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Abstract Here, an ownership type, such Bat a<t 2, t 3>, is formed by
; P ; : tating the object type with a sequenceafitext parameters

Pedigree Typesre an intuitive ownership type system requir- 210 : :

ing minimal programmer annotations. Reusing the vocapular where the first parametéR denotes the owner of the objattand

: .« the rest{ 3 here) are parameters to be forwarded down into the im-
of human genealogy, Pedigree Types programmers can qualify 8 ) . .
any object reference with a pedigree -ekild, sibling, parent, plementation oDat a, a parameterized class in the same fashion

grandparent, etc— to indicate what relationship the object being S al 0g. . . .
referred to has with the referant on the standard ownersbip t Pedigree Types aim to minimize the need for annotation over-

following the owners-as-dominators convention. Such difiga geald byt%rogramrr;er?. First th(tare li_s tno rsquiremgr;;lto conaeid
serves as a heap shape constraint that must hold at run toirie an eclare these context parameter lists above and the asbpia:

enforced statically. Pedigrashild captures the intention of encap- rametertforwardngg. In_;ee:l-world p(rjograms, the ”‘%mbfemﬂef;
sulation,i.e. ownership: the modified object reference is ensured parameters can be quite large, and errors can arse It everdia s

not to escape the boundary of its parent. Among existing ostiie mistake is made in this forwarding process; and, the progranis
type syster?ws, Pedigree T))//pes aFr)e closeé.ﬂnb/grse Tyr?esThe distracted from the primary programming task at hand dueeto h

former can be viewed as extending the latter with a more géner "€€d to focus on these type system minutae. Furthermorgedi
form of pedigree modifiers, so that the relationship betwaen gree declarations such abild andsibling in Pedigree Types are
pair of objects on the aforementioned ownership tree carmabeed optional: programmers only need to declare a pedigree when t
and — more importantly — inferred. We use a constraint-bagesl care about the invariant; the other object types are trestdeving

system which is proved sound via subject reduction. Ottehrtie polymorphic pedigree, and are inferred and constrainedcbas
cal originalities include a polymorphic treatment of pedigs not usage. The human pedigree analogy of non-qualified typehits

e s ; : i lated to me, but | do not care how, as long as it does
explicitly specified by programmers, and use of linear daphe person IS re ! ' D 1ot V| :
equations in type constraints to enforce the hierarchy. not involve incest.” We believe a principle of minimal deelions

is important to the practical viability of ownership typessgms:

if we attempt to go beyond toy programs and deal with programs
1. Introduction containing hundreds or thousands of objects, having inferef
pedigree as the default mode frees the programmer to adardecl
tions only where they really matter.

Pedigree types also make the ownership hierarchy morecexpli
itly visible to programmers. Hierarchical decompositignai fun-
damental principle for controlling software complexityitiVever
larger-scale systems becoming ever more common, the iampret
of decomposing systems into well-structured hierarcluesanage
complexity cannot be overstated. There is a long historyrof p
gramming language designs to conquer complexity in a tdkiar
cal fashion, primarily the development of module systemgil&V
module systems effectively form a codebase hierarchy,aheless
effective at making hierarchical distinctions in the rime heap
structure. This hierarchical heap structure nonethelesgpively
exists: aMai n object may intuitively be “composed” of ¥ ew
object, aMbdel object and &ontr ol | er object via the MVC
pattern [KP88], and th¥i ew object may be composed of several
Di al og objects, and eacbi al og object composed of several
But t on’s. Intuitively, this compositional structure can be vielve
as a tree reference backbone “overlay” on the general héap re
ence graph. Giving programmers the power to explicitly defind
reason about dynamic heap hierarchies helps promote jpnagna
derstanding: it already exists in their conception of thiveare,
and bringing it out in the code itself will help refine and dar
class Di al og <t1, t2, t3> { the compositiona_ll structure of the hgap. For exisf[ing osimer

Dat a<t 2. t3> d- type systems using explicit parametric polymorphism, tinecs
' ' ture of the ownership tree depends on how context paramaters
} forwarded, and it is much less visible to programmers when-co

In this paper we develop Pedigree Types, a static ownergpip t
system with a novel vocabulary for declaring how one heagenod
is related to another on the ownership tree. The most comeian r
tionships between nodes in a tree are already well-nameghivah
genealogy: parents, children, uncles, siblings, greatdyacles,
etc Our type system borrows this vocabulary and gives an object
the ability to say, “this reference must point to myild” or “that
reference must point to mgrbling”. For the entire heap, all invari-
ants associated with all objects are ensured to be consigitan
ally, so that a dynamic hierarchy can be statically enforégdm
the view of genealogy, the global consistency of object gredis
can be viewed as the case where “no incest exists”: one’dlgran
father cannot also be the grandfather of one’s parent. Emelatd
property of the ownership tree — aliases to an object carmobb
tained by objects outside the boundary of its parent on tee-tris
also enforced by outlawing encapsulation-breaking peéfgisuch
asnephew.

The majority of existing ownership type systems — such as
[NPV98, CPN98, Cla01] — achieve the same goal, but via a very
different approach. They often make use of an explicit fofimewa-
metric polymorphism by using parameterized classes. Btaite,
aDi al og class can be defined as:



pared with Pedigree Types. For instance, we cannot tell tien
code snippet above the relationships betweerDihel og object
and theDat a object on the tree — that depends on Holvandt 2
are instantiated and forwarded.

With the combination of the two advantages above — minimal
annotation overhead and explicit shaping of hierarchiealodh-
position — Pedigree Types have the potential to allow thgiral
hierarchical decomposition intention of the design, lagtim the
Java implementation stage, to be rediscovered. This istpesse-
cause, when all annotations are left out, Pedigree Tgpdactoare
transformed into an annotation-free inference systemrognams
in a Java-like language. We will discuss more about thisctapi
Sec. 4.

