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The Essence of Online Data Processing

PHILIP DEXTER, YU DAVID LIU, and KENNETH CHIU, State University of New York (SUNY) at

Binghamton, USA

Data processing systems are a fundamental component of the modern computing stack. These systems

are routinely deployed online: they continuously receive the requests of data processing operations, and

continuously return the results to end users or client applications. Online data processing systems have unique

features beyond conventional data processing, and the optimizations designed for them are complex, especially

when data themselves are structured and dynamic. This paper describes DON Calculus, the first rigorous

foundation for online data processing. It captures the essential behavior of both the backend data processing

engine and the frontend application, with the focus on two design dimensions essential yet unique to online

data processing systems: incremental operation processing (IOP) and temporal locality optimization (TLO). A

novel design insight is that the operations continuously applied to the data can be defined as an operation
stream flowing through the data structure, and this abstraction unifies diverse designs of IOP and TLO in

one calculus. DON Calculus is endowed with a mechanized metatheory centering around a key observable

equivalence property: despite the significant non-deterministic executions introduced by IOP and TLO, the

observable result of DON Calculus data processing is identical to that of conventional data processing without

IOP and TLO. Broadly, DON Calculus is a novel instance in the active pursuit of providing rigorous guarantees

to the software system stack. The specification and mechanization of DON Calculus provide a sound base

for the designers of future data processing systems to build upon, helping them embrace rigorous semantic

engineering without the need of developing from scratch.
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1 INTRODUCTION
Providing high assurance to each layer of the computing stack is of critical importance in trustworthy

computing (e.g., [Appel et al. 2016]). The bedrock of many data-intensive applications — from

social networks, to bioinformatics, to artificial intelligence — is the data processing system, such

as databases and data analytical engines. Accelerated by the wide adoption of cloud computing,

these applications and systems are routinely deployed online: a long-running program continuously

applies a large number of data processing operations to a large amount of data, and continuously

provides its clients with results. One timely example is online graph processing [Cheng et al. 2012;
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Cipar et al. 2012; Dhulipala et al. 2019; Ediger et al. 2012; Han et al. 2014; Ju et al. 2016; Kumar and

Huang 2020; Sheng et al. 2018; Shi et al. 2016; Suzumura et al. 2014; Vora et al. 2017].

Building scalable online data processing systems is notoriously challenging. Indeed, a naive

online data processing system could behave just as conventional data processing, i.e., processing

each operation individually. Such a design however does not scale when operation requests come at

a rapid rate, especially when two challenges complicate the design space: (1) structured data support:
whereas key-value stores or relational data were dominant in the past, more structured data —

such as graphs — are increasingly prevalent; (2) dynamic data support: for many data-intensive

applications, the data themselves are mutable, and continuously evolve as operations are processed.

For example, social network analytics converge on the two challenges.

Although online data processing systems are widely deployed, faced with unique challenges,

and experimentally supported with diverse and complex solutions, no prior formal foundations

exist for this important family of software systems.

DON Calculus. We introduce DON Calculus, a formal foundation to account for the essential

behavior of online processing in the presence of dynamic structured data. Our theoretical motivation

is to understand the correctness of online data processing systems in the presence of complex

optimizations. More practically, we wish to build a “base” formal system — in the artifacts of

specification and mechanization — that future rigor-minded data processing system designers can

build upon. With these artifacts, their effort in specification and mechanization can focus on the

details unique to their system, not from scratch.

The centerpiece of DON Calculus are two essential features at the heart of online data processing

systems but beyond conventional data processing:

• Incremental Operation Processing (IOP): operationsmay be deferred for incremental processing,

so that the system can balance the need of processing potentially numerous operations that

arrive at a rapid rate.

• Temporal Locality Optimization (TLO): temporally consecutive operations applied to the data

may be manipulated for optimization before or during their processing, such as through

batching, reordering, fusing, or reusing (see § 2.1).

IOP and TLO reflect the same philosophy that underlies the design of online data processing

systems: instead of viewing the processing of each operation individually, a scalable solution should

take a multitude of operations into account. Indeed, these two forms of optimizations essential

for online data processing go hand in hand: it is often the delay resulted from IOP that enables

multiple operations to participate in a TLO.

DON Calculus features an operational semantics that spans the data processing system (the

backend) and the data processing application (the frontend). The backend captures the IOP and TLO

behavior, and the frontend is supported with a simple programming model for constructing data-

intensive applications. A key insight of DON Calculus is that the spirit of online data processing
can be embodied by viewing the operations as a stream, which we call the operation stream;

more importantly, the operation stream does not only exist at the frontend-backend boundary,

but also “flows through” the data structure itself. This view is aligned with our intuition, and

more importantly, it provides a unified abstraction to model the essential features of online data

processing: IOP is modeled as operation propagation in the stream, and TLO is modeled as stream

rewriting.

Sound Online Data Processing. DON Calculus is a rigorous study on the correctness of building

online data processing systems. As we have seen, the essential features of these systems are indeed

the optimizations designed over conventional data processing. To trust the result produced by an
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online data processing system, we must ensure the optimizations are sound: these systems must

produce deterministic results as in conventional data processing. Enforcing result determinism

however is a non-trivial problem, especially when expressive forms of IOP and TLO are in place.

With IOP, significant non-deterministic executions are introduced. With TLO, the operations in

the stream are altered. An important goal of DON Calculus is to establish both IOP and TLO are

sound optimizations. The main property enjoyed by DON Calculus is an observable equivalence
property: despite significant non-deterministic executions introduced by IOP and TLO (see § 4), all

terminating executions of the same program produce the same result as a conventional processing

model with neither TLO nor IOP.

DON Calculus is also endowed with a type system for its frontend programming model. The

system, a standard type-and-effect system in form, enforces the novel property of phase distinction
in data processing: while the computation at the frontend can freely issue new operations for

backend processing, the backend computation should not issue new operations for processing. If

phase distinction were ignored, the non-deterministic executions inherent in operation streams

would lead to non-determinism in results. Intuitively, this is analogous to a high-level data race

that our type system eliminates.

Mechanization. DON Calculus is mechanized in Coq, in around 7000 LOC. The proofs consist of

all properties of our operational semantics as well as the type system presented in the paper. Being

the first mechanization for online data processing (i.e., IOP and TLO features), this implementation

may serve as a basis for rigorously specifying and reasoning about other online data processing

systems, such as those with richer data processing primitives or optimizations. Our mechanization

includes the confluence proof a la Huet [Huet 1980], which may be a reusable (side) artifact for

observable equivalence proofs. The source code is available for inspection [Dexter et al. 2022].

Contributions. We envision DON Calculus can benefit the theory and practice of data processing

in two dimensions. The theoretical contribution of DON Calculus is that it enriches the foundation

of data processing by focusing on its online behavior, and especially, establishing its soundness in
the presence of common but non-trivial optimizations of TLO and IOP. The practical contribution

of DON Calculus is that it may help specify and mechanize existing or future online data processing

systems (see an example in § 8.4), so that new features of optimization can be rigorously defined

and reasoned about on top of a sound “base,” and not from scratch. As DON Calculus and its

mechanization represent a significant effort, we hope the artifacts from DON Calculus can improve

the productivity of rigorous semantic engineering of future data processing systems, and ultimately,

attract more developers of experimental data processing systems to formal methods.

More technically, this paper makes the following contributions:

• a foundation that captures the essence of online data processing with IOP and TLO;

• an operational semantics based on operation streams to uniformly account for IOP and TLO

in one system;

• a frontend programming model with a type system to enforce phase distinction;

• a metatheory defining the soundness of online data processing, including observable equiva-

lence and type soundness;

• the mechanized proofs for rigorous semantic engineering of online data processing systems.

2 AN INFORMAL ACCOUNT
In this section, we informally highlight the essential features of DON Calculus through examples.
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𝑜1, . . . , 𝑜𝑖

𝑣1, . . . , 𝑣 𝑗

Backend Frontend

evedeb

cam

bob amy

let
let

Legends:

operation stream

𝑜 operation

𝑣 result

data processing engine

data-intensive application

data structure (node and edge)

Fig. 1. The Frontend and Backend of Online Data Processing

2.1 The Big Picture: Scope and Expressiveness
The scope of our calculus is illustrated in Fig. 1. The frontend program continuously produces

data processing operations such as 𝑜1, . . . , 𝑜𝑖 in the Figure, and delivers them to the backend that

maintains a potentially large and evolving data, here a graph. As operations are processed and

results become available, the backend delivers the latter back to the frontend, 𝑣1, . . . , 𝑣 𝑗 . In scope,

DON Calculus spans both the backend and the frontend: the backend data processing engine

enabled with IOP and TLO, and the frontend programming model for constructing online data

processing applications.

A key abstraction of our calculus is the operational stream. For example, Fig. 1 shows an operation

stream extends from the frontend to backend (which we call the top-level operation stream for

convenience), and then continues to flow into nodes eve, deb, cam, bob, amy, in that order (which

we call the in-data operation stream). To place this novel view in context, observe that there is

a fundamental difference between the view taken by DON Calculus here and data streaming
(e.g., [Ashcroft and Wadge 1977; Caspi et al. 1987; Meyerovich et al. 2009; Murray et al. 2013, 2011;

Spring et al. 2007; Thies et al. 2002; Vaziri et al. 2014; Zaharia et al. 2013, 2016]). In DON Calculus,

a stream is formed by operations, to be passed through structured data. In data streaming systems,

a stream is formed by data, to be passed through structured operations. A more detailed discussion

on this difference can be found in § 9.

An important design goal of DON Calculus is to provide support for structured data, an essential

feature in state-of-the-art experimental systems. Our core calculus is defined over graph data.

Relational tables and key-value stores are simpler representations that can also be supported by

DON Calculus (see § 8.5).

Another design goal of DON Calculus is to support dynamic data. Not only the “payload” values

carried by data may change (e.g., the value contained in the amy node may be changed from 0

to 1), but also the structure of the data (e.g., a new edge may be added between amy and cam). In
expressiveness, our calculus goes beyond online processing of immutable data — such as MapReduce

datasets [Dean and Ghemawat 2004] or Spark RDDs [Zaharia et al. 2016] — and more on par with

data processing systems where data query operations and data update operations are continuously

received and processed (e.g., [Vora et al. 2017]).

2.2 Motivating Scenarios and Examples
We now use two motivating scenarios as running examples throughout the paper, demonstrating

the expressiveness of the calculus.

2.2.1 Application 1: Graph Databases. Graph databases [Buneman et al. 1996; Papakonstantinou

et al. 1995; Venkataramani et al. 2012] are an important family of databases that rely on structured

graphs for data storage.
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1: // node payload values
2: let amy, bob, cam, deb, eve, fred =

namy, nbob, ncam, ndeb, neve, nfred in
3: // graph construction
4: let a = add amy in
5: let b = add bob in
6: let c = add cam in
7: let d = add deb in
8: let e = add eve in
9: addRelationship c b;
10: addRelationship d c;
11: addRelationship e b;
12: addRelationship e a;
13: addRelationship a e;
14: // dynamic queries and updates
15: let nb = queryNode b in
16: updatePayload a nb;
17: let nb2 = queryNode b in
18: let f = add fred in
19: addRelationship b f;
20: deleteRelationship b f;
21: . . .

