
either be uint16 or uint32 as appropriate and so will succeed.

4. Records, State, Serialization, and Semantics
In this section we extend the core functional language with records
and mutable store, along with a notion of serialization that will al-
low mutable data to be shared between stages. The reason for this
is that we aim to port the ideas presented in this paper to languages
such as nesC, where state and struct definitions are fundamen-
tal. Furthermore, state presents interesting technical challenges in
the presence of 〈ML〉-style staging where we assume that distinct
stages represent distinct process spaces.

We introduce new record and state expression forms, as well as
an expression sequence form that is a semicolon-delimited vector
of expressions, a unit value (), and a special form of let-expression
helpful for representing syntactic stores that makes subsequent
definitions more succinct; this technique follows previous work

such as [16].

s ::= ∅ | s; e (sequences)
v ::= . . . | {`1 = v1; . . . ; `n = vn} | x (values)
e ::= . . . | {`1 = e1; . . . ; `n = en} | e.`

| ref e | e:= e | !e | s (expressions)
τ ::= . . . | {`1 : τ1; . . . ; `n : τn} | ref τ (types)

D ::= [] | let z = ref v in D (decl. contexts)
m ::= ∅ | m; z:= v (mutations)
h ::= D[m] (syntactic stores)

Syntactic stores may be interpreted as a mapping from variables
to values via the dom and lkp functions defined as follows. We
write dom(h) to denote the domain of a store h:

dom(s) = ∅
dom(let z = ref v in h) = {z} ∪ dom(h)

We write lkp z h to denote the value associated with variable z in
a syntactic store h:

lkp z (let z′ = ref v in h) = lkp z h if z 6= z′

lkp z (let z = ref v in D[m]) = lkp′ z v m

lkp′ z v ∅ = v

lkp′ z v (m; z:= v′) = v′

lkp′ z v (m; z′:= v′) = lkp′ z v m z 6= z′

To define serialization, we will just “slice out” that part of the
store that is relevant to a particular value and “wrap” the serialized
value in that part of the store. That part is the sub-store that defines
all references reachable from that value; serialization will result in
a closed expression as demonstrated in Lemma 5.4. Formally:

serialize v h =
let D[m] = (project h (reachable v h)) in D[m; v]

Here, reachable v h = V iff V contains all store locations reachable
from v in h. Further, we define project as follows:

project D[m] V = project D V [project m V]

project [] V = []
project (let z = ref v in D) V = project D V if z 6∈ V
project (let z = ref v in D) V = (let x = ref v in

(project D V)) if z ∈ V

project ∅ V = ∅
project (m; z:= v) V = project m V if z 6∈ V
project (m; z:= v) V = project m V; z:= v if z ∈ V

Now, we can define the operational semantics via a small-step
relation→ on closed configurations (e, h), where (e, h) is closed
iff fv(e) ⊆ dom(h). In our metatheory we will assume that the
semantics of ref cell creation will create a globally “fresh” variable
reference every time.

The interesting rules are specified in Fig. 6. Note that the se-
mantics of run establishes a distinct process space, so there will be
no cross-stage persistence. Also, observe how values are serialized
whenever we move between process spaces, in particular when val-
ues are lifted, and when results are returned by run.

We lack the space to give the type rules for records and ref-
erences, but they are standard; we utilize the standard “width and
depth” structural subtyping rules for records.

RRUN
(e,∅)→? (v, h′)

(run 〈e〉, h)→ (serialize v h′, h)

RREF
z 6∈ dom(D[m])

(ref v,D[m])→ ((), D[let z = ref v in m])

RDEREF
(!z, h)→ (lkp z h, h)

RASSIGN
z ∈ dom(D[m])

(z:= v,D[m])→ ((), D[m; z:= v])

RLIFT
(lift v, h)→ (〈serialize v h〉, h)

RCONTEXT
(e, h)→ (e′, h′)

(E[e], h)→ (E[e′], h′)

Figure 6. Semantics of 〈ML〉 with Mutation and State

5. Type Validity and Type Safety
In this section we define type validity and sketch formal properties
of our metatheory. Aside from illustrating properties of our system,
we intend to emphasize how our approach allows standard type
properties to be obtained in the metatheory. In particular we can
obtain type safety (Theorem 5.2) via a familiar type preservation
property (Theorem 5.1). Our approach here is similar to [33] in the
context of staged programming, although we would argue simpler
due to the lack of open code and escape in the 〈ML〉 core language.

