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Online data services have stringent performance requirement and must tolerate workload fluctuation. This
paper introduces P1TSTOP, a new query language runtime design built on the idea of interruptible query
processing: the time-consuming task of data inspection for processing each query or update may be interrupted
and resumed later at the boundary of fine-grained data partitions. This counter-intuitive idea enables a novel
form of fine-grained concurrency while preserving sequential consistency. We build PrrStop through modifying
the language runtime of Cypher, the query language of a state-of-the-art graph database, Neo4;j. Our evaluation
on the Google Cloud shows that PITStop can outperform unmodified Neo4j during workload fluctuation, with
reduced latency and increased throughput.

CCS Concepts: » Information systems — Query optimization.

Additional Key Words and Phrases: interruptible query processing; query language runtime design; fine-grained
parallelism

ACM Reference Format:

Jeff Eymer, Philip Dexter, Joseph Raskind, and Yu David Liu. 2024. A Runtime System for Interruptible Query
Processing: When Incremental Computing Meets Fine-Grained Parallelism. Proc. ACM Program. Lang. 8,
OOPSLAZ2, Article 332 (October 2024), 28 pages. https://doi.org/10.1145/3689772

1 Introduction

Cloud data centers facilitate the deployment of online services, many of which are supported with
a database query language runtime as the backend. These services must be able to process a large
number of incoming requests (queries and updates) at a rapid rate. The performance of these online
services often critically depends on that of the query runtime. A particular thorny problem for online
services is workload fluctuation: the request rate may change over time, and often rapidly so. While
provisioning less compute resource than needed is undesirable for maintaining Quality of Service
(QoS), provisioning more than needed introduces waste, with severe impact on sustainability [42].
There is a growing interest in addressing this challenging problem [11, 12, 20, 25, 28].

Interruptible Query Processing. We take on this fundamental problem with a solution at the layer
of query runtime design. We show that by introducing a notion of fine-grained concurrency, the
performance of online data processing can be improved in the presence of workload fluctuation.
Our concrete proposal is interruptible query processing: the processing of each query or update can
be interrupted upon partial data inspection and resumed later. In other words, we break down the
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otherwise monolithic process of data inspection needed for answering a query or update into a
series of partial inspections, each of which is called a leg. This idea may appear counter-intuitive at
the first glance: by interrupting the processing, wouldn’t latency be increased?

The key insight here is that we must consider all requests as a whole — especially when they
arrive at a rapid rate — and the interruption in data inspection unleashes the opportunity of
fine-grained concurrency across multiple requests, i.e., processing a leg of one request can happen
concurrently with some leg of another request. We call this new notion leg concurrency, and the
parallelism enabled by it leg parallelism. Semantically speaking, an interesting consequence of leg
concurrency is that we can interleave the legs from multiple requests regardless of whether they are
reads or writes while still preserving the strong guarantee of sequential consistency [40].

In design, interruptible query processing is the confluence of two influential ideas in programming
languages: incremental computing [4, 31, 33, 34, 47] and fine-grained parallelism [5, 22, 35]. Indeed,
interrupting an otherwise monolithic data inspection process can alternatively be viewed as
incrementally propagating the query/update request inside the data. The performance benefits of
interruptible query processing indeed arise from the synergy when incremental computing meets
fine-grained parallelism. Now that the otherwise monolithic process of data inspection is divided
into concurrent legs, we inherit the benefits of fine-grained parallelism in load balancing [6, 22], and
more generally, scalable performance [44, 51, 54]. Thanks to incremental computing, two classic
data processing optimizations — batching [24, 58, 65] and fusion [46, 50, 52, 64] — can be applied
with more effectively: they can now be opportunistically applied during the incremental process of
data inspection, which we term on-the-fly batching and fusion (see § 3).

The PrtStop System. We implement the idea of interruptible query processing by replacing
the existing runtime of Cypher [21, 27], a query language for a state-of-the-art graph database,
Neo4;j [2]. The new system, called PITSToP, can be viewed as a new Cypher runtime that processes
Cypher queries/updates without any change to its programming model, but with the new dynamic
semantics. We choose Cypher/Neo4j as our baseline for two reasons. First, graph databases are
an emerging system with broad applications, such as bioinformatics, social networks, machine
learning, and artificial intelligence. Second, graph databases set a more challenging “high bar” for
evaluation as they can be viewed as a combination of two: as graph processing systems, they must
address queries over complex and structured data, and as databases, they must meet stringent
performance requirements when deployed online, such as low latency and high throughput.

Our results show PITSTOP can significantly reduce latency and increase throughput of Neo4j, by
1-2 orders of magnitude in some contexts of workload fluctuation. Our comparative baseline of
unmodified Neo4j is set up in the realistic scenario where different queries can be processed in
parallel, except that it does not have the fine-grained parallelism that PrtStop enjoys. We further
implemented a second baseline, an optimization on Neo4j where batching and fusion are supported
at a “top-level” buffer, i.e., a store that temporarily keeps the arriving requests before they are
processed. PrrStop still outperforms the latter baseline by a large margin (see § 6). Furthermore, we
found PrTStoP can reduce the variance in latency among request processing, useful in mitigating a
pernicious problem in online processing: the long-tail latency [37].

Contributions. This paper makes the following contributions:

e anew query language runtime design that supports interruptible query processing, enabled
by incremental query/update propagation and fine-grained concurrency

e an evaluation over real-world datasets (Twitter, StackOverflow, and GitHub) in a modern
cloud environment that demonstrates the performance benefits of PrrStop
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e a design-space exploration over different fluctuation settings and different natures of query
traces, together with a hybrid design where indexing co-exists with data inspection

2 Background

We briefly review key terms and principles in query language runtimes and processing systems.
With an essential role of data processing in the computing stack, a query language—if it must be
called a domain-specific language—captures a domain familiar to most readers. That said, some
design principles well known to query runtime designers may not be familiar to all. We also use
this section as a summary for terms that will be consistently used in the rest of the paper.

Operations: Queries and Updates. In databases, a “read” request (i.e., one that does not mutate the
presistent data) is often called a query and a “write” request (i.e., one that does) is often called an
update. To unify the two in one term, we henceforth refer to each request of online data processing
as an operation. Perhaps confusingly, the historical terms of query processing and query languages
can refer to the support of both reads and writes. In this setting, one may refer to query processing
for only “read” requests as static data processing [14, 63], and one that supports both as dynamic
data processing. By this terminology, PITSTOP is an instance of the latter.

Data Organization. Not to lose generality, we view data(base) as a collection of data units, each of
which consists of a key (i.e., the unique identifier of the unit), and a payload value (i.e., the content
held by the data unit). When no confusion can arise, we also shorten a payload value as a value.
The key-value pair representation may be evocative to a specific form of databases, the key-value
store, but our treatment is more general: the payload value in our formulation may carry additional
information that reflect how data units are related to each other, i.e., structural information in data.

Consider a graph for example. Imagine we wish to represent a simple social network of Alice
and Bob where Alice is a friend of Bob. This can be captured through two data units, with keys
ka1ice and kgop identifying Alice and Bob respectively. The data unit of Bob may carry a payload
value of ka1ice, indicating that Alice is his friend. In other words, the payload value can serve as
an encoding of the outgoing edges of the (logical) graph. In the rest of the paper, our main interest
is on structured data such as graphs. From now on, we interchangeably call each data unit as a
node. We also use “node k” to refer to a node whose key is k.

Structured Persistent Data: In-Memory Representation and In-Storage Representation. For C pro-
grammers, it might be intuitive to implement a graph where graph vertices are memory objects,
and graph edges are pointers from one memory object to another. A similar implementation for
Java programmers can be carried out, except that object references are used instead of pointers.
Indeed, this is how graphs as non-persistent data structures are routinely implemented.

For persistent graphs however, real-world query runtime systems do not design the in-memory
representation of graphs through pointers or object references. The key insight here is that databases
must store data in some linear order. When such data is loaded into memory, it would be prohibitively
expensive to reconstruct a pointer/reference-based graph data structure from the linear represen-
tation. Worse, when the in-memory pointer/reference-based graph is updated, synchronizing it
with the in-storage sequence-based representation would be even more expensive. As a result,
real-world query runtimes nearly always keep the in-memory representation and the in-storage
representation as similar as possible, if not identical.

The consequence is that, regardless of the logical view of the persistent structured data — a list, a
tree, a graph —- their in-memory representation in real-world systems is generally a sequence, i.e.,
a collection of objects in total order. Recall our earlier example that the structural information of
the graph is encoded into the payload value of nodes. As a result, the in-memory representation of
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this graph can simply be a sequence of two nodes: node ka1 ;ce, followed by node kgop. The graph
database P1TSTOP is built upon — Neo4j — has sequence-based in-memory representation.

The Lifecycle of Operation Processing. To process an operation, the query runtime must inspect
data, sometimes also referred to as data scan (a term historically used for unstructured data) or data
traversal (a term historically used for structured data). For example, if a query intends to search for
a data unit which contains a payload value of 17, it will need to scan/traverse through the sequence
of data units, inspecting each of them until it finds the unit with 17 as the payload value.

In the rest of the paper, we describe this lifecycle of processing in the following terms: an
operation arrives at the query runtime, propagates through the data as it inspects each node and
compares keys, and eventually realizes at the node that the operation is intended for. We also use
serving to refer to the combined lifecycle states from propagating to realizing.

Sequence-based in-memory representation has important implications on data inspection. It
implies that when data is scanned/traversed, some linear order—often the order in the in-memory
sequence representation—is followed. The design of PrrStop reflects the same principle in query
runtime design. One notable exception to linear-order scanning/traversal is the use of indexing,
a common strategy particularly suited for databases that are query-only (i.e., no updates), or
query-dominant (i.e., rare updates). We support indexing as a variant called PrrStop-I (see § 7.1).

Sequential Consistency. Sequential consistency [40] is a fundamental property that says that if

two operations with unique labels #; and ¢, respectively arrive at the query runtime and #; arrives
earlier than #,, then the final result of query processing—both the query results and the updated
database state— must be identical as one from processing #; and #, in the chronological order of
their arrivals, i.e., ; must be first completed by the query runtime, then ¢, is processed.

For static data processing, sequential consistency trivially holds. In dynamic data processing,
guaranteeing sequential consistency and achieving performance are often at odds. The property is
non-trivial when concurrent processing of multiple operations is allowed, or optimizations across
multiple operations are enabled.

Provisioning. In computer systems, underprovisioning (UP) refers to the system state when the

system resources (say, CPU, memory, bandwidth) allocated to an application cannot meet the
demand of the application. Conversely, overprovisioning (OP) refers to the system state when

system resources exceed the demand of the application. In the setting of query systems, we use UP
to refer to the system state when operations arrive more rapidly than they can be processed, and
OP as the opposite. We also say the query runtimes undergoes a UP/OP phase for the duration of
time when the underlying system is in the UP/OP state. As workload fluctuation is the primary use
scenario PrTStop addresses, UP and OP will play a prominent role in our experimental evaluation.