A major inspiration for Pedigree Types comes from Universe
Types [MPHO1]. Two keywords for modifying object refereace
peer andr ep, are provided to Universe Types programmers, anal-
ogous to what we call aibling and achild on the pedigree tree.
From this perspective, Pedigree Types aim to extend theghil
ophy of Universe Types to a more general form for represgntin
pedigrees beyondeer andr ep, so that any pedigree on the tree
can be easily referred to. Additionally we statically infexdigrees
and thus avoid the run-time overhead of casting some unknown
pedigree to eithgpeer orr ep as is done in Universe Types.

In the rest of the paper, Sec. 2 gives an informal description
of the basic ideas of Pedigree Types, which will be formaliire
Sec. 3. Sec. 4 describes a number of extensions and SecuSs#isc
related work. We summarize our contributions in Sec. 6.

2. Informal Overview

We now informally introduce the key innovations of our types-s
tem. Pedigree Types are a general static type system whicheca
built on top of any programming language with arbitrary hesip
erence structures. This paper describes how they may hteobuil
top of Java-like languages; see [Liu07] for how they may bié& bu
upon an alternative object modéllassage$LS05].

Fig. 1 gives a code snippet involvingba al og object with two
But t on’s, followed by the UML object diagram for a possible
run-time snapshot. Th&i al og logs important actions in two
Logger objects, one of whichpubl og) is shared with the rest
of the application, logging important actions such as whe&
button is pressed, while the othear(i vl og) is only used to log
actions with limited impact during the lifecycle of tha al og.

A Ctrl object controls the behaviors of the GUI objects. In the
diagram, labels on object associations are pedigree apitips.
Only object associations pertinent to the discussion ase/sh

2.1 Hierarchy Shaping with Pedigree Types

The General Form A pedigree type is a regular object type pre-
fixed with a pedigree qualifier, specifying where on the higmg an
object should sit relative to the current instance. Infdiynavhen
a field or a variable has a pedigree type whose pedigree guadifi
X, we also say the field or the variable has pedigtee

In fact, qualifiers likesibling andchild are just sugared syntax
for special cases of a more general form:

(parent) (child) ... (child)

wherew € {0,1,2,...} andz € {0,1}. The invariant such
a qualifier enforces is that, on the hierarchy the qualifiefaib

(parent) ...

must be theparent’s parent’s .. .parent’s child’s ...child of the

current object. We callv the positive levelof the object being
qualified andz the negative levebf the object being qualified. We
use the abbreviatiojparent)™(child)* for the above definition.

class Main {
void main () {
Event Source es = new sibling Event Sour ce();
Crl ctrl = new child Crl ();
Di al og d = new child Di al og(es,
d.init();

.

class Di al og {

Event Source es; Ctrl ctrl;

sibling Logger publ og; child Logger privlog;

Di al og( Event Source es, Crl ctrl)
{ this.es = es; this.ctrl =ctrl; }

void init() {
Button ok = new child Button("OK", es, ctrl);
Button cncl = new child Button("NO', es, ctrl);
publ og = new Logger (" Shared Logger");
privliog = new Logger("Private Logger");

ok.init(publog, this);
cnecl.init(privlog, this);

}

ctrl);

}
void refresh() { ...

¥
class Button {
Logger |ogger; Event Source es;
parent Di al og cont ai ner;
Button(String nane, EventSource es, Ctrl ctrl)
{ this. name = nane; this.es = es; this.ctrl = ctrl;}
void i nit(Logger |ogger, Dialog container)
{this. | ogger = | ogger; this.contai ner = container;}
void log() { ...}

String name; Crl ctrl;

void refresh() { ...container.refresh(); }
void oops() { // ctrl = new child Ctrl(); }
void oops2() { // ctrl.oops3(logger); }

}

class Logger { ...}

class Event Source { ...}

class Ctrl { void oops3(Logger log) { ...} ...

sibling

[ es: EvenlSuurce]<_[

: Main ]

child child

sibling
[ publog: Logger ]<_[ d : Dialog ]

child

u\' : Button ]

[ ctrl 2 Contrnller]

child child

[ cancel : Button] privlog: Logger ]

Figure1l. An Example

When the negative level is zero, we can abbreviate the pealigr
as simply(parent)*.

Why This General Form? The general form elegantly covers the
more familiar cases via the following sugar:

child %' (parent)°(child)*

self &< (parent)°(child)°

sibling ' (parent)* (child)"
parent %' (parent)’ (child)°
grandparent %' (parent)?(child)°
aunt = uncle ™ (parent)?(child)"

Declaring an object to havechild pedigree aligns with the pro-
grammers’ intention that the object is encapsulated. Wealabo-
rate on this case, and why in the general casznges ovef0, 1}
in Sec. 2.2.



Pedigreegparent provides a strong enforcement of nesting: the (a subset of) the natural numbers. Thus, finding whether iconfl
cont ai ner field of theBut t on object is declared to have pedi- exists in the constraint set is reduced to solving a systelimedr
greeparent. Thus, if at any time th®&ut t on object’'sr ef r esh diophantine equations over natural numbers, a well-stugieb-
method is invoked, which in turn needs to refresh its coetain lem [Sch98] with decidable and efficient solutions.

Di al og object (a common practice in GUI programming), our
type system can guarantee that the refrefhel og is indeed the

one containing th&ut t on object itself. Observe that a type with
parent pedigree is a singleton type, since each object can only have
oneparent. All pedigree types with negative level 0 are singleton
types, such agrandparent. Existing ownership type systems that
we know of do not have the equivalent of singleton pedigrees t
precisely declare a reference pointing to a strict ancestothe
ownership tree.