5.1 Type Validity
Type judgements in our system are of the form Γ,∆ ` e : τ .
Derivability of type judgements is defined in terms of type deriva-
tion rules in Fig. 5. This type discipline enforces disallowance of
cross-stage persistence, in particular the CODE rule ensures that
variables occurring within code are treated as code values at the
same or greater stage; here we define:

〈·∅·〉 = ∅
〈·Γ;x : τ ·〉 = 〈·Γ·〉;x : 〈·τ ·〉

Note that application of type abstraction in the APPΠ rule results
in a type substitution. Unlike term substitution, cross-stage persis-
tence of types should be allowed, since once evaluated types are
purely declarative entities and should be able to migrate across
stage levels. This is reflected in the definition of type substitutions
defined in Sec. 2. The APPΠ rule is also defined in terms of a rela-
tion between type coercions defined as follows.

DEFINITION 5.1. We write ∆1 ` ∆2[τ/t] iff for all t′ 4 τ ′ ∈ ∆2

we have ∆1 ` t′[τ/t] 4 τ ′[τ/t].

Type validity is then defined as follows:

DEFINITION 5.2. A type judgement Γ,∆ ` e : τ is valid iff it is
derivable and ∆ is canonical. We write e : τ iff ∅,∅ ` e : τ .

5.2 Metatheory
Our argument for type safety follows a standard path. To begin, a
canonical forms Lemma specifies the correspondence of types to
their associated classes of values in valid type judgements. Here
we consider just the interesting cases.

LEMMA 5.1 (Canonical Forms). Given valid Γ,∆ ` v : τ all of
the following hold:

1. if τ = 〈·τ ′·〉 for some τ ′ then v = 〈e〉 for some e.
2. if τ = type[τ ′] for some τ ′ then v = τ ′′ for some τ ′′.
3. if τ = Πt ◦ ∆′.τ ′ for some t,∆′, τ ′ then v = Λt 4 τ ′′.e for

some e and τ ′′.

Next, a term substitution Lemma will apply to the β reduction
case of type preservation. But in type preservation we similarly
need to consider the case where type abstraction applications are
reduced, so we also obtain an analogous type substitution Lemma.
We sketch a case of the term substitution that is central to our sys-
tem design, where code is substituted into code; the type substitu-
tion Lemma follows by a similar induction on type derivations.

LEMMA 5.2 (Type Substitution). If Γ,∆; t 4 τ ′0 ` e : τ0 and
Γ,∆ ` τ1 : type[τ ′1] with ∆ ` τ ′1 4 τ ′0, then Γ,∆ ` e[τ1/t] :
τ0[τ1/t].

LEMMA 5.3 (Term Substitution). If Γ;x : τ ′0,∆ ` e : τ0 and
Γ,∆ ` v : τ1 with ∆ ` τ1 4 τ ′0, then Γ,∆ ` e[v/x] : τ0.

Proof. This result follows in a mostly standard manner by induction
on the derivation of Γ;x : τ ′0,∆ ` e : τ0 and case analysis on
the last step in the derivation. The interesting case in our system is
where the last step is an instance of CODE. In this case by inversion
of CODE we have:

e = 〈e′〉 τ ′0 = 〈·τ ′·〉 Γ = 〈·Γ′·〉 τ0 = 〈·τ ·〉
for some e′, τ ′, τ , and Γ′, and we have also a judgement of the
form:

Γ′;x : τ ′,∆ ` e′ : τ

〈·Γ′·〉;x : 〈·τ ′·〉,∆ ` 〈e′〉 : 〈·τ ·〉
But 〈·Γ′·〉,∆ ` v : 〈·τ ′·〉 by assumption, so by Lemma 5.1 we
have that v is a code value of the form 〈e1〉 for some e1. By
inversion of the typing rules it is easy to show that Γ′,∆ ` e1 : τ ′′

where ∆ ` τ ′′ 4 τ ′, so by the induction hypothesis we have that
Γ′,∆ ` e′[e1/x] : τ . And since e[v/x] = 〈e′[e1/x]〉 in this case
by definition of term substitutions, the result follows in this case by
an application of CODE. ut

Next we extend the notion of type validity to configurations.
The definition is quite straightforward thanks to our use of syntactic
stores.

DEFINITION 5.3 (Type Valid Configurations). A configuration typ-
ing (e,D[m]) : τ ◦∆ is valid iff ∅,∆ ` D[m; e] : τ is.

An important corollary of this definition is that code values at run-
time are closed; the importance of this is that closedness ensures
that references do not “cross stages”, ensuring process separation
between stages.

