The Essence of Online Data Processing

PHILIP DEXTER, YU DAVID LIU, and KENNETH CHIU, State University of New York (SUNY) at
Binghamton, USA

Data processing systems are a fundamental component of the modern computing stack. These systems
are routinely deployed online: they continuously receive the requests of data processing operations, and
continuously return the results to end users or client applications. Online data processing systems have unique
features beyond conventional data processing, and the optimizations designed for them are complex, especially
when data themselves are structured and dynamic. This paper describes DON Calculus, the first rigorous
foundation for online data processing. It captures the essential behavior of both the backend data processing
engine and the frontend application, with the focus on two design dimensions essential yet unique to online
data processing systems: incremental operation processing (IOP) and temporal locality optimization (TLO). A
novel design insight is that the operations continuously applied to the data can be defined as an operation
stream flowing through the data structure, and this abstraction unifies diverse designs of IOP and TLO in
one calculus. DON Calculus is endowed with a mechanized metatheory centering around a key observable
equivalence property: despite the significant non-deterministic executions introduced by IOP and TLO, the
observable result of DON Calculus data processing is identical to that of conventional data processing without
IOP and TLO. Broadly, DON Calculus is a novel instance in the active pursuit of providing rigorous guarantees
to the software system stack. The specification and mechanization of DON Calculus provide a sound base
for the designers of future data processing systems to build upon, helping them embrace rigorous semantic
engineering without the need of developing from scratch.

CCS Concepts: « Information systems — Database design and models; « Theory of computation —
Operational semantics.

Additional Key Words and Phrases: Formal Reasoning, Online Data Processing, Incremental Evaluation, Online
Data Optimization

ACM Reference Format:
Philip Dexter, Yu David Liu, and Kenneth Chiu . 2022. The Essence of Online Data Processing. Proc. ACM
Program. Lang. 6, OOPSLA2, Article 157 (October 2022), 30 pages. https://doi.org/10.1145/3563320

1 INTRODUCTION

Providing high assurance to each layer of the computing stack is of critical importance in trustworthy
computing (e.g., [Appel et al. 2016]). The bedrock of many data-intensive applications — from
social networks, to bioinformatics, to artificial intelligence — is the data processing system, such
as databases and data analytical engines. Accelerated by the wide adoption of cloud computing,
these applications and systems are routinely deployed online: a long-running program continuously
applies a large number of data processing operations to a large amount of data, and continuously
provides its clients with results. One timely example is online graph processing [Cheng et al. 2012;

Authors’ address: Philip Dexter, pdexterl @binghamton.edu; Yu David Liu, davidl@binghamton.edu; Kenneth Chiu, kchiu@
binghamton.edu, State University of New York (SUNY) at Binghamton, 4400 Vestal Parkway East, Binghamton, New York,
USA, 13902.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/10-ART157

https://doi.org/10.1145/3563320

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 157. Publication date: October 2022.

https://doi.org/10.1145/3563320
https://doi.org/10.1145/3563320

157:2 Philip Dexter, Yu David Liu, and Kenneth Chiu

Cipar et al. 2012; Dhulipala et al. 2019; Ediger et al. 2012; Han et al. 2014; Ju et al. 2016; Kumar and
Huang 2020; Sheng et al. 2018; Shi et al. 2016; Suzumura et al. 2014; Vora et al. 2017].

Building scalable online data processing systems is notoriously challenging. Indeed, a naive
online data processing system could behave just as conventional data processing, i.e., processing
each operation individually. Such a design however does not scale when operation requests come at
a rapid rate, especially when two challenges complicate the design space: (1) structured data support:
whereas key-value stores or relational data were dominant in the past, more structured data —
such as graphs — are increasingly prevalent; (2) dynamic data support: for many data-intensive
applications, the data themselves are mutable, and continuously evolve as operations are processed.
For example, social network analytics converge on the two challenges.

Although online data processing systems are widely deployed, faced with unique challenges,
and experimentally supported with diverse and complex solutions, no prior formal foundations
exist for this important family of software systems.

DON Calculus. We introduce DON Calculus, a formal foundation to account for the essential
behavior of online processing in the presence of dynamic structured data. Our theoretical motivation
is to understand the correctness of online data processing systems in the presence of complex
optimizations. More practically, we wish to build a “base” formal system — in the artifacts of
specification and mechanization — that future rigor-minded data processing system designers can
build upon. With these artifacts, their effort in specification and mechanization can focus on the
details unique to their system, not from scratch.

The centerpiece of DON Calculus are two essential features at the heart of online data processing
systems but beyond conventional data processing:

o Incremental Operation Processing (IOP): operations may be deferred for incremental processing,
so that the system can balance the need of processing potentially numerous operations that
arrive at a rapid rate.

o Temporal Locality Optimization (TLO): temporally consecutive operations applied to the data
may be manipulated for optimization before or during their processing, such as through
batching, reordering, fusing, or reusing (see § 2.1).

IOP and TLO reflect the same philosophy that underlies the design of online data processing
systems: instead of viewing the processing of each operation individually, a scalable solution should
take a multitude of operations into account. Indeed, these two forms of optimizations essential
for online data processing go hand in hand: it is often the delay resulted from IOP that enables
multiple operations to participate in a TLO.

DON Calculus features an operational semantics that spans the data processing system (the
backend) and the data processing application (the frontend). The backend captures the IOP and TLO
behavior, and the frontend is supported with a simple programming model for constructing data-
intensive applications. A key insight of DON Calculus is that the spirit of online data processing
can be embodied by viewing the operations as a stream, which we call the operation stream;
more importantly, the operation stream does not only exist at the frontend-backend boundary,
but also “flows through” the data structure itself. This view is aligned with our intuition, and
more importantly, it provides a unified abstraction to model the essential features of online data
processing: IOP is modeled as operation propagation in the stream, and TLO is modeled as stream
rewriting.

Sound Online Data Processing. DON Calculus is a rigorous study on the correctness of building
online data processing systems. As we have seen, the essential features of these systems are indeed
the optimizations designed over conventional data processing. To trust the result produced by an

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 157. Publication date: October 2022.

The Essence of Online Data Processing 157:3

online data processing system, we must ensure the optimizations are sound: these systems must
produce deterministic results as in conventional data processing. Enforcing result determinism
however is a non-trivial problem, especially when expressive forms of IOP and TLO are in place.
With IOP, significant non-deterministic executions are introduced. With TLO, the operations in
the stream are altered. An important goal of DON Calculus is to establish both IOP and TLO are
sound optimizations. The main property enjoyed by DON Calculus is an observable equivalence
property: despite significant non-deterministic executions introduced by IOP and TLO (see § 4), all
terminating executions of the same program produce the same result as a conventional processing
model with neither TLO nor IOP.

DON Calculus is also endowed with a type system for its frontend programming model. The
system, a standard type-and-effect system in form, enforces the novel property of phase distinction
in data processing: while the computation at the frontend can freely issue new operations for
backend processing, the backend computation should not issue new operations for processing. If
phase distinction were ignored, the non-deterministic executions inherent in operation streams
would lead to non-determinism in results. Intuitively, this is analogous to a high-level data race
that our type system eliminates.

Mechanization. DON Calculus is mechanized in Coq, in around 7000 LOC. The proofs consist of
all properties of our operational semantics as well as the type system presented in the paper. Being
the first mechanization for online data processing (i.e., IOP and TLO features), this implementation
may serve as a basis for rigorously specifying and reasoning about other online data processing
systems, such as those with richer data processing primitives or optimizations. Our mechanization
includes the confluence proof a la Huet [Huet 1980], which may be a reusable (side) artifact for
observable equivalence proofs. The source code is available for inspection [Dexter et al. 2022].

Contributions. We envision DON Calculus can benefit the theory and practice of data processing
in two dimensions. The theoretical contribution of DON Calculus is that it enriches the foundation
of data processing by focusing on its online behavior, and especially, establishing its soundness in
the presence of common but non-trivial optimizations of TLO and IOP. The practical contribution
of DON Calculus is that it may help specify and mechanize existing or future online data processing
systems (see an example in § 8.4), so that new features of optimization can be rigorously defined
and reasoned about on top of a sound “base,” and not from scratch. As DON Calculus and its
mechanization represent a significant effort, we hope the artifacts from DON Calculus can improve
the productivity of rigorous semantic engineering of future data processing systems, and ultimately,
attract more developers of experimental data processing systems to formal methods.

More technically, this paper makes the following contributions:

¢ a foundation that captures the essence of online data processing with IOP and TLO;

e an operational semantics based on operation streams to uniformly account for IOP and TLO
in one system;

e a frontend programming model with a type system to enforce phase distinction;

e a metatheory defining the soundness of online data processing, including observable equiva-
lence and type soundness;

o the mechanized proofs for rigorous semantic engineering of online data processing systems.

2 AN INFORMAL ACCOUNT
In this section, we informally highlight the essential features of DON Calculus through examples.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 157. Publication date: October 2022.

157:4 Philip Dexter, Yu David Liu, and Kenneth Chiu

Backend Frontend ~ @~ - - - — - - - - - == - - - - - - -

' Legends:
i .
‘,:|o eration stream
@ Ol" N ‘< p .
15

|
|
|
, 0 operation :
|
1
@ u

1 v resul
Fig. 1. The Frontend and Backend of Online Data Processing

t
1 1 data processing engine

| - data-intensive application ‘

[O—) data structure (node and edge) |

2.1 The Big Picture: Scope and Expressiveness

The scope of our calculus is illustrated in Fig. 1. The frontend program continuously produces
data processing operations such as oy, . . ., 0; in the Figure, and delivers them to the backend that
maintains a potentially large and evolving data, here a graph. As operations are processed and
results become available, the backend delivers the latter back to the frontend, v1, ..., ;. In scope,
DON Calculus spans both the backend and the frontend: the backend data processing engine
enabled with IOP and TLO, and the frontend programming model for constructing online data
processing applications.

A key abstraction of our calculus is the operational stream. For example, Fig. 1 shows an operation
stream extends from the frontend to backend (which we call the top-level operation stream for
convenience), and then continues to flow into nodes eve, deb, cam, bob, amy, in that order (which
we call the in-data operation stream). To place this novel view in context, observe that there is
a fundamental difference between the view taken by DON Calculus here and data streaming
(e.g., [Ashcroft and Wadge 1977; Caspi et al. 1987; Meyerovich et al. 2009; Murray et al. 2013, 2011;
Spring et al. 2007; Thies et al. 2002; Vaziri et al. 2014; Zaharia et al. 2013, 2016]). In DON Calculus,
a stream is formed by operations, to be passed through structured data. In data streaming systems,
a stream is formed by data, to be passed through structured operations. A more detailed discussion
on this difference can be found in § 9.

An important design goal of DON Calculus is to provide support for structured data, an essential
feature in state-of-the-art experimental systems. Our core calculus is defined over graph data.
Relational tables and key-value stores are simpler representations that can also be supported by
DON Calculus (see § 8.5).

Another design goal of DON Calculus is to support dynamic data. Not only the “payload” values
carried by data may change (e.g., the value contained in the amy node may be changed from 0
to 1), but also the structure of the data (e.g., a new edge may be added between amy and cam). In
expressiveness, our calculus goes beyond online processing of immutable data — such as MapReduce
datasets [Dean and Ghemawat 2004] or Spark RDDs [Zaharia et al. 2016] — and more on par with
data processing systems where data query operations and data update operations are continuously
received and processed (e.g., [Vora et al. 2017]).

2.2 Motivating Scenarios and Examples
We now use two motivating scenarios as running examples throughout the paper, demonstrating
the expressiveness of the calculus.

2.2.1 Application 1: Graph Databases. Graph databases [Buneman et al. 1996; Papakonstantinou
et al. 1995; Venkataramani et al. 2012] are an important family of databases that rely on structured
graphs for data storage.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 157. Publication date: October 2022.

The Essence of Online Data Processing 157:5

1: // node payload values 1: let numSuperSteps = 30 in
2: let amy, bob, cam, deb, eve, fred = 2: // keys of interest
Namys Nbobs Ncam, Ndebs Neves Nfred 1N 3: letkeys=... in
3: // graph construction 4: let numNodes = length keys in
4: let a=add amy in 5. let FPInit:A(i;igi).m‘mNWW in
5: let b = add bob in 6: mapVal fPInit keys;
6: let c =add camin 7. foreach 1..numSuperSteps
7: let d = add deb in 8: let neighborPSums =
8 lete=addeve in 9: [{nk; foldval fPSum @ keys)
9: addRelationship c b; 10: | nk in keys,
10: addRelationshipdc; 11: let fPSum = A(_; payload; adjlist).Asum.if nk in adjlist
11: addRelationship e b; then payload + sum
12: addRelationship e a; else sum] in
13: addRelat?onshlpAa & 12: foreach (nk; (_; neighborsSum; _)) in neighborPSums
14: // dynamic queries and updates _ . 215 neighborssum .
15: 1et nb = queryNode b in 13: let fFPG=A(; _; ad]llst).m+0485*m1n
16: updatePayload a nb; 14: mapVal fPG [nk]
17: let nb2 = queryNode b in
18: let f = add fred in
19: addRelationshipb f; . L. . .
20: deleteRelationship b f; Fig. 3. The CorePR Application in DON Calculus (Expressions
21 ... encodable by A calculus are liberally used, such as loop at Line 7
and list comprehension at Line 9, with a summary of encoded
Fig. 2. The CoreSociAL Application in expressions in § 3.1.)
DON Calculus

Example 2.1 (CoreSocIAL in DON Calculus Sugared Syntax). Fig. 2 shows a minimalistic program
for maintaining a social network in the form of a graph database. In this sugared syntax, Lines 1-8
are node additions and Lines 9-13 are relationship additions. The remaining lines further consist
of a mixture of queries (Lines 15 and 17) and updates (Lines 16, 18, 19, 20). Each data processing
operation — highlighted in blue — is analogous to an API function in the graph database. The
(logical) graph after the program reaches Line 13 is shown as the backend of Fig. 1.