Fig. 2. The CoreSocial Application in

DON Calculus

1: let numSuperSteps = 30 in
2: // keys of interest
3: let keys = . . . in
4: let numNodes = length keys in
5: let fPInit = 𝜆⟨_; _; _⟩. 1

numNodes in
6: mapVal fPInit keys;
7: foreach 1..numSuperSteps

8: let neighborPSums =

9: [⟨nk; foldVal fPSum 0 keys⟩
10: | nk in keys,
11: let fPSum = 𝜆⟨_; payload; adjlist⟩.𝜆sum.if nk in adjlist

then payload + sum
else sum] in

12: foreach ⟨nk; ⟨_; neighborsSum; _⟩⟩ in neighborPSums

13: let fPG = 𝜆⟨_; _; adjlist⟩. 0.15
numNodes + 0.85 ∗ neighborsSum

length adjlist in

14: mapVal fPG [nk]

Fig. 3. The CorePR Application in DON Calculus (Expressions

encodable by 𝜆 calculus are liberally used, such as loop at Line 7

and list comprehension at Line 9, with a summary of encoded

expressions in § 3.1. )

Example 2.1 (CoreSocial in DON Calculus Sugared Syntax). Fig. 2 shows a minimalistic program

for maintaining a social network in the form of a graph database. In this sugared syntax, Lines 1-8

are node additions and Lines 9-13 are relationship additions. The remaining lines further consist

of a mixture of queries (Lines 15 and 17) and updates (Lines 16, 18, 19, 20). Each data processing

operation — highlighted in blue — is analogous to an API function in the graph database. The

(logical) graph after the program reaches Line 13 is shown as the backend of Fig. 1.

The programmer syntax assumed by our calculus is conventional: it consists of standard features

encodable by 𝜆 calculus, togetherwith data processing primitives. Aswe shall see (§ 3.1), the database

operations that appear in this example — such as add, addRelationship, and updatePayload —
can be encoded by those primitives. The CoreSocial example attempts to maintain a social graph,

where each node in this data structure carries a unique key, and also a payload value. For example,

the add expression at Line 4 adds a node whose key is freshly generated, whose payload is 𝑛amy.

The generated key is returned and bound to name a. The functionality of other database operations

should be self-explanatory through their names.

Relevant to online data processing is that the database operations — 16 of them in this program

— are continuously submitted to the graph database, and the graph continuously evolves.

2.2.2 Application 2: Iterative Graph Analytics. Graph analytics are algorithm-centric data processing

applications, often computing graph-theoretic properties. Most involve multiple iterations (or
supersteps), each of which involves non-trivial computations based on graph payload and topological

information.

Example 2.2 (CorePR in DON Calculus Sugared Syntax). Fig. 3 presents a 30-superstep PageR-

ank [Brin and Page 1998] algorithm in DON Calculus. Lines 2-4 compute the number of nodes.

Lines 5-6 initialize the node payloads. Line 7 iterates over supersteps. Each superstep has two

sub-steps. The first sub-step, at Lines 9-11, computes the sum of payload values for each node’s

in-degree adjacent nodes. The second sub-step, a loop at Lines 12-14, updates each node with a

new payload value, by utilizing fPG, the core PageRank aggregation function.
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As shown here, a graph analytical program may consist of numerous data processing operations

— within a superstep and across supersteps — continuously applied to the graph. In this program,

the two forms of graph processing operations are shown in blue. The mapVal-foldVal pair is

standard, except for a small variation. The selective map/fold is supported here: the last argument

for the mapVal or foldVal operation is the keys which identify which nodes the operation should

be applied to.

2.3 The Frontend-Backend Interaction
In DON Calculus, a simple asynchronous semantics is designed for data processing operations: the

evaluation of a data processing operation at the frontend does not need to block until the backend

returns the result. Instead, the evaluation places the operation of concern into the operation stream

destined for the backend, which we say the operation is emitted from now on.DON Calculus follows

the same route of futures [Flanagan and Felleisen 1995, 1999; Halstead 1985]. For example, the

emission of add amy at Line 4 in Example 2.1 generates a future value, which is subsequently claimed
at Line 12 a la future semantics. Modeling the frontend-backend interaction through asynchronous

semantics aligns with the philosophy well-articulated for asynchronous data processing [Bertsekas

and Tsitsiklis 1989; Elteir et al. 2010; Wang et al. 2013].

Example 2.3 (Operation Streams). The operations emitted at Line 4-8 form an operation stream

are [add namy, add nbob, add ncam, add ndeb, add neve].

Similarly, for the CorePR example, each evaluation at Line 3, Line 6, Line 9, and Line 14, results

in emitting a data processing operation to the operation stream.

DON Calculus supports dependent operations: an operation may have an argument referring

to the result of an earlier emitted operation. For example, Line 15 queries the node b through the

queryNode expression. The resulting value is used to update the payload of the node a at Line 16
through the updatePayload expression. The interaction between asynchrony and dependency

naturally calls for the backend claim, a feature of DON Calculus.

Example 2.4 (Backend Claim). The execution of Line 15-16 emits both operations into the opera-

tion stream. At the backend, the argument of the updatePayload expression, a future value, can be

claimed upon the completion of processing queryNode, without any interaction with the frontend.

2.4 Incremental Operational Processing (IOP) in Online Data Processing
Taking a per-operation view, data processing can be viewed as a process that reaches the data

nodes one by one through data scans or traversals (propagation), and along the way, computation is

performed when the operation reaches the data node(s) it is intended for (realization). The default
“baseline” behavior in data processing is eager processing, where the processing of an operation

must be completed once it is started.

Example 2.5 (Eager Processing). If one were to apply eager processing for executing Lines 9-10

in Fig. 2, and if we use 𝑜1 and 𝑜2 to represent the two operations issued at Line 9 and Line 10

respectively, the backend would process 𝑜1 first, traversing through eve, deb and cam, and finally

realizing at the latter. After the completion of 𝑜1, the traversal of the graph may start for 𝑜2, through

nodes eve and deb, and finally realize at deb.

In contrast, DON Calculus supports incremental in-data processing:

Example 2.6 (In-Data Operation Streams). Fig. 4 illustrates 8 runtime configurations of the backend

graph for CoreSocial in a DON Calculus reduction sequence. The first one coincides with the

moment when the processing of Line 1-8 in Fig. 2 is completed, and the operations in Line 9-10
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evedeb

cam

bob amy

𝑜2𝑜1

(a) 𝑜1 and 𝑜2 at backend

evedeb

cam

bob amy

𝑜2𝑜1

(b) 𝑜1 propagates to eve

evedeb

cam

bob amy

𝑜2𝑜1

(c) 𝑜2 propagates to eve

evedeb

cam

bob amy

𝑜2𝑜1

(d) 𝑜1 propagates to deb

evedeb

cam

bob amy

𝑜2

𝑜1

(e) 𝑜1 propagates to cam

evedeb

cam

bob amy

𝑜2

𝑜1

(f) 𝑜2 propagates to deb

evedeb

cam

bob amy

𝑜2

(g) 𝑜1 realizes at cam

evedeb

cam

bob amy

(h) 𝑜2 realizes at deb

Legend:

𝑜1 addRelationship c b in Fig. 2

𝑜2 addRelationship d c in Fig. 2

Fig. 4. In-Data Operation Streams for Fig. 2 Lines 9-10.

have been emitted but not processed. These two operations 𝑜1 and 𝑜2 flow through the graph nodes

following the traversal of eve, deb, cam, bob, amy, in that order. Intuitively, the in-data stream view

entails that the processing of multiple operations may co-exist: for configurations (b)(c)(d)(e)(f),

neither 𝑜1 nor 𝑜2 is completed. In addition, the propagation steps for different operations may

intermingle, the first 3 transitions in Fig. 4 are propagation steps for 𝑜1, 𝑜2, and 𝑜1, respectively.

In-data operation streams are a novel feature in our calculus. They provide a flexible and natural

design for IOP, as the operation can be incrementally applied through the data items (graph nodes

here), and be deferred at any arbitrary data node and resumed later. Deferred operation processing

is a common optimization in online data processing systems [Cheng et al. 2012; Dexter et al. 2016;

Sheng et al. 2018; Vora et al. 2017]; our stream-based design captures the general scenario where the

operations may be deferred at an arbitrary step of data scan. A second benefit of in-data operation

streams is it enables TLO “on the fly”; see § 4.2 for details.

The behavior exhibited in Example 2.6 is incremental propagation: the processing of 𝑜1 can be

deferred without the need of “rushing” to its realization. When 𝑜1 is deferred, the runtime can

process (i.e., either propagate or realize) another operation, such as the later emitted 𝑜2.

As a general calculus, DON Calculus places no restriction on the “schedule” of operation stream

processing: when multiple operations are processed, a non-deterministic choice can be made as to

which operation should take a step. For example, instead of transitioning from Fig. 4(b) to Fig. 4(c),

the program runtime may choose to have 𝑜1 take another propagation step to deb. To ensure result

determinism, a non-deterministic propagation is not an arbitrary propagation. In particular, the

operations in the operation stream form a chronological order of emission. It must be preserved

unless TLO allows for reordering.

Example 2.7 (Chronological Order Preservation). Let us assume the payload value in amy is initially
1, i.e., namy = 1. Operation 𝑜1 is an operation to double the payload of amy while 𝑜2 is an operation
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Elapsed Time

Superstep 1

Superstep 2

𝑜4

𝑜5 𝑘1

𝑜6

𝑜7

(a) Eager Processing

Elapsed Time

Superstep 1

Superstep 2

𝑜4

𝑜5

𝑜6

𝑜7

(b) Adaptive Processing

Fig. 5. PageRank with Stragglers (The CorePR program is applied to a graph with two nodes. Notation 𝑜𝑖

refers to the 𝑖th operation in the operation stream. With that, 𝑜4 and 𝑜5 refer to the two mapVal operations
emitted at Line 14 in superstep 1, and 𝑜6 and 𝑜7 refer to the two foldVal operations emitted at Line 9 in

superstep 2. Gray area indicates wait and dotted gray area indicates straggling. We assume the processing of

the straggler will eventually complete, normally or through a time-out.)

to add the payload of amy by 10. After the two operations are completed, amy should have a payload
of 12. Should we allow 𝑜2 to “swap” with 𝑜1, the payload of amy would be 22.

A data processing system that supports non-deterministic executions but deterministic results —

which DON Calculus enjoys — is good news for adaptiveness support, which we now illustrate

through a so-called “straggler” example, a classic problem in data processing [Ousterhout et al.

2015].

Example 2.8 (Superstep Blending for Straggler Mitigation). Fig. 5 illustrates two timelines of

execution of CorePR. Due to system resource fluctuations and transient failures, the processing of

operation 𝑜5 may be suspended, becoming a straggler. In Fig. 5a, the slowdown by the straggler

delays the beginning of the next superstep. In Fig. 5b however, while the straggler is suspended,

operation 𝑜6 in the second superstep may start, interleaving the two supersteps.

Another dimension of IOP support is incremental load update, where the load refers to the payload
expression carried by a data item:

Example 2.9 (Incremental Load Update). Suppose the operation at Line 14 of Fig. 3 is processed

at the backend and the node indicated by nk is reached whose payload value is 5. The realization

step of our calculus will update the node payload with expression fPG 5, without evaluating it

immediately.

IOP does not change the complexity of operation processing. In our system, an operation

incrementally propagates through the in-data operation stream, with a complexity of 𝑂 (𝑛) where
𝑛 is the data size. In eager data processing systems, the query/operation processing engine still

needs to scan or traverse the data to process a query, with complexity of 𝑂 (𝑛). Indeed, eager data
processing is formally a special case in DON Calculus (as we will see). In practice, many 𝑂 (𝑛)
algorithms in data processing are experimentally effective, especially in the presence of parallelism.

In § 8.6, we discuss the relationship between DON Calculus and sublinear operation processing.

2.5 Temporal Locality Optimization (TLO) in Online Data Processing
TLO is a broad family of optimizations. For the simple case of two temporally consecutive operations

𝑜1 and 𝑜2, where 𝑜1 is submitted to the data processing engine before 𝑜2, four forms of TLO are

well-known and captured in DON Calculus:
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• Batching: processing 𝑜1 and 𝑜2 “in tandem,” so that only one data scanning/traversal is needed

for processing both, as opposed to two if 𝑜1 and 𝑜2 are processed one by one.

• Reordering: processing 𝑜2 first and 𝑜1 later, on the assumption that the reversal does not

impact the result. Reordering is useful in use scenarios e.g., when 𝑜2 has a higher priority or

a closer deadline.