Pedigreesdlf provides a precise way to type self-references
(Java’sthis). This qualifier is also a singleton type qualifier. The
importance of typinghisin a more precise way lies in the conse-
quences of its propagation: when an object passehiiso others
—a common programming idiom — the receiver side has the eppor
tunity to precisely type the argument with singleton typaldiers
as well. For instance in the example, Bt t on object can have
its cont ai ner field hold a value oparent singleton pedigree: it
is passed by al og’s methodi ni t, wherethisis passed. (The
reason that arent pedigree in theBut t on object matches the
self pedigree in thé®i al og object will be explained shortly.) An-
other pleasant consequence of precisely typing Jawnésis the
call-back constraints of object-oriented programming barcap-
tured. In Java, programmers typically rely on pasdinig to an-
other object to implement callbacks. The Java type systemever 2.2 AliasProtection with Pedigree Types
cannot ensure the value being passed is indleiesdso the callback
constraint is not enforceable.

Polymorphic Pedigrees and Parametric Polymorphisninferred
pedigrees are treated polymorphically, so that the retereme-
ferred to in a class can have different pedigrees for diffene-
stances of the same class, aligning with the “I don’t caréénn
tion of programmers. For instance, thke But t on and thecncl
But t on can in fact have loggers of different pedigrees. We some-
times call object types without explicit pedigree qualifioa poly-
morphic pedigree type§he parametric polymorphism used here
does not lie far from well-known type theoretic principlegere
each class is viewed as being defined via a polymorpkic a la
ML and polymorphic type variables are assigned for levels af§o
support cyclic class definitions — the norm of object-orgehpro-
gramming — which is not possible with puret -polymorphism.
Different objects of the same class can obviously have diffe
ent pedigrees: onkogger is instantiated as thebling of the
Di al og, and the other as thehild of the Di al og. Objects can
also be instantiated with an unspecified pedigree, as isase for
the instantiation of the twbhogger instances, expressing “l don't
care what pedigree it is instantiated with.” In that cases ithe
object usage which decides whether there is a satisfiablgneed

The general form of pedigree types is consistent with theireg
ment of ownership encapsulation. Intuitively, an objectisti only
Property of Pedigree Relativization A key property of pedigrees  refer to its direct childrenv{ = 0,z = 1), itself w = 0,z = 0),

is that they can be relativized from the perspective of orjeabb direct and indirect ancestors/ (> 0,z = 0) or direct children of
to that of another. Let us revisit the example we brought up to its direct and indirect ancestors (> 0,z = 1). For some concrete
explainself. TheBut t on object’si ni t method expects an object  examples, it meansblings can refer to each other freely; an object
of parent as its third argumendi al og, while the object being can always refer to its ancestors, captured by the notioll chses
passed in ighis, which is of pedigreeself. These qualifiers are  wherew > 1, but notvice versanephew = (parent)*(child)? vi-

not the same, but pedigree types are always declasletve to olates the notion of encapsulation as it it is a referencheattild
the current instanceand theBut t on object is achild of the of yoursibling on the hierarchy of encapsulation. What is referable
bi al og object. From thebi al og object’s perspective, it easily by pedigree types is identical to what is commonly believete
knows theparent from itschild’s perspective is aglf from its own referable on the standard ownership tree that enforcesrtipey

perspective. The linek. i ni t ( publ og, thig) thus typechecks. of owners-as-dominators [NPV98, CPN98].

At first glance, protecting owned objects is as simple as-disa
lowing references with ahild pedigree qualifier from being given
out to any object with nomhild pedigree. However, such a type
system would not preverihdirect leakage For instance, consider
the pedigree relationship illustrated in Fig. 1. First df diere is
nothing wrong with theDi al og object passing itghild object
namedor i vl ogtoitschild object namedncl , as is found in the
example when the constructor of tbacl Butt on is invoked. If
our type system only checked whetlehild references were passed
Inter-procedural Pedigree Inference In our calculus, program- out, it would be happy to allow thencl Butt on object to pass
mers only need to declare a pedigree qualifier on an objeet typ the reference to thpri vl og Logger object — not achild but
when they care about the pedigree of that object. For alratbe a sibling from the perspective of thencl object — to theCtr |
currences with no qualifications, our type system can irffent object (the one in thet r | field). This however would violate en-
The inference algorithm is also able to track pedigree mfor capsulation, as ther i vl og object is an internal representation of
tion inter-procedurally. Consider thmops method at the end of  the Di al og object and should not be exposed teilaling of the
the But t on class, which if included would be a type error. If we Di al og object.

Pedigree Subsumption Intuitively, oneself is a special case of
her parent’s childreri,e. a pedigred parent)®(child)® is a special
case of(parent)*(child)*. Similarly, a parent is a special case of a
grandparent’s children.

In the general case, a pedigrgearent)” (child)® represents a
singleton set of objects which is a subset of those objegiere
sented by théparent)”**(child)! pedigree. This genealogical fact
is captured by the subsumption relation on pedigrees.

only look at the code oBut t on itself, the code is perfectly legal. Our type system is able to detect this indirect leakage. €ésk
However, note that the fieldt r | of the But t on object is set in that it always makes sure that both the sender and the receilye
the constructor to be @t r | object held by thébi al og object, handle references that can be associated with well-forradigpee
which is in turn held byMai n. ThatCt r | object is achild of the types. Had the passing of the privdtegger object held by the
Mai n object, so its pedigree from the perspectiveBot t on is cncl Button to theCtrl object been allowed, relativization
definitely notchild —theCt r | isitsuncle. would imply theLogger object is theCtr| object’s sibling's

Our type system is constraint-based. The novel aspect is tha child, i.e. (parent)(child)?. This is not a well-formed pedigree
constraints are on (positive and negative) levels, whidgezover gualifier and would result in a type error.