The programmer syntax assumed by our calculus is conventional: it consists of standard features
encodable by A calculus, together with data processing primitives. As we shall see (§ 3.1), the database
operations that appear in this example — such as add, addRelationship, and updatePayload —
can be encoded by those primitives. The CORESocIAL example attempts to maintain a social graph,
where each node in this data structure carries a unique key, and also a payload value. For example,
the add expression at Line 4 adds a node whose key is freshly generated, whose payload is napy.
The generated key is returned and bound to name a. The functionality of other database operations
should be self-explanatory through their names.

Relevant to online data processing is that the database operations — 16 of them in this program
— are continuously submitted to the graph database, and the graph continuously evolves.

2.2.2 Application 2: Iterative Graph Analytics. Graph analytics are algorithm-centric data processing
applications, often computing graph-theoretic properties. Most involve multiple iterations (or
supersteps), each of which involves non-trivial computations based on graph payload and topological
information.

Example 2.2 (CorePR in DON Calculus Sugared Syntax). Fig. 3 presents a 30-superstep PageR-
ank [Brin and Page 1998] algorithm in DON Calculus. Lines 2-4 compute the number of nodes.
Lines 5-6 initialize the node payloads. Line 7 iterates over supersteps. Each superstep has two
sub-steps. The first sub-step, at Lines 9-11, computes the sum of payload values for each node’s
in-degree adjacent nodes. The second sub-step, a loop at Lines 12-14, updates each node with a
new payload value, by utilizing fPG, the core PageRank aggregation function.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 157. Publication date: October 2022.

157:6 Philip Dexter, Yu David Liu, and Kenneth Chiu

As shown here, a graph analytical program may consist of numerous data processing operations
— within a superstep and across supersteps — continuously applied to the graph. In this program,
the two forms of graph processing operations are shown in blue. The mapVal-foldVal pair is
standard, except for a small variation. The selective map/fold is supported here: the last argument
for the mapVal or foldVal operation is the keys which identify which nodes the operation should
be applied to.

2.3 The Frontend-Backend Interaction

In DON Calculus, a simple asynchronous semantics is designed for data processing operations: the
evaluation of a data processing operation at the frontend does not need to block until the backend
returns the result. Instead, the evaluation places the operation of concern into the operation stream
destined for the backend, which we say the operation is emitted from now on. DON Calculus follows
the same route of futures [Flanagan and Felleisen 1995, 1999; Halstead 1985]. For example, the
emission of add amy at Line 4 in Example 2.1 generates a future value, which is subsequently claimed
at Line 12 g la future semantics. Modeling the frontend-backend interaction through asynchronous
semantics aligns with the philosophy well-articulated for asynchronous data processing [Bertsekas
and Tsitsiklis 1989; Elteir et al. 2010; Wang et al. 2013].

Example 2.3 (Operation Streams). The operations emitted at Line 4-8 form an operation stream
are [add napy, add Npop, add Neap, add Ngep, add Neye].

Similarly, for the CorePR example, each evaluation at Line 3, Line 6, Line 9, and Line 14, results
in emitting a data processing operation to the operation stream.

DON Calculus supports dependent operations: an operation may have an argument referring
to the result of an earlier emitted operation. For example, Line 15 queries the node b through the
queryNode expression. The resulting value is used to update the payload of the node a at Line 16
through the updatePayload expression. The interaction between asynchrony and dependency
naturally calls for the backend claim, a feature of DON Calculus.

Example 2.4 (Backend Claim). The execution of Line 15-16 emits both operations into the opera-
tion stream. At the backend, the argument of the updatePayload expression, a future value, can be
claimed upon the completion of processing queryNode, without any interaction with the frontend.

2.4 Incremental Operational Processing (IOP) in Online Data Processing

Taking a per-operation view, data processing can be viewed as a process that reaches the data
nodes one by one through data scans or traversals (propagation), and along the way, computation is
performed when the operation reaches the data node(s) it is intended for (realization). The default
“baseline” behavior in data processing is eager processing, where the processing of an operation
must be completed once it is started.

Example 2.5 (Eager Processing). If one were to apply eager processing for executing Lines 9-10
in Fig. 2, and if we use 0; and o; to represent the two operations issued at Line 9 and Line 10
respectively, the backend would process o0, first, traversing through eve, deb and cam, and finally
realizing at the latter. After the completion of 04, the traversal of the graph may start for o,, through
nodes eve and deb, and finally realize at deb.

In contrast, DON Calculus supports incremental in-data processing:

Example 2.6 (In-Data Operation Streams). Fig. 4 illustrates 8 runtime configurations of the backend
graph for CoreSociaL in a DON Calculus reduction sequence. The first one coincides with the
moment when the processing of Line 1-8 in Fig. 2 is completed, and the operations in Line 9-10

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 157. Publication date: October 2022.

The Essence of Online Data Processing 157:7

eve

(a) 01 and o3 at backend (b) 01 propagates to eve (c) 02 propagates to eve

deb eve eve di
or
cam cam

(d) 01 propagates to deb (e) o1 propagates to cam (f) o2 propagates to deb

(8 fegend
i 0; addRelationship cb inFig.2,
' 0 addRelationship d c in Fig. 2,

g) o1 realizes at cam (h) o3 realizes at deb

—~

Fig. 4. In-Data Operation Streams for Fig. 2 Lines 9-10.

have been emitted but not processed. These two operations 0; and o, flow through the graph nodes
following the traversal of eve, deb, cam, bob, amy, in that order. Intuitively, the in-data stream view
entails that the processing of multiple operations may co-exist: for configurations (b)(c)(d)(e)(f),
neither o; nor o, is completed. In addition, the propagation steps for different operations may
intermingle, the first 3 transitions in Fig. 4 are propagation steps for 04, 02, and oy, respectively.

In-data operation streams are a novel feature in our calculus. They provide a flexible and natural
design for IOP, as the operation can be incrementally applied through the data items (graph nodes
here), and be deferred at any arbitrary data node and resumed later. Deferred operation processing
is a common optimization in online data processing systems [Cheng et al. 2012; Dexter et al. 2016;
Sheng et al. 2018; Vora et al. 2017]; our stream-based design captures the general scenario where the
operations may be deferred at an arbitrary step of data scan. A second benefit of in-data operation
streams is it enables TLO “on the fly”; see § 4.2 for details.

The behavior exhibited in Example 2.6 is incremental propagation: the processing of 0; can be
deferred without the need of “rushing” to its realization. When o; is deferred, the runtime can
process (i.e., either propagate or realize) another operation, such as the later emitted o;.

As a general calculus, DON Calculus places no restriction on the “schedule” of operation stream
processing: when multiple operations are processed, a non-deterministic choice can be made as to
which operation should take a step. For example, instead of transitioning from Fig. 4(b) to Fig. 4(c),
the program runtime may choose to have o; take another propagation step to deb. To ensure result
determinism, a non-deterministic propagation is not an arbitrary propagation. In particular, the
operations in the operation stream form a chronological order of emission. It must be preserved
unless TLO allows for reordering.

Example 2.7 (Chronological Order Preservation). Let us assume the payload value in amy is initially
1, i.e., Namy = 1. Operation o; is an operation to double the payload of amy while o, is an operation

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 157. Publication date: October 2022.

157:8 Philip Dexter, Yu David Liu, and Kenneth Chiu

Superstep 2
——— Superstep 2 =
Superstep 1 05 -

Superstep 1

Elapsed Time

Elapsed Time
(a) Eager Processing

(b) Adaptive Processing

Fig. 5. PageRank with Stragglers (The CorRePR program is applied to a graph with two nodes. Notation o;
refers to the i operation in the operation stream. With that, o4 and os refer to the two mapVal operations
emitted at Line 14 in superstep 1, and 0¢ and o7 refer to the two foldVal operations emitted at Line 9 in
superstep 2. Gray area indicates wait and dotted gray area indicates straggling. We assume the processing of
the straggler will eventually complete, normally or through a time-out.)

to add the payload of amy by 10. After the two operations are completed, amy should have a payload
of 12. Should we allow o, to “swap” with o4, the payload of amy would be 22.

A data processing system that supports non-deterministic executions but deterministic results —
which DON Calculus enjoys — is good news for adaptiveness support, which we now illustrate
through a so-called “straggler” example, a classic problem in data processing [Ousterhout et al.
2015].

Example 2.8 (Superstep Blending for Straggler Mitigation). Fig. 5 illustrates two timelines of
execution of CorePR. Due to system resource fluctuations and transient failures, the processing of
operation 05 may be suspended, becoming a straggler. In Fig. 5a, the slowdown by the straggler
delays the beginning of the next superstep. In Fig. 5b however, while the straggler is suspended,
operation o in the second superstep may start, interleaving the two supersteps.

Another dimension of IOP support is incremental load update, where the load refers to the payload
expression carried by a data item:

Example 2.9 (Incremental Load Update). Suppose the operation at Line 14 of Fig. 3 is processed
at the backend and the node indicated by nk is reached whose payload value is 5. The realization
step of our calculus will update the node payload with expression fPG 5, without evaluating it
immediately.

IOP does not change the complexity of operation processing. In our system, an operation
incrementally propagates through the in-data operation stream, with a complexity of O(n) where
n is the data size. In eager data processing systems, the query/operation processing engine still
needs to scan or traverse the data to process a query, with complexity of O(n). Indeed, eager data
processing is formally a special case in DON Calculus (as we will see). In practice, many O(n)
algorithms in data processing are experimentally effective, especially in the presence of parallelism.
In § 8.6, we discuss the relationship between DON Calculus and sublinear operation processing.

2.5 Temporal Locality Optimization (TLO) in Online Data Processing

TLO is a broad family of optimizations. For the simple case of two temporally consecutive operations
01 and 0, where 07 is submitted to the data processing engine before 0,, four forms of TLO are
well-known and captured in DON Calculus:

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 157. Publication date: October 2022.

The Essence of Online Data Processing 157:9

e Batching: processing 07 and 0z “in tandem,” so that only one data scanning/traversal is needed
for processing both, as opposed to two if 0; and o, are processed one by one.

e Reordering: processing o, first and o; later, on the assumption that the reversal does not
impact the result. Reordering is useful in use scenarios e.g., when o3 has a higher priority or
a closer deadline.

e Fusing: composing 0; and o, into one operation o, on the assumption that processing o can
produce the same result as processing both o0; and o;. Just like batching, fusing is useful in
reducing the amount of data scanning/traversal.

¢ Reusing: applying o; and o, to the data where o), derives from o; but reuses the result of
0; processing to avoid redundant computation. This style of TLO is known as Multi-Query
Optimization (MQO) [Park and Segev 1988; Sellis 1988; Sellis and Shapiro 1985].

We now revisit the CoreSociAL example to illustrate the common forms of TLO that DON Cal-
culus supports. A novel consequence of in-data operation streams is that they enable on-the-fly
TLOs: optimization may happen while multiple operations are incrementally propagated to an
arbitrary data node in the in-data operation stream, leading to in-data batching, in-data reordering,
in-data fusing, and in-data reusing. In other words, our calculus highlights where and when TLOs
may happen, in addition to how they are defined.

Example 2.10 (In-Data Operation Batching). Consider Fig. 4(c). Since neither addRelationship
operation realizes at eve, both may propagate in a “batch” to deb in one reduction step.

Example 2.11 (In-Data Operation Reordering). Consider a configuration where 3 operations at
Lines 15-17 in Fig. 2 reach node deb. The third operation, queryNode b, reads from b while the
second operation writes to a. The latter 2 operations can “swap” since they do not operate on the
same node.

Example 2.12 (In-Data Operation Fusing). Imagine two operations at Lines 19-20 in Fig. 2 be-
fore they reach node bob. DON Calculus allows the addRelationship and deleteRelationship
operations to “cancel out” so that further processing of both is avoided.

Example 2.13 (In-Data Operation Reusing). Let us follow up on Example 2.11. After swapping, two
queryNode b operations are adjacent in the operation stream at node deb. DON Calculus allows
the second instance to immediately return, referencing the return value of the first instance.

In DON Calculus, TLOs are supported through rewriting rules over the operation stream. Not to
lose generality, TLOs are applied dynamically. This is aligned with our “open-world” assumption
on the usage scenarios in practice: when the program is compiled, the operations may not be
statically known yet. In other words, the program we showed in Fig. 2 may well be a textual a
posteriori representation of an interactive program, where each line of graph processing operation
is submitted through some interactive graphical interface.

2.6 A Type System for Phase Distinction

The primary goal of DON Calculus’s type system is to enforce a phase distinction of operation
emission: the backend should not emit an operation for processing while processing another
operation. To see why this restriction is important, let us start with a counterexample.

Example 2.14 (Backend Operation Emission). Consider the following program (that does not
typecheck in DON Calculus):

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 157. Publication date: October 2022.