• Fusing: composing 𝑜1 and 𝑜2 into one operation 𝑜 , on the assumption that processing 𝑜 can

produce the same result as processing both 𝑜1 and 𝑜2. Just like batching, fusing is useful in

reducing the amount of data scanning/traversal.

• Reusing: applying 𝑜1 and 𝑜 ′2 to the data where 𝑜 ′
2
derives from 𝑜2 but reuses the result of

𝑜1 processing to avoid redundant computation. This style of TLO is known as Multi-Query

Optimization (MQO) [Park and Segev 1988; Sellis 1988; Sellis and Shapiro 1985].

We now revisit the CoreSocial example to illustrate the common forms of TLO that DON Cal-

culus supports. A novel consequence of in-data operation streams is that they enable on-the-fly

TLOs: optimization may happen while multiple operations are incrementally propagated to an

arbitrary data node in the in-data operation stream, leading to in-data batching, in-data reordering,

in-data fusing, and in-data reusing. In other words, our calculus highlights where and when TLOs

may happen, in addition to how they are defined.

Example 2.10 (In-Data Operation Batching). Consider Fig. 4(c). Since neither addRelationship
operation realizes at eve, both may propagate in a “batch” to deb in one reduction step.

Example 2.11 (In-Data Operation Reordering). Consider a configuration where 3 operations at

Lines 15-17 in Fig. 2 reach node deb. The third operation, queryNode b, reads from b while the

second operation writes to a. The latter 2 operations can “swap” since they do not operate on the

same node.

Example 2.12 (In-Data Operation Fusing). Imagine two operations at Lines 19-20 in Fig. 2 be-

fore they reach node bob. DON Calculus allows the addRelationship and deleteRelationship
operations to “cancel out” so that further processing of both is avoided.

Example 2.13 (In-Data Operation Reusing). Let us follow up on Example 2.11. After swapping, two

queryNode b operations are adjacent in the operation stream at node deb. DON Calculus allows

the second instance to immediately return, referencing the return value of the first instance.

In DON Calculus, TLOs are supported through rewriting rules over the operation stream. Not to

lose generality, TLOs are applied dynamically. This is aligned with our “open-world” assumption

on the usage scenarios in practice: when the program is compiled, the operations may not be

statically known yet. In other words, the program we showed in Fig. 2 may well be a textual a
posteriori representation of an interactive program, where each line of graph processing operation

is submitted through some interactive graphical interface.

2.6 A Type System for Phase Distinction
The primary goal of DON Calculus’s type system is to enforce a phase distinction of operation

emission: the backend should not emit an operation for processing while processing another

operation. To see why this restriction is important, let us start with a counterexample.

Example 2.14 (Backend Operation Emission). Consider the following program (that does not

typecheck in DON Calculus):
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Expressions, Operations, Values
𝑒 ::= 𝑣 | 𝑒 𝑒 | x | fix 𝑒 expression

| 𝐾 | 𝑒 ⊕ 𝑒 | 𝑒 ⊖ 𝑒
| 𝑁 | 𝜋𝑒
| 𝑜 | ⇓⇓⇓ 𝑒

𝑜 ::= add 𝑒 | map 𝑒 𝑒 | fold 𝑒 𝑒 𝑒 operation
𝑣 ::= 𝑓 | 𝑘 | 𝑛 | 𝐾𝐿𝑉 | 𝑁𝑉 | ℓ value
𝑓 ::= 𝜆x : 𝜏 .𝑒 function
ℓ future value/label
𝜏 type (see § 5)

Keys, Nodes, Integers, Names
𝑘 ∈ KEY key
𝐾 ::= KL⟨−→𝑒 ⟩ key list

𝐾𝐿𝑉 ::= KL⟨−→𝑘 ⟩ ∈ KLV key list value
𝑁 ::= N⟨𝑒; 𝑒; 𝑒⟩ node
𝑁𝑉 ::= N⟨𝑘 ;𝑛; 𝐾𝐿𝑉⟩ node value
𝑛 integer
x, y, z, 𝑢,𝑤 name
𝜋 ∈ {1, 2, 3} projection index

Fig. 6. Abstract Syntax

let k = . . . // key of interest
let f = 𝜆⟨_; payload; _⟩.payload ∗ 2 in
let g = 𝜆⟨_; payload; _⟩.(mapVal f [k]; payload) in
mapVal g [k];
let h = 𝜆⟨_; payload; _⟩.payload + 1 in
mapVal h [k]

If the operation mapVal f [k] inside the body of g is emitted before the operation mapVal h [k] is
emitted, the node with key k will have its payload value multiplied by 2 and then incremented by 1.

If the order is reversed, the payload value will be incremented by 1 and then multiplied by 2.

The root problem is that the evaluation order between the backend-emitted mapVal and the

frontend-emitted one cannot be decided upon, a symptom analogous to a race condition. Our type

system disallows backend operation emission through effect types: for every operation that is

emitted from the frontend, we guarantee that its processing does not have the effect of operation

emission. As a result, the program in Example 2.14 fail to typecheck.

3 SYNTAX AND RUNTIME STRUCTURES
In this section, we provide definitions for DON Calculus, including abstract syntax in § 3.1 and

runtime configuration in § 3.2.

Notations. We summarize 3 common structures used in this paper: sequence, set, and mapping.

We use notation [𝜎1, 𝜎2, . . . , 𝜎𝑚] to represent a sequence of 𝜎1, . . . , 𝜎𝑚 in that order for some𝑚 ≥ 0;

we shorthand it as
−→𝜎𝑚

, or
−→𝜎 when its length does not matter. We further call 𝜎1 as the head element

and 𝜎𝑚 as the last element. When𝑚 = 0, we further represent an empty sequence as []. Binary
operator 𝜎 :::::: Σ prepends 𝜎 to sequence Σ as the head, and binary operator Σ ++++++ Σ′

concatenates Σ
and Σ′

together. We elide their definitions here. We use notation {𝜎1, 𝜎2, . . . , 𝜎𝑚} to represent a set

with elements 𝜎1, . . . , 𝜎𝑚 for some𝑚 ≥ 0; we shorthand it as 𝜎𝑚 , or 𝜎 when its length does not

matter. When𝑚 = 0, we further represent an empty set as {}. Common set operators ∈, ⊆, and ∩
apply. We overload the operator |★ | to compute the size of★, where★may either be a sequence or

a set.

When a sequence takes the form of

−−−−−−→
𝜎 ↦→ 𝜎 ′𝑚

or when a set takes the form of 𝜎 ↦→ 𝜎 ′𝑚
, we call

it a mapping when 𝜎1, . . . , 𝜎𝑚 are distinct. Given 𝜇 as the aforementioned mapping, we further

define 𝜇 (𝜎𝑖 ) as 𝜎 ′
𝑖 for some 1 ≤ 𝑖 ≤ 𝑚; dom(𝜇) as 𝜎𝑚 ; and ran(𝜇) as 𝜎 ′𝑚

.

We omit some common definitions in 𝜆 calculus: 𝑒 [𝑣/x] for substitution of name x with value 𝑣

for expression 𝑒 ; ≡ for term equivalence; Id for the identity function; and ◦ for function composition.

3.1 Syntax
Fig. 6 defines the abstract syntax of DON Calculus. It consists of conventional 𝜆 calculus features,

such as name, abstraction, application, and fixpoint computation. Encodable features that appeared
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Programmer Syntax Formal Syntax f

⟨𝑒; 𝑒 ′; 𝑒 ′′⟩ N⟨𝑒; 𝑒 ′; 𝑒 ′′⟩
[𝑒1, . . . , 𝑒𝑛] KL⟨[𝑒1, . . . , 𝑒𝑛]⟩
addRelationship 𝑒 𝑒 ′ map f KL⟨[𝑒]⟩ 𝜆𝑥 .N⟨1𝑥 ; 2𝑥 ; 3𝑥 ⊕ KL⟨[𝑒 ′]⟩⟩
deleteRelationship 𝑒 𝑒 ′ map f KL⟨[𝑒]⟩ 𝜆𝑥 .N⟨1𝑥 ; 2𝑥 ; 3𝑥 ⊖ KL⟨[𝑒 ′]⟩⟩
updatePayload 𝑒 𝑒 ′ map f KL⟨[𝑒]⟩ 𝜆𝑥.N⟨1𝑥 ; 2𝑒 ′; 3𝑥⟩
queryNode 𝑒 fold f N⟨_; 0;KL⟨[]⟩⟩ KL⟨[𝑒]⟩ 𝜆𝑥.𝜆𝑦.𝑥

mapVal 𝑒 𝑒 ′ map f 𝑒 ′ 𝜆𝑥.N⟨1𝑥 ; 𝑒 𝑥 ; 3𝑥⟩
foldVal 𝑒 𝑒 ′ 𝑒 ′′ fold f N⟨_; 𝑒 ′;KL⟨[]⟩⟩ 𝑒 ′′ 𝜆𝑥.𝜆𝑦.N⟨1𝑦; 𝑒 𝑥 2𝑦; 3𝑦⟩

Table 1. Data Processing Operations Encodings

in the earlier examples are omitted, including if − then − else, list comprehension, let − in, the
; expression, and foreach.

Values. The values of our language are functions (𝑓 ), node keys (𝑘), node payloads (𝑛), key list

values (𝐾𝐿𝑉), node values (𝑁𝑉), and futures (ℓ).

Both the key list and the node are first-class citizens in our calculus. In the programmer syntax,

the former is represented as a sequence and the latter as a triple. To differentiate programming

abstractions from meta-level structures, we associate the key list with an explicit constructor KL
and the node with constructor N in the formal syntax, as shown in Table 1. We use

𝜋𝑒 to project

the first, second, and third component of a node 𝑒 when 𝜋 = 1, 2, 3, respectively.

Key lists in our calculus play two roles: defining the (ordered) adjacency list of a node, and

providing as argument for selective mapping and folding. Each data node (𝑁 ) is a triple: a key, a

payload expression, and an adjacency list expression. The last component accounts for the structural

information latent in structured data, intuitively, the “out-edges” of the node.

let nb = queryNode ⇓⇓⇓ b in
updatePayload ⇓⇓⇓ a ⇓⇓⇓ nb;
let nb2 = queryNode ⇓⇓⇓ b in
let f = add ⇓⇓⇓ fred in
addRelationship ⇓⇓⇓ b ⇓⇓⇓ f;
deleteRelationship ⇓⇓⇓ b ⇓⇓⇓ f;
. . .

Fig. 7. Fig. 2 Lines 14-21 in Formal

Syntax

A future value ℓ is generated when an operation is emitted

(§ 2.2.1), and as we shall see soon, it also serves as the unique

label for identifying the operation and its result in backend data

processing. Except for futures, all forms of values are also pro-

grams, including keys. To be consistent with real-world practice,

we allow programmers to name a key in their program.

Data Processing Operations and Lifecycle Support. Two new ex-

pressions handle the operation stream at the frontend: operation

emission (𝑜) and result claim (⇓⇓⇓ 𝑒). To highlight the asynchro-

nous nature of operation processing, each program point of

result claim in the programmer syntax is annotated with a ⇓⇓⇓ symbol explicitly. For example, Fig. 7

shows how the Lines 14-21 of Fig. 2 can be explicitly annotated with ⇓⇓⇓.
DON Calculus supports 3 core operations: add, map, and fold. The first operation has been used

in the CoreSocial and CorePR examples. The second and third operations are similar to mapVal
and foldVal in CorePR, except that the mapping function argument of map returns a node, and the
folding function argument of fold is a binary function over nodes. These primitives are sufficient

to encode all data processing operations in CoreSocial and CorePR, as shown in Table 1. In § 8,

we will further discuss how they can encode other common programming idioms. Finally, add is
useful to support dynamic data (§ 2.2.1).