C = a— (M;F) classes
M = mi— Az.e methods
—

F = f fields
e = () | = | const| e;e’ | this expressions

| new Peda

| e.m(e’)

| f | fi=e
T variable
const S { 1,0,1,..} integer
a class name
m method name
f field name

—_— .

Ct = a — sig class signatures
sig = (mod Mt; F't) class signature
Mt m — (st — st’) method signatures
Ft = f— st field signatures
mod = default | strict modularity mode
st = unit | int | Peda declared types
Ped = (parent)"(child)® | € pedigree qualifier
w € {0,1,...} positive level
z € {0,1} negative level

Figure 2. Abstract Syntax

3. TheFormal System
3.1 Abstract Syntax

We first define some basic notatiaf, denotes a s€tr1, ..., xn }.

< &, — psig,
it Vie{l,...,n}.
psig; = Wparan (Sig;, an + sig,,, 0)
V(a3 B1) - .. V{aw; Bu) - Vaig(sig, Ct, 2)
if FP(WUg,(sig, Ct, Z)) =
{{a1;B1), - -, {ow; Bu) }
sig= (mod Mt; F't)
mod = strict impliesu = 0

¥ (ap — Sig,)

Vparan(Sig, Ct, Z)

def

i ((MOd Mt; Ft), Ct, Z) (Ua1 (Mt, Ct, Z); Us1 (Ft, Ct, Z))
"
T (m — (st — st'), Ot,Z) &

m— (Vg (st, Ct, Z) — Vg (st',Ct, Z))
—_— def —_—

Uy (Fo st, Ct, 2) EF Fs W, (st, CL, Z)

U (int, Ct, Z) =

def .
Ty, (unit, Ct, z)

int
unit
Ve (Peda, Ct, Z)

pa.M@p ifag Z
a@p ifaeZ
if W (Ct(a), Ct, Z U {a}) = (M;F)
(parent)* (child)? if Ped = e
a, 3 fresh
otherwise

def

p=
Ped

C = a — psig parameterized signatures
psig = Yo B).(M;F) parameterized signature
_
M = me (st — s7) processed method signatures
L N ) i
F = fr st processed field signatures
T = sT | L types
ST = unit | int| pa. M @p | a@p types on signatures
p = (parent)” (child)”/ pedigree expression
v = v+ |v—v |alw level expression
a, B level type variable

Figure3. ¥ (Ct) = C: Computing Parameterized Signatures

Tn — yn IS Used to denote a mapping sequence (also called a map-

ping) [z1 — y1,...,Zn — Yn]. GivenM = Iz, — y,, Dom(M)
denotes the domain @/, and itis defined a§z1, . . . x, }. We also
write M(z1) = y1,...M(z,) = y.. A sequence, denoted,, is

natures ('t), themodmodifier gives programmers a choice of how
modular the typechecking process is. This topic will be itkda
in Sec. 3.2.6. User-declared types)(include primitive types and

defined as a degenerate form of mapping sequence where-all ele pedigree typesReda).

ments in the domain map twull. When no confusion arises, we
also drop the subscript for sets and mapping sequences and sim-
ply usez andz — 3. Notationc is used to denote containment,
for instance(xz2 +— y2) < M. We writeM[z +— y] as a map-
ping updateM andM[z — y] are identical except thal[z — y]
mapsz to y. Updatable mapping concatenationis defined as

M: > M Mi[z1 — v1]...[zn — yn]. We used to denote

empty set and] to denote mapping sequences of length zero.
The abstract syntax of our calculus is defined in Fig. 2. Its

presentation is optimized for our formalization, but thererage

of features is largely similar to Featherweight Java [IPW%%e

leave out inheritance (but not subtyping) and dynamic nggtom

the language core, and briefly cover them in Sec. 4. Othermino

differences include 1) we do not model constructors as they a

orthogonal to Pedigree Types; 2) We only model private fietebas

and do not model the cross-object one (sucle.&s because the

latter can be encoded as a pair of getter/setter methodssioge

private fields. 3) The arity of method arguments is simplifiethe

1.

3.2 TheType System

As we explained in Sec. 2.1, our type system supports pareamet
polymorphism, but in an implicit form — the programmer synta
in Fig. 2 does not provide explicit parameterization of sk A
straightforward function calle@ is used to properly parameterize
the class signature into the more type-theory-friendlyrfevhere
all type variables are bound at the beginning. We first intoedthe

¥ function in Sec. 3.2.1, and then introduce the main partbef t
type system in the rest of the section.

3.2.1 Leve Parameterization and Recursive Type Unfolding

In the signature oBut t on in Fig. 1, thel ogger field is not
qualified with a pedigree. Intuitively, the “I-don’t-casbout-the-
pedigree” intention translates as each instandduaft on having

a fresh pair of levels (positive level and negative leveljeAgthy
but unsurprisingl function is defined in Fig. 3 to help capture this
notion. It simply goes through the structure of each sigreagig, ),
and generates a pair of variables for each unqualified osocer

We have separated class code and class signatures, and havsuch ad ogger (i.e. Ped= ¢). These variables are calldelel

taken the mapping-based notations for lists. A program is-co
posed of classes(]), with one of them being the bootstrapping
class namedvai n with a special methodrai n. A class has a
unique namesy), followed by a list of methods)/) and local fields
(F). Object instantiation is modeled by the expressiew Peda,
which is identical to Featherweight Java®aw a expression, except
that programmers can specify the pedigree for the newlyedeén-
stance. The “I-don’t-care” pedigree is represented &sclass sig-

type variableswith metavariablex ranging over positive pedigree
levels, andd ranging over negative pedigree levels. The class sig-
natures produced by are bound with these variables, with helper
function FP() enumerating all pairs of level type variables occur-
ring free in the signature. The function processes class signatures
transitively. This means a class not only provides parampuly-
morphism for the levels of direct object references in tless) but
also allows these parameters to be forwarded to providenmty