COROLLARY 5.1. If (E[〈e〉], D[m]) has a valid typing then 〈e〉 is
closed.

Another important property has to do with serialization, and
ensuring that our definition of serialization is type-correct in the
sense that serialization produces a closed value of the same type as
the original, unserialized value:

LEMMA 5.4 (Serialization Typing). If (v, h) : τ ◦∆ is valid, then
so is ∅,∆ ` serialize v h : τ .

Now, before proving type safety, we observe that the single-step
RRUN reduction rule is predicated on a complete reduction in the
next-stage process space. Because of this, in type preservation we
will need to induct on the length of reduction sequences, where
length takes into account the preconditions of RRUN reduction
instances.

send = Λ addr_t 4 uint.

Λ message_header_t 4


src : addr_t
dest : addr_t

ff
Λ msg_t 4 {header : message_header_t}.
λ psend : 〈·msg_t→ result_t·〉.
λ self : 〈·addr_t·〉
〈 λ addr : addr_t.
λ msg : msg_t.
msg.header.src := self;
msg.header.dest := addr;
psend msg
〉

radio = Λ msg_t.〈λ msg : msg_t. . . .〉

Figure 7. Code Snippet for send

DEFINITION 5.4. The length of an evaluation relation (e, h) →?

(e′, h′) is the sum of all single reduction steps in the evaluation,
including the reduction steps required in the precedent of a RUN
reduction.

Now we can state type preservation, which follows by a double
induction on the length of a multi-step reduction sequence and type
derivations. Details are omitted here for brevity. The “shared upper
bound” relation between initial and final types, rather than equality,
is necessary due to subtleties of typing tlet expression forms.

THEOREM 5.1 (Type Preservation). If (e0, h0) : τ0 ◦ ∆ is valid
and (e0, h0) →? (en, hn), then (e0, h0) : τn ◦ ∆ is valid where
∆ ` τ0 4 τ ∆ ` τn 4 τ for some τn and τ .

Type safety follows in a straightforward manner from type
preservation, and the additional property that expressions which
are irreducible but are not values have no type.

THEOREM 5.2 (Type Safety). If (e0, h0) : τ0 ◦ ∆ is valid then
it is not the case that (e0, h0) →? (e1, h1) where (e1, h1) is
irreducible and e1 is not a value.

6. A Programming Example
In this section, we use sensor network programming as a case study
to demonstrate how 〈ML〉 can be helpful in real-world program-
ming. Our focus here is to highlight the crucial need for type spe-
cialization in staged programming. Existing staged programming
systems often focus on how to pre-execute code as much as pos-
sible at meta-stage so that code for object-stage execution has the
shortest computation time. This philosophy however does not al-
ways work well for sensor networks, as shortening computation
time alone has a limited effect on the primary issue faced by WSNs
– sensor energy consumption. It has been shown in experiments
that the energy consumed by transmitting one bit over the radio
is equivalent to executing 800 instructions [18]. Thus, given e.g. a
send function that is going to be executed on the a sensor node, the
way to significantly improve system efficiency is not to shorten its
code, but to minimize network traffic it would trigger.

The example we are going to present in this section fleshes
out the observation above. For example, if we can specialize the
type of a node address addr so that its representation requires the
least possible amount of bits – say uint4 rather than uint64, we are
saving 56 bits of each radio send, so the net effect of energy saving
is equivalent to saving 56 * 800 = 44,800 instructions for each send.
Now, if in a particular network deployment we know there is no
need for a sensor node to talk to more than 16 neighbors due to
some address assignement or neighborhood discovery protocol, we

can assign a uint4 type to addr, rather than uint64, and save radio
power.

To make our example not too contrived, we will use several
language constructs beyond the 〈ML〉 formal core, including for
loops and arrays. Adding these features should not be difficult given
we already have side effects. For the purpose of this presentation,
array-out-of-bound access can happen, and is not considered a type
error. The code will also assume that uint4 is a subtype of uint8,
uint8 is a subtype of uint16, and so on. All of them are a subtype
of uint. These base subtyping rules can be easily augmented to
the core calculus. Subtyping relations defined as such may lead to
memory layout conversions when a subtype value assigned to a
supertype value, but for the purpose of type specialization, this is
not a problem – the specialized code and the parameter used for
specialization does not live in the same memory space. Notation-
wise, if the upper bound type of a tlet expression is not given it can
be assumed to be the same as the tletted type. Such abbreviations
also apply to Λ abstractions.