For operations, we introduce a convenience function ⊙ that computes the keys of nodes where

the operation is intended for realization:

Definition 3.1 (Operation Target). The function ⊙(𝑜) computes the target of the operation 𝑜 ,

defined as 𝑘 if 𝑜 = map 𝑓 KL⟨−→𝑘 ⟩ or 𝑜 = fold 𝑓 𝑒 KL⟨−→𝑘 ⟩. The operator is undefined for add.
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𝐶 ::= ⟨𝐵;𝑂 ;𝑅; 𝑒⟩ configuration
𝐵 ::=

−→
𝑆 backend

𝑆 ::= ⟨𝑁 ;𝑂⟩ station
𝑂 ::=

−→
𝑈 operation stream/streamlet

𝑈 ::=
−−−−→
ℓ ↦→ 𝑜 stream unit

𝑅 ::= ℓ
𝐾𝐿𝑉↦−−→ 𝑣 result store

Fig. 8. Runtime Definitions

[⟨N⟨𝑘eve;𝑛eve;KL⟨[𝑘bob, 𝑘amy]⟩⟩; [[ℓ2 ↦→ 𝑜2]]⟩,
⟨N⟨𝑘deb;𝑛deb;KL⟨[𝑘cam]⟩⟩; [[ℓ1 ↦→ 𝑜1]]⟩,
⟨N⟨𝑘cam;𝑛cam;KL⟨[𝑘bob]⟩⟩; []⟩,
⟨N⟨𝑘bob;𝑛bob;KL⟨[]⟩⟩; []⟩,
⟨N⟨𝑘amy;𝑛amy;KL⟨[𝑘eve]⟩⟩; []⟩]

Fig. 9. A Backend Example of Fig. 4(d) ( 𝑘amy, 𝑘bob,

𝑘cam, 𝑘deb, 𝑘eve are keys of corresponding nodes

and ℓ1, ℓ2 are labels for 𝑜1, 𝑜2)

Additional Expressions. In addition to being in the value form, a key list or a node may also be in

its expression form, 𝐾 and 𝑁 respectively, when any of its components is not in the value form.

The ⊕ and ⊖ expressions are binary operators over key lists for their concatenation and subtraction

respectively. To support key list subtraction, we define function

−→
𝑘 \\\ −→𝑘 ′ as identical to −→

𝑘 except

that every element that appears in

−→
𝑘 ′ is removed.

3.2 The Structure of the Runtime
As shown in Fig. 8, a runtime configuration 𝐶 consists of 4 components: the (backend) runtime

data structure 𝐵, the (frontend) expression 𝑒 , and two structures that bridge them: the (top-level)

operation stream 𝑂 and the result store 𝑅.
We represent the runtime data structure as a sequence of runtime nodes called stations, each of

which consists of a data node (𝑁 ) and the operations (𝑂) that have so far propagated to that node.

We also call the latter as a streamlet. In other words, the in-data operation stream is composed

of per-station streamlets. An example of the formal data representation can be found in Fig. 9.

This representation reflects the fine-grained nature of our support for incremental processing: the

operation can propagate to and be deferred at any node. Client calculi to DON Calculus can further

restrict this most general treatment, e.g., a more implementation-oriented choice where nodes form

partitions and streamlets can only be associated with (the first node of) partitions.

Placing the data nodes into a sequence faithfully captures experimental data processing systems.

It may be tempting to represent the structured graph data as a linked data structure, i.e., a formal

representation of in-memory graphs through C-like pointers or Java-like object references. Unfor-

tunately, experimental graph processing systems rarely adopt this form. The root cause is that they

routinely process data that exceed the memory capacity, so their runtime representation is strongly

influenced by the graph representation in file or storage systems, where ordered access dominates.

In addition, this choice of representation does not impact the expressiveness of our calculus: for

smaller in-memory data structures implemented as a linked data structure, traversal algorithms

(e.g., depth-first or breadth-first) can always place nodes into a sequence. For example, if the graph

in Fig. 1 is implemented as a linked data structure, its traversal order — eve, deb, cam, bob, amy —
remains a sequence which DON Calculus can work with.

We formally represent an operation stream/streamlet as a sequence of stream units (𝑈 ), each of

which is a sequence of operations. This 2-dimensional representation — instead of a 1-dimensional

one — results from batching (§ 2.4), so that each stream unit can be viewed as a “batch.” In the

stream/streamlet, the operation is indexed by a unique label (ℓ). Each element in the result store

takes the form of ℓ
𝐾𝐿𝑉↦−−→ 𝑣 , associating result value 𝑣 with label ℓ . The additional 𝐾𝐿𝑉 is called a

residual target. If any key in the target key list of an operation cannot be found during processing,

it will be kept as the residual target in the result store.

The following definitions highlight the different access patterns of the operation stream and the

result store: whereas order does not matter for the latter, it matters for the former (recall § 2.4):
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F ::= ⟨𝐵;𝑂 ;𝑅;E⟩ frontend context
B ::= ⟨•;𝑂 ;𝑅; 𝑒⟩ backend context
T ::= B[𝐵 ++++++ • ++++++ 𝐵] task context
L ::= T[[⟨E;𝑂⟩]] load context

| T[[⟨𝑁 ;𝑂 ++++++ [ℓ ↦→ fold 𝑓 E 𝐾𝐿𝑉] ::::::𝑂⟩]]

E ::= • | E 𝑒 | 𝑣 E | 𝜋E | KL⟨−→𝑘 ++++++ [E] ++++++ −→𝑒 ⟩ expression context
| N⟨E; 𝑒; 𝑒⟩ | N⟨𝑘 ;E; 𝑒⟩ | N⟨𝑘 ;𝑛;E⟩
| E ⊕ 𝑒 | 𝐾𝐿𝑉 ⊕ E | E ⊖ 𝑒 | 𝐾𝐿𝑉 ⊖ E
| add E | map E 𝑒 | map 𝑓 E
| fold E 𝑒 𝑒 | fold 𝑓 E 𝑒 | fold 𝑓 𝑣 E | ⇓⇓⇓ E

Fig. 10. Evaluation Contexts

Definition 3.2 (Operation Stream Addition and Result Store Addition). The (overloaded)◀ operator

appends a stream unit to the configuration, or appends a stream unit to a non-empty backend, or

adds results to the configuration:

⟨𝐵;𝑂 ;𝑅; 𝑒⟩ ◀ 𝑈
△
= ⟨𝐵;𝑂 ++++++ [𝑈 ];𝑅; 𝑒⟩

⟨𝑁 ;𝑂⟩ :::::: 𝐵 ◀ 𝑈
△
= ⟨𝑁 ;𝑂 ++++++ [𝑈 ]⟩ :::::: 𝐵

⟨𝐵;𝑂 ;𝑅; 𝑒⟩ ◀ 𝑅′ △
= ⟨𝐵;𝑂 ;𝑅′ ∪ 𝑅; 𝑒⟩

The definition above says that any addition to an operation stream — be it a top-level operation

stream or a streamlet — must be appended. As we shall see in the operational semantics, any removal
from the operation stream will be from the head. It is through this consistent access pattern that

the chronological order of the operations is preserved in our semantics.

4 DON CALCULUS OPERATIONAL SEMANTICS
The main reduction system is presented in § 4.1. The semantics of TLO is an independent system

that bridges with the main system via one reduction rule, whose details are in § 4.2.

4.1 Semantics for Online Data Processing
The reduction relation𝐶 → 𝐶 ′

in Fig. 11 says that configuration𝐶 one-step reduces to configuration

𝐶 ′
. We use→∗

to represent the reflexive and transitive closure of→. Evaluation contexts are defined

in Fig. 10. To simplify our discussion, we classify→ reduction into 4 categories, based on where a
reduction happens.

1) Frontend Reduction. Rules with the F evaluation context enable reductions that happen on

the frontend. The pair of Emit and Claim rules define the behavior of asynchronous operation

processing at the frontend, with the former placing an operation on the top-level operation stream,

and the latter reading from the result store. The definition here follows future semantics, where

the fresh label in Emit is the future value. We say an operation is emittable if all of its arguments

are values, which we represent as metavariable 𝜔 :

𝜔 ::= add 𝑛 | map 𝑓 𝐾𝐿𝑉 | fold 𝑓 𝑣 𝐾𝐿𝑉

Both nodes and key lists as first-class citizens can be constructed at the frontend. The components

of a node may be inspected through Node. Key list concatenation and subtraction are defined

through KSA and KSS respectively. The rest of the frontend computation is enabled by Beta, in a

call-by-value style.

2) In-Data Task Reduction. On the backend, in-data processing may either be enabled by a task
reduction and a load reduction, the first of which we describe now. Rules with the T evaluation

context enable reductions that perform a task, i.e., a step on operation processing.

The task that “drives” the data processing at the backend is propagation, an instance of Prop. A

step of operation propagation involves two consecutive stations in the runtime data structure. The

reduction removes the head element (the oldest element) from the streamlet of the first station,

and places it to the last element (the youngest element) of the streamlet in the second station. It is

important to observe that the selection of redex for propagation is non-deterministic according to
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Emit

ℓ fresh

F[𝜔] → F[ℓ] ◀ [ℓ ↦→ 𝜔]
Claim

F[⇓⇓⇓ ℓ] = ⟨𝐵;𝑂 ;𝑅; 𝑒⟩ ℓ ∈ dom(𝑅)
F[⇓⇓⇓ ℓ] → F[𝑅(ℓ)] Beta F[(𝜆x .𝑒) 𝑣] → F[𝑒 [𝑣/x]]

Node

𝑁 = N⟨𝑣1; 𝑣2; 𝑣3⟩
F[𝜋𝑁 ] → F[𝑣𝜋 ] KSA F[KL⟨−→𝑘 ⟩ ⊕ KL⟨

−→
𝑘 ′⟩] → F[KL⟨−→𝑘 ++++++

−→
𝑘 ′⟩]

KSS F[KL⟨−→𝑘 ⟩ ⊖ KL⟨
−→
𝑘 ′⟩] → F[KL⟨−→𝑘 \\\

−→
𝑘 ′⟩]

Map

𝑘 ∈ 𝑘1 𝑜𝑖 = map 𝑓 KL⟨−→𝑘 𝑖⟩ for 𝑖 = 1, 2

𝑁1 = N⟨𝑘 ; 𝑒; 𝑒 ′⟩ 𝑁2 = N⟨𝑘 ; 2 (𝑓 𝑁1); 3 (𝑓 𝑁1)⟩
−→
𝑘 2 =

−→
𝑘 1 \\\ 𝑘

T[⟨𝑁1; [ℓ ↦→ 𝑜1] ::::::𝑂⟩] → T[⟨𝑁2; [ℓ ↦→ 𝑜2] ::::::𝑂⟩]

Fold

𝑘 ∈ 𝑘1
𝑜𝑖 = fold 𝑓 𝑒𝑖 KL⟨

−→
𝑘 𝑖⟩ for 𝑖 = 1, 2 𝑁 = N⟨𝑘 ; 𝑒 ′; 𝑒 ′′⟩ 𝑒2 = 𝑓 𝑁 𝑒1

−→
𝑘 2 =

−→
𝑘 1 \\\ 𝑘

T[⟨𝑁 ; [ℓ ↦→ 𝑜1] ::::::𝑂⟩] → T[⟨𝑁 ; [ℓ ↦→ 𝑜2] ::::::𝑂⟩]

Prop

𝑘 ∉
⋃

𝑜∈ran(𝑈 )
⊙(𝑜) 𝐵𝑖 = [⟨N⟨𝑘 ; 𝑒; 𝑒 ′⟩;𝑂𝑖⟩] for 𝑖 = 1, 2 𝑂1 = 𝑈 ::::::𝑂2

T[𝐵1 ++++++ 𝐵] → T[𝐵2 ++++++ (𝐵 ◀ 𝑈 )]

Complete

𝐵𝑖 = [⟨𝑁 ;𝑂𝑖⟩] for 𝑖 = 1, 2 𝑂1 = [ℓ ↦→ 𝑜] ::::::𝑂2 ⊙(𝑜) = {}
T[𝐵1] → T[𝐵2] ◀ [⟳⟳⟳ ℓ ↦→ 𝑜]