(Sub-Bottom)
QF L <:7\0

(Sub-Int)
QFint <:int\(

(Sub-Unit)
Q F unit <: unit\®

(Sub-Recursive)
(a1 <: 32) e
QF a1@Qp; <:ax@po\subPed(p1, p2)

(Sub-Non-Recursive)
Dom(Mz) = {my,...,my,}
aj,ahfresh M) = Mi{a}/a1} M, = Ma{a)/az}
Vie{l,...,n}. QU {a} <:ah} o Mi(m;) <: My(mi)\Z;

QF pay. My Qpy <: pag. Mo Qpa\(X1 U ..., UsubPed(p1,p2))

(Sub-Method)
QF sty <:sm\X Qb sty <:sTy\X
Q by 571 > 57] <t 572 > sTR\(ZUX)

subPed(p1, p2) déf{ull — V12 =s V21 — V22,0 <g 12 <gvoo <s 1}
if p1 = (parent)”11(child)”12
p2 = (parent)”21 (child)"22

Definition for recursion patk® ::
Definition for constraint set. :

Figure4. Subtyping Rules

phism for indirect object references. The computed sigedist

(C) is used in most typing rules of the type system. As defined in
the same figureC is homomorphic toC't in programmer syntax.
We will postpone the discussion of the modularity modeg in
Sec. 3.2.6.

In object-oriented languages, recursive types are the .nlorm
the ¥ function, we also unfold recursive types explicitly, usiag
variation of the standard-type techniques [AC93]. Séf is used
to keep track of recursion. In the resulting signature caexgbioy
¥, each occurrence of user-declared pedigree type is transtb
into either thepa. M @p form or thea@p form. pa.M @Qp in
principle still follows the general form of the pedigree ¢yp a
combination of pedigreepj and the object type (the rest of it,
with namea and structure information iM). a@p is used for the
object type already bound hyin its enclosing class signature. For
convenience, we sometimes call the two forms of pedigreestyp
the . form andthe abbreviated formespectively.

3.2.2 Typesand Subtyping

As defined in Fig. 3, expression typesised by the type system are
also similar to the programmer declared types, except thatype
is added to typecheck uninitialized fields, and the pedityjees are
now either in theu form or in the abbreviated form. In the general
case of expression typing, the positive levels and negédivels
of a pedigree type might be linear expressions over levéhbias.
The general form op thus is a type expression, which we call a
pedigree expressiomhe linear expressions in this case are called
level expressiondn the abstract syntax, we omit parentheses for
level expressions. They are implicitly added to preseritaraetic
precedence. For instanceif =s 1 andve =5 1 + 3, thenv; — vs
is1 — (1 + 3). When there is no need to distinguish the positive
level and the negative level, we also use metavariafterepresent
either level constant, and metavariabldo represent either level
variable. To avoid confusion, equality/inequality synsshowing
up in the constraint sets are denoted-as, >, < respectively.
Subtyping is defined in Fig. 4 with judgments of the form
Q + 7 <: 7\X. This judgment reads7*is a subtype ofr’
under pedigree constraintsand assumptionQ”. The main rules
are(Sub-Non-Recursive) and(Sub-Recursive), which show the
object type part of the pedigree type follows standard strat

subtyping. Since types may be recursive, the standard fafes
subtyping over recursive types — commonly known as the Amber
rules — are used [AC93]. Data structudee which is a partial order
with elements of the forma <: a’, is standard for this purpose,
as is the alpha conversiong. M;{a}/a1} and Mz{a5/a2} in
(Sub-Non-Recursive)).

The interesting part of the subtyping rules is perhaps tle su
typing of two pedigree expressions, capturedshyPed. It cap-
tures the notion of pedigree subsumption (Sec. 2.1); thie base
of pedigree identity is also included implicitly by this dgfion.
For instancesubPed (self, sibling) and subPed(sibling, sibling)
are both consistent.

3.2.3 TheTypechecking Process
All typing rules are presented in Fig.5.

The Rules The whole program is globally typechecked w{th
Global). This rule first typechecks each class #ias, and then
merges the constraints vig.ons. When there are no conflicting
constraints in the final constraint gt the program typechecks.
This section focuses on per-class typechecking. The digmus
on constraint merging is deferred later in this section. W® a
postpone discussion on typechecking tieev expression and the
data structurdl in the rules, as they are also closely related to
constraint merging.

Rules(T-Class) and (T-Methods) are straightforward for typ-
ing the respective constructs. Expressions are typed eigutiy-
mentl’,C e : 7\X, II. Typing environment is defined at the
bottom of Fig. 5; it maps variables to types, and maps theiabec
keywordme to the name of the class enclosing the expresgibn.
Self) typesthis, which is given aelf pedigree(T-Const), (T-Var),
and(T-Continue) are obvious rules to type integer constants, vari-
ables and continuation§T-Sub) bridges with the subtyping rules.
(T-Invoke) will be explained shortly.

Pedigree Constraints and Decidable Constraint Solvingll
constraints in- (defined at the bottom of Fig. 5) are constraining
pedigree levels (positive and negative), which are natwraibers.
The constraint solving task in our type system is to find ngatiee
solutions to a system of linear diophantine equations. Bsitive
level type variables, this is obvious: they range o{®er 1, ...},
and finding a satisfiable positive level is equivalent to fiigdnon-
negative solutions to linear equations. Negative levet tygriables
slightly complicate the matter: they only range oJ&, 1} and
not {0, 1, ...}. Our solution is that when such a variable is used,
one constraint is computed by theo Vals function and merged to

the main constraint s&t, and two Vals(8) {0 < B < 1)
Inequality constraints in the form aof >; 0 andv <; 1 can be
easily rewritten as equality ones: the former is equivalent=; o
for fresha and the latter is equivalent tb— v > 0. Constraint
11 =s V2 iS equivalent tas; — vy =5 0.