157:10 Philip Dexter, Yu David Liu, and Kenneth Chiu

Expressions, Operations, Values Keys, Nodes, Integers, Names
ex=vl|ee|x|fixe expression k € KEY key

| Kledeleoe K == KL(?) key list

| N|7e KV = KL(_k)) € KLV key list value

| ofle N == N{e;e;e) node
ox=adde|mapee|foldeee operation W = N{k; n KIV) node value
va=f|k|n|KV|NW]|e value n integer
fu=Ax:te function X 9,2, Uw name
4 future value/label 7 € {1,2,3} projection index
T type (see § 5)

Fig. 6. Abstract Syntax

letk=...// key of interest

let f = A(_; payload; _).payload*2 in

let g = A(_; payload; _).(mapVal f [k];payload) in

mapVal g [k];

let h = A(_; payload; _).payload+ 1 in

mapVal h [k]
If the operation mapVal f [k] inside the body of g is emitted before the operation mapVal h [k] is
emitted, the node with key k will have its payload value multiplied by 2 and then incremented by 1.

If the order is reversed, the payload value will be incremented by 1 and then multiplied by 2.

The root problem is that the evaluation order between the backend-emitted mapVal and the
frontend-emitted one cannot be decided upon, a symptom analogous to a race condition. Our type
system disallows backend operation emission through effect types: for every operation that is
emitted from the frontend, we guarantee that its processing does not have the effect of operation
emission. As a result, the program in Example 2.14 fail to typecheck.

3 SYNTAX AND RUNTIME STRUCTURES

In this section, we provide definitions for DON Calculus, including abstract syntax in § 3.1 and
runtime configuration in § 3.2.

Notations. We summarize 3 common structures used in this paper: sequence, set, and mapping.
We use notation [0y, 0, . . ., 0| to represent a sequence of oy, ..., 0y, in that order for some m > 0;
we shorthand it as @™, or @ when its length does not matter. We further call oy as the head element
and oy, as the last element. When m = 0, we further represent an empty sequence as []. Binary
operator o :: X prepends o to sequence . as the head, and binary operator X + X’ concatenates 3.
and X’ together. We elide their definitions here. We use notation {01, 02, . . ., 0y, } to represent a set
with elements o7y, ..., 0y, for some m > 0; we shorthand it as ¢, or ¢ when its length does not
matter. When m = 0, we further represent an empty set as {}. Common set operators €, C, and N
apply. We overload the operator | x | to compute the size of x, where x may either be a sequence or
a set.

- .

When a sequence takes the form of ¢ — ¢’™ or when a set takes the form of o - ¢’ , we call
it a mapping when oy, ..., o, are distinct. Given p as the aforementioned mapping, we further
define y(0;) as o] for some 1 < i < m; dom(p) asc"; and ran(y) as "

We omit some common definitions in A calculus: e[v/x] for substitution of name x with value v
for expression e; = for term equivalence; Id for the identity function; and o for function composition.

3.1 Syntax

Fig. 6 defines the abstract syntax of DON Calculus. It consists of conventional A calculus features,
such as name, abstraction, application, and fixpoint computation. Encodable features that appeared

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 157. Publication date: October 2022.

The Essence of Online Data Processing 157:11

Programmer Syntax Formal Syntax f

(e;e’;e”) N(e;e’;e”)

[er,.. ., en) KL([es,. .., en])

addRelationship e e’ map f KL{[e]) Ax N('x; %x;3x @ KL([e']))
deleteRelationshipee’ map f KL{[e]) Ax N('x; %x;3x © KL([e']))
updatePayload e e’ map f KL{[e]) Ax.N{!x;2%e’;3x)
queryNode e fold f N(_;0; KL([])) KL([e]) Ax.Ay.x

mapVal e e’ map f e’ Ax N('x; e x;3x)
foldvalee’ e” fold f N(_;e’;KL([])) e” Ax.Ay.N('y; e x 2y; 3y)

Table 1. Data Processing Operations Encodings

in the earlier examples are omitted, including if — then — else, list comprehension, let — in, the
; expression, and foreach.

Values. The values of our language are functions (f), node keys (k), node payloads (n), key list
values (KIV), node values (\V), and futures (¢).

Both the key list and the node are first-class citizens in our calculus. In the programmer syntax,
the former is represented as a sequence and the latter as a triple. To differentiate programming
abstractions from meta-level structures, we associate the key list with an explicit constructor KL
and the node with constructor N in the formal syntax, as shown in Table 1. We use "e to project
the first, second, and third component of a node e when = = 1, 2, 3, respectively.

Key lists in our calculus play two roles: defining the (ordered) adjacency list of a node, and
providing as argument for selective mapping and folding. Each data node (N) is a triple: a key, a
payload expression, and an adjacency list expression. The last component accounts for the structural
information latent in structured data, intuitively, the “out-edges” of the node.

A future value ¢ is generated when an operation is emitted

(§ 2.2.1), and as we shall see soon, it also serves as the unique let nb = queryNode | b in
label for identifying the operation and its result in backend data l“eptdi;"_ay;’s;jy%jdt ﬂbg .
processing. Except for futures, all forms of values are also pro- let f = add | fred in
grams, including keys. To be consistent with real-world practice, addRelationship § b |} f;

. . deleteRelationship |l b f;
we allow programmers to name a key in their program. eleteRelationship I bl f:

Data Processing Operations and Lifecycle Support. Two new ex-
pressions handle the operation stream at the frontend: operation
emission (0) and result claim (|} e). To highlight the asynchro-
nous nature of operation processing, each program point of
result claim in the programmer syntax is annotated with a || symbol explicitly. For example, Fig. 7
shows how the Lines 14-21 of Fig. 2 can be explicitly annotated with |J.

DON Calculus supports 3 core operations: add, map, and fold. The first operation has been used
in the CoreSociaL and CorePR examples. The second and third operations are similar to mapVal
and foldVal in CorePR, except that the mapping function argument of map returns a node, and the
folding function argument of fold is a binary function over nodes. These primitives are sufficient
to encode all data processing operations in CoreSocIAL and COREPR, as shown in Table 1. In § 8,
we will further discuss how they can encode other common programming idioms. Finally, add is
useful to support dynamic data (§ 2.2.1).

For operations, we introduce a convenience function © that computes the keys of nodes where
the operation is intended for realization:

Fig. 7. Fig. 2 Lines 14-21 in Formal
Syntax

Definition 3.1 (Operation Target). The function ©(o) computes the target of the operation o,
— — —
defined as k if o = map f KL{k) or o = fold f e KL{ k). The operator is undefined for add.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 157. Publication date: October 2022.

157:12 Philip Dexter, Yu David Liu, and Kenneth Chiu

C := (B;O;R;e) configuration [(N(keve; nteve; KL{[Knobs kamy]>>; [[&2 = o2]]),

Bue S backend (N(kdeb; ndeb; KL{[kcan]}); [[&1 > 01]]),

S u= (N;0) station (N{kcam; Ncan; KL([kbob1)); [1),

57) (N{knobs mobs KL[1)); [1),

O:= U_) operation stream/streamlet (N(kany; namy; KL{[keve])); [1)]

Us=t—>o stream unit

Ruz¢ LUR v result store Fig.9. A Backend Example of Fig. 4(d) (kamy, kbob»

kcam, kdeb, keve are keys of corresponding nodes

Fig. 8. Runtime Definitions and &1, £ are labels for o1, 02)

Additional Expressions. In addition to being in the value form, a key list or a node may also be in
its expression form, K and N respectively, when any of its components is not in the value form.
The @ and © expressions are binary operators over key lists for their concatenation and subtraction

- — —
respectively. To support key list subtraction, we define function k \ k’ as identical to k except

=
that every element that appears in k” is removed.

3.2 The Structure of the Runtime

As shown in Fig. 8, a runtime configuration C consists of 4 components: the (backend) runtime
data structure B, the (frontend) expression e, and two structures that bridge them: the (top-level)
operation stream O and the result store R.

We represent the runtime data structure as a sequence of runtime nodes called stations, each of
which consists of a data node (N) and the operations (O) that have so far propagated to that node.
We also call the latter as a streamlet. In other words, the in-data operation stream is composed
of per-station streamlets. An example of the formal data representation can be found in Fig. 9.
This representation reflects the fine-grained nature of our support for incremental processing: the
operation can propagate to and be deferred at any node. Client calculi to DON Calculus can further
restrict this most general treatment, e.g., a more implementation-oriented choice where nodes form
partitions and streamlets can only be associated with (the first node of) partitions.

Placing the data nodes into a sequence faithfully captures experimental data processing systems.
It may be tempting to represent the structured graph data as a linked data structure, i.e., a formal
representation of in-memory graphs through C-like pointers or Java-like object references. Unfor-
tunately, experimental graph processing systems rarely adopt this form. The root cause is that they
routinely process data that exceed the memory capacity, so their runtime representation is strongly
influenced by the graph representation in file or storage systems, where ordered access dominates.
In addition, this choice of representation does not impact the expressiveness of our calculus: for
smaller in-memory data structures implemented as a linked data structure, traversal algorithms
(e.g., depth-first or breadth-first) can always place nodes into a sequence. For example, if the graph
in Fig. 1 is implemented as a linked data structure, its traversal order — eve, deb, cam, bob, amy —
remains a sequence which DON Calculus can work with.

We formally represent an operation stream/streamlet as a sequence of stream units (U), each of
which is a sequence of operations. This 2-dimensional representation — instead of a 1-dimensional
one — results from batching (§ 2.4), so that each stream unit can be viewed as a “batch.” In the

stream/streamlet, the operation is indexed by a unique label (£). Each element in the result store
K
takes the form of £ — v, associating result value v with label ¢. The additional IV is called a
residual target. If any key in the target key list of an operation cannot be found during processing,
it will be kept as the residual target in the result store.
The following definitions highlight the different access patterns of the operation stream and the

result store: whereas order does not matter for the latter, it matters for the former (recall § 2.4):

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 157. Publication date: October 2022.

The Essence of Online Data Processing 157:13

F = (B;O; R;E) frontend context E:=e|Ee|vE|"E| KL(?-H [E]+€) expression context
B:u= (8;0;R;e) backend context | N(E;e;e) | N(k; E;e) | N(k; n; E)
T := B[B ++ e ++ B] task context | Ede|llVeE|Eoce|lioE
L == T[[(E; O)]] load context | addE| mapEe| map fE
| TLI{N;O+ [t fold f EiV] = 0)]] | foldEee| fold fEe| fold foE||JE

Fig. 10. Evaluation Contexts

Definition 3.2 (Operation Stream Addition and Result Store Addition). The (overloaded) < operator
appends a stream unit to the configuration, or appends a stream unit to a non-empty backend, or
adds results to the configuration:

(B;O;R;e) 4 U 2 (B;O+ [U];R;e)
(N;0) =B €U 2 (N;0+ [U]) =B
(B;O;R;e) 4« R' £ (B;O;R' UR;e)

The definition above says that any addition to an operation stream — be it a top-level operation
stream or a streamlet — must be appended. As we shall see in the operational semantics, any removal
from the operation stream will be from the head. It is through this consistent access pattern that
the chronological order of the operations is preserved in our semantics.

4 DON CALCULUS OPERATIONAL SEMANTICS

The main reduction system is presented in § 4.1. The semantics of TLO is an independent system
that bridges with the main system via one reduction rule, whose details are in § 4.2.

4.1 Semantics for Online Data Processing

The reduction relation C — C’ in Fig. 11 says that configuration C one-step reduces to configuration
C’. We use —" to represent the reflexive and transitive closure of —. Evaluation contexts are defined
in Fig. 10. To simplify our discussion, we classify — reduction into 4 categories, based on where a
reduction happens.

1) Frontend Reduction. Rules with the F evaluation context enable reductions that happen on
the frontend. The pair of EmIT and CraiM rules define the behavior of asynchronous operation
processing at the frontend, with the former placing an operation on the top-level operation stream,
and the latter reading from the result store. The definition here follows future semantics, where
the fresh label in EmrT is the future value. We say an operation is emittable if all of its arguments
are values, which we represent as metavariable w:

w == addn | map fKIV | fold f o KV

Both nodes and key lists as first-class citizens can be constructed at the frontend. The components
of a node may be inspected through NobpE. Key list concatenation and subtraction are defined
through KSA and KSS respectively. The rest of the frontend computation is enabled by BETA, in a
call-by-value style.

2) In-Data Task Reduction. On the backend, in-data processing may either be enabled by a task
reduction and a load reduction, the first of which we describe now. Rules with the T evaluation
context enable reductions that perform a task, i.e., a step on operation processing.

The task that “drives” the data processing at the backend is propagation, an instance of Prop. A
step of operation propagation involves two consecutive stations in the runtime data structure. The
reduction removes the head element (the oldest element) from the streamlet of the first station,
and places it to the last element (the youngest element) of the streamlet in the second station. It is
important to observe that the selection of redex for propagation is non-deterministic according to

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 157. Publication date: October 2022.