Last

T = B[𝐵 ++++++ •] 𝑁 = N⟨𝑘 ; 𝑒; 𝑒 ′⟩ 𝑘 ∉ ⊙(𝑜)
T[⟨𝑁 ; ℓ ↦→ 𝑜 ::::::𝑂⟩] → T[⟨𝑁 ;𝑂⟩] ◀ [⟳⟳⟳ ℓ ↦→ 𝑜]

Opt

𝐵𝑖 = [⟨𝑁 ;𝑂 ++++++𝑂𝑖 ++++++𝑂 ′⟩] for 𝑖 = 1, 2 𝑂1 { 𝑂2, 𝑅

T[𝐵1] → T[𝐵2] ◀ 𝑅

Load

L[𝑒] = ⟨𝐵;𝑂 ;𝑅; 𝑒 ′′⟩ ⟨[]; [];𝑅; 𝑒⟩ → ⟨[]; [];𝑅; 𝑒 ′⟩
L[𝑒] → L[𝑒 ′]

Empty

𝑜 ≠ add 𝑛

⟨[]; [ℓ ↦→ 𝑜] ::::::𝑂 ;𝑅; 𝑒⟩ → ⟨[];𝑂 ; {⟳⟳⟳ ℓ ↦→ 𝑜} ∪ 𝑅; 𝑒⟩
First

𝑜 ≠ add 𝑛

⟨𝐵; [ℓ ↦→ 𝑜] ::::::𝑂 ;𝑅; 𝑒⟩ → ⟨𝐵 ◀ [ℓ ↦→ 𝑜];𝑂 ;𝑅; 𝑒⟩

Add

𝑘 fresh

⟨𝐵; [ℓ ↦→ add 𝑛] ::::::𝑂 ;𝑅; 𝑒⟩ → ⟨N⟨𝑘 ;𝑛;KL⟨[]⟩⟩ :::::: 𝐵;𝑂 ; {ℓ
KL⟨[] ⟩
↦−−−−−→ 𝑘} ∪ 𝑅; 𝑒⟩

Fig. 11. DON Calculus Operational Semantics

the definition of T. In other words, propagation may happen between any adjacent two stations in

the runtime data.

The realizations of map and fold are defined by Map and Fold, over a single station as the redex.

The task reduction for map realization happens when the key of the redex is included in the target

key list, the second argument of the map operation. It further applies the mapping function (the first

argument) to the current node, which computes a new node to update the current node. Following

the convention in data processing, Map does not allow a map operation to update the key of the

node: even though the node payload and the data structure topology can be changed in dynamic

data, keys as unique identifiers of nodes do not change. In Fold, the folding function is applied to

the current node, and the resulting expression becomes the initial expression (the second argument)

of the fold operation for further propagation. Both Map and Fold demonstrate the incremental
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nature of load update (recall § 2.4). For example, when being applied, the map operation does not

immediately evaluate the resulting payload expression or adjacency list expression to a value.

When the target of the map (or fold) operation contains multiple keys, its processing is “incre-

mental”: the processing consists of many Prop steps occasionally interposed by Map (or Fold)

steps. We will show an example of this incremental process shortly, in Example 4.1.

Finally, Complete and Last are a pair of rules to “wrap up” the processing of an operation. The

former captures the case when a map or fold operation is successfully realized over every node

defined by its target. The latter represents the case when the last node is reached in the data. In

both cases, the⟳⟳⟳ operator computes the result to be placed to the result store:

⟳⟳⟳ ℓ ↦→ 𝜔
△
=


ℓ

𝐾𝐿𝑉↦−−→ 0 if 𝜔 = map 𝑓 𝐾𝐿𝑉

ℓ
𝐾𝐿𝑉↦−−→ 𝑣 if 𝜔 = fold 𝑓 𝑣 𝐾𝐿𝑉

A quick case analysis can reveal that each task reduction only involves at most two consecutive

stations in the station sequence (Prop), and often one station only (Map, Fold, Complete, Last, or

Opt). In other words, both task reductions exhibit local behaviors.

3) In-Data Load Reduction. On the backend, the other form of in-data processing is a load reduction,
enabled by Load. Unlike task reductions that process operations, load reductions (lazily) process

computations in data. What constitutes a load is evident by an inspection on the L evaluation

context, whose fulfilling redex we call a load expression: (i) the data node inside a station, or (ii) the
initial expression argument of a fold operation in the streamlet.

As revealed by Load, a load reduction depends on a frontend reduction: the premise of the rule

is a reduction over a configuration whose backend and top-level operation stream are both set to

{}, de facto only allowing for a frontend reduction. Intuitively, this means we consider every load

expression forms its own runtime with a trivial configuration that has no backend data or operation

stream. This simplifies our definition because a load reduction can thus depend on a Beta, Node,

or Claim reduction, effectively allowing the reductions they represent to happen at the backend of

data processing. The last case is especially important, in that it enables a dependent operation to

claim its argument in the form of a future, while processing at the backend (recall § 2.2.1).

Before we move on, let us illustrate the behavior of task and load reductions, especially on how

a propagation step, a realization step, and a load reduction step interleave with each other, through

an example:

Example 4.1 (Incremental Folding). Consider a configuration where the backend consists of two

stations, with nodes 𝑁1 and 𝑁2, and a fold operation has been propagated to the first station.

The operation has a folding function 𝑓 representing a function which sums up the payloads of

all target nodes (this is a simplified version of the CorePR example), and a target key list of

KL⟨[𝑘1, 𝑘2]⟩. The following is one reduction sequence which ends in the fold being completed,

where 𝑁𝑖 = N⟨𝑘𝑖 ; 𝑖;KL⟨[]⟩⟩ for 𝑖 = 0, 1, 2 and 𝑁 ′
0
= ⟨𝑘0; 3;KL⟨[]⟩⟩:

⟨[⟨𝑁1; [[ℓ ↦→ fold 𝑓 𝑁0 KL⟨[𝑘1, 𝑘2]⟩]]⟩, ⟨𝑁2; []⟩]; []; {}; 𝑒⟩
(Fold) → ⟨[⟨𝑁1; [[ℓ ↦→ fold 𝑓 (𝑓 𝑁1 𝑁0) KL⟨[𝑘2]⟩]]⟩, ⟨𝑁2; []⟩]; []; {}; 𝑒⟩
(Prop) → ⟨[⟨𝑁1; []⟩, ⟨𝑁2; [[ℓ ↦→ fold 𝑓 (𝑓 𝑁1 𝑁0) KL⟨[𝑘2]⟩]]⟩]; []; {}; 𝑒⟩
(Fold) → ⟨[⟨𝑁1; []⟩, ⟨𝑁2; [[ℓ ↦→ fold 𝑓 (𝑓 𝑁2 (𝑓 𝑁1 𝑁0)) KL⟨[]⟩]]⟩]; []; {}; 𝑒⟩

(Load) →∗ ⟨[⟨𝑁1; []⟩, ⟨𝑁2; [[ℓ ↦→ fold 𝑓 𝑁 ′
0
KL⟨[]⟩]]⟩]; []; {}; 𝑒⟩

(Last) → ⟨[⟨𝑁1; []⟩, ⟨𝑁2; []⟩]; []; {ℓ
KL⟨[] ⟩
↦−−−−−→ 𝑁 ′

0
}; 𝑒⟩

4) To-Data Reduction. The three rules that capture the behavior at the boundary of the top-level

operation stream and the data are simple. Empty considers the bootstrapping case where the data so

far contains no nodes. If the operation is a map or fold operation, a result is immediately returned.
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TLO-Batch [𝑈 ,𝑈 ′] { [𝑈 ++++++𝑈 ′], {}

TLO-Unbatch [𝑈1 ++++++𝑈2] { [𝑈1,𝑈2], {} if 𝑈𝑖 ≠ [] for 𝑖 = 1, 2

TLO-ReorderD [[ℓ1 ↦→ 𝑜1], [ℓ2 ↦→ 𝑜2]] { [[ℓ2 ↦→ 𝑜2], [ℓ1 ↦→ 𝑜1]], {} if ⊙ (𝑜1) ∩ ⊙(𝑜2) = {}

TLO-ReorderRR [[ℓ1 ↦→ 𝑜1], [ℓ2 ↦→ 𝑜2]] { [[ℓ2 ↦→ 𝑜2], [ℓ1 ↦→ 𝑜1]], {} if 𝑜𝑖 = fold 𝑓𝑖 𝑒𝑖 𝐾𝐿𝑉𝑖 for 𝑖 = 1, 2

TLO-ReorderRW [[ℓ1 ↦→ map 𝑓1 KL⟨
−→
𝑘 1⟩],{ [[ℓ2 ↦→ fold (𝑓2

𝑘1◦◦ 𝑓1) 𝑒 𝐾𝐿𝑉2],
[ℓ2 ↦→ fold 𝑓2 𝑒 𝐾𝐿𝑉2]] [ℓ1 ↦→ map 𝑓1 KL⟨

−→
𝑘 1⟩]], {}

Fig. 12. Selected Rules of Temporal Locality Optimization (A complete definition can be found in the supple-

mentary material.)

First removes the head element from the top-level operation stream, and places it as the last

element of the streamlet associated with the first node.

According to Add, a new node is created with a freshly generated key. In DON Calculus we

adopt a simple design for node addition: they are always placed at the beginning of the data station

sequence. This can be seen in Add. It also explains why an add reduction is a to-data reduction not

an in-data one.

4.2 Temporal Locality Optimization
The Opt rule bridges the main reduction relation (→) with the{ relation, which defines different

forms of temporal locality optimization. With selected rules defined in Fig. 12, the 𝑂 { 𝑂 ′, 𝑅
relation says that operation stream 𝑂 reduces to operation stream 𝑂 ′

in one step, while producing

result 𝑅.

TLO-Batch and TLO-Unbatch allow units in the in-data operation streams to be batched

and unbatched. As the Opt rule can be applied over the streamlet in any station, batching and

unbatching may happen in-data at an arbitrary station. The reader may notice that many task

reduction rules, such as Map and Fold, are defined with a singleton stream unit (batch). This is

because any batched stream unit can be unbatched first via TLO-Unbatch, realized, and then

batched again via TLO-Batch for further propagation.

Reordering is supported by three rules. TLO-ReorderD says that two operations with disjoint

target key lists can be reordered in the operation stream.

Example 4.2 (Operation Reordering). Imagine we have two operations that target disjoint keys:

ℓ ↦→ map 𝑒 KL⟨[𝑘1, 𝑘2]⟩ and ℓ ′ ↦→ map 𝑒 ′ KL⟨[𝑘3, 𝑘4]⟩. According to TLO-ReorderD, they may be

swapped.

TLO-ReorderRR says that two fold operations can be reordered, as both are “read” in nature.

Finally, TLO-ReorderRW shows a map operation and a fold operation may still be reordered even

if they have overlapping targets. The insight behind is that a fold can “skip ahead” of a map if the

former alters its folding function as applying the mapping function of the latter first. This rule

relies on a helper operator for composing a mapping function and a folding function together,

where 𝑓
𝑘◦◦ 𝑓 ′ is defined as 𝜆𝑥 .𝜆𝑦.𝑓 (if 1𝑥 ∈ 𝑘 then 𝑓 ′ 𝑥 else 𝑥) 𝑦.

To speed up the narrative, we defer the specification on fusion and reuse to the supplementary

material. Despite the diversity of TLOs — from batching, reordering, fusing, to reusing — the

principle here is that they all rewrite on the operation stream before the operations are realized.