3 PitStop Data Processing

Figure 1a shows a a simple online graph database we use as a running example. The graph consists
of 6 nodes, whose traversal follows the order from k; to k¢. Here, 3 operations arrive at the query
language runtime (the “database engine”), labeled with #;, £,, and #3, with £ arriving the earliest. The
first two operations are query operations; for example, “¢; — query kq” says that the £ operation
looks for the node with key k. The third operation is an update, where “¢; — update ks with 200”
says the #; operation intends to update the payload value of node ks with 200.

We start with a pedagogical subsection to describe the concurrent-but-not-parallel behavior of
P1tSTOP, followed by another subsection to describe the concurrent-and-parallel behavior. The
former is only meant for introducing basic concepts, and the latter is where real-world benefits
lie. PrTSTOP under these two variants are illustrated in Fig. 1b and Fig.1c respectively. Each row
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', —> queryks
Queries £ — query ks
 — update ks with 200,

Legends: ——Edge - --Traversal Path
@N ode with Key k

(c) Parallel Interruptible Query Processing on a 2-Core CPU

Propagating
Completed

Arriving
] Interrupting Realizing
(d) Legends

Fig. 1. An Example on Interruptible Query Processing. For (b) and (c), each row represents the processing of
an operation; each column represents a computation step, where a column denotes an abstract unit of elapsed
time, where ty, ta, ... t13 follows the chronological order; each cell with kj indicates the query operation
currently reaches (pitstop) node with key k. To highlight the conceptual view, (b) is analogous to a concurrent
(but not parallel) PiTSTop execution on a single-core CPU. (c) is a parallel execution with 2 cores.

represents an operation under concurrent query processing, and each column represents a unit
of elapsed time. While this illustration may remind some readers of pipelines, PITSTOP is not a
pipeline-based system: there is no synchronization across the processing of different operations.

Basic Concepts in Interruptible Query Processing. In standard query runtime design which we
henthforth call monolithic processing (MP), a run-to-completion semantics is adopted for data
inspection: once the processing of a request starts, it runs to completion before the hosting thread(s)
can process another request. For example, 6 continuous time units would be needed for #; processing
under MP !. Note that run-to-completion semantics does not preclude concurrency, but it only
supports a coarse-grained form of concurrency: different operations can be concurrently processed
by different threads when the consistency model allows it, but from the perspective of each operation,
its processing must run to completion.

In PrtSTOP, the data inspection process — even for one single operation — is incremental and may
be interrupted. PrTSTOP partitions data so that inspection can be interrupted at the last node of each

IStrictly speaking, OS-level context switches could happen during the processing of £, under MP, so the 6 time units may or
may not be continuous. They however are still taken by the same thread. For simplicity, the rest of discussion in this section
does not consider OS/hardware context switches. We revisit this discussion in § 6.11.
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data partition, which we call a pitstop. In this simple example, we assume each node can be a partition
and hence a pitstop in data inspection. For example, the processing of #; is interrupted at node k; at
timestamps t4, ts, t. The consequence of the interruption is that the current thread can be freed up
and then process other operations, improving concurrency. Similarly, an interruption happens at
pitstop k3 at t5 and pitstop k4 at t19. We further consider an imaginary “root” pitstop — the position
in data before the first partition. We call the inspection of a data partition — i.e., propagating an
operation from one pitstop to the next pitstop — as a leg. For instance, the computation happening
at t; and 3 form the first leg, and that at ¢;; and t;, forms the fourth (and last) leg.

To clarify the terminology, we always use the term “pitstop” to refer to a node in data and the
term “leg” to refer to a computation that enables the inspection of data nodes sandwiched by a
pair of pitstops. Given that the leg of inspection is synonymous to the propagation of an operation
from one pitstop to the next, we also informally say “an operation o residing in pitstop k” when o
has hitherto propagated to node k (after one or more legs of processing).

Whenever a thread becomes available, it can select an operation (or a batch of them) currently
under processing and process it by a leg. To ensure fairness, the selection of an operation (and its
processing by a leg) is random (see § 4).

In summary, if we take the lifecycle of an operation as a whole, its processing in PITSTOP is not
a continuous process from arrival to completion, but incremental and interruptible.

Leg Parallelism. Our pedagogical description so far has only focused on concurrency without
parallelism. We now describe the more realistic setting where concurrent executions run in parallel.

PrtrSTopP, through dividing the otherwise monolithic task of data inspection into smaller leg-sized
concurrency units, can improve performance through balancing the workload across cores more
effectively. The granularity of parallelism in PrtStop is the leg. In contrast, when MP is parallelized,
its run-to-completion requirement means its parallel unit is the entire serving process, e.g., 6
time units for ¢ processing. To understand why granularity matters, let us now come back to the
example. MP under the two-core execution can indeed allow ¢ and ¢, to process in parallel, but
#; may still have to involuntarily wait and start only after either # and #, is completed. We call
this unfortunate situation the cascading effect: the long latency of serving earlier arriving requests
may cause the later arriving request to wait “involuntarily” — especially in the UP phase — and
further extend the latency of the latter. With PrrStop, the processing of #; can start as soon as
either of #; or ¢, reaches a pitstop and frees up its host thread. This is particularly helpful if 3 can
be completed only after inspecting a small portion of data. In other words, the latency of 4 is less
impacted by the involuntary wait and the cascading effect in the UP phase.

Another important — but less obvious — advantage of leg parallelism is its semantics-independence:
deterministic parallel processing of multiple legs is independent of the read/write nature of the
operations performed within individual legs. In P1TSToP, two threads can run two legs (of different
operation batches residing at different pitstops) in parallel, regardless of whether the operations
processed by the two legs are query/query, query/update, or update/update. For example, while a
thread in PrTSToP processes £, for the leg propagating from pitstop k; to pitstop k,, another thread
can process £ for the leg propagating from pitstop “root” to pitstop k;. This is in contrast with
traditional MP, where the processing of a write operation cannot arbitrarily interleave with that of
a read operation. For example, if the monolithic processing of #3 — an update operation — were to
be parallelized with that of ¢, the processing of £, may return 200, which would be in violation of
sequential consistency. In PITStop, sequential consistency is preserved (see § 4).

Leg parallelism differs from data parallelism: it happens between processing (different legs of)
different operations, rather than different data partitions for processing the same operation.
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On-the-Fly Batching and Fusion. P1TSToP composes well and further strengthens classic multi-
request optimizations in online data processing, especially batching [24, 58, 65] and fusion [46, 50,
52, 64]. As an optimization, fusion allows multiple operations to be combined into an equivalent
operation potentially involving fewer computation steps. Batching — while not reducing the overall
workload of the computation — allows multiple operations to share one data inspection process,
known for its benefits in more efficient I/O (for accessing persistent data), cache (for in-memory
processing), and lock management (for concurrent processing).

Without PrTStop, batching and fusion can only be performed when the operations arrive,
presumably in a top-level buffer (see § 1). With P1tSTop, they may happen at any pitstop. At ts, £
and #; form a batch and continue to propagate in tandem in one step. At t7, all 3 operations batch
together for one step of processing. Batching is now on-the-fly, i.e., at any pitstop: a batch formed
by £, and #; at t¢ and a batch of all 3 operations at ;. On-the-fly batching increases the likelihood
of batching: assuming available resources, a newly arriving operation can start its processing
immediately and forms a batch with other operations later after partial data inspection. In contrast,
classic batching systems have to grapple with a binary decision when an operation arrives: should
it start processing immediately and forgo the opportunity of batching, or should it voluntarily wait
until the next operations come to form a batch?

For fusion, consider the two operations are submitted to the same graph processing engine as in
Figure 1, wtih ¢ refers to update k¢ with 500, #5 refers to update k¢ with 600, and ¢, arriving earlier
than 4. Here, node kg is first updated to value 500 and later updated to 600, a pattern common in
the real world where updated data are often updated again. Before ¢, reaches its intended node ks,
eliminating ¢, does not affect the state of the database.

Use Scenarios and End-User Benefits. Interruptible query processing is designed to target online
server-type environments such as cloud servers (see § 1). Specifically, it is designed to address
several thorny problems in achieving scalable performance on such platforms. We now briefly
summarize our end-user benefits, and how P1tStopr leads to them.

The primary benefit is that interruptible query processing is resilient to workload fluctuation.
With a combination of incremental query processing and fine-grained leg parallelism, PrrStop is
adaptive to the system state changes betweeen UP and OP. As we described earlier in this section,
classic MP instead may suffer from the cascading effect.

Second, P1TSTOP can reduce the occurrence of long-tail latency. An operation may take long to
process for various reasons: (a) some non-deterministic system events (such as I/Os, resource allo-
cations, or hardware failures) cause delays; (b) an operation may represent a heavier computation,
e.g., more complex processing or more data for inspection; and (c) the long processing due to (a)
and (b) may excessively hold systems resources away from other operations, making the latter fall
into long tail as well. PITSTOP mitigates the impact of the delays caused by (a) and (b) on the entire
system, i.e., reducing the occurrence of (c). In doing so, it may increase the latency of (b), but not
necessarily that of (a) because the latter is dominated by the non-deterministic event. In § 6.4, we
show PrTSTOP can reduce latency variance among the operations.

Third, PrrStop allows classic online optimization techniques—batching and fusion—to be applied
at a finer granularity, enabling on-the-fly batching or on-the-fly fusion.

Fourth, leg parallelism is semantically independent of the read/write nature of operations. This
implies that it can deliver comparable performance for both static and dynamic data processing.

Applicability and Limitations. First, PITSTOP is primarily designed for online data processing
systems where the requesting operations arrive at fluctuating rates, leading to fluctuating workloads
between UP and OP. When workloads are perpetually in an UP or OP state, PITSTOP can remain
effective in some scenarios but not all (see § 6.8). Effective or not, PITSTOP is less interesting for
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these non-fluctuating scenarios because an end user can solve the problem by simply configuring
different resources (e.g., more/fewer CPU cores). Second, while PITSTOP does not rely on any
existing partitioning strategy of the underlying database (Neo4;j in our case), its algorithm logically
maintains a partitioned view of the data where pitstops reside between partitions. For data that are
fundamentally non-partitionable, PrTSTOP does not apply. Finally, we will discuss some extensions
in § 7, for settings of data processing different from the current implementation of PrrStop.