157:14 Philip Dexter, Yu David Liu, and Kenneth Chiu

. ¢ fresh c F[l ¢] = (B;O;R; e) t € dom(R)
Flo] — F[f] < [= o] FIll ¢] — F[R(?)] Beta F[(Ax.e) 0] — Fle[v/x]]
N N = N(vy;09;03)
E FI'N] = Flog] KSA F[KL(K) ® KL(K')] — FIKL(K + k)]
kek 0; = maprL(_k>,-) fori=1,2
. . Ma N; =N(k;e;e’) Ny = N(ks2(f N (f Nb)) ko=ki\k
KSS IF[KL(TC)) o KL(k")] —]F[KL<—IC) \ k"] 3 T[(Ny; [£ + 01] :: O)] — T[(Ng; [£ — 03] :: O)]
k e El
. 0; =fold f e KL(—k),-) fori=1,2 N =N¢(k;e’;e”) e2=fNe _k)z :_k)l \ k
OLD
T[{(N; [£ > 01] : O)] — T[{(N;[£ > 05] :: O)]
k¢l o) Bi=[(N(kee)0plfori=12 0,=Uz0,
oeran(U)
fror T[B, ++ B] — T[B, + (B < U)]
c B; = [(N;0;)] fori=1,2 O1=[t+0]:=0, o(0) ={}
OMPLETE T[B,] — T[Bs] < [O ¢ — o]
L T =B[B+] N =N¢(k;e;e’) k ¢ ©(0) o B; = [(N;O+ O; + O')] fori=1,2 0Oy ~ O3, R
TN £ 05 0)] — T[(N;0)] < [O € — o] o T[B,] — T[Bs] <R
Losn Lle] =(B;O;Re”y ([l;[I;R;e) = ([l; [I;R;€)
Lle] = L[e’]
. o#addn . 0 # addn
M 516 = 0] = OsRs) — ([1;05{O £ = o} U Rse) T B> 0] = O;Rie) — (B 4 [£ > 0]; O R e)
k fresh
ADD

(B; [£ > add n] = O; R;) — (N(ks s KL([])) = B; 0; {€ s k) UR; e)

Fig. 11. DON Calculus Operational Semantics

the definition of T. In other words, propagation may happen between any adjacent two stations in
the runtime data.

The realizations of map and fold are defined by Mar and FoLp, over a single station as the redex.
The task reduction for map realization happens when the key of the redex is included in the target
key list, the second argument of the map operation. It further applies the mapping function (the first
argument) to the current node, which computes a new node to update the current node. Following
the convention in data processing, Map does not allow a map operation to update the key of the
node: even though the node payload and the data structure topology can be changed in dynamic
data, keys as unique identifiers of nodes do not change. In Forp, the folding function is applied to
the current node, and the resulting expression becomes the initial expression (the second argument)
of the fold operation for further propagation. Both Map and FoLp demonstrate the incremental

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 157. Publication date: October 2022.

The Essence of Online Data Processing 157:15

nature of load update (recall § 2.4). For example, when being applied, the map operation does not
immediately evaluate the resulting payload expression or adjacency list expression to a value.

When the target of the map (or fold) operation contains multiple keys, its processing is “incre-
mental”: the processing consists of many Prop steps occasionally interposed by Mar (or FoLp)
steps. We will show an example of this incremental process shortly, in Example 4.1.

Finally, CoMPLETE and LAST are a pair of rules to “wrap up” the processing of an operation. The
former captures the case when a map or fold operation is successfully realized over every node
defined by its target. The latter represents the case when the last node is reached in the data. In
both cases, the O operator computes the result to be placed to the result store:

K
s Jt— 0 if o =map fKIV
Olm o=y qy

t— o if w="fold follV

A quick case analysis can reveal that each task reduction only involves at most two consecutive
stations in the station sequence (Prop), and often one station only (Map, FoLp, COMPLETE, LAST, or
OpT). In other words, both task reductions exhibit local behaviors.

3) In-Data Load Reduction. On the backend, the other form of in-data processing is a load reduction,
enabled by Loap. Unlike task reductions that process operations, load reductions (lazily) process
computations in data. What constitutes a load is evident by an inspection on the L evaluation
context, whose fulfilling redex we call a load expression: (i) the data node inside a station, or (ii) the
initial expression argument of a fold operation in the streamlet.

As revealed by LoAD, a load reduction depends on a frontend reduction: the premise of the rule
is a reduction over a configuration whose backend and top-level operation stream are both set to
{}, de facto only allowing for a frontend reduction. Intuitively, this means we consider every load
expression forms its own runtime with a trivial configuration that has no backend data or operation
stream. This simplifies our definition because a load reduction can thus depend on a BETA, NODE,
or CrAM reduction, effectively allowing the reductions they represent to happen at the backend of
data processing. The last case is especially important, in that it enables a dependent operation to
claim its argument in the form of a future, while processing at the backend (recall § 2.2.1).

Before we move on, let us illustrate the behavior of task and load reductions, especially on how
a propagation step, a realization step, and a load reduction step interleave with each other, through
an example:

Example 4.1 (Incremental Folding). Consider a configuration where the backend consists of two
stations, with nodes N; and N, and a fold operation has been propagated to the first station.
The operation has a folding function f representing a function which sums up the payloads of
all target nodes (this is a simplified version of the COrRePR example), and a target key list of
KL([k1, k2]). The following is one reduction sequence which ends in the fold being completed,
where N; = N(k;; i; KL([])) for i = 0,1,2 and N; = (ko; 3; KL([])):

([N [[€ > Fold f No KL([ks, 1) 11), (N3 [D1: 11 (1)
(Foup) — ([(Ni; [[£ — Fold f (f Ny No) KL([K:])]1), (No: D11 (:e)
(Prop) — ([(Ni: [, (No: [[£ > Fold £ (f Ny No) KL([K D ID]: [1: (:e)
(Foup) — ([(Ni: [, (N33 [[€ > Fold £ (f Ny (f Ny No)) KL{IDIDI: [1: (:e)

(Loap) —* ([(Ny; []), N[l Fold FNGKUDIDED: - {)se)
(Last) — ([(Ny; [1), (Nos [DT: 10: 40 2 N} e)

4) To-Data Reduction. The three rules that capture the behavior at the boundary of the top-level
operation stream and the data are simple. EMPTY considers the bootstrapping case where the data so
far contains no nodes. If the operation is a map or fold operation, a result is immediately returned.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 157. Publication date: October 2022.

157:16 Philip Dexter, Yu David Liu, and Kenneth Chiu

TLO-BaTcH [U.U]~ [U+#U']{}

TLO-UNBATCH [Ur + Uz] ~ U1, U2, {} ifU; # [] fori=1,2
TLO-REORDERD [[f1 = o01], [&2 = 02]] ~ [[f2 = 02], [&1 = 01]], {} if © (01) N©(02) = {}
TLO-REORDERRR [[£1 = 01], [£2 = 02]] ~ [[£2 = 02], [&1 = 01]], {} if 0; = fold f; e; KIV; for i = 1,2

TLO-REORDERRW [[#; + map fi KL(_k)l)], ~> [[£z — fold (f2 grlaf]) e KiV,],
[&; — fold f e Kiz]] [map fi KL(K)], {}

Fig. 12. Selected Rules of Temporal Locality Optimization (A complete definition can be found in the supple-
mentary material.)

FIRST removes the head element from the top-level operation stream, and places it as the last
element of the streamlet associated with the first node.

According to App, a new node is created with a freshly generated key. In DON Calculus we
adopt a simple design for node addition: they are always placed at the beginning of the data station
sequence. This can be seen in App. It also explains why an add reduction is a to-data reduction not
an in-data one.

4.2 Temporal Locality Optimization

The OpT rule bridges the main reduction relation (—) with the ~» relation, which defines different
forms of temporal locality optimization. With selected rules defined in Fig. 12, the O ~ O’,R
relation says that operation stream O reduces to operation stream O’ in one step, while producing
result R.

TLO-BarcH and TLO-UnBATCH allow units in the in-data operation streams to be batched
and unbatched. As the OpT rule can be applied over the streamlet in any station, batching and
unbatching may happen in-data at an arbitrary station. The reader may notice that many task
reduction rules, such as Map and FoLp, are defined with a singleton stream unit (batch). This is
because any batched stream unit can be unbatched first via TLO-UNBATCH, realized, and then
batched again via TLO-BatcH for further propagation.

Reordering is supported by three rules. TLO-REORDERD says that two operations with disjoint
target key lists can be reordered in the operation stream.

Example 4.2 (Operation Reordering). Imagine we have two operations that target disjoint keys:
¢ — map e KL{[k1, k2]) and ¢’ — map e’ KL([ks, k4]). According to TLO-REORDERD, they may be
swapped.

TLO-REORDERRR says that two fold operations can be reordered, as both are “read” in nature.
Finally, TLO-REORDERRW shows a map operation and a fold operation may still be reordered even
if they have overlapping targets. The insight behind is that a fold can “skip ahead” of a map if the
former alters its folding function as applying the mapping function of the latter first. This rule
relies on a helper operator for composing a mapping function and a folding function together,

where f 3o f” is defined as Ax.Ay.f (if 'x € k then f" xelse x) y.

To speed up the narrative, we defer the specification on fusion and reuse to the supplementary
material. Despite the diversity of TLOs — from batching, reordering, fusing, to reusing — the
principle here is that they all rewrite on the operation stream before the operations are realized.
The insight revealed by DON Calculus is that they may all happen in data (see § 2.5) thanks to the
fact that OpT can be applied in any streamlet.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 157. Publication date: October 2022.

The Essence of Online Data Processing 157:17

7 = int | key | future[z] | kI | node | 7 St type

ex=T|F emittability

Fu=x:1 typing environment

Tre:int\e Fl—e:node—F>node\£ Tre :kl\¢
T-App T-Map
T+ add e : future[key] \ T I'+ mapee’:future[int]\ T
Fl—e:nodeinodeinode\e T're' :node) ¢ Tre”:kl\e" T+ [x:t]re:t'\e
T-FoLp T-Ass e
T+ foldee’ e” :future[node] \ T TrAx:te:7—> 7 \F
Tre:t 57 \¢ Tre :7\e”
T-Arp

Tree :"\(eve Ve

Fig. 13. Selected Rules of the DON Calculus Type System (A complete definition can be found in the
supplementary material.)

5 THE TYPE SYSTEM

Fig. 13 defines a type system for DON Calculus, where typing judgement I + e : 7\ ¢ says that
given typing environment I', expression e has type r with emittability e. Metavariable ¢ ranges
over booleans, where a true value (T) indicates the expression may emit an operation whereas a
false value (F) indiates it must not. Operator I'{x} is defined as 7 where x’ : 7 is the right most
occurrence in I' such that x = x’.

Types are either a key type key, a payload type int, a key list type kl, a node type node, a future

type future[z] where 7 is the type of the result represented by the future, or a function type ¢ 5t

In the last form, emittability 2, is the effect of the function, which we will explain next. When a

T
function has type © — 7, we informally say that the function is latently emittable.

5.1 Phase Distinction

The primary goal of the type system is to enforce phase distinction: whereas the evaluation of an
expression at the frontend is unrestricted, the evaluation at the backend cannot lead to an operation
emission. We establish phase distinction through a simple type-and-effect system. It is built on
the insight that an operation might be emitted at the backend if the functions that serve as the
arguments of operations were latently emittable. As a result, the key to enforcing phase distinction
is to make sure these arguments are not latently emittable. Note that in our type system, both
T-Map and T-FoLD ensure that their argument functions — be it the mapping function or the folding
function — have function types that are not latently emittable. Emittability is disjunctive, as shown
in rules such as T-Aprp. On top of a standard type-and-effect core, the main novelty of our type
system is the property it enforces: phase distinction is a previously unreported property, yet critical
in establishing result determinism.

To revisit Example 2.14, the program does not type check because expression mapVal g [k] would
violate phase distinction.

5.2 Runtime Typing

Our type system can be implemented either as a static system or a dynamic system. The former
is useful with the “closed world” assumption: the entire processing operations are known before
the program starts. The latter is more appropriate with the “open world” (see Sec. 3.1), where the
forms of operations and their arguments may not be known until run time. The runtime typing

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 157. Publication date: October 2022.

157:18 Philip Dexter, Yu David Liu, and Kenneth Chiu

F = (B [I; R, E) eager frontend context
B = (o [];Rse) eager backend context
Tiu= B[S+ o+ f] eager task context (redex load-free)
Lu= B[ﬂ + (E; O) =:] eager load context
| BB+ (W;[[£— fold f EKIV]]) = f]
—
B = (W []) dry backend

Fig. 14. Evaluation Context for Eager Processing
rules are a predictable extension of static typing, with additional rules for configuration typing and
value typing. The judgment T +. C : 7\ ¢ says configuration C has type 7 with emittability ¢ under
typing environment I'. We defer these rules to the supplementary material.

6 META-THEORY
We now state important properties for DON Calculus. We say a backend is dry if it follows the

form (NV; []), written as 5. We say a configuration C is well-typed iff [] F. C : 7\ € for some 7 and
&. We define function init(e, B) to compute the initial configuration of frontend program e given
initial backend B. Specifically, init(e, B) 2 (B; [1;{}; e). The function init(e, B) is only defined if
(B; [1; {}; e) is well-typed. According to this definition, a program does not have to start with an
empty data structure; it can start with a data structure represented by B.

1) Type Soundness.

LEMMA 6.1 (TYPE PRESERVATION). IfT +. C: 7\ ¢, andC — C’ thenT . C' : 7\ ¢’ wheree =F
implies &’ = F.

LEMMA 6.2 (PROGRESS). For any C which is well-typed, then either C = (f; []; R;v) for some and
R or there exists some C' # C andC — C’.

In this lemma, note that the configuration (f; []; R; v) has the first component (the backend) as a
dry backend, the second component (the top-level operation stream) as empty ([]), and the fourth
component (the expression) as a value. This configuration is intuitively a terminating configuration.