The insight revealed by DON Calculus is that they may all happen in data (see § 2.5) thanks to the

fact that Opt can be applied in any streamlet.
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𝜏 ::= int | key | future[𝜏] | kl | node | 𝜏 𝜀→ 𝜏 type
𝜀 ::= T | F emittability
Γ ::= −−−→x : 𝜏 typing environment

T-Add

Γ ⊢ 𝑒 : int \ 𝜀
Γ ⊢ add 𝑒 : future[key] \ T

T-Map

Γ ⊢ 𝑒 : node F→ node \ 𝜀 Γ ⊢ 𝑒 ′ : kl \ 𝜀 ′

Γ ⊢ map 𝑒 𝑒 ′ : future[int] \ T

T-Fold

Γ ⊢ 𝑒 : node F→ node

F→ node \ 𝜀 Γ ⊢ 𝑒 ′ : node \ 𝜀 ′ Γ ⊢ 𝑒 ′′ : kl \ 𝜀 ′′

Γ ⊢ fold 𝑒 𝑒 ′ 𝑒 ′′ : future[node] \ T
T-Abs

Γ ++++++ [x : 𝜏] ⊢ 𝑒 : 𝜏 ′ \ 𝜀

Γ ⊢ 𝜆x : 𝜏 .𝑒 : 𝜏
𝜀−→ 𝜏 ′ \ F

T-App

Γ ⊢ 𝑒 : 𝜏 𝜀→ 𝜏 ′ \ 𝜀 ′ Γ ⊢ 𝑒 ′ : 𝜏 \ 𝜀 ′′

Γ ⊢ 𝑒 𝑒 ′ : 𝜏 ′ \ (𝜀 ∨ 𝜀 ′ ∨ 𝜀 ′′)

Fig. 13. Selected Rules of the DON Calculus Type System (A complete definition can be found in the

supplementary material.)

5 THE TYPE SYSTEM
Fig. 13 defines a type system for DON Calculus, where typing judgement Γ ⊢ 𝑒 : 𝜏 \ 𝜀 says that
given typing environment Γ, expression 𝑒 has type 𝜏 with emittability 𝜀. Metavariable 𝜀 ranges

over booleans, where a true value (T) indicates the expression may emit an operation whereas a

false value (F) indiates it must not. Operator Γ{x} is defined as 𝜏 where x ′ : 𝜏 is the right most

occurrence in Γ such that x = x ′.
Types are either a key type key, a payload type int, a key list type kl, a node type node, a future

type future[𝜏] where 𝜏 is the type of the result represented by the future, or a function type 𝜏
𝜀→ 𝜏 .

In the last form, emittability

𝜀→ is the effect of the function, which we will explain next. When a

function has type 𝜏
T→ 𝜏 , we informally say that the function is latently emittable.

5.1 Phase Distinction
The primary goal of the type system is to enforce phase distinction: whereas the evaluation of an

expression at the frontend is unrestricted, the evaluation at the backend cannot lead to an operation

emission. We establish phase distinction through a simple type-and-effect system. It is built on

the insight that an operation might be emitted at the backend if the functions that serve as the

arguments of operations were latently emittable. As a result, the key to enforcing phase distinction

is to make sure these arguments are not latently emittable. Note that in our type system, both

T-Map and T-Fold ensure that their argument functions — be it the mapping function or the folding

function — have function types that are not latently emittable. Emittability is disjunctive, as shown

in rules such as T-App. On top of a standard type-and-effect core, the main novelty of our type

system is the property it enforces: phase distinction is a previously unreported property, yet critical

in establishing result determinism.

To revisit Example 2.14, the program does not type check because expression mapVal g [k] would
violate phase distinction.

5.2 Runtime Typing
Our type system can be implemented either as a static system or a dynamic system. The former

is useful with the “closed world” assumption: the entire processing operations are known before

the program starts. The latter is more appropriate with the “open world” (see Sec. 3.1), where the

forms of operations and their arguments may not be known until run time. The runtime typing
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ˆF ::= ⟨𝛽 ; [];𝑅;E⟩ eager frontend context
ˆB ::= ⟨•; [];𝑅; 𝑒⟩ eager backend context
ˆT ::= ˆB[𝛽 ++++++ • ++++++ 𝛽] eager task context (redex load-free)
ˆL ::= ˆB[𝛽 ++++++ ⟨E;𝑂⟩ :::::: 𝛽] eager load context

| ˆB[𝛽 ++++++ ⟨𝑁𝑉 ; [[ℓ ↦→ fold 𝑓 E 𝐾𝐿𝑉]]⟩ :::::: 𝛽]
𝛽 ::=

−−−−−→
⟨𝑁𝑉 ; []⟩ dry backend

Fig. 14. Evaluation Context for Eager Processing

rules are a predictable extension of static typing, with additional rules for configuration typing and

value typing. The judgment Γ ⊢c 𝐶 : 𝜏 \ 𝜀 says configuration 𝐶 has type 𝜏 with emittability 𝜀 under

typing environment Γ. We defer these rules to the supplementary material.

6 META-THEORY
We now state important properties for DON Calculus. We say a backend is dry if it follows the

form

−−−−−→
⟨𝑁𝑉 ; []⟩, written as 𝛽 . We say a configuration 𝐶 is well-typed iff [] ⊢c 𝐶 : 𝜏 \ 𝜀 for some 𝜏 and

𝜀. We define function init (𝑒, 𝐵) to compute the initial configuration of frontend program 𝑒 given

initial backend 𝐵. Specifically, init (𝑒, 𝐵) △
= ⟨𝐵; []; {}; 𝑒⟩. The function init (𝑒, 𝐵) is only defined if

⟨𝐵; []; {}; 𝑒⟩ is well-typed. According to this definition, a program does not have to start with an

empty data structure; it can start with a data structure represented by 𝐵.

1) Type Soundness.

Lemma 6.1 (Type Preservation). If Γ ⊢c 𝐶 : 𝜏 \ 𝜀, and 𝐶 → 𝐶 ′ then Γ ⊢c 𝐶 ′
: 𝜏 \ 𝜀 ′ where 𝜀 = F

implies 𝜀 ′ = F.

Lemma 6.2 (Progress). For any 𝐶 which is well-typed, then either 𝐶 = ⟨𝛽 ; [];𝑅; 𝑣⟩ for some 𝛽 and
𝑅 or there exists some 𝐶 ′ ≠ 𝐶 and 𝐶 → 𝐶 ′.

In this lemma, note that the configuration ⟨𝛽 ; [];𝑅; 𝑣⟩ has the first component (the backend) as a

dry backend, the second component (the top-level operation stream) as empty ([]), and the fourth

component (the expression) as a value. This configuration is intuitively a terminating configuration.

Theorem 6.3 (Soundness). For any program 𝑒 and backend 𝐵, if init (𝑒, 𝐵) = 𝐶 then either there
exists 𝐶 ′ such that 𝐶 →∗ 𝐶 ′ where 𝐶 ′ = ⟨𝛽 ; [];𝑅; 𝑣⟩ or 𝐶 diverges.

This important theorem establishes type soundness. As expected, it does require the initial

configuration to be well-typed, because function init (𝑒, 𝐵) has the pre-condition that ⟨𝐵; []; {}; 𝑒⟩
is well-typed.

Corollary 6.4 (Phase Distinction). For any well-typed configuration 𝐶 , if 𝐶 → 𝐶 ′, then either
(1) the reduction is an instance of Emit, or (2) the reduction is not an instance of Emit, and its derivation
does not contain an instance of Emit.

Recall that Emit is defined with the frontend context F. Case (1) says that operation emission

may happen at the frontend. On the backend, recall that the only reduction that may contain

a subderivation of Emit would be an instance of Load. Case (2) says that such a derivation is

not possible. In other words, operation emission cannot happen on the backend. As shown in

Example 2.14, the importance of phase distinction is that it contributes to result determinism, which

we elaborate next.

2) Result Determinism (Observable Equivalence). With generality as a design goal, DON Calculus

is guided with a design rationale that we should place as few restrictions on the evaluation order

as possible, leading to a semantics inherent with non-deterministic executions. One example is
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the non-deterministic redex selection for propagation which we described in § 4. More generally,

a simple case analysis of evaluation contexts in Fig. 10 should make clear that DON Calculus is

endowed with non-deterministic redex selection between:

• a frontend reduction and a backend reduction: given a configuration, either F or B can be used

for selecting the redex of the next step of reduction;

• task reductions over different stations: according to T, the redex can be an arbitrary station in

the runtime data, where the task is an instance of Map, Fold, Complete, and Last, or two

adjacent stations, where the task is an instance of Prop;

• load reductions inside different stations: according to L, the redex can be any load expression

inside an arbitrary station;

• a task reduction and a load reduction: either T and L can be used for redex selection.

Non-deterministic executions are good news for generality and adaptability (see § 2.4), but

they are a challenge to correctness: do different reduction sequences from the same configuration

produce the same result? We answer this question now.

Lemma 6.5 (Result Confluence). For any frontend program 𝑒 and backend 𝐵, if init (𝑒, 𝐵) →∗

⟨𝐵1;𝑂1;𝑅1; 𝑣1⟩ and init (𝑒, 𝐵) →∗ ⟨𝐵2;𝑂2;𝑅2; 𝑣2⟩ then ∀ℓ ∈ dom(𝑅1) ∩ dom(𝑅2).𝑅1 (ℓ) = 𝑅2 (ℓ).
In other words, despite the non-deterministic execution exhibited by the asynchronous processing

between the frontend and the backend (see § 2.2.1), despite the non-deterministic choices in

propagation and realization in the backend (see § 2.4), despite non-deterministic executions over

load expressions resulting from lazy realization (see § 2.4), despite the in-data TLO (see § 2.5),

all executions that produce a result for an operation will converge on the same result. Taken all

operations into account, we can further establish:

Theorem 6.6 (Determinism). For any frontend program 𝑒 and backend 𝐵, if init (𝑒, 𝐵) →∗

⟨𝛽
1
; [];𝑅1; 𝑣1⟩ and init (𝑒, 𝐵) →∗ ⟨𝛽

2
; [];𝑅2; 𝑣2⟩ then 𝛽1 = 𝛽

2
and dom(𝑅1) = dom(𝑅2) and ∀ℓ ∈

dom(𝑅1).𝑅1 (ℓ) = 𝑅2 (ℓ) and 𝑣1 ≡ 𝑣2.
According to this theorem, all terminating executions not only produce the same results for

operations, but also lead to the same final data structure, and the same values modulo term

equivalence in 𝜆 calculus. Here, term equivalence is needed because of the TLO rules such as

fusing. It is also important to observe this Theorem can only be established with the support

of phase distinction. Without it, both the frontend and the backend could emit operations in

a non-deterministic, interleaved manner such that the reduction rules could no longer ensure

determinism.

Finally, eager data processing (see § 1) can be modeled by redefining evaluation contexts without
altering any reduction rules. Intuitively, this means that eager data processing is a restrictive instance

of DON Calculus. Rigorously, we represent eager processing as the

E−→ reduction relation, defined

as identical as the → we introduced in Fig. 4, except that the F, B, T, L evaluation contexts are

replaced with
ˆF, ˆB, ˆT, ˆL evaluation contexts in Fig. 14. We use

E−→∗
to represent the reflexive and

transitive closure of

E−→. We say a backend 𝐵 is load-free if any load expression in any station in 𝐵 is

a value. For the eager task context
ˆT, we further require any element in the domain of its fulfillment

function to be load-free. A trivial case analysis will reveal

E−→ is deterministic, conforming to our

intuition of one-at-a-time processing.

Corollary 6.7 (DON CalculusWith Regard to Eager Processing). For any frontend program

𝑒 and backend 𝐵, if init (𝑒, 𝐵) E−→∗ ⟨𝛽
1
; [];𝑅1; 𝑣1⟩and init (𝑒, 𝐵) →∗ ⟨𝛽

2
; [];𝑅2; 𝑣2⟩then 𝛽1 = 𝛽

2
and

dom(𝑅1) = dom(𝑅2) and ∀ℓ ∈ dom(𝑅1).𝑅1 (ℓ) = 𝑅2 (ℓ) and 𝑣1 ≡ 𝑣2.
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The simple corollary however carries an important message: the general, less restrictive data

processing of DON Calculus preserves the computation results of conventional data processing. In

a nutshell, IOP and TLO are both sound optimizations.