The algorithm for finding whether nonnegative solutionsetd
a system of linear diophantine equations is decidable [Sc#S
a result, the judgment; C : Ctis also decidable since the type
rules are deterministic modulo choice of fresh variablas. tBe
question of whether the progradi is typeable with program sig-
natureC' is decidable. Efficient ways of solving linear diophantine
equations exist. For instance, the equations can be soleeshhen-
tally [CD94] to avoid solving a large set of equations all ate.

3.24 Method Invocation and Pedigree Relativization

Method invocation is typechecked 1-Invoke). As pedigrees are
always relative to the object they are declared in, pedigetse
tivization is needed for message passing between two abjeet-
ativization is captured by theelativize function, defined in Fig. 6.
relativize(p1, p2) = ps, X means a pedigreg; in one object is



convert(int,p) = int, 0
(T-Global) convert(unit, p) L unit, 0
-loba def
V(Ct)=C Dom(C) = {a1,...,an} convert(pa.M Qpq, p2) = p‘a._/\/t. @/}3, b))
Vi € {1,...,n}suchthafme — a;],C Fas C(a;i) : C(a;)\Xs, IL; it relativize(p1, p2) = p3, 2
e
an — (Zn,I0,), [] Feons (main; [[;[])\E X consistent o
. C. Ot relativize(p1, p2) 2 (parent)“21¥11-v22 (child)¥12,
e {v11 — va2 >5 0}
(T-Class) if p1 = (parent)”11(child)¥12

= v21 (child)¥22
Dom(F) = Dom(F) p2 = (parent)”21 (child)

I',Chty M: M\X, I psig= V(ai; B1), ... Y{(an; Bn) (M; F) relativizem(p, []) def .0
T,Ctas (M; F) : psig\Z U U two Vals(f3;), 11 relativizem(p, [p1, . .. pn]) ef prsS1U. .., Sy
i€{l,...,n} if n>1
relativize(p, p1) = p}, 1
(T-Methods) relativize(p), p2) = ph, Ea
Dom(M) = Dom(M) = {my,...,m,}
vie{l,...,n} M(m;) = Az;.e; relativize(p), _1,pn) = ph:Zn

M(ml):n —>T,Lv/ FD(T1 >—>T,;), Chk e; :T{\Ei,n,’,
I,Cha M:M\31 U...5,, I U.. .10,

Figure6. Pedigree Relativization

(T-Const) (T-Unit) (T-Var)
T, C - cst: int\@, 0 T, CF () : unit\@, 0 I, CFa:T(z)\0,0
(T-New)
[ (parent)®(child) if Ped= e and« fresh
P= Ped if Ped= (parent)" (child) (T-Merge)
C(a):V[(‘ll?ﬁl?w~,~7V<an§/ﬁn>~<M?]:> P =[(a1;p1;01), -, {@m; Pm; om)] Vie{l,...,m}.a; #a
O1s e O By, By fresh . G(@)= (51 M= {(a;p1;07),--, (@nipnion)}
o = [{a1;B1) = (a1; 1), .- -, <0‘n§ﬁnl> = (ay,; By,)] Vje{l,...,n}.G, P> (a;p;o) - (a;;p;; (73}\2_7'
z= _{1LJ }tonals(ﬁz) G, P Feons (a;p;0)\E[c]UZ1 U---UX,
T, C+ newPeda : (pa.M Qp)[c]\X, {(a; p; o)} (T-Merge-Recursive)
P =[(a1;p1;01),...,{am; pm;om)] a=ap,pe{l,...,m}
(T-Invoke) o op = [{a1; B1) = (a5 0)), - -+ (s Bu) = (o B)]
T, Cke: pa. M@(parent)™ (child)"2\ 3, II o =[{a1;B1) = ()5 B)s s (au; Bu) = (a; B,)]
, M,:M{aOM} {\/l(m):'r — T vie {1,...,u}
I,cre:7\2, 1 , convertlgr ,(_par,eflt)” (child)"1) = 7¢q, ey ol = (parent)”‘?:/ (Child)ﬁé, . (parent)”‘;:” (Child)ﬁgﬁ“
convert(r”, (parent)”? (child)"2) = Tep, Zea relativizem(p), [om, Pm—11- - - ppi1]) = P, i
O 1 < 7""\Za1 0 F 72 <: T\Zs2 G.PL — = T T — 5
T,Ctem(e): T\SUST USy USs USe USe, TUTT P Feans (3505 ">\i€“U u}{ai =s i UL = AU
(T-Read)
C(I'(me)) = V(a; B). (M; F) G n= a — (X;1I0) class summaries
T, CHf:F(F\0O,0 P i= (a; p; o) instantiation path
(T-Write) - - -
c(r(me)) = V(o B). (M;F) T, CFe: F(O\S,II Figure7. Constraint Merging
T,CFkfi=e: F(O\S, I
(T-Self) -
[(me)=a C(a) = ¥(e; B) (M; F) pedigreeps in the other object if the first object is the of the
L, Ck this: pa. M @self\0, § second one, with the constraints Bf We also define a function
(T-Continue) relativizem(p, [_pl, ... pn]),_vyhich is a composition of the original
I, Che:m\S,II T,CHe :r\&, 1 relativize function. It relativizes pedigrep to an object of pedi-
T Cheed T \SUY, TUT greeps, and ;hen fr_om there relativizes t_he resul_tlng pedlgree to
an object of its pedigrep2, and so on. With functionrelativize
(T-Sub) defined, type relativization — modeled by thenvert function —
I,Che:7\Z, I 0F7<:7\¥ is pedigree relativization for pedigree types and isomiarpians-
I,Che:r\(TUY),II formation otherwise. To facilitate the soundness progietyela-
tivization is always defined in the direction of value pagsire.
r = =7 mer— a typing environment we consistently convert a type being the contravariant efith
I = (2 p; 0) instantiation record set vokgr an_d covariant qf the |nV(_)kee_. The rulf als_o |mVpI|culses
o - (@ B) = (a3 87 level variable substitution the intuitive fact that if one object igparent)* (child)”2 of the

other, the second object jparent)”?(child)"* of the first.