THEOREM 6.3 (SOUNDNESS). For any program e and backend B, if init(e, B) = C then either there
exists C’ such that C —* C’ where C' = (f; []; R;v) or C diverges.

This important theorem establishes type soundness. As expected, it does require the initial
configuration to be well-typed, because function init(e, B) has the pre-condition that (B; []; {}; e)
is well-typed.

COROLLARY 6.4 (PHASE DISTINCTION). For any well-typed configuration C, if C — C’, then either
(1) the reduction is an instance of EMIT, or (2) the reduction is not an instance of EMIT, and its derivation
does not contain an instance of EMIT.

Recall that EmIT is defined with the frontend context [F. Case (1) says that operation emission
may happen at the frontend. On the backend, recall that the only reduction that may contain
a subderivation of EMIT would be an instance of Loap. Case (2) says that such a derivation is
not possible. In other words, operation emission cannot happen on the backend. As shown in
Example 2.14, the importance of phase distinction is that it contributes to result determinism, which
we elaborate next.

2) Result Determinism (Observable Equivalence). With generality as a design goal, DON Calculus
is guided with a design rationale that we should place as few restrictions on the evaluation order
as possible, leading to a semantics inherent with non-deterministic executions. One example is

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 157. Publication date: October 2022.

The Essence of Online Data Processing 157:19

the non-deterministic redex selection for propagation which we described in § 4. More generally,
a simple case analysis of evaluation contexts in Fig. 10 should make clear that DON Calculus is
endowed with non-deterministic redex selection between:

e a frontend reduction and a backend reduction: given a configuration, either F or B can be used
for selecting the redex of the next step of reduction;

e task reductions over different stations: according to T, the redex can be an arbitrary station in
the runtime data, where the task is an instance of Map, FoLp, COMPLETE, and LAST, or two
adjacent stations, where the task is an instance of Prop;

o load reductions inside different stations: according to L, the redex can be any load expression
inside an arbitrary station;

e a task reduction and a load reduction: either T and L can be used for redex selection.

Non-deterministic executions are good news for generality and adaptability (see § 2.4), but
they are a challenge to correctness: do different reduction sequences from the same configuration
produce the same result? We answer this question now.

LeEMMA 6.5 (REsuLT CONFLUENCE). For any frontend program e and backend B, if init(e, B) —*
(B1;O1; Ry;01) and init(e, B) =" (By; O2; Ry;02) then V¢ € dom(R;) N dom(Ry).Ry(£) = Ry(¢).

In other words, despite the non-deterministic execution exhibited by the asynchronous processing
between the frontend and the backend (see § 2.2.1), despite the non-deterministic choices in
propagation and realization in the backend (see § 2.4), despite non-deterministic executions over
load expressions resulting from lazy realization (see § 2.4), despite the in-data TLO (see § 2.5),
all executions that produce a result for an operation will converge on the same result. Taken all
operations into account, we can further establish:

THEOREM 6.6 (DETERMINISM). For any frontend program e and backend B, if init(e, B) —*
(By; [1: Ri;01) and init(e, B) —* (B,; [Re;0,) then B, = B, and dom(R;) = dom(R,) and V¢ €
dom(Ry).R(£) = Ry(£) and vy = vy.

According to this theorem, all terminating executions not only produce the same results for
operations, but also lead to the same final data structure, and the same values modulo term
equivalence in A calculus. Here, term equivalence is needed because of the TLO rules such as
fusing. It is also important to observe this Theorem can only be established with the support
of phase distinction. Without it, both the frontend and the backend could emit operations in
a non-deterministic, interleaved manner such that the reduction rules could no longer ensure
determinism.

Finally, eager data processing (see § 1) can be modeled by redefining evaluation contexts without
altering any reduction rules. Intuitively, this means that eager data processing is a restrictive instance

E
of DON Calculus. Rigorously, we represent eager processing as the — reduction relation, defined
as identical as the — we introduced in Fig. 4, except that the F, B, T, L evaluation contexts are

A A A A E
replaced with F, B, T, L evaluation contexts in Fig. 14. We use —" to represent the reflexive and

transitive closure of —. We say a backend B is load-free if any load expression in any station in B is
avalue. For the eager task context T, we further require any element in the domain of its fulfillment

E
function to be load-free. A trivial case analysis will reveal — is deterministic, conforming to our
intuition of one-at-a-time processing.

CoROLLARY 6.7 (DON CarLcuLus WITH REGARD TO EAGER PROCESSING). For any frontend program

e and backend B, if init(e, B) 5 (B1; [1; Ri;v1)and init(e, B) —* {B,; [1;Rz;vz2)then B, = B, and
dom(R;) = dom(R;) and ¥t € dom(R;).R;(£) = Ry(¢) and v, = v,.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 157. Publication date: October 2022.

157:20 Philip Dexter, Yu David Liu, and Kenneth Chiu

The simple corollary however carries an important message: the general, less restrictive data
processing of DON Calculus preserves the computation results of conventional data processing. In
a nutshell, IOP and TLO are both sound optimizations.

7 COQ MECHANIZATION

DON Calculus has been mechanized in Coq. The proofs include all properties of our meta-theory
presented in § 6, spanning around 7,000 LOC. In addition to gaining confidence in the correctness
of our calculus, the artifact of Coq mechanization may serve as a first-step reference for computer
system researchers to rigorously specify and reason about their own systems of online data
processing. Determinism in processing results is a fundamental property that transcends the
individual designs of online data processing.

The most challenging part of our mechanization is the confluence proof for determinism (Theo-
rem 6.6). Our proof follows the structure of Huet [Huet 1980], with two main properties to establish:
(1) the reduction system is locally confluent; (2) local confluence leads to global confluence. The
proof relies on Noetherian (well-founded) induction, following Huet.

8 PRACTICAL EXTENSIONS

In this section, we discuss some encodings and higher-level programming idioms, as well as a
number of extensions.

8.1 Custom Data Storage

Data processing routinely requires metadata support for optimization purposes, and/or produce
intermediate results stored in data. Encoding in-data storage beyond the integer payload is simple. A
node with key k, edges K1V, and custom structured payload c¢p € CP, can be encoded as N{k; I(cp);KLV)
where I : CP — INT is a bijective “integer encoding” function. I"! can compute the custom payload
storage from the node integer payload. Given cp is inductive, I is a standard tree compression
function. We will see an example in § 8.4.

8.2 Deletion

Edge deletion is straightforward in DON Calculus; see the encoding of deleteRelationship
in Table 1. In large-scale data processing systems (e.g., [neo 2010]), node deletion is commonly
supported through a conceptual “mark-and-sweep”: a boolean “in-use” field in each node indicates
whether a node is in use (true) or deleted (false); processing a deletion operation online only
implies resetting the field, and all nodes whose “in-use” field is set as false is swept offline. In
DON Calculus, this “in-use” field can be supported through custom storage (§ 8.1). The deletion
operation itself is a simple map function that sets the field to false. A user-level “map” function
can be encoded as a map whose mapping function first checks the “in-use” field is true; the same
applies to a user-level “fold” function.

8.3 Subgraph Computations

Within graph processing, graph algorithms are often defined over subgraphs, a neighborhood of
nodes logically connected through edges. The algorithm building blocks of subgraph computation
are either pull-based (e.g., [Wang et al. 2016]) or push-based (e.g., [Roy et al. 2013]), or both
(e.g., [Shun and Blelloch 2013; Zhang et al. 2015]). For a directed graph where each edge connects
from the source node to the destination node, a pull-based model iterates over destination nodes,
and aggregates over in-edges for each of them, whereas a push-based model iterates over source
nodes, and scatters over out-edges for each of them [Grossman et al. 2018]. The essence of both
models can be encoded with DON Calculus as follows, where fiqs and fyis¢ are the aggregation

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 157. Publication date: October 2022.

The Essence of Online Data Processing 157:21

and distribution functions respectively, n is the initial value for aggregation, and fIV is the keys of
dataset for processing:
£ foreach w in I
let z = Ax.Ay.if (w in 3x) then fagg x yelsey in
let u = foldval zn(klV in
mapVal (Ax.u) KL{[w])

pull fage n KWV

push fuist KIV 2 foreach w in kI
let z = queryNode w in mapVal(Ax.(fyist 2z x)) 3z

Here, the pull encoding iterates over each destination node w, aggregates for all its source nodes,
and updates the payload of w. Indeed, the CorePR example in essence is pull-based aggregation:
Line 9-11 of Fig. 3 has a similar structure. The push encoding iterates over each source node w and
updates the payloads of all destination nodes, i.e., 3z in the definition.

Variants of the pull/push are common in think-like-a-vertex graph processing systems, e.g., [Emoto
et al. 2016; Gonzalez et al. 2012; Low et al. 2012; Malewicz et al. 2010]. Take the Gather-Apply-Scatter
(GAS) model in Powergraph [Gonzalez et al. 2012] for example. The pull encoding is analogous to
the combination of “Gather” and “Apply”, whereas the push encoding is analogous to “Scatter.”

8.4 Modeling Existing Systems

DON Calculus lays a foundation for rigorously reasoning about online data processing systems.
We now use KickStarter [Vora et al. 2017] as an example to sketch our foundational role in helping
specify existing experimental systems.

KickStarter is an online graph processing system where queries results are continuously expected
while the queries may be interspersed with graph update operations such as edge addition or
deletion. One example query is the single-source widest path (SSWP), where each edge is weighted,
and continuous queries may be issued to find out the widest path of a node to a common source
node. The key metadata in KickStarter tracks the value dependency among nodes: each node
maintains a set of nodes whose change may impact the query result to that node. DON Calculus
can encode the metadata through custom storage (§ 8.1) in the form of (CV; DS; W) with each node,
where CV € INT keeps the current query result, DS € KLV is the value dependency store, and
W : KEY +— INT represents edge weights. Intuitively, when a node of key k has a DS where k’
appears, it means that the change of node k’ may impact the query result for node k. When a node
of key k has a W entry that maps k’ to n, it means that the weight for the edge connecting k and k’
has the weight of n. (One observation made by KickStarter is that DS is often a singleton set for
common graph queries; we keep the list representation for generality.) For the rest of the section,
we define convenience functions to retrieve the current query result and the value dependency
store associated with each node:

getV N(k; n; KIIy 2 1(I"1(n))

getD N(k; n; KI) 2 2(I"(n))
KickStarter judiciously determines the need for recomputing the query result. Not to lose
generality, we represent recomputation through a higher-order function recompute, which takes
a function f that can be applied to a node to produce the recomputed result. Just as SSWP and

single-source shortest path (SSSP) may have different ways of recomputation, KickStarter allows
programmers to provide (i.e., customize) this function f:

recompute f NV 2 (ks I(f NV); KIV) where NV = N(k; n; KIV)

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 157. Publication date: October 2022.

157:22 Philip Dexter, Yu David Liu, and Kenneth Chiu

Here, f can rely on any information in the node MV (e.g., current query result or dependency
store) to recompute. With that, we can encode the query function of KickStarter as follows, where
Duinit represents the uninitialized value for CV; i.e., before the first query is conducted:

KSQuery k f £ let y = Ax. if ((getV x) == vyinit) recompute f x else x in
map y KL([k]); getV (queryNode k)
The more interesting case is edge deletion, which we encode as follows. Here, keys ks and kq are
the source/destination node of the edge to be deleted, KLV is the scope of keys to be inspected (such
as a partition, or the entire graph), and f is the custom recomputation function.

KSDeleteEdge ks kq KIV f 2 deleteRelationship ks kq; trim KL([ks]) KIV f
where trim KV IV f £ foreach (w in k")
let z = Ax.Ay.if(w in (getD x)) y ® {1x} else y in
let u = fold z KL{[]) kIV in
map (recompute f) u;trimu KV f

It says that the edge will be deleted from the graph (the deleteRelationship operation), and the
dependency store needs to be processed through trimming. The trim function iteratively inspects
and updates the dependency stores of nodes that may be impacted by the edge deletion. At each
iteration, the fold function collects the nodes keys that may subject to recomputation, performed
by map.

The take-away message is that, with DON Calculus, the KickStarter developers can focus
on defining their unique algorithm details (e.g., f for the recomputation of query results and
dependencies) while enjoying the correctness properties defined by DON Calculus. This also
means that they can reuse the mechanized proofs of DON Calculus, only strengthening them with
properties unique to their algorithm (e.g., approximation monotonicity).

8.5 Key-Value Store and Tabular Data Support

Supporting structured data is a design goal of our DON Calculus (see § 2.1). To be inclusive on
general data structures such as graphs, the DON Calculus runtime necessarily includes structures
such as adjacency lists. Other common data organizations — key-value stores and tabular/relational
data — are topologically simpler than graphs; they can also be supported by DON Calculus, i.e.,
endowing IOP and TLO to the online processing of these forms of data.

Supporting key-value stores with DON Calculus are trivial: the adjacency list for each data node
should always be an empty sequence. The most common operations in key-value stores, mapping
and aggregation (reduction), have corresponding primitives in our calculus, map and fold. From
this perspective, DON Calculus describes the behavior of online processing of a dynamic key-value
store where incremental processing and operation batching/reordering/fusion/reuse are in place.