7 COQMECHANIZATION
DON Calculus has been mechanized in Coq. The proofs include all properties of our meta-theory

presented in § 6, spanning around 7,000 LOC. In addition to gaining confidence in the correctness

of our calculus, the artifact of Coq mechanization may serve as a first-step reference for computer

system researchers to rigorously specify and reason about their own systems of online data

processing. Determinism in processing results is a fundamental property that transcends the

individual designs of online data processing.

The most challenging part of our mechanization is the confluence proof for determinism (Theo-

rem 6.6). Our proof follows the structure of Huet [Huet 1980], with two main properties to establish:

(1) the reduction system is locally confluent; (2) local confluence leads to global confluence. The

proof relies on Noetherian (well-founded) induction, following Huet.

8 PRACTICAL EXTENSIONS
In this section, we discuss some encodings and higher-level programming idioms, as well as a

number of extensions.

8.1 Custom Data Storage
Data processing routinely requires metadata support for optimization purposes, and/or produce

intermediate results stored in data. Encoding in-data storage beyond the integer payload is simple. A

node with key𝑘 , edges 𝐾𝐿𝑉 , and custom structured payload cp ∈ CP, can be encoded asN⟨𝑘 ; 𝐼 (cp); 𝐾𝐿𝑉⟩
where 𝐼 : CP ↦→ INT is a bijective “integer encoding” function. 𝐼−1 can compute the custom payload

storage from the node integer payload. Given cp is inductive, 𝐼 is a standard tree compression

function. We will see an example in § 8.4.

8.2 Deletion
Edge deletion is straightforward in DON Calculus; see the encoding of deleteRelationship
in Table 1. In large-scale data processing systems (e.g., [neo 2010]), node deletion is commonly

supported through a conceptual “mark-and-sweep”: a boolean “in-use” field in each node indicates

whether a node is in use (true) or deleted (false); processing a deletion operation online only

implies resetting the field, and all nodes whose “in-use” field is set as false is swept offline. In

DON Calculus, this “in-use” field can be supported through custom storage (§ 8.1). The deletion

operation itself is a simple map function that sets the field to false. A user-level “map” function

can be encoded as a map whose mapping function first checks the “in-use” field is true; the same

applies to a user-level “fold” function.

8.3 Subgraph Computations
Within graph processing, graph algorithms are often defined over subgraphs, a neighborhood of

nodes logically connected through edges. The algorithm building blocks of subgraph computation

are either pull-based (e.g., [Wang et al. 2016]) or push-based (e.g., [Roy et al. 2013]), or both

(e.g., [Shun and Blelloch 2013; Zhang et al. 2015]). For a directed graph where each edge connects

from the source node to the destination node, a pull-based model iterates over destination nodes,

and aggregates over in-edges for each of them, whereas a push-based model iterates over source

nodes, and scatters over out-edges for each of them [Grossman et al. 2018]. The essence of both

models can be encoded with DON Calculus as follows, where 𝑓agg and 𝑓dist are the aggregation
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and distribution functions respectively, 𝑛 is the initial value for aggregation, and 𝐾𝐿𝑉 is the keys of

dataset for processing:

pull 𝑓agg 𝑛 𝐾𝐿𝑉
△
= foreach𝑤 in 𝐾𝐿𝑉

let 𝑧 = 𝜆𝑥.𝜆𝑦.if (𝑤 in 3𝑥) then 𝑓agg 2𝑥 𝑦 else 𝑦 in
let 𝑢 = foldval 𝑧 𝑛 𝐾𝐿𝑉 in
mapVal (𝜆𝑥.𝑢) KL⟨[𝑤]⟩

push 𝑓dist 𝐾𝐿𝑉
△
= foreach𝑤 in 𝐾𝐿𝑉

let 𝑧 = queryNode𝑤 in mapVal(𝜆𝑥.(𝑓dist 2𝑧 𝑥)) 3𝑧

Here, the pull encoding iterates over each destination node𝑤 , aggregates for all its source nodes,

and updates the payload of𝑤 . Indeed, the CorePR example in essence is pull-based aggregation:

Line 9-11 of Fig. 3 has a similar structure. The push encoding iterates over each source node𝑤 and

updates the payloads of all destination nodes, i.e.,
3𝑧 in the definition.

Variants of the pull/push are common in think-like-a-vertex graph processing systems, e.g., [Emoto

et al. 2016; Gonzalez et al. 2012; Low et al. 2012; Malewicz et al. 2010]. Take the Gather-Apply-Scatter

(GAS) model in Powergraph [Gonzalez et al. 2012] for example. The pull encoding is analogous to

the combination of “Gather” and “Apply”, whereas the push encoding is analogous to “Scatter.”

8.4 Modeling Existing Systems
DON Calculus lays a foundation for rigorously reasoning about online data processing systems.

We now use KickStarter [Vora et al. 2017] as an example to sketch our foundational role in helping

specify existing experimental systems.

KickStarter is an online graph processing system where queries results are continuously expected

while the queries may be interspersed with graph update operations such as edge addition or

deletion. One example query is the single-source widest path (SSWP), where each edge is weighted,

and continuous queries may be issued to find out the widest path of a node to a common source

node. The key metadata in KickStarter tracks the value dependency among nodes: each node

maintains a set of nodes whose change may impact the query result to that node. DON Calculus

can encode the metadata through custom storage (§ 8.1) in the form of ⟨CV;DS;𝑊 ⟩ with each node,

where CV ∈ INT keeps the current query result, DS ∈ KLV is the value dependency store, and
𝑊 : KEY ↦→ INT represents edge weights. Intuitively, when a node of key 𝑘 has a DS where 𝑘 ′

appears, it means that the change of node 𝑘 ′ may impact the query result for node 𝑘 . When a node

of key 𝑘 has a𝑊 entry that maps 𝑘 ′ to 𝑛, it means that the weight for the edge connecting 𝑘 and 𝑘 ′

has the weight of 𝑛. (One observation made by KickStarter is that DS is often a singleton set for

common graph queries; we keep the list representation for generality.) For the rest of the section,

we define convenience functions to retrieve the current query result and the value dependency

store associated with each node:

getV N⟨𝑘 ;𝑛; 𝐾𝐿𝑉⟩ △
= 1 (𝐼−1 (𝑛))

getD N⟨𝑘 ;𝑛; 𝐾𝐿𝑉⟩ △
= 2 (𝐼−1 (𝑛))

KickStarter judiciously determines the need for recomputing the query result. Not to lose

generality, we represent recomputation through a higher-order function recompute, which takes

a function 𝑓 that can be applied to a node to produce the recomputed result. Just as SSWP and

single-source shortest path (SSSP) may have different ways of recomputation, KickStarter allows

programmers to provide (i.e., customize) this function 𝑓 :

recompute 𝑓 𝑁𝑉
△
= ⟨𝑘 ; 𝐼 (𝑓 𝑁𝑉); 𝐾𝐿𝑉⟩ where 𝑁𝑉 = N⟨𝑘 ;𝑛; 𝐾𝐿𝑉⟩
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Here, 𝑓 can rely on any information in the node 𝑁𝑉 (e.g., current query result or dependency

store) to recompute. With that, we can encode the query function of KickStarter as follows, where

𝑣uinit represents the uninitialized value for CV, i.e., before the first query is conducted:

KSQuery 𝑘 𝑓
△
= let 𝑦 = 𝜆x . if ((getV x) == 𝑣uinit) recompute 𝑓 x else x in

map 𝑦 KL⟨[𝑘]⟩; getV (queryNode 𝑘)
The more interesting case is edge deletion, which we encode as follows. Here, keys 𝑘s and 𝑘d are

the source/destination node of the edge to be deleted, 𝐾𝐿𝑉 is the scope of keys to be inspected (such

as a partition, or the entire graph), and 𝑓 is the custom recomputation function.

KSDeleteEdge 𝑘s 𝑘d 𝐾𝐿𝑉 𝑓
△
= deleteRelationship 𝑘s 𝑘d; trim KL⟨[𝑘s]⟩ 𝐾𝐿𝑉 𝑓

where trim 𝐾𝐿𝑉 ′ 𝐾𝐿𝑉 𝑓
△
= foreach (𝑤 in 𝐾𝐿𝑉 ′)

let 𝑧 = 𝜆𝑥.𝜆𝑦.if(𝑤 in (getD 𝑥)) 𝑦 ⊕ {1𝑥} else 𝑦 in
let 𝑢 = fold 𝑧 KL⟨[]⟩ 𝐾𝐿𝑉 in
map (recompute 𝑓 ) 𝑢; trim 𝑢 𝐾𝐿𝑉 𝑓

It says that the edge will be deleted from the graph (the deleteRelationship operation), and the
dependency store needs to be processed through trimming. The trim function iteratively inspects

and updates the dependency stores of nodes that may be impacted by the edge deletion. At each

iteration, the fold function collects the nodes keys that may subject to recomputation, performed

by map.
The take-away message is that, with DON Calculus, the KickStarter developers can focus

on defining their unique algorithm details (e.g., 𝑓 for the recomputation of query results and

dependencies) while enjoying the correctness properties defined by DON Calculus. This also

means that they can reuse the mechanized proofs of DON Calculus, only strengthening them with

properties unique to their algorithm (e.g., approximation monotonicity).

8.5 Key-Value Store and Tabular Data Support
Supporting structured data is a design goal of our DON Calculus (see § 2.1). To be inclusive on

general data structures such as graphs, the DON Calculus runtime necessarily includes structures

such as adjacency lists. Other common data organizations — key-value stores and tabular/relational

data — are topologically simpler than graphs; they can also be supported by DON Calculus, i.e.,

endowing IOP and TLO to the online processing of these forms of data.

Supporting key-value stores with DON Calculus are trivial: the adjacency list for each data node

should always be an empty sequence. The most common operations in key-value stores, mapping

and aggregation (reduction), have corresponding primitives in our calculus, map and fold. From
this perspective, DON Calculus describes the behavior of online processing of a dynamic key-value
store where incremental processing and operation batching/reordering/fusion/reuse are in place.

For tabular/relational data, we first need to support multiple tables. This can be encoded as long

as we have a bijective mapping between TABLEID × ROWID and KEY where TABLEID is the

set of table IDs and ROWID is the set of row IDs. In other words, the backend data structure (𝐵)

can always be logically partitioned into multiple tables. The payload associated with each node in

this case would be a tuple, each component being the value of a column. For the common relational

operations, column projection can be directly supported by map, where the mapping function is

the tuple elimination indexed at the column of interest. As the map operation propagates through

the backend data, incremental column projection is supported for free. The SQL-style GROUP BY
operator can be supported in a similar fashion, except the result is a mapping whose domain

constitute the column values of interest identified by the GROUP BY operator. As this operator is
often used for aggregation. the aggregation function can be performed incrementally similar to the

incremental fold example (Example 4.1).
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8.6 Sublinear Operation Processing
Indexing and hashing are two examples where processing an operation may become sublinear
in time complexity: through auxiliary structures (e.g., indexes and hashes), an operation may

circumvent the scan and traversal in data.

For immutable data, DON Calculus can be trivially extended with indexing and hashing. Since no

update is allowed, this is analogous to a subset of DON Calculus without add and map expressions.

Here, a simple query (e.g., a key-value lookup) can be directly answered by the index/hash, while

more complex queries (e.g., a folding operation that involves many nodes) continue to follow the

same semantics currently defined by DON Calculus. Note that the use scenario of immutable data
processing is indeed where indexing and hashing are most common (e.g., in Spark).