6.1 A Specializable “Send” Snippet
In the standard TinyOS sensor network platform [15], the message
type message_t has the following format:

typedef struct message_t {
uint8 header[sizeof(message_header_t)];
uint8 data[TOSH_DATA_LENGTH];
uint8 footer[sizeof(message_footer_t)];
uint8 metadata[sizeof(message_metadata_t)];

} message_t;

It contains a payload field data – the underlying data – to-
gether with network control information, including the header,
the footer, and the metadata. The header in turn has the
following type, where the flag field contains control information,
and dest and src are destination and source addresses respec-
tively.

typedef struct message_header_t {
uint8 flag;
uint64 dest;
uint64 src;

} message_header_t;

Any send function that is written with type message_t be-
ing the type for messages will not necessarily be efficient: 64-bit
addresses are hardcoded inside this data structure. This situation
can be avoided in our language, using our implementation of the
send function as is illustrated in Fig. 7. Here observe that send is
a piece of code, defining the logic of message sending at the ob-
ject stage (i.e. on motes). The first argument of the send function is
addr, denoting the destination address where the packet (the second
argument msg) is going to be sent.

Note the use of 〈ML〉 type specialization here: the message
type msg_t is abstracted, and eventually will be instantiated at
the meta-stage with the most efficient concrete type. It is given a
type bound of a record type with at least a header field of type
message_header_t. The latter in turn is also abstracted and can be
specialized with any concrete type, as long as it contains a field
dest whose type is addr_t. This last type is closely related to power
consumption in sensor networks: when the send function is defined,
it is abstracted to work on any type that is a subtype of uint.
Depending on how send as a type abstraction is applied, the code
eventually being deployed on motes will be sending messages with
short addresses (such as uint4) or long ones (such as uint64).

Note that the send function eventually invokes some function
on the physical layer to send the actual message out. The par-
ticular physical-layer send can be customized, and is passed in
as argument psend. The signature of that argument suggests that

moteCode = Λ addr_t 4 uint.
Λ msg_t 4 {header : {src : addr_t; dest : addr_t}; data : uint8[]}.
λsendf : 〈·addr_t→ msg_t→ result_t·〉
λneighbors : 〈·addr_t[]·〉.
λneighbor_num : 〈·uint16·〉.
〈 msg_t m;
m.data = “hello”;
for(uint16 i = 0; i < neighbor_num; i++){
sendf neighbors[i] m
}
〉

Figure 8. Code for Motes

it is another piece of staged code which contains a function that
takes a message of msg_t type and returns a TinyOS ACK (of type
result_t, which is for all practical purposes equivalent to uint8).
The example of psend illustrates the case of how library functions
can be used in this context. Note that the send definition above is
likely to be applied at the meta-stage to produce the staged send
code for the motes; the physical-layer function on the hub is prob-
ably not the same as the physical-layer function on the mote. By
requiring such a function to be applied explicitly, rather than re-
sorting to cross-stage persistence of MetaML to implicitly use the
psend function defined in a previous stage, our calculus implicitly
avoids the issue of accidental library version incompatibility that is
common in modern software deployment.

With this function defined, one way to produce a send function
with all addresses being 4-bits would be

let self = (〈·uint4·〉)〈0xF〉 in
tlet ht1 = {flag : uint8; src : uint4; dest : uint4} in
tlet mt1 = {header : ht1; data : uint8[DATA_LEN]} in

send uint4 ht1 mt1 (radio mt1) self

The concrete physical-layer sending function is radio, which is
defined in Fig. 7. To simplify the presentation, we have assumed
it can be of any type. This can certainly be refined in a realistic
context. The typecast is needed in the first line as we have explained
in Sec. 3.2. DATA_LEN is an integer constant.

6.2 A Specializable Toy Program on Motes
The send code we have described in Fig. 7 is one function that
would be deployed to the motes by the hub. We now define a
complete toy application the hub will build to run on motes, in
Fig. 8. All this example does is to send a "hello" message to its
“neighbors”, other motes that can be reached in a 1-hop range.

The type of the message that eventually will be sent to neigh-
bors, msg_t, is abstracted and can be specialized. It can be of any
record type, except that it must contain a header field and a data
field which is a uint8 array. The header at least contains two fields
src and dest, both of which are of some addr_t type that can be
specialized. In addition, it also allows the neighbor information
of a mote to be specialized, including the entire neighbors array,
and the number of neighbors neighbors_num. What this implies is
the definition allows the neighbor information to be “hardcoded”.
At first glance, supporting hardcoding of neighbor information is
unintuitive, especially in a dynamic environment like sensor net-
works, where neighbor information is previously not known before
physical deployment. The rationale here is to promote the potential
for memory savings for the case where the number of neighbors is
known when moteCode is specialized. As a result, rather than al-
locating the array neighbors in (scarce) mote memory, a particular
implementation of 〈ML〉 may choose to unroll the loop before the

code is deployed. Our current foundational calculus does not per-
form such an unrolling, but this is one possible optimization in the
context of embedded systems.