For tabular/relational data, we first need to support multiple tables. This can be encoded as long
as we have a bijective mapping between TABLEID x ROWID and KEY where TABLEID is the
set of table IDs and ROWID is the set of row IDs. In other words, the backend data structure (B)
can always be logically partitioned into multiple tables. The payload associated with each node in
this case would be a tuple, each component being the value of a column. For the common relational
operations, column projection can be directly supported by map, where the mapping function is
the tuple elimination indexed at the column of interest. As the map operation propagates through
the backend data, incremental column projection is supported for free. The SQL-style GROUP BY
operator can be supported in a similar fashion, except the result is a mapping whose domain
constitute the column values of interest identified by the GROUP BY operator. As this operator is
often used for aggregation. the aggregation function can be performed incrementally similar to the
incremental fold example (Example 4.1).

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 157. Publication date: October 2022.

The Essence of Online Data Processing 157:23

8.6 Sublinear Operation Processing

Indexing and hashing are two examples where processing an operation may become sublinear
in time complexity: through auxiliary structures (e.g., indexes and hashes), an operation may
circumvent the scan and traversal in data.

For immutable data, DON Calculus can be trivially extended with indexing and hashing. Since no
update is allowed, this is analogous to a subset of DON Calculus without add and map expressions.
Here, a simple query (e.g., a key-value lookup) can be directly answered by the index/hash, while
more complex queries (e.g., a folding operation that involves many nodes) continue to follow the
same semantics currently defined by DON Calculus. Note that the use scenario of immutable data
processing is indeed where indexing and hashing are most common (e.g., in Spark).

For mutable (i.e., evolving) data processing, extending DON Calculus with indexing and hashing
requires one consideration: the result from index-based or hash-based query should be “corrected”
by the updates that are under propagation (i.e., the updates that are emitted but not realized). The
notion of “correction” is analogous to a TLO optimization that reorders a map operation and a fold
operation; see TLO-REORDERRW. Orthogonal to the DON Calculus support, readers should be
aware that indexing/hashing support in mutable data processing by itself is often problematic in
practical systems (e.g., modern databases [neo 2010]) and hence less commonly used. The general
practice is to leave the correctness of using indexing or hashing to the programmer: she can create
an index to her very large and mutable graph, but the potentially expensive reindexing in the
presence of data change is a programmer task. As a result, no guarantee is provided at the level of
the data processing engine that the index-based query returns a correct (i.e., non-stale) result. In
this context, the DON Calculus variant we discussed above provides the correctness guarantee up
to the program. In other words, this variant can ensure a non-deterministic execution can produce
the same result as that of eager processing of the program (Corollary 6.7).

8.7 Exception Handling

Recall that in § 3.2, we described the residual target key list associated with each entry in the result
store. In a language extension with explicit exception handling support, modeling “key not found”
as an exception is a simple extension. The only change is to replace CLaiM with the following rules:

Fl o] = (B;o;Riey e e FlU 6] = (B;OsRe) €hdsneR 7 #KL(])
CLammY CLAaIMN
F[{ ¢] — Flo] F[¢] — F[exception(klV)]

where exception(klV) is a value of this extended language. A programmer can further inspect KLV
for exception handling.

8.8 More Extensions

In the supplementary material, we further describe the support of additional features, including
parallelism, mapping/folding all elements, and alternative design choices for node addition.

8.9 Applicability and Limitations

In summary, DON Calculus is best suited for specifying systems or applications that can be
expressed as continuously submitting queries (reads) and updates (writes) to an evolving piece of
data. In other words, a beneficiary data processing system/application should (1) have a natural
data-centric view, i.e., a piece of dynamic data structure evolves as the program progresses; (2) have
operations continuously applied to the data.

One limitation of our calculus is its fundamental incompleteness, i.e., there are always optimiza-
tions in existing/future online data processing systems out of scope of our calculus. Nonetheless,

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 157. Publication date: October 2022.

157:24 Philip Dexter, Yu David Liu, and Kenneth Chiu

we think IOP and TLO are arguably the most common forms of optimization relevant to the online
requirements of data processing. For optimizations beyond IOP and TLO, the most important family
beyond (the main text of) this paper is perhaps parallelism.

Our core DON Calculus assumes data are scanned or traversed when an operation is processed.
For extending our calculus with alternative data access such as indexing and hashing, see § 8.6.

8.10 An Implementation

The design of DON Calculus has inspired us to develop PrrStop [Eymer et al. 2022], an online
processing system for graph databases. PrrStop targets the use scenario described in § 2.2.1. It
supports IOP features (in the same style as Example 2.6) [Eymer et al. 2019] and a subset of
TLO (batching and fusion). The implementation details of this system are out of the scope of
this paper, but we wish to describe the relationship between DON Calculus and PrtStop. First,
DON Calculus provides a foundation to confirm the correctness claims made for PITSTOP, especially
determinism. Second, P1TSTOP confirms the performance benefits of IOP and TLO in the context of
graph databases: it shows that workload fluctuation and longtail — two challenging scenarios of
online data processing — can benefit from them. Third, PrTStop also implemented features beyond
the scope of DON Calculus, e.g., fine-grained parallelism. A parallel variant of DON Calculus can
be found in the supplementary material.

9 RELATED WORK

Incrementality. Self-adjusting computation [Acar et al. 2006] enables computations to respond
to dynamically changing (input) data automatically. It tracks the control/data dependencies in a
computation so that changes to data can be propagated through the computation. DON Calculus
explores a use scenario where data respond to a stream of operations, and the propagation appears
in the data itself. With i3QL [Mitschke et al. 2014], incremental computations can be specified
and maintained in a declarative SQL-like language, embedded in Scala. A foundation for fault-
tolerant distributed computing [Haller et al. 2018] describes a formal semantics and lineage-based
programming model for distributed data processing. In their model, deferred evaluation is supported
at the boundary of distributed nodes to promote opportunities for operation fusion and improve the
efficiency of network communications. More broadly, incremental computing systems [Hammer
etal. 2014; Harkes et al. 2016; Harkes and Visser 2017; Pugh and Teitelbaum 1989] propagate changes
in the program dependency graph, and efficiently perform re-computation along the propagation
path only when necessary.

Temporal Locality Optimization. In databases, the various forms of TLOs formalized by DON Cal-
culus are well known. Batching is a basic operation supported by numerous systems. QUEL" [Sellis
and Shapiro 1985] is an early compiler optimization defined with a number of tactics for inter-query
optimization, such as combining two REPLACE operations in a relational query language into one.
This is analogous to fusing in the style of the TLO-FuseM rule in DON Calculus.

Database queries can be optimized so that common tasks can be shared [Sellis 1988], and this
problem can also be formulated as a sub-expression identification problem [Park and Segev 1988].
These pioneer efforts lead to a large body of research on MQO-style query optimization (e.g., [Le
et al. 2012; Ramachandra and Sudarshan 2012; Ren and Wang 2016; Scully and Chlipala 2017; Sousa
et al. 2014]). The essence of exploring commonality among queries is embodied by the TLO-REUSE
rule in DON Calculus.

Overall, the relationship between existing work and DON Calculus is complementary. Existing
work highlights the importance of TLO in data processing design and provides the context for our
calculus. DON Calculus provides a language-based foundation where TLOs are specified as a part

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 157. Publication date: October 2022.

The Essence of Online Data Processing 157:25

StockA with price 2.53 Count stocks with price >5.00,
StackB with price 3.02 Find maximum price
StockC with price 4.55 Add StockD with price 8.03
StockB with price 3.14 Count stocks with price >5.00,

StockA with price 2.54 Update StockC with price 8.00

v v

StockA with price 2.53
StackB with price 3.02

StockC with price 4.55

(a) Data Streaming (b) DON Calculus

Legends: | chronological order | flows to _

Fig. 15. Data Streams and Operation Streams: Different Scenarios in Stock Data Processing

of the semantics of a data processing engine, and various TLOs are unified in one system. It also
elucidates when and where TLOs may happen (§ 2.5).

Data Streaming. Data streaming systems have a model where a stream of data flow through data
processing operations (often called stream processors) composed together through framework-
defined combinators. This is a well established area, including data flow and data streaming
languages [Ashcroft and Wadge 1977; Caspi et al. 1987; Meyerovich et al. 2009; Spring et al. 2007;
Thies et al. 2002; Vaziri et al. 2014], data flow processing frameworks [Hirzel et al. 2014; Murray
et al. 2013, 2011; Zaharia et al. 2013, 2016], and foundations [Arasu and Widom 2004; Bartenstein
and Liu 2014; Cohen et al. 2006; Gurevich et al. 2007; Haller and Miller 2019; Lee and Messerschmitt
1987; Soulé et al. 2010].

As we described in § 2.1, DON Calculus explores a near dual design space. To help understand
the fundamental semantic and use scenario difference between existing work and ours, let us refer
to an example frequently used in data streaming systems, real-time stock data processing. As shown
in Fig. 15(a), a data streaming system is designed for a use scenario where a live stream of data
may be processed by a pre-deployed query (or queries) — continuous queries [Arasu and Widom
2004] — e.g., continuously finding out what the maximum stock price is. DON Calculus is designed
for a different use scenario where a live stream of operations, as shown in Fig. 15(b), may be applied
to a continuously evolving data store. The different use scenarios each direction targets lead to
different design needs. For example, TLO is an essential design component in DON Calculus, where
we answer e.g., how to reorder operation “Count stocks with price >5.00” and operation
“Update StockC with price 8.00” with both operations still returning the expected results.
There appears to be no natural analogy for reordering in a data streaming system. In that setting,
more commonly known is data aggregation, such as through a sliding window [Tangwongsan
et al. 2015]. In essence, the design space of a data streaming systems addresses how to apply a
sequence of data to a program, whereas the design space of DON Calculus addresses how to apply
a sequence of programs to an evolving set (or structure) of data.

From an end-user perspective, the choice between operation streams and data streams depends
on the application use scenario. In data streaming, new data are emitted continuously, but the
queries themselves — such as those at the bottom right of Fig. 15 — are relatively stable; they do
not go through rapid changes at run time and are often deployed ahead of time. In contrast, the
operations in the operation streams are emitted continuously, and their emission (from a frontend
program) is dynamic, not known a priori. With operation streams, new data can indeed be added
or updated — through add and map operations in DON Calculus — but the natural use scenario is
that these additions/updates of data are mixed with dynamically emitted and diverse queries.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 157. Publication date: October 2022.

157:26 Philip Dexter, Yu David Liu, and Kenneth Chiu

Online Data Processing Systems. The need for scalable online data processing is long sought
after. In the naive sense (see § 1), any data processing system — a database or a graph analytic
engine — can be viewed “online” if deployed in an interactive setting. In recent years however, the
explosive growth in data volume and the complexity of analytical queries/updates together redefine
its essence, so that any system that can be justifiably termed “online” must embrace optimizations to
support continuous, low-latency, and sometimes real-time processing. In databases, one example is
Online Analytical Processing (OLAP) databases. For data processing frameworks that are primarily
deployed with immutable datasets, such as MapReduce and Spark, the scalability demands are often
met with scale-out solutions, as data parallelism can be effective. The same holds for early graph
processing systems (e.g., [Gonzalez et al. 2012; Low et al. 2012; Shun and Blelloch 2013]) where
static graphs are assumed. For newer graph processing systems, IOP and TLO both play significant
roles. For example, GraPU [Sheng et al. 2018] allows updates to the graph to be buffered and pre-
processed, similar to a TLO operation in our top-level operation stream. Kineograph [Cheng et al.
2012] supports a commit protocol for incremental graph updates. DeltaGraph [Dexter et al. 2016]
allows for incremental propagation of graph operations, which can be batched and fused within
the graph through a Haskell datatype representation of an inductive graph. C-Trees [Dhulipala
et al. 2019] are purely functional data structures to enable efficient concurrent processing in the
presence of queries and updates. In addition to KickStarter, other examples that target online data
processing include LazyBase [Cipar et al. 2012], Chronos [Han et al. 2014], Tornado [Shi et al. 2016],
Version Traveler [Ju et al. 2016], GraphBolt [Mariappan and Vora 2019], GraphOne [Kumar and
Huang 2020], GraphQ [Wang et al. 2015], and DZig [Mariappan et al. 2021].

Together, the experimental systems in this subsection provide a context that DON Calculus lays
a foundation for, answering the crucial question of correctness in the presence of IOP and TLO.

Phase Distinction. Broadly speaking, phase distinction in type system design can be traced to
Cardelli [Cardelli 1988], where a phased type system distinguishes compile-time terms and run-time
terms. Harper et al. [Harper et al. 1989] defines phase distinction in the context of ML modules. In
meta-programming, macro systems, and multi-stage programming, a crucial concern is to ensure
the code generated at run time remains type-safe. This leads to a rich set of language and type
system designs where some notion of phase distinction is enforced. Several examples include
cross-stage safety and persistence in MetaML [Taha and Sheard 1997] and MetaOCaml [Calcagno
et al. 2003], process separation in <ML> [Liu et al. 2009], and cross-stage distinction in Scala multi-
stage macros [Stucki et al. 2021]. In DON Calculus, the property of phase distinction is specific to
data processing, with the phases being the front-end computation and the back-end computation
respectively.

10 CONCLUDING REMARKS

Designing online processing systems with optimization support of temporal locality optimization
and incremental operation processing is a challenging problem. DON Calculus illuminates the
design space of these systems, and complements experimental systems with a correctness-driven
approach. The specification and mechanization of DON Calculus can be used as a sound base by
future designers of online data processing systems in their pursuit of rigorous semantic engineering.

Data Availability Statement. The Coq mechanization is publicly available [Dexter et al. 2022].