For mutable (i.e., evolving) data processing, extending DON Calculus with indexing and hashing

requires one consideration: the result from index-based or hash-based query should be “corrected”

by the updates that are under propagation (i.e., the updates that are emitted but not realized). The

notion of “correction” is analogous to a TLO optimization that reorders a map operation and a fold
operation; see TLO-ReorderRW. Orthogonal to the DON Calculus support, readers should be

aware that indexing/hashing support in mutable data processing by itself is often problematic in

practical systems (e.g., modern databases [neo 2010]) and hence less commonly used. The general

practice is to leave the correctness of using indexing or hashing to the programmer: she can create

an index to her very large and mutable graph, but the potentially expensive reindexing in the

presence of data change is a programmer task. As a result, no guarantee is provided at the level of

the data processing engine that the index-based query returns a correct (i.e., non-stale) result. In

this context, the DON Calculus variant we discussed above provides the correctness guarantee up
to the program. In other words, this variant can ensure a non-deterministic execution can produce

the same result as that of eager processing of the program (Corollary 6.7).

8.7 Exception Handling
Recall that in § 3.2, we described the residual target key list associated with each entry in the result

store. In a language extension with explicit exception handling support, modeling “key not found”

as an exception is a simple extension. The only change is to replace Claim with the following rules:

ClaimY

F[⇓⇓⇓ ℓ] = ⟨𝐵;𝑂 ;𝑅; 𝑒⟩ ℓ
KL⟨[] ⟩
↦−−−−−→ 𝑣 ∈ 𝑅

F[⇓⇓⇓ ℓ] → F[𝑣]
ClaimN

F[⇓⇓⇓ ℓ] = ⟨𝐵;𝑂 ;𝑅; 𝑒⟩ ℓ
𝐾𝐿𝑉↦−−→ 𝑣 ∈ 𝑅 𝐾𝐿𝑉 ≠ KL⟨[]⟩

F[⇓⇓⇓ ℓ] → F[exception(𝐾𝐿𝑉)]

where exception(𝐾𝐿𝑉) is a value of this extended language. A programmer can further inspect 𝐾𝐿𝑉

for exception handling.

8.8 More Extensions
In the supplementary material, we further describe the support of additional features, including

parallelism, mapping/folding all elements, and alternative design choices for node addition.

8.9 Applicability and Limitations
In summary, DON Calculus is best suited for specifying systems or applications that can be

expressed as continuously submitting queries (reads) and updates (writes) to an evolving piece of

data. In other words, a beneficiary data processing system/application should (1) have a natural

data-centric view, i.e., a piece of dynamic data structure evolves as the program progresses; (2) have

operations continuously applied to the data.

One limitation of our calculus is its fundamental incompleteness, i.e., there are always optimiza-

tions in existing/future online data processing systems out of scope of our calculus. Nonetheless,
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we think IOP and TLO are arguably the most common forms of optimization relevant to the online
requirements of data processing. For optimizations beyond IOP and TLO, the most important family

beyond (the main text of) this paper is perhaps parallelism.

Our core DON Calculus assumes data are scanned or traversed when an operation is processed.

For extending our calculus with alternative data access such as indexing and hashing, see § 8.6.

8.10 An Implementation
The design of DON Calculus has inspired us to develop PitStop [Eymer et al. 2022], an online

processing system for graph databases. PitStop targets the use scenario described in § 2.2.1. It

supports IOP features (in the same style as Example 2.6) [Eymer et al. 2019] and a subset of

TLO (batching and fusion). The implementation details of this system are out of the scope of

this paper, but we wish to describe the relationship between DON Calculus and PitStop. First,

DON Calculus provides a foundation to confirm the correctness claims made for PitStop, especially

determinism. Second, PitStop confirms the performance benefits of IOP and TLO in the context of

graph databases: it shows that workload fluctuation and longtail — two challenging scenarios of

online data processing — can benefit from them. Third, PitStop also implemented features beyond

the scope of DON Calculus, e.g., fine-grained parallelism. A parallel variant of DON Calculus can

be found in the supplementary material.

9 RELATEDWORK
Incrementality. Self-adjusting computation [Acar et al. 2006] enables computations to respond

to dynamically changing (input) data automatically. It tracks the control/data dependencies in a

computation so that changes to data can be propagated through the computation. DON Calculus

explores a use scenario where data respond to a stream of operations, and the propagation appears

in the data itself. With i3QL [Mitschke et al. 2014], incremental computations can be specified

and maintained in a declarative SQL-like language, embedded in Scala. A foundation for fault-

tolerant distributed computing [Haller et al. 2018] describes a formal semantics and lineage-based

programming model for distributed data processing. In their model, deferred evaluation is supported

at the boundary of distributed nodes to promote opportunities for operation fusion and improve the

efficiency of network communications. More broadly, incremental computing systems [Hammer

et al. 2014; Harkes et al. 2016; Harkes and Visser 2017; Pugh and Teitelbaum 1989] propagate changes

in the program dependency graph, and efficiently perform re-computation along the propagation

path only when necessary.

Temporal Locality Optimization. In databases, the various forms of TLOs formalized by DON Cal-

culus are well known. Batching is a basic operation supported by numerous systems. QUEL* [Sellis

and Shapiro 1985] is an early compiler optimization defined with a number of tactics for inter-query

optimization, such as combining two REPLACE operations in a relational query language into one.

This is analogous to fusing in the style of the TLO-FuseM rule in DON Calculus.

Database queries can be optimized so that common tasks can be shared [Sellis 1988], and this

problem can also be formulated as a sub-expression identification problem [Park and Segev 1988].

These pioneer efforts lead to a large body of research on MQO-style query optimization (e.g., [Le

et al. 2012; Ramachandra and Sudarshan 2012; Ren and Wang 2016; Scully and Chlipala 2017; Sousa

et al. 2014]). The essence of exploring commonality among queries is embodied by the TLO-Reuse

rule in DON Calculus.

Overall, the relationship between existing work and DON Calculus is complementary. Existing

work highlights the importance of TLO in data processing design and provides the context for our

calculus. DON Calculus provides a language-based foundation where TLOs are specified as a part
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StockA with price 2.53
StackB with price 3.02
StockC with price 4.55
StockB with price 3.14
StockA with price 2.54

. . .d

y
Count stocks with price >5.00,

Find maximum price
Add StockD with price 8.03,

Count stocks with price >5.00,
Update StockC with price 8.00

. . .d

Count stocks with price >5.00
Find maximum price

(a) Data Streaming

StockA with price 2.53
StackB with price 3.02
StockC with price 4.55

(b) DON Calculus

Legends: ↓ chronological order

d

flows to operation (query) store data store

Fig. 15. Data Streams and Operation Streams: Different Scenarios in Stock Data Processing

of the semantics of a data processing engine, and various TLOs are unified in one system. It also

elucidates when and where TLOs may happen (§ 2.5).

Data Streaming. Data streaming systems have a model where a stream of data flow through data

processing operations (often called stream processors) composed together through framework-

defined combinators. This is a well established area, including data flow and data streaming

languages [Ashcroft and Wadge 1977; Caspi et al. 1987; Meyerovich et al. 2009; Spring et al. 2007;

Thies et al. 2002; Vaziri et al. 2014], data flow processing frameworks [Hirzel et al. 2014; Murray

et al. 2013, 2011; Zaharia et al. 2013, 2016], and foundations [Arasu and Widom 2004; Bartenstein

and Liu 2014; Cohen et al. 2006; Gurevich et al. 2007; Haller and Miller 2019; Lee and Messerschmitt

1987; Soulé et al. 2010].

As we described in § 2.1, DON Calculus explores a near dual design space. To help understand

the fundamental semantic and use scenario difference between existing work and ours, let us refer

to an example frequently used in data streaming systems, real-time stock data processing. As shown

in Fig. 15(a), a data streaming system is designed for a use scenario where a live stream of data
may be processed by a pre-deployed query (or queries) — continuous queries [Arasu and Widom

2004] — e.g., continuously finding out what the maximum stock price is. DON Calculus is designed

for a different use scenario where a live stream of operations, as shown in Fig. 15(b), may be applied

to a continuously evolving data store. The different use scenarios each direction targets lead to

different design needs. For example, TLO is an essential design component in DON Calculus, where

we answer e.g., how to reorder operation “Count stocks with price >5.00” and operation

“Update StockC with price 8.00” with both operations still returning the expected results.

There appears to be no natural analogy for reordering in a data streaming system. In that setting,

more commonly known is data aggregation, such as through a sliding window [Tangwongsan

et al. 2015]. In essence, the design space of a data streaming systems addresses how to apply a

sequence of data to a program, whereas the design space of DON Calculus addresses how to apply

a sequence of programs to an evolving set (or structure) of data.

From an end-user perspective, the choice between operation streams and data streams depends

on the application use scenario. In data streaming, new data are emitted continuously, but the

queries themselves — such as those at the bottom right of Fig. 15 — are relatively stable; they do

not go through rapid changes at run time and are often deployed ahead of time. In contrast, the

operations in the operation streams are emitted continuously, and their emission (from a frontend

program) is dynamic, not known a priori. With operation streams, new data can indeed be added

or updated — through add and map operations in DON Calculus — but the natural use scenario is

that these additions/updates of data are mixed with dynamically emitted and diverse queries.
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Online Data Processing Systems. The need for scalable online data processing is long sought

after. In the naive sense (see § 1), any data processing system — a database or a graph analytic

engine — can be viewed “online” if deployed in an interactive setting. In recent years however, the

explosive growth in data volume and the complexity of analytical queries/updates together redefine

its essence, so that any system that can be justifiably termed “online” must embrace optimizations to

support continuous, low-latency, and sometimes real-time processing. In databases, one example is

Online Analytical Processing (OLAP) databases. For data processing frameworks that are primarily

deployed with immutable datasets, such as MapReduce and Spark, the scalability demands are often

met with scale-out solutions, as data parallelism can be effective. The same holds for early graph

processing systems (e.g., [Gonzalez et al. 2012; Low et al. 2012; Shun and Blelloch 2013]) where

static graphs are assumed. For newer graph processing systems, IOP and TLO both play significant

roles. For example, GraPU [Sheng et al. 2018] allows updates to the graph to be buffered and pre-

processed, similar to a TLO operation in our top-level operation stream. Kineograph [Cheng et al.

2012] supports a commit protocol for incremental graph updates. DeltaGraph [Dexter et al. 2016]

allows for incremental propagation of graph operations, which can be batched and fused within

the graph through a Haskell datatype representation of an inductive graph. C-Trees [Dhulipala

et al. 2019] are purely functional data structures to enable efficient concurrent processing in the

presence of queries and updates. In addition to KickStarter, other examples that target online data

processing include LazyBase [Cipar et al. 2012], Chronos [Han et al. 2014], Tornado [Shi et al. 2016],

Version Traveler [Ju et al. 2016], GraphBolt [Mariappan and Vora 2019], GraphOne [Kumar and

Huang 2020], GraphQ [Wang et al. 2015], and DZig [Mariappan et al. 2021].

Together, the experimental systems in this subsection provide a context that DON Calculus lays

a foundation for, answering the crucial question of correctness in the presence of IOP and TLO.

Phase Distinction. Broadly speaking, phase distinction in type system design can be traced to

Cardelli [Cardelli 1988], where a phased type system distinguishes compile-time terms and run-time

terms. Harper et al. [Harper et al. 1989] defines phase distinction in the context of ML modules. In

meta-programming, macro systems, and multi-stage programming, a crucial concern is to ensure

the code generated at run time remains type-safe. This leads to a rich set of language and type

system designs where some notion of phase distinction is enforced. Several examples include

cross-stage safety and persistence in MetaML [Taha and Sheard 1997] and MetaOCaml [Calcagno

et al. 2003], process separation in <ML> [Liu et al. 2009], and cross-stage distinction in Scala multi-

stage macros [Stucki et al. 2021]. In DON Calculus, the property of phase distinction is specific to

data processing, with the phases being the front-end computation and the back-end computation

respectively.

10 CONCLUDING REMARKS
Designing online processing systems with optimization support of temporal locality optimization

and incremental operation processing is a challenging problem. DON Calculus illuminates the

design space of these systems, and complements experimental systems with a correctness-driven

approach. The specification and mechanization of DON Calculus can be used as a sound base by

future designers of online data processing systems in their pursuit of rigorous semantic engineering.

Data Availability Statement. The Coq mechanization is publicly available [Dexter et al. 2022].
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