The moteCode expression takes anther piece of staged code,
sendf, as one of its arguments. Thus, on the hub, running the
following code piece will deploy a specialized version of moteCode
on the motes as follows:

let self = (〈·uint4·〉)〈0xF〉 in
tlet ht1 = {flag : uint8; src : uint4; dest : uint4} in
tlet mt1 = {header : ht1; data : uint8[DATA_LEN]} in
let scode = send uint4 ht1 mt1 (radio mt1) self)
let contacts_info = lift [(uint4)0x0] in

run (moteCode uint4 mt1 scode contact_info 〈1〉)

The first four lines above are identical to the previous instanti-
ation in Sec. 6.1. At the fifth line, a (trivial) one-neighbor array is
created and lifted to the mote stage as contacts_info – we will en-
rich the computation of this array in Sec. 6.3. The last line special-
izes the code and executes it. Note that we do not support location
information in the calculus, so strictly speaking the code above only
means “specialize moteCode and run it in some deployment context
(mote)".

6.3 A Metaprogram on the Hub
Fig. 9 gives the bootstrapping code to be executed on the hub. The
general idea here is the hub will first execute function

getTopology :: ()→ topology_t

to obtain the global connectivity graph of the initially deployed
sensor network, and store the result in a hub data structure (the topo
variable in the example). This graph data structure may be huge, but
note that it is kept on the hub only – a resource-rich computer. We
omit the definition of this function here. The only implementation
detail that is related to the discussion here is the computed graph
is undirected, i.e., if edge {n1 : 3;n2 : 2} is in the graph, then
{n1 : 2;n2 : 3} is not redundantly put in the same graph.

The hub then invokes an effectful function

coloring :: topology_t→ uint32

to color the topology graph. The idea here is that sensors only talk
to their neighbors, so the unique addresses needed are the number
of colors computed by the classic coloring problem. This function
mutates the argument topo, filling in the color field of each of its
nodes entries. The return value of the function is the number of
colors used to color the graph. If that value is colors, the colors
being used to fill the fields are represented by uint32 values ranging
[0..colors-1].

The rest of the function is largely copied from the code frag-
ment deploying the motes, explained in Sec. 6.1 and Sec. 6.2. Note

NODE_NUM = 0xFFFF;
EDGE_NUM = 0xFFFFFFFF;
DATA_LEN = 110;
HEAD_NIC = 0xFFFFFFFFFFFFFFFF;

uint64 contacts[NODE_NUM];
node_t = {nic : uint64; color : uint64}
edge_t = {n1 : uint16;n2 : uint16};

topology_t = {nodes : node_t[NODE_NUM]; edges : edge_t[EDGE_NUM]};
main = tlet ht1 = {flag : uint8; src : uint64; dest : uint64} in

tlet mt1 = {header : ht1; data : uint8[DATA_LEN]} in
let topo = getTopology() in
for(uint16 i = 0; i < NODE_NUM; i++){

let self = lift (uint64)topo[i].nic in
let contacts_info = lift [(uint64) HEAD_NIC] in
let scode = send uint64 ht1 mt1 (radio mt1) self) in
run (moteCode uint64 mt1 scode contact_info 〈1〉)
};
let colors = coloring topo in
tlet addrt 4 uint8 = if (colors <= 16) then uint4 else uint8 in
tlet ht2 = {flag : uint8; src : addrt; dest : addrt} in
tlet mt2 = {header : ht2; data : uint8[DATA_LEN]} in
for(uint16 i = 0; i < NODE_NUM; i++){

let self = lift (addrt) topo[i].color in
let contact_info = lift (addrt[colors])(getNeigbhors topo i) in
let contact_num_info = lift colors in
let scode = send addrt ht2 mt2 (radio mt2) self) in
run (moteCode addrt mt2 scode contact_info contact_num_info)
}

getNeighbors = λgraph : topology_t. λnodei : uint16.
k := 0;
for(uint32 i = 0; i < EDGE_NUM; i++){

if (graph.edges[i].n1 == nodei) then contacts[k++] := edges[i].n2
if (graph.edges[i].n2 == nodei) then contacts[k++] := edges[i].n1
}

Figure 9. Bootstrapping Code for Sensor Head Node

that send is specialized twice, as is moteCode. The two specializa-
tions represent two different send protocols, before coloring and
after coloring. At the beginning, before the hub has computed the
optimized solution for addressing, it consistently uses uint64 to
set up the network (the first run expression). Later, when the en-
tire topology is known, the hub can compute the optimized size for
addresses, eventually stored in addrt. The neighbor information is
also computed at the meta level based on the topology information
topo. This is achieved by function getNeighbors, which is purely a
hub execution.