Acknowledgments. This work is sponsored by the US National Science Foundation, award NSF
CCF-1815949.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 157. Publication date: October 2022.

The Essence of Online Data Processing 157:27

REFERENCES

2010. Neo4j Graph Database. http://www.neo4j.org.

Umut A. Acar, Guy E. Blelloch, and Robert Harper. 2006. Adaptive Functional Programming. ACM Trans. Program. Lang.
Syst. 28, 6 (Nov. 2006). https://doi.org/10.1145/1186632.1186634

Andrew W. Appel, Lennart Beringer, Adam Chlipala, Benjamin C. Pierce, Zhong Shao, Stephanie Weirich, and Steve
Zdancewic. 2016. The DeepSpec Project: The Science of Deep Specification, https://deepspec.org/, 2016-2021.

Arvind Arasu and Jennifer Widom. 2004. A Denotational Semantics for Continuous Queries over Streams and Relations.
SIGMOD Rec. 33, 3 (sep 2004), 6-11. https://doi.org/10.1145/1031570.1031572

E. A. Ashcroft and W. W. Wadge. 1977. Lucid, a nonprocedural language with iteration. Commun. ACM 20, 7 (July 1977),
8 pages. https://doi.org/10.1145/359636.359715

Thomas W. Bartenstein and Yu David Liu. 2014. Rate Types for Stream Programs. In OOPSLA’14 (Portland, Oregon, USA)
(OOPSLA ’14). 213-232. https://doi.org/10.1145/2660193.2660225

Dimitri P Bertsekas and John N Tsitsiklis. 1989. Parallel and distributed computation: numerical methods. Vol. 23. Prentice
hall Englewood Cliffs, NJ.

Sergey Brin and Lawrence Page. 1998. The Anatomy of a Large-Scale Hypertextual Web Search Engine. Computer Networks
30 (1998), 107-117. https://doi.org/10.1016/S0169-7552(98)00110-X

Peter Buneman, Susan Davidson, Gerd Hillebrand, and Dan Suciu. 1996. A query language and optimization techniques for
unstructured data. In Proceedings of the 1996 ACM SIGMOD international conference on Management of data. 505-516.
https://doi.org/10.1145/233269.233368

Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. 2003. Implementing Multi-Stage Languages Using ASTs,
Gensym, and Reflection. In Proceedings of the 2nd International Conference on Generative Programming and Component
Engineering (Erfurt, Germany) (GPCE "03). Springer-Verlag, 57-76. https://doi.org/10.1007/978-3-540-39815-8_4

Luca Cardelli. 1988. Phase Distinctions in Type Theory. Technical Report.

P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. 1987. LUSTRE: a declarative language for real-time programming. In
POPL °87 (Munich, West Germany). 178-188. https://doi.org/10.1145/41625.41641

Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming Wu, Fan Yang, Lidong Zhou, Feng Zhao, and
Enhong Chen. 2012. Kineograph: Taking the Pulse of a Fast-changing and Connected World. In Proceedings of the 7th
ACM European Conference on Computer Systems (Bern, Switzerland) (EuroSys ’12). ACM, New York, NY, USA, 85-98.
https://doi.org/10.1145/2168836.2168846

James Cipar, Greg Ganger, Kimberly Keeton, Charles B. Morrey, Craig A.N. Soules, and Alistair Veitch. 2012. LazyBase:
Trading Freshness for Performance in a Scalable Database. In Proceedings of the 7th ACM European Conference on
Computer Systems (Bern, Switzerland) (EuroSys ’12). Association for Computing Machinery, New York, NY, USA, 169-182.
https://doi.org/10.1145/2168836.2168854

Albert Cohen, Marc Duranton, Christine Eisenbeis, Claire Pagetti, Florence Plateau, and Marc Pouzet. 2006. N-Synchronous
Kahn Networks: A Relaxed Model of Synchrony for Real-Time Systems. In POPL’06 (Charleston, South Carolina, USA)
(POPL ’06). 180-193. https://doi.org/10.1145/1111320.1111054

Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing on Large Clusters. In OSDI’04: Sixth
Symposium on Operating System Design and Implementation. San Francisco, CA, 137-150. https://doi.org/10.1145/1327452.
1327492

Philip Dexter, Yu David Liu, and Kenneth Chiu. 2016. Lazy graph processing in Haskell. In Proceedings of the 9th International
Symposium on Haskell. ACM, 182-192. https://doi.org/10.1145/3241625.2976014

Philip Dexter, Yu David Liu, and Kenneth Chiu. 2022. The Essence of Online Data Processing - Coq Mechanization. https:
//doi.org/10.5281/zenodo.7051651

Laxman Dhulipala, Guy E Blelloch, and Julian Shun. 2019. Low-latency graph streaming using compressed purely-functional
trees. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM,
918-934. https://doi.org/10.1145/3314221.3314598

David Ediger, Rob McColl, Jason Riedy, and David A Bader. 2012. Stinger: High performance data structure for streaming
graphs. In 2012 IEEE Conference on High Performance Extreme Computing. IEEE, 1-5. https://doi.org/10.1109/HPEC.2012.
6408680

Marwa Elteir, Heshan Lin, and Wu-chun Feng. 2010. Enhancing mapreduce via asynchronous data processing. In 2010 IEEE
16th International Conference on Parallel and Distributed Systems. IEEE, 397-405. https://doi.org/10.1109/ICPADS.2010.116

Kento Emoto, Kiminori Matsuzaki, Zhenjiang Hu, Akimasa Morihata, and Hideya Iwasaki. 2016. Think like a Vertex, Behave
like a Function! A Functional DSL for Vertex-Centric Big Graph Processing. In Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming (Nara, Japan) (ICFP 2016). Association for Computing Machinery,
New York, NY, USA, 200-213. https://doi.org/10.1145/2951913.2951938

Jeffrey Eymer, Philip Dexter, and Yu David Liu. 2019. Toward Lazy Evaluation in a Graph Database. In The Second Workshop
on Incremental Computing (IC’19).

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 157. Publication date: October 2022.

http://www.neo4j.org
https://doi.org/10.1145/1186632.1186634
https://deepspec.org/
https://doi.org/10.1145/1031570.1031572
https://doi.org/10.1145/359636.359715
https://doi.org/10.1145/2660193.2660225
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1145/233269.233368
https://doi.org/10.1007/978-3-540-39815-8_4
https://doi.org/10.1145/41625.41641
https://doi.org/10.1145/2168836.2168846
https://doi.org/10.1145/2168836.2168854
https://doi.org/10.1145/1111320.1111054
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/3241625.2976014
https://doi.org/10.5281/zenodo.7051651
https://doi.org/10.5281/zenodo.7051651
https://doi.org/10.1145/3314221.3314598
https://doi.org/10.1109/HPEC.2012.6408680
https://doi.org/10.1109/HPEC.2012.6408680
https://doi.org/10.1109/ICPADS.2010.116
https://doi.org/10.1145/2951913.2951938

157:28 Philip Dexter, Yu David Liu, and Kenneth Chiu

Jeff Eymer, Philip Dexter, Joseph Raskind, and Yu David Liu. 2022. The PitStop System, online at https://github.com/PitStop-
Github/PitStop.

Cormac Flanagan and Matthias Felleisen. 1995. The Semantics of Future and Its Use in Program Optimizations. In
Conference Record of POPL’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Francisco, California, USA, January 23-25, 1995, Ron K. Cytron and Peter Lee (Eds.). ACM Press, 209-220. https:
//doi.org/10.1145/199448.199484

Cormac Flanagan and Matthias Felleisen. 1999. The Semantics of Future and an Application. J. Funct. Program. 9, 1 (1999),
1-31. http://journals.cambridge.org/action/displayAbstract?aid=44231

Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. 2012. PowerGraph: Distributed Graph-
Parallel Computation on Natural Graphs. In Presented as part of the 10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12). USENIX, Hollywood, CA, 17-30.

Samuel Grossman, Heiner Litz, and Christos Kozyrakis. 2018. Making Pull-Based Graph Processing Performant. SIGPLAN
Not. 53, 1 (Feb. 2018), 246-260. https://doi.org/10.1145/3200691.3178506

Yuri Gurevich, Dirk Leinders, and Jan Van Den Bussche. 2007. A Theory of Stream Queries. In Proceedings of the 11th
International Conference on Database Programming Languages (Vienna, Austria) (DBPL’07). Springer-Verlag, Berlin,
Heidelberg, 153-168. https://doi.org/10.1007/978-3-540-75987-4_11

Philipp Haller and Heather Miller. 2019. A reduction semantics for direct-style asynchronous observables. J. Log. Algebraic
Methods Program. 105 (2019), 75-111. https://doi.org/10.1016/j.jlamp.2019.03.002

Philipp Haller, Heather Miller, and Normen Miiller. 2018. A programming model and foundation for lineage-based distributed
computation. JFP 28 (2018). https://doi.org/10.1017/S0956796818000035

Robert H. Halstead, Jr. 1985. MULTILISP: a language for concurrent symbolic computation. ACM Trans. Program. Lang. Syst.
7 (10 1985), 501-538. Issue 4. https://doi.org/10.1145/4472.4478

Matthew A. Hammer, Khoo Yit Phang, Michael Hicks, and Jeffrey S. Foster. 2014. Adapton: Composable, Demand-driven
Incremental Computation. In PLDI '14. https://doi.org/10.1145/2666356.2594324

Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou, Vijayan Prabhakaran, Wenguang Chen, and
Enhong Chen. 2014. Chronos: a graph engine for temporal graph analysis. In Proceedings of the Ninth European Conference
on Computer Systems. 1-14. https://doi.org/10.1145/2592798.2592799

Daco C Harkes, Danny M Groenewegen, and Eelco Visser. 2016. IceDust: Incremental and Eventual Computation of Derived
Values. In ECOOP ’16. Schloss Dagstuhl-Leibniz-Zentrum fir Informatik. https://doi.org/10.4230/LIPIcs.ECOOP.2016.11

Daco C Harkes and Eelco Visser. 2017. IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition. In
31st European Conference on Object-Oriented Programming. Schloss Dagstuhl-Leibniz-Zentrum fir Informatik. https:
//doi.org/10.4230/LIPIcs. ECOOP.2017.14

Robert Harper, John C. Mitchell, and Eugenio Moggi. 1989. Higher-Order Modules and the Phase Distinction. In Proceedings
of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Francisco, California, USA)
(POPL °90). 341-354. https://doi.org/10.1145/96709.96744

Martin Hirzel, Robert Soulé, Scott Schneider, Bugra Gedik, and Robert Grimm. 2014. A Catalog of Stream Processing
Optimizations. ACM Comput. Surv. 46, 4, Article 46 (mar 2014), 34 pages. https://doi.org/10.1145/2528412

Gérard Huet. 1980. Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems: Abstract
Properties and Applications to Term Rewriting Systems. J. ACM 27, 4 (Oct. 1980), 797-821.

Xiaoen Ju, Dan Williams, Hani Jamjoom, and Kang G. Shin. 2016. Version Traveler: Fast and Memory-Efficient Version
Switching in Graph Processing Systems. In 2016 USENIX Annual Technical Conference (USENIX ATC 16). USENIX
Association, Denver, CO, 523-536.

Pradeep Kumar and H. Howie Huang. 2020. GraphOne: A Data Store for Real-Time Analytics on Evolving Graphs. ACM
Trans. Storage 15, 4, Article 29 (Jan. 2020), 40 pages. https://doi.org/10.1145/3364180

W. Le, A. Kementsietsidis, S. Duan, and F. Li. 2012. Scalable Multi-query Optimization for SPARQL. In 2012 IEEE 28th
International Conference on Data Engineering. 666—677. https://doi.org/10.1109/ICDE.2012.37

E. A. Lee and D. G. Messerschmitt. 1987. Synchronous data flow. Proc. IEEE 75, 9 (1987), 1235-1245. https://doi.org/10.1109/
PROC.1987.13876

Yu David Liu, Christian Skalka, and Scott F. Smith. 2009. Type-specialized staged programming with process separation.
Higher-Order and Symbolic Computation 24 (2009), 341-385. https://doi.org/10.1145/1596614.1596622

Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and Joseph M Hellerstein. 2012. Distributed
GraphLab: a framework for machine learning and data mining in the cloud. Proceedings of the VLDB Endowment 5, 8
(2012), 716-727. https://doi.org/10.14778/2212351.2212354

Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski.
2010. Pregel: A System for Large-scale Graph Processing. In SIGMOD °10 (Indianapolis, Indiana, USA). 135-146. https:
//doi.org/10.1145/1807167.1807184

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 157. Publication date: October 2022.

https://github.com/PitStop-Github/PitStop
https://github.com/PitStop-Github/PitStop
https://doi.org/10.1145/199448.199484
https://doi.org/10.1145/199448.199484
http://journals.cambridge.org/action/displayAbstract?aid=44231
https://doi.org/10.1145/3200691.3178506
https://doi.org/10.1007/978-3-540-75987-4_11
https://doi.org/10.1016/j.jlamp.2019.03.002
https://doi.org/10.1017/S0956796818000035
https://doi.org/10.1145/4472.4478
https://doi.org/10.1145/2666356.2594324
https://doi.org/10.1145/2592798.2592799
https://doi.org/10.4230/LIPIcs.ECOOP.2016.11
https://doi.org/10.4230/LIPIcs.ECOOP.2017.14
https://doi.org/10.4230/LIPIcs.ECOOP.2017.14
https://doi.org/10.1145/96709.96744
https://doi.org/10.1145/2528412
https://doi.org/10.1145/3364180
https://doi.org/10.1109/ICDE.2012.37
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.1145/1596614.1596622
https://doi.org/10.14778/2212351.2212354
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/1807167.1807184