- - — Definition M{a & M’} in (T-Invoke) unfolds recursive types:
Figure5. Typing Rules and Related Definitions all pedigree type occurrences of the abbreviated fafip within
M are unfolded to the: form pa. M’ @p. This definition is omit-
ted for this short presentation. Unfolding recursive tyfmesquate
the abbreviated form and theform is standard.



3.25 Polymorphic Instantiation and Constraint Merging

(T-New) says that if programmers do not give a pedigree to the
instantiated object, it will freshly generate a positiveelefor it.
Note that it is not allowed to have a newly instantiated dbjeith
a pedigree of negative level being 0. These pedigrees ayketin
pedigrees, such gzarent. The singleton property would not be
preserved if programmers could freely instantiate obje€tsuch
pedigrees.
Since all type variables show up in pairs in our calculus, a
general form of substitution mappiegs thus of form[{a1; 81) —
(a1; BL), - - -y {an; Bn) — (an,; Br)]. Substitution ofa; with o,
.., an With a,, 61 with 31, ..., 8, with 3;, is then denoted-[o]
for “—" being either a type, a class signature, or a constraint set.
The rest of the rule deals with type variable instantiatibine
related technique — polymorphic type inference for objatnted
languages — is a well-studied area; relevant approachésdac
[EST95, Age96, WSO01]. The technique being used here is clos-
est to [EST95], where let-polymorphism is used in comborati
with type inference of object types. A perfect alignmenthalit-
polymorphism would have been drawn, if it were not for thespre
ence of mutually recursive classes. The latter greatly ticatps
the typing rules. Consider the following program:

(.. )
{... }

If standard constraint-based techniques for let-polyrism were
used, typecheckingcl assA would involve merging the (re-
freshed) constraints associated withassB, say X g, which are
not known at that point. Our polymorphic type inference telyg
can be viewed as extending the general idea of let-polynismpto
recursive programs. Inference of polymorphic recursios lheen
extensively studied, see.g. [Hen93]; we present one particular
approach which works well in the context of mutually recuesi
classes.

As we explained earlier in this section, typechecking osénr
two passes. We now explain the two passes with regard to poly-
morphic instantiations. The first pass is the per-classdypeking
defined byt-c:s. When expressionew sibling classB is encoun-
tered by(T-New), all level type variables ofl assB are chosen
fresh as in let-polymorphism, and the program is typechddke
the analogous way. However, the constraibts are not merged
in since they are not yet known. Our system proce3sedazily:
the type rulg(T-New) adds an entry to thmstantiation record set
(IT in the type rules, defined in Fig. 5). For the example we de-
scribed above, an entricl assB; sibling; o) is added intoll,
whereo s maps the parameter list of the signaturedbrassB to
the new fresh type variables. After the first pass, each @dgpe-
checked, with pedigree constraints collecte@jrandIl indicating
the constraints that need to be merged lazily. The infolonais
represented by data structure cakeonmarieG in Fig. 7).

In the second pass, defined by..s in Fig. 7 and used byT-
Global), the typechecker starts from the bootstrapping didéss,
and checks itdI to lazily merge constraints, with substitution
performed. Judgmen@, P Fcons (a5 p;0)\X meansX is the
merged constraints of per-class constraints, édgether with those
that need to be merged lazily. This process is propagatedidhr
the dependency chain @ and is defined by théT-Merge) rule
of Fig. 7. When there is a cycle in tHé dependency chain, the
constraints must be merged via ryleMerge-Recursive) in the
figure to avoid infinite looping. Data structui@ in the rules is
used to track the path on the dependency chaill fom that of

cl assA
cl assB

new sibling cl assB;
new child cl assA;

y
X

A (H; R) configuration
—_—

H = 0o— (a;0;8) heap

R = (o013 02) — (parent)? (child) pedigree relation store

7 = a|w store positive pedigree
—

S = fi—w field store
v n= () | const| o | null value
exd n= e | v | exception | in(o, exd) extended expression
0 € RID object reference

Figure 8. Runtime Data Structure Definitions

merging the constraint§]-Merge-Recursive) simply makes sure
the fresh type variables generated for typing the recurckads
instantiation is related to those generated for typing tlexipus
class instantiation. This is achieved through pedigrestivétation
via relativizem.

3.2.6 Modularity and the default/strict M odes

In our calculus, programmers can optionally declare a das®e
strict (as shown by the syntax in Fig. 2), and all other classes are
in the default mode. What the two modes differ ow modular
the type-checking process is for the class they are modjfyihe
default mode follows the bulk of our previous discussions, where
programmers can liberally leave out pedigree declaratiorssrict
mode however, all pedigree declarations will be presents &h
enforced by thel definition in Fig. 3. There, for &trict class,

its signature can not contain level type variables (hence 0 in
Wo.ran definition). Intuitively, it says all pedigrees containedthe
signatures must be given by programmers.