6.4 Discussion on the Example
The oversimplified example presented in this section does not show
the full scope of expressiveness of our calculus. It changes no types
in the packet other than the size of integers, but it would be easy
to also change the packet type by adding additional fields in some
particular specializations. The latter can be a very useful feature in
sensor network applications, e.g. attaching rich metadata infor-
mation only if cryptographic information is needed. The example
also does not show how code specializations such as merging mes-
sages or dropping redundant radio packets can lead to greater ra-
dio efficiencies. In addition, we only focused on the specialization
of address types in the example, and keep the length of the data
field, DATA_LEN, constant. Refinement can be made by allowing
the meta-program to adjust the data length, say 110 bytes of data

when addresses are of 64-bits and 116 bytes of data when addresses
are of 4-bits.

Our example is not robust to changes in a network deployment
where, say, neighbors of a node fluctuate between 12 and 120.
When that happens, a costly redeployment of code may need to
be programmed. However, we hypothesize that for many applica-
tions neighborhood sizes will remain within certain bounds for a
sufficient duration to make this tradeoff advantageous.

7. Related and Future Work
A variety of previous authors have explored the combination of
type specialization and program staging as a means to obtain pro-
gram efficiency. Several authors have explored the interaction of
program staging and type dependence to support compiler con-
struction [2] and interpreters [27]. Also related is work on pro-
gram generation formalisms for compiler construction that lever-
age first class types and intensional polymorphism [7]. Tempo [6]
is a related system that integrates partial evaluation and type spe-
cialization for increasing efficiency of systems applications. Tempo
is additionally interesting for us because it is intended for appli-
cation to C, which is a foundation of nesC. Perhaps the system
most closely is related to ours is Monnier and Shao’s [24], where
type abstraction as a language construct is supported in a staged
program calculus albeit following a standard standard System F≤
route (i.e. types are not treated as expressions). The integration of
staging abstractions and side effects is another dimension of our

work that has been considered by previous authors. Kameyama et
al. have studied staging in the presence of side effects as a way to
optimize algorithms that exploit mutation [17]. Moggi and Fagorzi
have established a monadic foundation for integrating staging with
arbitrary side effects in a highly general and mathematically rigor-
ous fashion [22]. But in addition to various technical differences,
these systems are contrasted with ours in that none have considered
embedded systems as an application space.

Type-safe code specialization has been the focus of MetaML
[35, 23] and its more recent and robust implementation, MetaO-
Caml [9]. MetaML has also been promoted as an effective foun-
dation for embedded systems programming [32] and enjoys type
safety results of the sort presented here [33]. On a foundational
level, the problem of how to represent code of one stage in another
stage has been studied in various formalisms, such as modal logic
[8], higher-order abstract syntax [37], and first-order abstract syn-
tax with deBruijn indices [5]. One particular technical issue that
has triggered many recent developments in this area is known as
the “open code” problem. As we described in Sec. 2.2, our calculus
does not support arbitrary escape expressions, and so the open code
problem does not appear, simplifying our formal development. The
added expressiveness of MetaML here comes at the price of hav-
ing to deal with significant additional type system complexities
[26, 5, 3, 34]. We have thus far not found this added expressive-
ness useful for embedded systems programming.

Parametric customization of type annotations is not new; widely
used examples include C++ templates and Java generics. The for-
mal foundations for Java generics are the parametric type systems
System F and F≤ [4], and our parameterized type syntax is sim-
ilar. All of these systems however do not treat types as first-class
values like we do, and this significantly limits their usefulness in
the application domain we focus on here. Runtime type informa-
tion has been successfully used for the special case of a decidable
type system for specializing types of polymorphic functions [14],
and while we are performing a different kind of type specializa-
tion this work shares with our work the desire to push the frontiers
of decidable type systems using runtime type information. Many
staging frameworks allow types to be customized, but the output of
the customization needs to be re-type-checked from scratch and so
does not have the level of type safety that we have; two examples
of this are the C++ template expansion and Flask, the latter which
we now cover.