The Essence of Online Data Processing 157:29

Mugilan Mariappan, Joanna Che, and Keval Vora. 2021. DZiG: Sparsity-Aware Incremental Processing of Streaming Graphs.
In Proceedings of the Sixteenth European Conference on Computer Systems (Online Event, United Kingdom) (EuroSys °21).
Association for Computing Machinery, New York, NY, USA, 83-98. https://doi.org/10.1145/3447786.3456230

Mugilan Mariappan and Keval Vora. 2019. GraphBolt: Dependency-Driven Synchronous Processing of Streaming Graphs.
In Proceedings of the Fourteenth EuroSys Conference 2019 (Dresden, Germany) (EuroSys ’19). Association for Computing
Machinery, New York, NY, USA, Article 25, 16 pages. https://doi.org/10.1145/3302424.3303974

Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper, Michael Greenberg, Aleks Bromfield, and Shriram
Krishnamurthi. 2009. Flapjax: A Programming Language for Ajax Applications. In Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and Applications (Orlando, Florida, USA) (OOPSLA ’09).
ACM, New York, NY, USA, 1-20. https://doi.org/10.1145/1640089.1640091

Ralf Mitschke, Sebastian Erdweg, Mirko Kohler, Mira Mezini, and Guido Salvaneschi. 2014. I3QL: Language-Integrated Live
Data Views. In OOPSLA’14. 417-432. https://doi.org/10.1145/2660193.2660242

Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Martin Abadi. 2013. Naiad: a timely
dataflow system. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM, 439-455.
https://doi.org/10.1145/2517349.2522738

Derek G Murray, Malte Schwarzkopf, Christopher Smowton, Steven Smith, Anil Madhavapeddy, and Steven Hand. 2011.
CIEL: a universal execution engine for distributed data-flow computing. In Proc. 8th ACM/USENIX Symposium on
Networked Systems Design and Implementation. 113-126.

Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon Chun. 2015. Making Sense of Performance
in Data Analytics Frameworks. In 12th USENLX Symposium on Networked Systems Design and Implementation (NSDI 15).
USENIX Association, Oakland, CA, 293-307.

Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom. 1995. Object exchange across heterogeneous
information sources. In Proceedings of the eleventh international conference on data engineering. IEEE, 251-260. https:
//doi.org/10.1109/ICDE.1995.380386

J. Park and A. Segev. 1988. Using common subexpressions to optimize multiple queries. In Proceedings. Fourth International
Conference on Data Engineering. 311-319. https://doi.org/10.1109/ICDE.1988.105474

W. Pugh and T. Teitelbaum. 1989. Incremental Computation via Function Caching. In POPL °89. https://doi.org/10.1145/
75277.75305

Karthik Ramachandra and S. Sudarshan. 2012. Holistic Optimization by Prefetching Query Results. In Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data (Scottsdale, Arizona, USA) (SIGMOD ’12). 133-144.

Xuguang Ren and Junhu Wang. 2016. Multi-Query Optimization for Subgraph Isomorphism Search. Proc. VLDB Endow. 10,
3 (Nov. 2016), 121-132. https://doi.org/10.14778/3021924.3021929

Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream: Edge-centric graph processing using streaming
partitions. In SOSP ’13. ACM, 472-488. https://doi.org/10.1145/2517349.2522740

Ziv Scully and Adam Chlipala. 2017. A Program Optimization for Automatic Database Result Caching. In Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (Paris, France) (POPL 2017). 271-284.
https://doi.org/10.1145/3009837.3009891

Timos K. Sellis. 1988. Multiple-Query Optimization. ACM Trans. Database Syst. 13, 1 (March 1988), 23-52. https:
//doi.org/10.1145/42201.42203

Timos K. Sellis and Leonard Shapiro. 1985. Optimization of Extended Database Query Languages. In Proceedings of the
1985 ACM SIGMOD International Conference on Management of Data (Austin, Texas, USA) (SIGMOD ’85). Association for
Computing Machinery, New York, NY, USA, 424-436. https://doi.org/10.1145/971699.318993

Feng Sheng, Qiang Cao, Haoran Cai, Jie Yao, and Changsheng Xie. 2018. GraPU: Accelerate Streaming Graph Analysis
through Preprocessing Buffered Updates. In Proceedings of the ACM Symposium on Cloud Computing (Carlsbad, CA, USA)
(SoCC ’18). Association for Computing Machinery, New York, NY, USA, 301-312. https://doi.org/10.1145/3267809.3267811

Xiaogang Shi, Bin Cui, Yingxia Shao, and Yunhai Tong. 2016. Tornado: A system for real-time iterative analysis over
evolving data. In SIGMOD ’16. ACM, 417-430. https://doi.org/10.1145/2882903.2882950

Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph Processing Framework for Shared Memory. In Proceedings
of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Shenzhen, China) (PPoPP ’13).
Association for Computing Machinery, New York, NY, USA, 135-146. https://doi.org/10.1145/2442516.2442530

Robert Soulé, Martin Hirzel, Robert Grimm, Bugra Gedik, Henrique Andrade, Vibhore Kumar, and Kun-Lung Wu. 2010. A
Universal Calculus for Stream Processing Languages. In Proceedings of the 19th European Conference on Programming
Languages and Systems (Paphos, Cyprus) (ESOP’10). Springer-Verlag, Berlin, Heidelberg, 507-528. https://doi.org/10.
1007/978-3-642-11957-6_27

Marcelo Sousa, Isil Dillig, Dimitrios Vytiniotis, Thomas Dillig, and Christos Gkantsidis. 2014. Consolidation of Queries
with User-defined Functions. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Edinburgh, United Kingdom). 554-564. https://doi.org/10.1145/2666356.2594305

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 157. Publication date: October 2022.

https://doi.org/10.1145/3447786.3456230
https://doi.org/10.1145/3302424.3303974
https://doi.org/10.1145/1640089.1640091
https://doi.org/10.1145/2660193.2660242
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1109/ICDE.1995.380386
https://doi.org/10.1109/ICDE.1995.380386
https://doi.org/10.1109/ICDE.1988.105474
https://doi.org/10.1145/75277.75305
https://doi.org/10.1145/75277.75305
https://doi.org/10.14778/3021924.3021929
https://doi.org/10.1145/2517349.2522740
https://doi.org/10.1145/3009837.3009891
https://doi.org/10.1145/42201.42203
https://doi.org/10.1145/42201.42203
https://doi.org/10.1145/971699.318993
https://doi.org/10.1145/3267809.3267811
https://doi.org/10.1145/2882903.2882950
https://doi.org/10.1145/2442516.2442530
https://doi.org/10.1007/978-3-642-11957-6_27
https://doi.org/10.1007/978-3-642-11957-6_27
https://doi.org/10.1145/2666356.2594305

157:30 Philip Dexter, Yu David Liu, and Kenneth Chiu

Jesper H. Spring, Jean Privat, Rachid Guerraoui, and Jan Vitek. 2007. Streamflex: High-Throughput Stream Programming
in Java. In Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems and
Applications (Montreal, Quebec, Canada) (OOPSLA °07). Association for Computing Machinery, New York, NY, USA,
211-228. https://doi.org/10.1145/1297027.1297043

Nicolas Stucki, Jonathan Immanuel Brachthiuser, and Martin Odersky. 2021. Multi-Stage Programming with Generative
and Analytical Macros. In Proceedings of the 20th ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences (Chicago, IL, USA) (GPCE 2021). Association for Computing Machinery, New York, NY, USA,
110-122. https://doi.org/10.1145/3486609.3487203

Toyotaro Suzumura, Shunsuke Nishii, and Masaru Ganse. 2014. Towards Large-Scale Graph Stream Processing Platform. In
Proceedings of the 23rd International Conference on World Wide Web (Seoul, Korea) (WWW ’14 Companion). Association
for Computing Machinery, New York, NY, USA, 1321-1326. https://doi.org/10.1145/2567948.2580051

Walid Taha and Tim Sheard. 1997. Multi-Stage Programming with Explicit Annotations. In Proceedings of the 1997 ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation (Amsterdam, The Netherlands)
(PEPM °97). 203-217. https://doi.org/10.1145/258993.259019

Kanat Tangwongsan, Martin Hirzel, Scott Schneider, and Kun-Lung Wu. 2015. General Incremental Sliding-Window
Aggregation. Proc. VLDB Endow. 8, 7 (feb 2015), 702-713. https://doi.org/10.14778/2752939.2752940

William Thies, Michal Karczmarek, and Saman Amarasinghe. 2002. Streamlt: A Language for Streaming Applications. In
Compiler Construction, R. Nigel Horspool (Ed.), Vol. 2304. Springer Berlin Heidelberg, Berlin, Heidelberg, 179-196.

Mandana Vaziri, Olivier Tardieu, Rodric Rabbah, Philippe Suter, and Martin Hirzel. 2014. Stream Processing with a
Spreadsheet. In ECOOP 2014 — Object-Oriented Programming, Richard Jones (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 360-384. https://doi.org/10.1007/978-3-662-44202-9_15

Venkateshwaran Venkataramani, Zach Amsden, Nathan Bronson, George Cabrera III, Prasad Chakka, Peter Dimov, Hui
Ding, Jack Ferris, Anthony Giardullo, Jeremy Hoon, Sachin Kulkarni, Nathan Lawrence, Mark Marchukov, Dmitri
Petrov, and Lovro Puzar. 2012. TAO: How Facebook Serves the Social Graph. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data (Scottsdale, Arizona, USA) (SIGMOD ’12). ACM, New York, NY, USA,
791-792. https://doi.org/10.1145/2213836.2213957

Keval Vora, Rajiv Gupta, and Guoqing Xu. 2017. KickStarter: Fast and Accurate Computations on Streaming Graphs via
Trimmed Approximations. In ASPLOS ’17 (Xi’an, China). 237-251. https://doi.org/10.1145/3037697.3037748

Guozhang Wang, Wenlei Xie, Alan] Demers, and Johannes Gehrke. 2013. Asynchronous Large-Scale Graph Processing
Made Easy.. In CIDR, Vol. 13. 3-6.

Kai Wang, Guoging Xu, Zhendong Su, and Yu David Liu. 2015. GraphQ: Graph Query Processing with Abstraction
Refinement—Scalable and Programmable Analytics over Very Large Graphs on a Single PC. In 2015 USENIX Annual
Technical Conference (USENIX ATC 15). USENIX Association, Santa Clara, CA, 387-401.

Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and John D. Owens. 2016. Gunrock: A High-
Performance Graph Processing Library on the GPU. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (Barcelona, Spain) (PPoPP ’16). Article 11, 12 pages. https://doi.org/10.1145/2851141.
2851145

Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion Stoica. 2013. Discretized Streams:
Fault-Tolerant Streaming Computation at Scale. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (Farminton, Pennsylvania) (SOSP ’13). Association for Computing Machinery, New York, NY, USA,
423-438. https://doi.org/10.1145/2517349.2522737

Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen,
Shivaram Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. 2016. Apache
Spark: A Unified Engine for Big Data Processing. Commun. ACM 59, 11 (Oct. 2016), 56—-65. https://doi.org/10.1145/2934664

Kaiyuan Zhang, Rong Chen, and Haibo Chen. 2015. NUMA-Aware Graph-Structured Analytics. In Proceedings of the 20th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (San Francisco, CA, USA) (PPoPP 2015).
183-193.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 157. Publication date: October 2022.

https://doi.org/10.1145/1297027.1297043
https://doi.org/10.1145/3486609.3487203
https://doi.org/10.1145/2567948.2580051
https://doi.org/10.1145/258993.259019
https://doi.org/10.14778/2752939.2752940
https://doi.org/10.1007/978-3-662-44202-9_15
https://doi.org/10.1145/2213836.2213957
https://doi.org/10.1145/3037697.3037748
https://doi.org/10.1145/2851141.2851145
https://doi.org/10.1145/2851141.2851145
https://doi.org/10.1145/2517349.2522737
https://doi.org/10.1145/2934664

	Abstract
	1 Introduction
	2 An Informal Account
	2.1 The Big Picture: Scope and Expressiveness
	2.2 Motivating Scenarios and Examples
	2.3 The Frontend-Backend Interaction
	2.4 Incremental Operational Processing (IOP) in Online Data Processing
	2.5 Temporal Locality Optimization (TLO) in Online Data Processing
	2.6 A Type System for Phase Distinction

	3 Syntax and Runtime Structures
	3.1 Syntax
	3.2 The Structure of the Runtime

	4 DON Calculus Operational Semantics
	4.1 Semantics for Online Data Processing
	4.2 Temporal Locality Optimization

	5 The Type System
	5.1 Phase Distinction
	5.2 Runtime Typing

	6 Meta-Theory
	7 Coq Mechanization
	8 Practical Extensions
	8.1 Custom Data Storage
	8.2 Deletion
	8.3 Subgraph Computations
	8.4 Modeling Existing Systems
	8.5 Key-Value Store and Tabular Data Support
	8.6 Sublinear Operation Processing
	8.7 Exception Handling
	8.8 More Extensions
	8.9 Applicability and Limitations
	8.10 An Implementation

	9 Related Work
	10 Concluding Remarks
	References