4 PitStop Algorithm Specification

Global Definitions and Variables

structure DATAUNIT
key : KEY
value : VALUE

deleted : BooLEAN = false
end

data : LisT<DATAUNIT>

structure OPERATION
target : KEY
name :ENUM {add, delete,update,query }
f : FUNCTOR

bound : INT
end
structure BATCHOPS

| ops: LisT<OPERATION>
end

structure SERVER

legs : LisT<BATCHOPS>

results : MAP<OPERATION, VALUE>
end
server : SERVER

Fig. 2. PiTSTOP Structures

Fig. 2 defines relevant data structures. The mod-
ifications to standard run-to-completion query
processing are highlighted in green .

Data and Operations. Not to lose generality,
we first define our core algorithm over semi-
structured data, and its variation on graph data
will be described in § 5. Here, data is defined
as a list of DATAUNIT’s, where each DATAUNIT
contains a key-value pair and a flag to mark
whether the node is deleted.

Each OPERATION contains the necessary in-
formation for its processing, including the
name of operation (name), the key of the DaTaU-
NIT where the realization happens (target),
the functor (f), and a field called the bound
which we will explain later. A functor is a first-
class lambda function that defines the logic for
realization. For example, operation ¢ in § 3 can
be encoded with a functor as Ad. (d.value),
and the #; operation can be encoded with a

functor
Ad. (DaTaUNiT{d.key; 200; false})

For add and delete operations, the functor definition is irrelevant. In this simple specification,
a realization can only happen when the target of the operation matches the key of the data unit.
More complex predicate-based matching can be encoded through if..then within the functor.

Pitstops and Legs. A pitstop is placed for every LDSIZE number of DATAUNIT’s. Pitstop 0 indicates
the imaginary data unit (see § 3) before the first, used for keeping operations that have just arrived
but not served at all yet.

The unique structure of PrtStop is the legs field of SERVER, a list whose ith element indicates
the batch of operations (BATcHOPs) currently reside at the pitstop i, where i > 0. When a batch
of operations in the pitstop i are ready for their next leg of processing, each DATAUNIT between
pitstops i and i + 1 is inspected. Observe that our legs field naturally considers on-the-fly batching:
the operations residing at the same pitstop are batched together, through structure BATcaOPS; at
different pitstops, the number of operations within each BATcHOPS may well differ.

In addition, the SERVER keeps all results from all completed operations in the results field as a
map from OPERATION to VALUE. While this data structure helps us specify our algorithm, realistic
systems (e.g., privacy-preserving servers) may choose to only keep them temporarily (such as per
session), or not at all.
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Algorithm 1: Scheduler Algorithm 2: Propagator
proced}lre main() procedure propagate(p : INT)
1 while true do 18 | pd« LDSIZE % p
2 upon ready ¢ : THREAD do 19 while pd < min( size(data) , LDSIZE % (p+1))
3 if op arrived then do
4 if op.name = add then 20 d « datalpd]
5 _,verealize(o;, ) 21 lock server.legs[p].ops
6 server.resultsfo; — v] 22 for [01, 0, ...,0,] in server.legs[p].ops do
7 else 23 if d.deleted = false
8 op.bound « size(data) and d.key = 0;.target
9 run t with append(0, op) then
10 else 24 u, v « realize(o;, d)
u I — [size(data)/LDSIZE | 4 “f - ;:,‘f .
d a7 26 ata —u
2 p<— e (09, 1) 27 server.resultsfo; — v]
13 if size(server.legs[pl) > @ then .
ith t 28 else if pd+1>=op.bound then
14 | run t with propagate(p) N | server.results[o; — 1]
. i
end 30 else
end 31 ‘ append(p+1, 0;)
procedure append(p : INT, op : OPERATION) end
15 if undef server.legs[p] then 33 server.legs[p].ops — []
16 | server.legs[p] «— BarcuOps{[]1} N unlock server-legs[pl.ops
17 add op to server.legs[pl.ops N pd — pd+1
end @il

Algorithm Details. Algorithm 1 describes the overall runtime. Algorithm 2 defines the most
unique aspect of PITSToP design, on leg-based incremental propagation. Algorithm 3 defines the
behavior of common operations for dynamic data processing: addition, deletion, query, and update.
Notation X[y — z] means a mapping identical to X, except its domain element y is mapped to z.
We use T to refer to a special VALUE indicating that the operation processing succeeds and L to
refer to the failure, such as a “key not found” error. In both algorithms, data and server are global
variables declared in Fig. 2.

Upon a thread becoming available, the scheduler checks if a new operation has arrived (Line 3). If
so, the newly arrived operation is either immediately processed if it is an add operation (Lines 4-6),
or append-ed (Lines 9, 15-17) to the batch of operations meant to reside at pitstop 0. If no new
operation has arrived, the thread randomly selects a pitstop and propagates the operation batch
corresponding to that pitstop for a leg (Lines 11-14).

The behavior for propagation is shown in Algorithm 2. The algorithm first calculates pd, the
index of the first element in the data immediately after pitstop p (Line 18). The outer loop steps
through the data units one by one (Line 34) until either the next pitstop or the end of data is reached
(Line 19). The inner loop steps through each operation in the batch (Line 22). The operation may
be realized (Line 24) if the data unit d is not deleted and the key matches the operation’s target.
Upon realization of an operation, the data is updated to reflect the possible change made (Lines 25
and 26), and the result of realization informs the server’s result update (Line 27). If an operation
cannot be realized at a leg, it is append-ed to the batch for the next leg (Line 31).

An important observation here is that order matters: the order of OPERATION within each
BaTcHOPs reflects the chronological order of operation arrival, and the order of BATcHOPS’s within
the legs field also reflects the same chronological order. In other words, there is no “jump-ahead”
among operations: the OPERATION’s still arrive at each pitstop in the same order as they arrive at
the data processing engine (pitstop 0). Observe that both when an operation first arrives (Lines 9)
and when an operation is propagated to the next pitstop (Line 31), we consistently use append, i.e.,
adding the operation to the tail of the list.
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Finally, if the inspection reaches the end
of data and the operation is not realized, a
special value L is the result (Line 29). In a dy-

Algorithm 3: Sample Realization Functions

procedure realize(op : OPERATION, d : DATAUNIT)

35 switch op.name do B . .
36 case add do namic setting when data units may be add-ed
37 k « keygen() online, care is required for maintaining data
38 v apply op.f to () visibility. For example, if a query operation
* ?;‘;DATZ[;NIT{;’ v false} with a target k arrives before an add oper-
2’ da;,a i[ d" df_ Zta ] ation that adds a data unit with key k, the
i return _, 3|_ prmim query should return L. The challenge for P1t-
5 case delete do Stop is that even though the add operation
" d.deleted « true immediately changes data, the query opera-
45 returnd, T tion may take time to propagate and hence
4 case update do may incorrectly find the added data unit. To
47 d <« apply op.f to d . .
address this, we associate each OPERATION

48 returnd T - ) )
" case query do with a bound field, recording the size of data
50 ret «— apply op.f to d at the time of its arrival. This bound is used
51 return d, ret to determine the end of data inspection for

end the operation (Line 29).

end

Our algorithm specification is orthogonal
to the concrete data representation itself: we
do not require data to be organized as a list.
All PITSTOP requires is an order can be derived from the data representation. For instance, if an
in-memory graph is represented as a pointer-based linked structure, the structure is still traversable
through some (depth-first or breadth-first) order. In practice indeed, linear data organization is
common in large data (or graph) processing — such as in Neo4j — because it would otherwise be
too costly to reconstruct a pointer graph based on the storage representation (which is linear) and
continuously synchronize the two.

We adopt a simple model for thread safety: when a leg propagation happens, its associated
BatcHOPs is locked, as shown at Line 21 and Line 33. This prevents different threads from prop-
agating the same operation batch at the same pitstop more than once. This is an example why
batching is a useful optimization: only one lock needs to be managed for the entire batch.

Complexity. Given the size of data as m and the number of operations as n, the time complexity
of our PrrStop is O(m X n). Despite our design of leg-size propagation over operation batches,
each operation still only inspects each data unit at most once. The space complexity of PITSTop is
O(n). In other words, the only additional storage needed is to keep an entry for each operation
under processing, as in the legs field of SERVER.

Properties. PITSTOP observes sequential consistency. This is a non-trivial result considering
the query processing can be non-deterministically interrupted at pitstops; concurrent/parallel
processing of multiple operations is allowed; random legs are selected for propagation; on-the-fly
batching and on-the-fly fusion are supported.

To gain an intuition on why sequential consistency holds, consider an example where two
operations ¢; and £, arrive at the query runtime, and the former arrives earlier than the latter. For
simplicity, let us assume both are targeting a node with key k and #; is an update operation whereas
¢, is a query operation. Not to lose generality, there are three subcases: (1) neither ¢ nor ¢, has
reached node k during their propagation. In this case, neither query nor update is realized; (2) £
has reached node k but k; has not reached node k. In this case, the update can be realized but not
the query. (3) both #; and £ have been propagated to node k; in this case, observe that Line 22 of
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Operation Equivalent Cypher Query

find user (property) (value) MATCH (n : User{{property) : (value)})
RETURN n

findFollowers (property) (value) MATCH (: User{(property) : (value)}) < (n : User)
RETURN n

findFollowees (property) (value) MATCH (: User{{property) : {value)}) — (n: User)
RETURN n

update (property) (value) (new property) (new value) MATCH (n : User{{(property) : (value)})
SET n.{new property) = {(new value)
add (property) (value) (property to find) (value to find) MATCH (a: User{{(property to find) : (value to find)})
CREATE (b : User{({property) : (value)})
CREATE (b) — [r : FOLLOWS] — (a)
delete (property) (value) MATCH (n : User{(property) : (value)})
DELETE n

Table 1. Cypher Queries for the Twitter Dataset

Algorithm 2 says #; must be realized before #;. In particular, note that there does no exist a fourth
subcase where £, is propagated to k but #; is not, according to the preservation of the chronological
order during the propagation process (see Algorithm Details discussion earlier). Finally, observe
that the analysis here still assumes that the processing of # and #; are concurrent: the chornological
ordering does not preclude, say, the propagation of #; by one leg and that of #, by another leg, from
happening in parallel.

We defer a formal proof of this property to the supplementary material. The formal insight is that
PrrSTOP is inspired by DON calculus [15]. Indeed, PITSTOP can be viewed as a concrete instance
in the spectrum of online data processing algorithms formally defined by their calculus, and our
property sequential consistency is (conceptually) a corollary of their property of determinism. A
more detailed discussion on this connection can be found in § 8.