The potential of applying metaprogramming to sensor networks
was recently explored by Flask [19]. The main motivation of de-
signing Flask is to allow FRP-based [36] stream combinators to
be pre-computed before sensor networks are deployed. The key
construct of Flask is quasi-quoting, which in essence is MetaML’s
stage operator <e> combined with an escape operator ~e. Since
pre-computing stream combinators is the main goal of Flask, the
focus of our language – computing precise type annotations inside
the object-stage code at meta stage – is not a topic they focus on.
In particular, cross-stage static type-checking of Flask is relatively
weak; it is possible to generate ill-typed Flask object code.

The standard method TinyOS sensor programmers use to cus-
tomize messages is a tool called mig [21]. Before the program is
deployed, several experiments out of the scope of the programming
system are conducted, so that calibration parameters can be ob-
tained, and are used as the input parameters of mig to customize
the code. The drawback of such an approach is the entire calibra-
tion process is manually conducted. Sensor programmers in our
language can embed the entire calibration and code customization
process as part of the main hub program.

In the future, we plan to explore the use of conditional types
[1, 28] or conditionally tagged type unions [30] to avoid some of
our need for typecasts and thus to gain more static type safety.

Even though the design of 〈ML〉 was greatly influenced by sen-
sor network programming needs, the presentation here is a general-
purpose staged calculus that can be independently used for meta
programming in cases where runtime type specialization and de-
ployment are important. For this reason, the calculus leaves out
language abstractions that are needed for sensor network program-
ming specifically. For instance, 〈ML〉 does not contain distributed
communication primitives, locality, concurrency, or mechanisms to
marshall data to bit strings. These features will be important when
we build a domain-specific language upon the foundation of 〈ML〉.

References
[1] A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft typing with

conditional types. In Conference Record of the Twenty-First Annual
ACM Symposium on Principles of Programming Languages, pages
163–173, 1994.

[2] Edwin Brady and Kevin Hammond. A verified staged interpreter is a
verified compiler. In GPCE ’06: Proceedings of the 5th international
conference on Generative programming and component engineering,
pages 111–120, New York, NY, USA, 2006. ACM.

[3] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. Closed types
as a simple approach to safe imperative multi-stage programming.
In ICALP ’00: Proceedings of the 27th International Colloquium on
Automata, Languages and Programming, pages 25–36, London, UK,
2000. Springer-Verlag.

[4] Luca Cardelli and Peter Wegner. On understanding types, data
abstraction, and polymorphism. ACM Comput. Surv., 17(4):471–523,
1985.

[5] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In ICFP’03, 2003.

[6] C. Consel, L. Hornof, R. Marlet, G. Muller, S. Thibault, E.-N.
Volanschi, J. Lawall, and J. Noyé. Tempo: specializing systems
applications and beyond. ACM Comput. Surv., page 19, 1998.

[7] Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional
polymorphism in type-erasure semantics. J. Funct. Program.,
12(6):567–600, 2002.

[8] Rowan Davies and Frank Pfenning. A modal analysis of staged
computation. J. ACM, 48(3):555–604, 2001.

[9] Waid Taha et. al. MetaOCaml: A compiled, type-safe multi-stage
programming language. http://www.metaocaml.org/.

[10] Steven E. Ganz, Amr Sabry, and Walid Taha. Macros as multi-stage
computations: type-safe, generative, binding macros in MacroML.
In ICFP ’01: Proceedings of the sixth ACM SIGPLAN international
conference on Functional programming, pages 74–85, New York, NY,
USA, 2001. ACM.

[11] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric
Brewer, and David Culler. The nesC language: A holistic approach
to networked embedded systems. In PLDI ’03: Proceedings of the
ACM SIGPLAN 2003 conference on Programming language design
and implementation, pages 1–11, New York, NY, USA, 2003. ACM.

[12] Giorgio Ghelli and Benjamin Pierce. Bounded existentials and
minimal typing. Theoretical Computer Science, 193(1-2):75 – 96,
1998.

[13] Jeremy Gibbons. Datatype-Generic Programming, pages 71, 1. 2007.

[14] Robert Harper and Greg Morrisett. Compiling polymorphism using
intensional type analysis. In In Twenty-Second ACM Symposium on
Principles of Programming Languages, pages 130–141. ACM Press,
1995.

[15] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David E. Culler,
and Kristofer S. J. Pister. System architecture directions for networked
sensors. In Architectural Support for Programming Languages and
Operating Systems, pages 93–104, 2000.

[16] Furio Honsell, Ian A. Mason, Scott Smith, and Carolyn Talcott. A
variable typed logic of effects. Information and Computation, 119:55–

90, 1993.

[17] Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh Shan.
Shifting the stage: staging with delimited control. In PEPM ’09:
Proceedings of the 2009 ACM SIGPLAN workshop on Partial
evaluation and program manipulation, pages 111–120, New York,
NY, USA, 2009. ACM.

[18] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei
Hong. TAG: a Tiny AGgregation service for ad-hoc sensor networks.
SIGOPS Oper. Syst. Rev., 36(SI):131–146, 2002.

[19] Geoffrey Mainland, Greg Morrisett, and Matt Welsh. Flask: Staged
functional programming for sensor networks. In 13th ACM SIGPLAN
International Conference on Functional Programming (ICFP 2008),
September 2008.

[20] James McKinna. Why dependent types matter. SIGPLAN Not.,
41(1):1–1, 2006.

[21] mig: message interface generator for nesC, available online at http:
//www.tinyos.net/tinyos-1.x/doc/nesc/mig.html.

[22] Eugenio Moggi and Sonia Fagorzi. A monadic multi-stage meta-
language. In Andrew D. Gordon, editor, FoSSaCS, volume 2620 of
Lecture Notes in Computer Science, pages 358–374. Springer, 2003.

[23] Eugenio Moggi, Walid Taha, Zine El abidine Benaissa, and Tim
Sheard. An idealized MetaML: Simpler, and more expressive. In
In European Symposium on Programming (ESOP, pages 193–207.
Springer-Verlag, 1999.

[24] Stefan Monnier and Zhong Shao. Inlining as staged computation. J.
Funct. Program., 13(3):647–676, 2003.

[25] Tom Murphy VII, Karl Crary, Robert Harper, and Frank Pfenning.
A symmetric modal lambda calculus for distributed computing. In
LICS ’04: Proceedings of the 19th Annual IEEE Symposium on Logic
in Computer Science, pages 286–295, Washington, DC, USA, 2004.
IEEE Computer Society.

[26] Aleksandar Nanevski. Meta-programming with names and necessity.
In ICFP ’02: Proceedings of the seventh ACM SIGPLAN international
conference on Functional programming, pages 206–217, New York,
NY, USA, 2002. ACM.

[27] Emir Pasalic, Walid Taha, Tim Sheard, and Tim S. Tagless staged
interpreters for typed languages. In In the International Conference
on Functional Programming (ICFP02), pages 218–229. ACM, 2002.

[28] François Pottier. A versatile constraint-based type inference system.
Nordic Journal of Computing, 7(4):312–347, November 2000.

[29] Curt Schurgers, Gautam Kulkarni, and Mani B. Srivastava. Distributed
on-demand address assignment in wireless sensor networks. IEEE
Trans. Parallel Distrib. Syst., 13(10):1056–1065, 2002.

[30] Jonathan Shapiro and Swaroop Sridhar. The BitC programming
language. http://www.bitc-lang.org/.

[31] Rui Shi, Chiyan Chen, and Hongwei Xi. Distributed meta-
programming. In GPCE ’06: Proceedings of the 5th international
conference on Generative programming and component engineering,
pages 243–248, 2006.

[32] Walid Taha. Resource-aware programming. In Zhaohui Wu, Chun
Chen, Minyi Guo, and Jiajun Bu, editors, ICESS, volume 3605 of
Lecture Notes in Computer Science, pages 38–43. Springer, 2004.

[33] Walid Taha, Zine el-abidine Benaissa, and Tim Sheard. Multi-stage
programming: Axiomatization and type safety (extended abstract).
In In 25th International Colloquium on Automata, Languages, and
Programming, pages 918–929. Springer-Verlag, 1998.

[34] Walid Taha and Michael Florentin Nielsen. Environment classifiers.
In POPL’03, 2003.

[35] Walid Taha and Tim Sheard. Multi-stage programming with explicit
annotations. In PEPM ’97: Proceedings of the 1997 ACM SIGPLAN
symposium on Partial evaluation and semantics-based program
manipulation, pages 203–217, 1997.

[36] Zhanyong Wan and Paul Hudak. Functional reactive programming

from first principles. In PLDI ’00: Proceedings of the ACM
SIGPLAN 2000 conference on Programming language design and
implementation, pages 242–252, New York, NY, USA, 2000. ACM.

[37] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive
datatype constructors. In POPL ’03: Proceedings of the 30th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 224–235, New York, NY, USA, 2003. ACM.