In addition, PrTSTOP preserves atomicity [26, 29], which in the context of data processing says
that the processing of each operation must abide by our intuition of “all or nothing”. To gain
intuition on why it holds, recall in § 2, the lifecycle of an operation is composed of a sequence of
steps in the following order after the operation arrives: propagation, propagation, ..., propagation,
propagation, realization. To establish atomicity, the most relevant observations here are: (1) each
propagation step reads the immutable key from the graph node, with no changes in the persistent
data. From here on, we refer to such a step as producing a R; effect (i.e., immutable read); (2)
the realization step may either read the potential mutable payload from the graph data, or write
to such data. From here on, we refer to the former as producing a Ry effect (i.e., mutable read),
and the latter as producing a W effect (i.e., write). If we extend our reduction system where the
propagation/realization rules explicitly produce the effects specified above as observables, the
processing of an operation leads to a trace in one of the two patterns:

e Case I: a query operation: Ry, Ry...., Ry, R, Ry
e Case II: an update operation: Ry, Ry,..., Ry, Rj, W

In Case ], all steps are “reads” and no commit to the persistent data is needed. Case I is a tail-commit,
i.e., only the very last step involves change to persistent data. The “all-or-nothing” semantics for
atomicity is preserved depending on whether the last step is committed (“all”) or aborted (“nothing”).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 332. Publication date: October 2024.



332:12 Jeff Eymer, Philip Dexter, Joseph Raskind, and Yu David Liu
‘ Dataset ‘ # Nodes ‘ #Edges ‘ Read-Only Trace Operations ‘ Read-Write Trace Operations
Twitter [39] 41.7 million users 1.47 billion ‘follows’ 33.33% find user 40% find user 16.67% add user

33.33% find followers
33.33% find followees

10% find followers
10% find followees

16.67% delete user
16.67% update user

Stack Overflow [3]

11.8 million users
47.9 million posts

132 million ‘posted’
56 million "tagged’

33.33% find user
33.33% find posts of a user

40% find user
10% find posts

16.67% add user
16.67% delete user

57 thousand tags 33.33% find post tags of user 10% find tags 16.67% update user
GitHub [1] 4.4 million users 16.9 million "pulled from’ 25% find pulls 15% find pulls 16.67% add user
9.7 million repositories | 92.0 million ’pushed to’ 25% find pushes 15% find pushes 16.67% delete user
4.3 million ‘forked from’ 25% find forks 15% find forks 16.67% update user
11.9 million ‘commented on’ | 25% find comments 15% find comments
Table 2. Dataset Description (X% represents the composition ratio of operations in the trace.)

5 Implementation and Experiment Settings

We implemented PrrStor by modifying the core data inspection algorithm of Neo4j version
3.5.12 [2], written in Java. PrTSTOP is currently deployed on and experimented with a Google Cloud
virtual machine running Ubuntu 16.04, with 96 CPU cores and 86.4 GB of memory.

Graph Data Support. In Neodj, a graph is represented as a list of NopE’s and a list of RELA-
TIONSHIP's. Both forms of data are identified by Id’s, analogous to our Key. To facilitate node-to-
relationship queries, each Neo4j NoDE contains fields to refer to its RELATIONSHIP’s, (conceptually)
the range of entries in the RELATIONSHIP list. Both may contain a DELETED field, as part of Neo4j’s
built-in support.

Our implementation does not require any metadata change of the Neo4j database, nor any
programming model of its query language, Cypher. The specific Cypher queries that we used for
the traces can be found in Table. 1. By default, we set LDSIZE as 1% of the length of the dataset.

Fusion Implementation. Our implementation also supports fusion similar to the example in § 3.
Just as an available thread may randomly select an operation batch for propagation (see Line 14 in
the algorithm), it may also randomly select an operation batch for fusion. The behavior of fusion is
a linear-time inspection of all operations within the operation batch, and fusion happens if two
consecutive update operations are applied to the same node, and all query or delete operations
between the two are not applied to the same node.

Try Locking. As an optimization of our specified algorithm, the lock we associate with each oper-
ation batch is a try-lock. In other words, if a pitstop is randomly selected according to Algorithm 1
but its associated batch is currently locked, our implementation will go back to the while loop in
Algorithm 1 and randomly select another operation.

Datasets. We ported three datasets to Neo4j, including Twitter, StackOverflow, and GitHub.
Among all datasets on Neo4j’s website, StackOverflow and GitHub are the largest ones. We further
manually imported Twitter data to a Neo4j-compatible format, which is larger than the other two.
For all experiments — including different trials of the same experiment — we always first initialize
the graph to the same initial state.

Operation Traces. While commonly used datasets are widely available, operation traces — i.e.,
the sequence of operations applied to a dataset with properly labeled timestamps — are rarely,
if ever, available in data processing. We resort to the standard practice in database evaluation
and generate both read-only traces and read-write traces for our experiments, each consisting of
10,000 operations. The specific operations generated for each dataset, and their composition, can
be found in Table 2. For each dataset, our selected operations address common use scenarios. For
each generated trace, the order of operations is randomized, conforming to the composition ratio
specified in the Table.
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We evaluate P1rStop with two distributions on the target nodes of the operations. By default,
the target nodes of individual operations are uniformly random among data units in the database.
Alternatively, we experimented with a trace (§ 6.7) where the target nodes of operations follow the
power-law distribution, i.e., some nodes are queried or updated more frequently than others.

Workload Fluctuation Settings. We model workload fluctuation
| [UPphase| OPphase | through adjusting the arrival rates of operations, alternz.iting th&.am
between UP and OP phases. In a UP (or OP) phase, operations arrive

F1 | [0, 10ms] [90ms, 100ms] K R K
F2 [ [0, 10ms] | [190ms, 200ms] | 2t 2 rapid (or slow) rate. Concrete to our experimental setting, the
F3 | [0, 10ms] | [290ms, 300ms] | first 2500 operations (1/4 of total operations) are issued in the UP
phase, the next 2500 operations are issued in the OP phase, and so
Fig. 3. Fluctuation Scenario Set- on. We experiment with 3 arrival rate settings, described in Table 3.
tings For example, fluctuation setting F1 says that during the UP phase,
the time interval between the two operation arrivals is randomly
and uniformly set to be between 0 and 10ms, and during the OP phase, the interval is similarly
set to be between 290ms and 300ms. The concrete values of the three settings are determined
heuristically as the highest arrival rate where the cascading effect is not observed, intuitively the
rate for “break-even” provisioning. This rate on average, across experiments and data sets, is the

median between the two ranges of F1.

Experiments and Visualization. Each experiment is the average of 5 trials. While plotting the
per-operation latency graphs, we further average out the results of every 100 consecutively arriving
operations and represent the average.

Development Effort. P1TSTOP is implemented in about 3500LOC. There are also additional 3000LOC
for PrrStop-I (in § 7.1), various baselines and comparative variants, and scripts for experiments.

6 Experimental Validation
Our evaluation aims at answering the following questions:

e RQ1: What is the impact of PrrStop on latency (§ 6.2) and throughput optimization (§ 6.3)?
e RQ2: What is the impact of PITSTOP on mitigating latency variance (§ 6.4)?

e RQ3: How does PrtStop perform under alternative settings (§ 6.5, § 6.6, § 6.7, § 6.8)?

e RQ4: How do the design features contribute to the effectiveness of PrrStop (§ 6.9)?

e RQ5: How does PrrStop perform when PrrStop is integrated with indexing (§ 7.1)?

6.1 Comparative Baselines

To demonstrate the effectiveness of PrtStopr, we construct two baselines. The first baseline is
MP. This is the default implementation of Neo4j with parallelism support. A second baseline we
introduce is Buffered Monolithic Processing (BMP), as an optimized form of MP, where batching and
fusion may happen at the client-database boundary, the “top-level” buffer. Our BMP implementation
is de facto collaborative scanning [65], closest to Crescando [24, 58], except that those SQL queries
are now graph queries.

As we discussed in § 3, a BMP-like system must grapple with the decision on voluntary wait. We
set two parameters for BMP: the targeted batch size before the batch is served B, and the maximum
wait time for the batch to be formed, i.e., timeout, WT. We adopt the common rationale and set
B = I'%'I, where AT is the average arrival time. In other words, the targeted batch size is the
expected number of operations that would be received in the WT time (the second case). In this
paper, we set WT = 750ms, and AT is set by experiments of different workload fluctuation: Smsgﬂ
for F1, w for F2, and so on.
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Fig. 4. A Summary of PiTStop Latency Speedup (the Y-axis is the latency speedup ratio of processing
operations with PiTSToP against the two baselines, averaged over the 10,000 operations described in § 5.
With each group, the 3 bars correspond to the fluctuation scenarios of F1, F2, F3, in that order. The dotted
horizontal line is the break-even latency, i.e., 1X. For each bar, the higher the better.)

Parallelism is in place for both baselines. Neither is a naive single-threaded implementation.
For read-only traces, the processing of operations are executed in parallel. For read-write traces,
non-exclusive read locks and exclusive write locks are in place. For MP, BMP, and P1TSTOP, the
same thread pool implementation of PrtStop is used for thread management.

6.2 Latency Speedup

Summary. We first summarize the impact of PITSToP on the operation latency, i.e., the “end-to-
end” processing time between the arrival of the operation and the completion of its processing. Fig. 4
shows the average latency speedup of PIrStop over the two baselines under various fluctuation
scenarios. Overall, PITSTOP outperforms both baselines for all 3 datasets in all 3 fluctuation settings.

As shown in Fig. 4a, the more significant speedup is shown in the comparison with MP, the default
parallel implementation of Neo4j. The poor performance by MP is due to the cascading effect of
latency (§ 3). On the other hand, PrrStop decouples the operation latency from the operation arrival
order: a later arriving but computationally less complex operation may well be completed sooner
than an earlier arriving operation. Thanks to this key difference in design, PrrSToP outperforms
MP by at least 1 magnitude and occasionally near 2 magnitudes.

Fig. 4b shows that P1TStop also outperforms BMP but at a lesser scale. Relative to MP, BMP
softens the impact of the cascading effect by batching multiple operations together. However, just
like MP, the processing of later-arriving operations cannot be started until a thread/core becomes
available upon the completion of some earlier-arriving operation batches during the UP phase. A
later-arriving but computationally less complex operation may still have the prolonged wait.

A Detailed Per-Operation Analysis. Fig. 5 presents a per-operation view of latency speedup. Recall
that (§ 5) we alternate between UP and OP for the operation issue for each 2500 operations. With
MP (Fig. 5a), MP quickly suffers from the cascading effect in the first UP phase, and the P1TStop
latency speedup quickly increases. When the system moves to the OP phase (when operations
2501-5000 arrive), the cascading effect in MP gradually recedes, but how fast this can happen
depends on the size of data. For smaller datasets such as Github, the recovery period is shorter. For
larger datasets, such as Twitter however, the recovery is so long that the next UP phase (when
operations 5001-7500 arrive) starts before the recovery is fully complete.

One subtle observation is that the peak PrrSToP speedup often happens for an operation arriving
in the OP phase, not exactly the last operation in the UP phase (such as operation 2500). Earlier, we
have explained P1TSTOP’s role in mitigating the cascading effect in MP, i.e., “softening the blunt”. If
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Fig. 5. PitStop Per-Operation Latency Impact (Results are under fluctuation setting F1, with the gray vertical
lines indicate the phase change at the time of operation issuance. For the Y axis, higher is better.)

this were the only effect of PrrSToP, recall however, this is not the only effect of PrrStop: when
the system transitions from the UP phase to the OP phase, P1TSTop also has the interesting role of
“speeding up the recovery”. After UP switches to OP, the arrival rate of the subsequent operations
will drop sharply. As a result, all operations that have arrived but not completed are more likely to
be (randomly) selected by P1TStop for propagation. PrTSTOP’s role in speeding up the recovery
may further drive up the effectiveness of PrrStop relative to MP.

The per-operation latency of P1TStop relative to BMP is shown in Fig. 5b. At the beginning
of each UP phase, BMP is indeed effective: it batches up a number of operations and assigns the
processing to an available core/thread. The turning point however is that when all cores/threads
become occupied. At this point, each BMP data processing task — even more coarse-grained than
an MP data processing task due to batching — may take longer time to complete, and the cascading
effect similar to MP occurs. This is why the relative effectiveness of PrTSToP increases often in
the middle of each UP phase. In summary, BMP is friendly at the onset of an UP phase when
there are still available cores/resources, but unfriendly when cores become saturated: at this point,
batching makes BMP even coarser-grained than MP. In other words, not only the query processing
is run-to-completion, and BMP requires multiple operations in the same batch to run to completion
as one unit of concurrency. The coarsening here is prone to load imbalancing, leading to inferior
performance of BMP as the UP phase continues on.

The Trend Across Fluctuation Scenarios. As we move from F1 to F3, the effectiveness of PrrStop
over MP generally decreases (Fig. 4a), whereas the effectiveness of PrrStop over BMP generally
increases (Fig. 4b). The difference between the three fluctuation settings is F1/F2/F3 has the short-
est/medium/longest recovery period in each OP phase. As the OP phase becomes longer, MP is
more likely to recover from its cascading effect. For BMP however, a longer OP phase implies fewer
opportunities for batching. These opposite trends highlight the applicability difference among
the 3 systems: MP is friendly for OP, BMP is friendly for UP, and P1rStop has the dual impact of
“softening the blunt” in UP and “speeding up the recovery” in OP, and thus strikes a balance in
mitigating workload fluctuation.

6.3 Throughput Optimization

In online data processing where operations continuously arrive and get processed, the meaningful
throughput is rolling throughput, i.e., the number of processed operations based on a rolling window
of time. Fig. 6 shows the peak rolling throughput where the time window is set as 100 seconds.
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(a) PitStop Peak Throughput over MP (b) PrrStop Peak Throughput over BMP

Fig. 6. A Summary of PiTStop Peak Throughput (The Y-axis is the peak throughput of processing operations
with PITStop against the two baselines, for the trace of 10,000 operations described in § 5. For each bar, the
higher the better. The other conventions are identical to Fig. 4.)

As shown here, PrtStop outperforms MP by 1.8X-4.5X and BMP by 1x-2.4X. Unlike the pro-
nounced latency impact, PITSTOP occasionally does not have a positive impact on throughput.
For example, for the two fluctuation settings F1 and F2, PITSToP breaks even in throughput with
BMP for the dataset of Github. Among the 3 datasets, Github is the smallest. Relatively, the benefit
PrTSTOP brings in on latency reduction has limited impact on the throughput; instead, BMP shines
for its natural friendliness for increasing peak throughput: every operation in a batch completes at
the same time, forming a “peak” for the enclosing time window in which the rolling throughput is
calculated. In a way, the real story — and a pleasant surprise — is that PrrSTop can outperform
BMP in peak throughput in most cases.

6.4 Latency Variance Mitigation

The less obvious feature is that PrTStop exhibits less
= latency variance in most comparative experiments. As
== vp shown in Fig. 7, the standard deviation of PrrSTop is
significantly smaller than that of MP in all scenarios,
and the standard deviation of PrrStop is smaller than
BMP for almost all scenarios. Note that latency variance
among operations is inherent: each operation has differ-
ent amount of work. What this comparison shows is that
MP and BMP may further amplify the variance, likely
resulting from a combination of the cascading effect and
less balanced work load.

(o))

IS

N

Github StackOverflow Twitter

Fig. 7. Average Normalized Standard Devia-
tions of Operation Latency for PitStop (For

each dataset, MP and BMP refer to PitStop . .
’ 5 Al LDSIZE
results normalized against MP and BMP 6.5 ternative LDS Settings

respectively. Results are averaged across 3 We experimented PrrStop with different partition sizes
fluctuation settings. A value greater than 1 by altering LDSIZE, with results shown in Fig. 8. Overall,
means PITSToP has less variance than the LDSIZE has limited impact on PITSTOP performance when
comparative baseline.) there are tens or (low) hundreds of pitstops in data. In

this range, tuning LDSIZE may have +10% difference,

relatively small to the difference due to core features (MP
vs. PrrSToP or BMP vs. PrtStop). The key take-away message is that the effectiveness of PrrStop
is not hinged on a “fortunate” LDSIZE choice: a wide range of values can work, and if a thorough
tuning is performed, PrTSTOP may even have a 10% headroom for further speedup. Performance
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Fig. 8. PiTStop Under Different LDSIZE (For 1/x in the legend, LDSIZE equals to 1/x of the data size. Each bar
represents the average latency of all operations, normalized against the default PiTSTop setting, i.e., LDSIZE
is 1/100 of the graph size. Results are under F1.)

impact becomes more pronounced when LDSIZE is set outside the range above. On one end of the
spectrum, when LDSIZE is set as small as 1/512 of the graph size, latency degradation becomes
more visible in Fig. 8. We will revisit another extreme on the other end of the spectrum where
LDSIZE is set to be as large as the size of the graph, in § 6.9.

6.6 Alternative Trace Compositions

We further conducted the same experiments for read-
write traces. The throughputs of MP, BMP, and P1T-
Stop for the three datasets can be found in Fig. 9.

‘ ‘ Twitter ‘ Stack Overflow ‘ Github ‘

P 40.0 4, 176. . . .
IT;\;); 20715 53 1898 1165700 With PrtStop outperforming magnitudes better, the
MP T 045 193 o5 latency graphs become uninteresting: the speedups

rapidly increase. What matters here is PrrStop is
friendly for leg parallelism, independent of whether
the operation is query or update. The throughput
data for read-write traces for PITSTOP and the read-
only traces for PITSTOP are on par. A more advanced
locking support for MP and BMP may make them more efficient, but unless such support is able
to process read-write traces equally efficiently as read-only traces, it is unlikely to outperform
PrrStop, which enjoys semantics-independent leg parallelism.

Fig. 9. Throughput (ops/sec): the Read-Write
Traces

6.7 Alternative Operation Target Distribution

For the power-law traces, the experimental results can be seen in Fig. 10. Compared with the
uniformly random trace, the results here follow the same general trend for the PrrStop vs. MP
comparison. More interestingly, our experiments show P1TSToP outperforms BMP at a larger
margin for the power-law trace: Github for instance has a peak speedup of 3x-5x for uniform trace
(see the main paper), but now has a peak speedup of 9x-11x for power-law traces. This highlights
the challenges of determining wait time (WT) in the BMP baseline. When the target nodes of the
operation trace are uniformly random, a fixed WT appears to make BMP a relatively performant
baseline. When target nodes fall into a power-law distribution however, a pre-determined WT
can no longer take into the account that the nodes targeted by the operations are “lopsided”
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P1TSTOP, however, remains resilient in the presence of the power-law trace thanks to its fine-
grained parallelism, and more importantly, its lack of need for heuristically determining WT in the

first place.

6.8 Pi1TSTOP in Perpetual UP/OP Scenarios

PrTSTOP is primarily designed for query language runtimes that may need to react to fluctuating
workloads. In this section, we study how P1TSToP under two extreme scenarios: the Perpetual UP
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scenario when PITSTOP perpetually receives more operations than it can process, and the Perpetual
OP scenario when P1TSTOP perpetually receives fewer operations than it processes.

The results for the Perpetual UP scenario can be found in Fig. 11. In near all time intervals,
PrtSToOP significantly outperforms MP: as time goes on, the cascading effect makes MP progressively
worse. PITSTOP is as effective as BMP. Now that there are many more operations than a query
language runtime can process, both PrrStop and BMP have batching in play, leading to comparable
performance.

The results for the Perpetual OP scenario can be found in Fig. 12. As shown here, PrTSTOP is
not as effective as MP, but more effective than BMP. The fact that MP is better should come as no
surprise: now that the underlying system is often idle — i.e., with more computational resources
than it needs — the simple execution semantics that each query is processed to completion works
just fine. With PrrStor however, the bookkeeping for pitstops and the additional maintenance of
leg paralellism may introduce overhead. The more interesting observation here is that PrTSToP can
outperform BMP. With BMP, the voluntary wait for forming batches is slowing down the query
processing.

Our experiments in the Perpetual OP scenario can also be interpreted as an overhead analysis:
it isolates the overhead by introducing the extreme scenario where there are only "pains" (of
interruption and resumption) but no "gains" (i.e., the same interrupted operation will be resumed
again). Recall that in § 1 and § 3, we discussed the applicability of PITSToP: it is primarily designed
for online data processing with workload fluctuation.
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6.9 Ablation Study

We now study how design features in PITSTOP contribute to its effectiveness through an ablation
study with 3 settings. First, the Only Batching setting supports the top-level buffer, but there are no
pitstops inside the data (and hence no leg concurrency). Whenever a thread becomes available, all
requests in the buffer are processed as a batch. This setting is similar to our baseline BMP, except
that we do not form batches through bounded batch size and voluntary wait, and there is no fusion.
In implementation, it is analogous to P1TStor when LDSIZE is set as the graph size, and fusion
is disabled. Second, the Only Fusion setting is also supported by the top-level buffer for arriving
requests, and whenever a thread becomes available, it will fuse the requests in the buffer when
possible, but no batching. Third, the Only Leg Concur setting allows pitstops to be placed inside the
data, and leg concurrency is allowed, but no batching or fusion is allowed. All 3 settings support
parallelism just as P1TSToP does. Their relative effectiveness is shown in Fig. 13 on throughput and
Fig. 14a on latency.

Overall, PrTSTOP consistently performs better than the ablated variants, and often significantly
so. Fig. 13 shows that the peak throughput for PrrStor is higher than all ablated variants. In Fig. 14a,
7 of the 9 variants of ablation have a latency slowdown of around 3X or more. It is the synergy of
the three features that leads PrTStop to a performance that none can achieve individually.

The Batching Only variant indeed can occasionally achieve competitive performance. For example,
this ablation variant for StackOverflow is at 1.01X and Twitter at 1.25X in Fig. 14a, only slightly
less competitive than PrtStop. There are two additional reasons why PITSTOP remains favorable.
First, PrTSTOP remains effective in mitigating latency variance compared against the ablation
settings (recall the same trend in § 6.4 when compared against MP and BMP). The comparative
results against ablation settings are shown in Fig. 14b. Second, as we aim for a general solution
neutral to data sets, PrTSTOP exhibits more consistently superior performance across datasets.

6.10 Memory Consumption

P1TSTOP has negligible impact on memory consump-
tion, with the results for Twitter shown in Fig. 15.
P1TSTOP consumes statistically the same amount of

‘ peak memory consumption (GB) ‘

PrrStor 2077 £ 0.15 memory as BMP, and consumes slightly less mem-
BMP 2077 £ 0.13 ory than the unmodified Neo4j (MP). This result
MP 21.25+0.16 should not come as a surprise. Recall in § 4 that the

space complexity of PrrStop is O(n), where n is
Fig. 15. Memory Consumption (Twitter under  the number of operations. In other words, the only
fluctuation setting F1) additional storage is to keep track of which pitstop

each operation batch has propagated to. For our ex-
periments of 10,000 operations, there are 10,000 entries, in KB-range data. This is dwarfed in 5-6
magnitudes by the memory consumption needed for large-scale data processing, e.g., more than
20GB in our experiments here. In other words, the deciding factor of memory usage becomes the
overall efficiency of data processing itself. Finally, note that varying LDSIZE has no impact on
memory consumption, as the number of operations remains the same.

6.11 A Reflexive Look on Data-Aware Concurrency

It is important to observe that while our comparative baselines (MP and BMP) are in operation, the
underlying system already supports (semantics-oblivious) concurrency: the Java Virtual Machine
(JVM) may optimize thread management, the OS may perform context switches, and the hardware
may resort to Simultaneous Multithreading (SMT). These lower-layer concurrency mechanisms
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remain unchanged in the PITSTOP experiments. In other words, our experiments show that leg
parallelism can lead to additional performance benefits on top of a JVM/OS/hardware stack that
already supports lower-level concurrency.

7 Extension and Discussion

PrrStoP is a fundamental redesign at the core of the query language runtime itself. In this section,
we describe how the core ideas behind interruptible query processing may compose with the
diverse set of existing techniques.

7.1 Extension: P1TSToP Integrated with Indexing

The P1tSTOP algorithm can also be combined with existing index-based data access. For example,
with hashing-based indexing, realizing simple key-value lookups can be completed in constant
time assuming the index is pre-built. Indeed, indexing is not a panacea for data processing because
not all operations can be processed through indexing. For example, queries can be dependent
on structural patterns or may require aggregation among a large number of data. For the rest of
the discussion, we refer to simple queries that can be processed through index lookup as indexed
operations and those are not as non-indexed operations. We built a variant of PrrStop where the
PrrStop algorithm is integrated with indexing, called PrrSTop-L

The design of PrrStop-I for read-only data access is trivial, because indexed queries and non-
indexed queries can interleave without any concern on data consistency. For dynamic data access,
PrrSTOP-I can follow the similar compensation-based solution classic in indexing systems: (1)
each indexed operation is first processed through the index, and the result is compensated by the
latest non-completed operation targeting the same node (i.e., with the same index key). (2) each
non-indexed operation is processed with the default PrrStop algorithm.

For our datasets, we treat the “find user” operations in Twitter and StackOverflow, and “find
pulls” and “find pushes” operations in GitHub as indexed queries, and the rest of operations as non-
indexed queries. When P1tSTop-I is compared against baselines, MP and BMP are also integrated
with indexed access. In other words, for the same indexed operations in PrrStop-I, they will also
be processed through indexing in MP and BMP.

The performance of PrrStop-I is shown in Fig. 16. Observe that the same trend that we showed
earlier for PrtStop (without indexing) is preserved here: PrrStor-I outperforms both MP and
BMP significantly when data processing is in the UP phase. Relative to PrrStop without indexing,
the speed up for PrrStop-1 is occasionally less significant. This is not surprising because indexed
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operations are usually processed magnitudes faster. Our results show that PrTStor-I remains an
effective solution in this setting due to its significant advantage in handling non-indexed operations.

7.2 Relational Data Processing

PrrSToP is evaluated on graph data. As our algorithm specification is neutral to the structure of
data, we believe the core idea may also be built on top of relational data processing systems. The
latter however come with distinct operators, whose support we now sketch.

Column projection can be directly supported by ours. Unlike our specification where each
operation is realized at one data node, the projection operation can continue to propagate through
all records, and continuously and incrementally collects the column data of interest until the last
record is reached. When multiple projection operations are issued, each may collect the column of
its interest, at their own pace through the propagation.

The SQL-style GROUP BY operator can be supported in a similar fashion, except the result is a
mapping whose domain constitute the column values of interest identified by the GROUP BY operator.
This operator is often used for aggregation. With an algorithm such P1tStop, the aggregation
function can be performed incrementally, so that when the propagation reaches the last record, the
final result of aggregation is produced.

Table joins can be supported through nested operations. To support the join of table A and table
B with column X, the join operation should propagate within the data of table A following the
specification of PrrStop. For each record it encounters, the join operation 0, may issue another
operation o0y, to be propagated and realized with the data of table B following the behavior of
the PrrStop specification. When o0, completes the table B scan, the propagation of table A can
now proceed to the next node. What the core algorithm of P1rTSTop brings in is a natural flavor of
incremental joins where processing this well-known expensive operator can be broken down into
legs, both within table A scanning and table B scanning,.

7.3 Programmable Operation Dependencies

In PrTSTOP, data flow dependencies between operations are supported through the target of
operations. For example, £, may depend on ¢; if both operate on the same target key, and # is an
update and the subsequently issued ¢, is a query. The key to ensuring the correct behavior in the
presence of operation dependencies is chronological order preservation (see the end of § 3, and
§ 4). With an extension on the programming model of the operations itself, PITSTOP is also capable
of supporting data flow dependencies where the result of an operation may be named as a variable,
which subsequently occurs in another operation. To support this variant, the primary change is
that substitution (i.e., replacing the variable name with the value result) may happen during the
propagation. It is also possible some operation may never be realized (for example, two operations
mutually depend on each other’s result), which according to our algorithm specification, such an
operation will return L at the end of propagation. Thanks to the key property of chronological order
preservation preserved by PITSTOP, the rest of the PrTSTOP does not require additional changes.

7.4 Distributed Data Processing

To support distributed data, PITSToP can be applied to each cluster node, where sequential consis-
tency can be enforced within the cluster node. Enforcing sequential consistency for PITStop across
the entire distributed cluster would be expensive, as it is for distributed data processing in general.
Indeed, the key to scalable distributed data processing is to relax the consistency model [56]. With
this expectation, PITSTOP can be extended to distributed data processing in a standard manner,
where sequential consistency is preserved within each node, and relaxed consistency is achieved
across nodes.
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8 Related Work

Allowing a potentially long computation to be interrupted is a classic idea across the computing
stack. The most well-known example is perhaps OS interrupts, which an OS thread can be in-
terrupted by interrupt handlers so that high-priority system maintenance can be performed in a
timely manner. In OS with cooperative scheduling, a thread can also be interrupted and context-
switched when its share of time is completed. As recent examples, ITask [19] may interrupt a
memory-intensive task upon memory pressure for partial memory reclamation. Shinjuku [36]
supports preemptive scheduling between short requests and long requests to reduce tail latency.
Intermittent computing [41] allows a computation to be interrupted due to resource constraints,
such as insufficient power source, and resume later. SEDA [61] allows a network service divided
into a network of stages through a programming model. As interruption and resumption are closely
related, checkpointing systems (e.g., [38, 41, 45, 48]) are also technically relevant in this design space.
On one hand, interruptible query processing shares the same high-level philosophy, incarnating
the philosophy into the design of query runtimes. On the other hand, the specific and unique
needs of different systems lead to different designs. In our case, our problem domain is online
query processing. Our design goal is to enable scalable performance in the presence of workload
fluctuation. Our solution is a form of incremental query propagation within data, coupled with leg
parallelism. In other words, the analogy between a query runtime and, say a memory allocator or a
battery-powered device, can only go to an extent. For example, checkpointing, a central problem in
many systems cited above, is relatively straightforward in PrrStop: each operation only needs to
remember which pitstop it has reached so far.

Deferring query processing is the central idea of a number of query processing systems. Here,
the most relevant guiding technique is lazy evaluation. For example, Sloth [13] is a compiler where
a data processing request in a database-backed program is lazily evaluated, so that a traditional
call-by-need style of program semantics can guide query execution, leading to reduced database
round-trips. Lazy transactions [18] allows the execution of a transaction to be split into a now-phase
and a later-phase. In neither system, the deferral happens during the data inspection, the key idea of
PrtSTOP. In spirit, PITSTOP is closer to incremental computing [4, 31, 33, 34, 47], in that the PrrStop
operations are incrementally propagated through data. Lineage-based programming [30] allows
deferred computation at the boundary of distributed network nodes. We diverge on our design
goals: theirs on fault tolerance in distributed data processing and ours on workload fluctuation
in cloud-based data processing. As a result, we do not overlap on other aspects of design and
evaluation. KickStarter [60] addresses continuous queries, i.e., the same (query) operation (e.g.,
returning the node with the largest payload value) is continuously processed over time but the
underlying (graph) data continuously change. They have an incremental algorithm to determine
whether the query needs to be recomputed based on what graph changes happen. In PrrStop,
the operations that arrive at the query runtime are arbitrary (Cypher) queries and updates, not
(multiple instances of) the same query.

There is a large body of work on query optimization. Batching is a classic optimization in
data processing. Cooperative scans [65] allow multiple queries to share a scan cursor in data
processing, with a focus on efficient storage access. Crescando [9, 24, 58] is a collaborative data
inspection system for in-memory data processing, where query-data joins and update-data joins
are supported for operation processing in a batch. These systems do not allow the query processing
to be interrupted; indeed, our comparative BMP baseline is the adaptation of Crescando to graph
databases. Multi-query optimization (MQO) [52, 53] shares our belief that multiple requests should
be considered as a whole for optimization, not in isolation. MQO approaches generally combine
multiple queries together through compilation, and often identify common subqueries that can
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be shared among queries. As a more recent exxample, SharedDB [23] compiles the database
workloads into a global and optimized query plan. Query pipelining allows nested SQL queries [62],
programmable queries [8], or multiple queries [32] to be compiled and processed in a pipelined
manner, often in a vectorized execution. While pipelining is a good solution when the underlying
system is in a perpetual UP state, it is not known as a solutoin for addressing workload fluutation.
Overall, PrtSTopP is orthogonal to MQO approaches other than the high-level philosophy: two
central ideas of our approach — incremental propagation and fine-grained parallelism — are not
part of the MQO design space.

Actors [5, 35] is a foundational model that leads to many influential language designs that
support fine-grained concurrency. Java virtual threads, Go routines, and CML [49] are widely
known examples in realistic languages. These features provide natural vehicles for implementing
fine-grained concurrency, but to achieve scalable performance, additional runtime support is needed,
with examples such as work stealing [22], MultiMLton [54], and Scala Akka [6]. The idea of fine-
grained parallelism has also influenced the design of many computer systems with scalablity as
a concern, such as AWS Lambda, ActOP [44], and PLASMA [51]. In this context, PrTSTOP is a
runtime design that harvests the semantic information of query processing for achieving fine-
grained concurrency. In data processing, data streaming systems—often enabled by data flow and
data streaming languages [7, 10, 43, 55, 57, 57, 59]—are also known for their parallelism support.
Conceptually, the design space explored by data streaming systems and PrrStop are duals. In
PrrSTOP, operations flow through (different pitstops of the potentially large) data whereas in
data streaming systems, data flow through (often networks of) operations. The duality between
operations-flowing-through-data and data-flowing-through-operations was articulated before [15].

DON calculus [15] lays a formal foundation for online data processing. It defines a spectrum of
online data processing systems, focusing two core features: (1) incremental operation processing:
a (query/update) operation can be incrementally propagated through the data, and (2) temporal
locality optimization: multiple operations issued near the same time may be optimized through
term rewriting. Most notably, they show that under certain conditions (which they call phase
distinction), a determinism property holds which says that the result of online data processing of a
sequence of operations — despite the non-deterministic executions due to incremental processing
and temporal locality optimization — remains identical to that from sequential processing the
sequence of operations. In that light, PrTSTOP can be conceptually viewed as a concrete instance in
that spectrum of online data processing algorithms. P1TSTOP supports a more restricted form of
incremental operation processing: whereas DON calculus allows an operation to be incrementally
propagated to any node in the data, PrtStoP only allows the incremental propagation to pause
at pitstop nodes. P1TSTOP supports batching and fusion, which are perhaps the most commonly
used “temporal locality” optimizations in practice; DON instead supports general term rewriting
as optimizations which may go beyond batching and fusion. The phase distinction condition of
their calculus requires that a query cannot generate another query during the query processing
process; this condition trivially holds for Cypher. DON calculus does not support parallelism, a
centerpiece of our work. Lacking experimental evaluation, DON calculus confirmed that a family
of online data processing algorithm can be correctly designed, without unknown experimental
effectiveness. PITStop identifies that workload fluctuation and long-tail are compelling use scenarios
for incremental propagation in query processing.

Broadly, mitigating workload fluctuation is a fundamental problem in computer systems which
can be addressed at different layers. In data centers, the most established route is dynamic provi-
sioning [12, 28], often coupled with workload analysis and prediction [20, 25]. In these systems, a
more accurate prediction on the workload enables dynamic provisioning of computation resources,
often through turning on/off servers. As powering servers on/off usually takes time (in seconds or
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minutes), such an approach is most effective in workload fluctuation settings with coarser time
intervals, such as those with diurnal patterns. Another classic OS approach is to address workload
fluctuation with dynamic resource allocation [11]. As perfect provisioning is not realistic, PITSTOP
complements these approaches for scenarios where UP and OP may happen in practice, and by
innovating over a unique aspect of the data processing engine, data inspection. Our experiments
show P1TSTOP is capable of addressing fine-grained workload fluctuations over a short duration of
time.

9 Conclusion

PrTSTOP is a novel query runtime designed for online data processing in the presence of workload
fluctuation. The key idea is to view the otherwise monolithic query processing incrementally, where
each step of incremental query propagation is enabled through fine-grained concurrency. PrrStop
satisfies a trio of competing goals in data processing: achieving scalable performance, processing
dynamic data, and maintaining sequential consistency. PrTStTop address challenging use scenarios
such as workload fluctuation and longtail, whose effectiveness is evidenced by experiments over
real-world graph datasets on cloud servers.

In the future, we would like to extend the core idea of P1TSTOP in several dimensions. First, we
would like to build a distributed data processing system where PrtStop runs within each node in
the cluster, and relaxed consistency is enforced across nodes (§ 7.4). Another interesting direction is
to achieve failure resilience and transparency. With atomicity (§ 3), disregarding a failed operation
per se is less difficult: if a failure happens during its propagation, no persistent data is modified,
and the failed operation can be removed from the pitstop it current resides. A more interesting
design space lies in efficient checkpointing to speed up failure recovery. With our discussion in § 8
on the connection between P1TSToP and checkpointing, our speculation is that PITStop is already
a more checkpointing-friendly system than MP: if pitstop information is preserved as checkpoints,
data inspection of a recovered operation (after failure) can continue from the saved pitstop, instead
from the beginning.

Acknowledgments

We would like to thank the anonymous reviewers for their insightful suggestions and comments.
This project is sponsored by the US NSF under CCF-1815949 and CNS-1910532.

Data Availability Statement

PrTStoP is an open-source project. The source code and experimental data are available [17]. The
supplementary material can be found online [16].

References
] [n ] Github Archive. http://www.githubarchive.org.
2] [n. d.]. Neo4j Graph Database. http://www.neo4j.org.

(1

(2]

[3] [n. ] Stack Exchange Data Dump. https://archive.org/details/stackexchange.

[4] Umut A. Acar, Guy E. Blelloch, and Robert Harper. 2006. Adaptive Functional Programming. ACM Trans. Program.
Lang. Syst. 28, 6 (Nov. 2006).

[5] Gul Agha. 1986. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge, MA, USA.

[6] akka [n. d.]. Scala Akka, https://akka.io/.

[7] E. A. Ashcroft and W. W. Wadge. 1977. Lucid, a nonprocedural language with iteration. Commun. ACM 20, 7 (July
1977), 8.

[8] Peter A Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-Pipelining Query Execution.. In Cidr,
Vol. 5. 225-237.

[9] George Candea, Neoklis Polyzotis, and Radek Vingralek. 2009. A Scalable, Predictable Join Operator for Highly

Concurrent Data Warehouses. Proc. VLDB Endow. 2, 1 (Aug. 2009), 277-288.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 332. Publication date: October 2024.


http://www.githubarchive.org
http://www.neo4j.org
https://archive.org/details/stackexchange
 https://akka.io/

332:26 Jeff Eymer, Philip Dexter, Joseph Raskind, and Yu David Liu

[10] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. 1987. LUSTRE: a declarative language for real-time programming.
In POPL °87. 178-188.

[11] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, Amin M. Vahdat, and Ronald P. Doyle. 2001. Managing Energy
and Server Resources in Hosting Centers. In Proceedings of the Eighteenth ACM Symposium on Operating Systems
Principles (SOSP °01). Association for Computing Machinery, New York, NY, USA, 103-116. https://doi.org/10.1145/
502034.502045

[12] Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin Xiao, and Feng Zhao. 2008. Energy-Aware Server
Provisioning and Load Dispatching for Connection-Intensive Internet Services. In Proceedings of the 5th USENLX
Symposium on Networked Systems Design and Implementation (NSDI'08). USENIX Association, USA, 337-350.

[13] Alvin Cheung, Samuel Madden, and Armando Solar-Lezama. 2014. Sloth: Being Lazy is a Virtue (when Issuing Database
Queries). In SIGMOD ’14. 931-942.

[14] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing on Large Clusters. In OSDI'04. San
Francisco, CA, 137-150.

[15] Philip Dexter, Yu David Liu, and Kenneth Chiu. 2022. The essence of online data processing. Proc. ACM Program. Lang.
6, OOPSLA2 (2022), 899-928. https://doi.org/10.1145/3563320

[16] Jeff Eymer, Philip Dexter, Joseph Raskind, and Yu David Liu. [n. d.]. Pitstop Supplementary Material (https:// www.cs.
binghamton.edu/~davidl/ papers/ OOPSLA24Sup.pdf ). Technical Report.

[17] Jeft Eymer, Phillip Dexter, Joseph Raskind, and Yu David Liu. 2024. A Runtime System for Interruptible Query Processing:
When Incremental Computing Meets Fine- Grained Parallelism - Artifact. https://doi.org/10.5281/zenodo.13372050

[18] Jose M Faleiro, Alexander Thomson, and Daniel ] Abadi. 2014. Lazy evaluation of transactions in database systems. In
SIGMOD’14. ACM, 15-26.

[19] Lu Fang, Khanh Nguyen, Guoqing Xu, Brian Demsky, and Shan Lu. 2015. Interruptible Tasks: Treating Memory

Pressure as Interrupts for Highly Scalable Data-Parallel Programs. In SOSP’15. 394-409.

Wei Fang, ZhiHui Lu, Jie Wu, and ZhenYin Cao. 2012. RPPS: A Novel Resource Prediction and Provisioning Scheme in

Cloud Data Center. In 2012 IEEE Ninth International Conference on Services Computing. 609-616. https://doi.org/10.

1109/SCC.2012.47

[21] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor Marsault, Stefan Plantikow,

Mats Rydberg, Petra Selmer, and Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs. In

SIGMOD ’18. 1433-1445.

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The Implementation of the Cilk-5 Multithreaded

Language. In Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language Design and Implementation

(PLDI ’98). Association for Computing Machinery, New York, NY, USA, 212-223. https://doi.org/10.1145/277650.277725

[23] Georgios Giannikis, Gustavo Alonso, and Donald Kossmann. 2012. SharedDB: killing one thousand queries with one
stone. Proceedings of the VLDB Endowment 5, 6 (2012), 526-537.

[24] Georgios Giannikis, Philipp Unterbrunner, Jeremy Meyer, Gustavo Alonso, Dietmar Fauser, and Donald Kossmann.

2010. Crescando. In SIGMOD’10 (SIGMOD ’10). 1227-1230.

Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and Alfons Kemper. 2007. Workload Analysis and Demand Prediction

of Enterprise Data Center Applications. In 2007 IEEE 10th International Symposium on Workload Characterization.

171-180.  https://doi.org/10.1109/ISWC.2007.4362193

[26] Jim Gray. 1988. The transaction concept: virtues and limitations. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 140-150.

Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor Marsault, Stefan Plantikow, Martin Schuster,

Petra Selmer, and Hannes Voigt. 2019. Updating Graph Databases with Cypher. Proc. VLDB Endow. 12, 12 (Aug. 2019),

2242-2254.

[28] Brian Guenter, Navendu Jain, and Charles Williams. 2011. Managing cost, performance, and reliability tradeoffs for
energy-aware server provisioning. In 2011 Proceedings IEEE INFOCOM. 1332-1340. https://doi.org/10.1109/INFCOM.
2011.5934917

[29] Theo Haerder and Andreas Reuter. 1983. Principles of transaction-oriented database recovery. ACM Comput. Surv. 15,

4 (dec 1983), 287-317. https://doi.org/10.1145/289.291

Philipp Haller, Heather Miller, and Normen Miiller. 2018. A programming model and foundation for lineage-based

distributed computation. Journal of Functional Programming 28 (2018).

Matthew A. Hammer, Khoo Yit Phang, Michael Hicks, and Jeffrey S. Foster. 2014. Adapton: Composable, Demand-driven

Incremental Computation. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI ’14).

[32] Stavros Harizopoulos, Vladislav Shkapenyuk, and Anastassia Ailamaki. 2005. QPipe: A Simultaneously Pipelined
Relational Query Engine. In Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data
(SIGMOD °05). Association for Computing Machinery, New York, NY, USA, 383-394. https://doi.org/10.1145/1066157.

[20

—

[22

—

[25

—

[27

—

[30

—

[31

—

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 332. Publication date: October 2024.


https://doi.org/10.1145/502034.502045
https://doi.org/10.1145/502034.502045
https://doi.org/10.1145/3563320
https://www.cs.binghamton.edu/~davidl/papers/OOPSLA24Sup.pdf
https://www.cs.binghamton.edu/~davidl/papers/OOPSLA24Sup.pdf
https://doi.org/10.5281/zenodo.13372050
https://doi.org/10.1109/SCC.2012.47
https://doi.org/10.1109/SCC.2012.47
https://doi.org/10.1145/277650.277725
https://doi.org/10.1109/IISWC.2007.4362193
https://doi.org/10.1109/INFCOM.2011.5934917
https://doi.org/10.1109/INFCOM.2011.5934917
https://doi.org/10.1145/289.291
https://doi.org/10.1145/1066157.1066201
https://doi.org/10.1145/1066157.1066201

A Runtime System for Interruptible Query Processing: When Incremental Computing Meets Fine-Grained Parallel332:27

1066201

Daco C Harkes, Danny M Groenewegen, and Eelco Visser. 2016. IceDust: Incremental and Eventual Computation of

Derived Values. In 30th European Conference on Object-Oriented Programming. Schloss Dagstuhl-Leibniz-Zentrum fiir

Informatik.

Daco C Harkes and Eelco Visser. 2017. IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition.

In 31st European Conference on Object-Oriented Programming. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik.

Carl Hewitt, Peter Bishop, Irene Greif, Brian Smith, Todd Matson, and Richard Steiger. 1973. Actor Induction and

Meta-Evaluation. In Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages (POPL °73). 153-168.

Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David Maziéres, and Christos Kozyrakis. 2019.

Shinjuku: Preemptive Scheduling for second-Scale Tail Latency (NSDI'19). USENIX Association, USA, 345-359.

[37] Ron Kohavi and Roger Longbotham. 2007. Online Experiments: Lessons Learned. IEEE Computer 40 (10 2007), 103—-105.
https://doi.org/10.1109/MC.2007.328

[38] R. Koo and S. Toueg. 1987. Checkpointing and Rollback-Recovery for Distributed Systems. IEEE Transactions on

Software Engineering SE-13, 1 (1987), 23-31.

Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is Twitter, a social network or a news

media?. In WWW ’10. 591-600.

[40] Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. IEEE Trans.

Comput. C-28, 9 (1979), 690-691. https://doi.org/10.1109/TC.1979.1675439

Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily Ruppel. 2017. Intermittent Computing:

Challenges and Opportunities. In 2nd Summit on Advances in Programming Languages, SNAPL 2017, May 7-10, 2017,

Asilomar, CA, USA (LIPIcs), Benjamin S. Lerner, Rastislav Bodik, and Shriram Krishnamurthi (Eds.), Vol. 71. 8:1-8:14.

[42] Eric Masanet, Arman Shehabi, Nuoa Lei, Sarah Smith, and Jonathan Koomey. 2020. Recalibrating global data center
energy-use estimates. Science 367, 6481 (2020), 984-986. https://doi.org/10.1126/science.aba3758

[43] Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper, Michael Greenberg, Aleks Bromfield, and Shriram
Krishnamurthi. 2009. Flapjax: A Programming Language for Ajax Applications. In Proceedings of the 24th ACM
SIGPLAN Conference on Object Oriented Programming Systems Languages and Applications (OOPSLA °09). ACM, New
York, NY, USA, 1-20. https://doi.org/10.1145/1640089.1640091

[44] Andrew Newell, Gabriel Kliot, Ishai Menache, Aditya Gopalan, Soramichi Akiyama, and Mark Silberstein. 2016.
Optimizing distributed actor systems for dynamic interactive services. In Proceedings of the Eleventh European Conference
on Computer Systems (EuroSys ’16). Article 38, 15 pages.

[45] orangefs [n. d.]. The OrangeFS Project, http://www.orangefs.org/.

[46] J. Park and A. Segev. 1988. Using common subexpressions to optimize multiple queries. In Proceedings. Fourth
International Conference on Data Engineering. 311-319.

[47] W. Pugh and T. Teitelbaum. 1989. Incremental Computation via Function Caching. In Proceedings of the 16th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL °89).

B. Randell, P. Lee, and P. C. Treleaven. 1978. Reliability Issues in Computing System Design. ACM Comput. Surv. 10, 2

(June 1978), 123-165.

[49] John H. Reppy. 2007. Concurrent Programming in ML (1st ed.). Cambridge University Press, USA.

[50] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. 2000. Efficient and Extensible Algorithms for Multi Query
Optimization. In SIGMOD’00. 249-260.

[51] Bo Sang, Pierre-Louis Roman, Patrick Eugster, Hui Lu, Srivatsan Ravi, and Gustavo Petri. 2020. PLASMA: programmable
elasticity for stateful cloud computing applications. In Proceedings of the Fifteenth European Conference on Computer
Systems (EuroSys "20). Article 42, 15 pages.

[52] Timos K Sellis. 1988. Multiple-query optimization. ACM Transactions on Database Systems (TODS) 13, 1 (1988), 23-52.

[53] Timos K. Sellis. 1988. Multiple-Query Optimization. ACM Trans. Database Syst. 13, 1 (March 1988), 23-52.

[54] K. C. Sivaramakrishnan, Lukasz Ziarek, and Suresh Jagannathan. 2014. MultiMLton: A multicore-aware runtime for
standard ML. Journal of Functional Programming 24 (2014), 613 - 674.

[55] Jesper H. Spring, Jean Privat, Rachid Guerraoui, and Jan Vitek. 2007. Streamflex: High-Throughput Stream Programming

in Java. In Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems and

Applications (OOPSLA ’07). Association for Computing Machinery, New York, NY, USA, 211-228. https://doi.org/10.

1145/1297027.1297043

Andrew S. Tanenbaum and Maarten van Steen. 2006. Distributed Systems: Principles and Paradigms (2nd Edition).

Prentice-Hall, Inc., USA.

William Thies, Michal Karczmarek, and Saman Amarasinghe. 2002. Streamlt: A language for streaming applications.

In International Conference on Compiler Construction. Springer, 179-196.

[33

[t

[34

flan)

[35

—

[36

—

[39

—

[41

—

—

[48

[t

[t

—

[56

—_

[57

—

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 332. Publication date: October 2024.


https://doi.org/10.1145/1066157.1066201
https://doi.org/10.1145/1066157.1066201
https://doi.org/10.1145/1066157.1066201
https://doi.org/10.1109/MC.2007.328
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1126/science.aba3758
https://doi.org/10.1145/1640089.1640091
http://www.orangefs.org/
https://doi.org/10.1145/1297027.1297043
https://doi.org/10.1145/1297027.1297043

332:28 Jeff Eymer, Philip Dexter, Joseph Raskind, and Yu David Liu

[58] P.Unterbrunner, G. Giannikis, G. Alonso, D. Fauser, and D. Kossmann. 2009. Predictable Performance for Unpredictable
Workloads. Proc. VLDB Endow. 2, 1 (Aug. 2009), 706-717.

[59] Mandana Vaziri, Olivier Tardieu, Rodric Rabbah, Philippe Suter, and Martin Hirzel. 2014. Stream Processing with a
Spreadsheet. In ECOOP 2014 — Object-Oriented Programming, Richard Jones (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 360-384.

[60] Keval Vora, Rajiv Gupta, and Guoqing Xu. 2017. KickStarter: Fast and Accurate Computations on Streaming Graphs

via Trimmed Approximations. In ASPLOS ’17. 237-251.

Matt Welsh, David E. Culler, and Eric A. Brewer. 2001. SEDA: An Architecture for Well-Conditioned, Scalable Internet

Services. In SOSP’01, Keith Marzullo and Mahadev Satyanarayanan (Eds.). ACM, 230-243.

[62] AN. Wilschut and P.M.G. Apers. 1990. Pipelining in query execution. In Proceedings. PARBASE-90: International
Conference on Databases, Parallel Architectures, and Their Applications. 562—. https://doi.org/10.1109/PARBSE.1990.77227

[63] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh
Rosen, Shivaram Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. 2016.
Apache Spark: A Unified Engine for Big Data Processing. Commun. ACM 59, 11 (Oct. 2016), 56—-65.

[64] Jingren Zhou and Kenneth A Ross. 2004. Buffering databse operations for enhanced instruction cache performance. In
SIGMOD’04. ACM, 191-202.

[65] Marcin Zukowski, Sandor Héman, Niels Nes, and Peter Boncz. 2007. Cooperative Scans: Dynamic Bandwidth Sharing
in a DBMS. In VLDB °07. VLDB Endowment.

[61

—

Received 2024-04-06; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 332. Publication date: October 2024.


https://doi.org/10.1109/PARBSE.1990.77227

	Abstract
	1 Introduction
	2 Background
	3 PitStop Data Processing
	4 PitStop Algorithm Specification
	5 Implementation and Experiment Settings
	6 Experimental Validation
	6.1 Comparative Baselines
	6.2 Latency Speedup
	6.3 Throughput Optimization
	6.4 Latency Variance Mitigation
	6.5 Alternative LDSIZE Settings
	6.6 Alternative Trace Compositions
	6.7 Alternative Operation Target Distribution
	6.8 PitStop in Perpetual UP/OP Scenarios
	6.9 Ablation Study
	6.10 Memory Consumption
	6.11 A Reflexive Look on Data-Aware Concurrency

	7 Extension and Discussion
	7.1 Extension: PitStop Integrated with Indexing
	7.2 Relational Data Processing
	7.3 Programmable Operation Dependencies
	7.4 Distributed Data Processing

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