What thestrict mode guarantees here is the class typechecked
via c1s Will have no pedigree discrepancies arising at constraint
merge time for these classes. On the high level, it guarantes,
if a class typechecks, no pedigree discrepancy can happeatber
what other classes are, making their typing completely nasdu

Even if all classes are declared to be of thefault mode,
our system still retains a degree of modularity. Our systepe-t
checks each class modularly via the s definition, and collects
constraints on pedigree variables. All type errors exogpinter-
class pedigree discrepancies can be immediately repdrits-
class pedigree consistency is guaranteed by merging eomstets
obtained from each modular class typechecking, via-thg defi-
nition. The type system never re-typechecks a class.

These two modes represent a trade-off between modular sys-
tems requiring programmer declarations (#ieict mode), and
more flexible inference systems which can significantly iower
programing productivity (thelefault mode), but which are less
strongly modular. We believe thaefault mode is the best choice
for most software development environments, allowing sisede-
clare many “I-don’t-care” intentions, but cases where nstrietly
modular interfaces are needed may still benefit from therstdges
of pedigree types through the use of #hdct mode.

3.3 Operational Semantics

As Pedigree Types are built on a Java-like object model, the d
namic semantics of our calculus is standard. The only eiaefg
we create an auxiliary data structure calfetligree relation store
(R in Fig. 8) to record the pedigree relations between objécis.
only used for proving the correctness of the type system andé

Mai n to the node representing the constraint set to be merged. Fordoes not affect reduction. Every timenaw expression is evalu-

every step that the constraints of a particular class are tdrged,
the rules check whether that class has already shown w ifi
so, a cyclicll dependency chain has formed. Rather than further

ated, the pedigree of the instantiated object relative éartbtanti-
ating object is recorded iR. An entry{oi; 02) — pin R sayso; is
p of 02. Based onR, functionrel(R, o1, 02) produces the pedigree



of o1 relative toos. Intuitively, R forms a directed tree where the
nodes are objects (their IDs) and the edges signify how tfectsh
instantiate one another. Each edge can be imagined as lssiag a
ciated with a “weight”, indicating the pedigree of the ingiated
object relative to the instantiating object. Functiari(R, o1, 02)
simply computes the “weighted distance” between tree nodad
02. Readers can find this simple yet formally lengthy definition
[Liu07].

Other run-time data structures are shown in Fig. 8. Runtime
configurationA records the mutable state of the execution. It is
composed of a standard hedp)( and the aforementionefl. An
entryo — (a;0;.S) in the heap says that an objeds instantiated
from a class named, and has the mutable states recorded'in
Auxiliary structureo is only used by the proof, and it keeps track
of the type variable instantiation for each object.

Values (of setV) are either an object reference (with Hp, the
standardnull value, or primitive data. Expressions are extended
to include valuesgxception, and a closure expression only used
by the reduction system to model method invocatioro, exd)
meansezd is to be evaluated with regard to object

The reduction relation i\, exd Lo, A’ exd’, meaning
exd is one-step reduced tard’ in object o, the runtime config-
uration changes from\ to A’, and C, o remain unchanged over

reductions. Multi-step reductiof, exd ﬂu A’ exd’ is the
transitive closure of one-step reductidd; exzd) ¢, means the
reduction diverges. The bootstrapping process is modefect-b
duction ¢ =% (A; 0; exd), which prepares the initial values
for these data structures. A configurati¢f; o; exd) is said to

be attainablefrom programC, denoted ag” LN (A; 0; exd) iff
c e, (Ao; 0; exdp) andAg, exdy ﬂu A, exd.

3.4 Theoretical Properties

We now establish the main properties of our calculus. Thesg-p
erties are rigorously proved in [Liu07] based on a somewhaiem
refined object model. The two models share the same notiob-of o
ject reference, and so the underlying proof structure gelgrthe
same.

init

Theorem 1 (Type Soundness)if ¢ C : Ct and C
(A; 0; exd), then either{A; exd) fc,0, OF A, exd Loy, Alv
for someA’, v € V, or A, exd %, A/, exception.

This theorem states that the execution of statically typed p
grams either diverges, computes to a value, or throws except
In this calculus, exceptions are thrown when an uninitélifield is
accessed. The theorem is established via lemmas of subhat-r
tion, progress, and the bootstrapping process leads inédldyped
initial configuration.

for all o € Dom(H), A = (H;R), H(o) = (a;0;5), and
c (A;0; exd),
Theorem 3 (Alias Protection) If ¢ C : Ct and ¢ *

(A;0';exd), and A = (H;R), then for all o € Dom(H),
H(o) = (a;0;5), and for all (f — v) < S andv € RID, we
knowrel(R, v, 0) = p and there exists somg and v, such that
subPed(p, (parent)”! (child)?) U {v1 >s 0} U twoVals(v2) is
consistent.

The previous property is analogous to the notion of deep own-
ership [Cla01] in ownership type systems.

4. Extensions

We now demonstrate how a number of extensions can be built on
top of the compact core calculus of Pedigree Types. Seviitase

are only sketched here, and their fleshing out constitutesdsting
future research.

Selective Exposure The intention of encapsulation sometimes
does not align well with the intention of hierarchical dequmsi-
tion. When that happens, there is a need for selectivelysngan
otherwise encapsulated object to objects that normallyldvoat
have gained access. Selective exposure is useful for progirsg
idioms such as iterators and has generated significanesttéor
existing ownership type systems [AC04, LP06].

In the context of Pedigree Types, what selective exposuenme
is an object, sa), might occasionally accessed by some object, say
Y, which is itsgrandparent. (Note that this is not allowed in the
core model since is Y's (parent)®(child)?, resulting a negative
level not ranging ovef0, 1}). Our model can be extended with
selective exposure by allowing each object to be associgitacan
access policy stating which pedigrees higher up on the roieya
can access the methods of an object. For instance, a polidg co
be [grandparent — m;uncle — m1, m2] which states that the
grandparent of the current object can access its method while
its uncle can accessn; and mz. Sincegrandparent and uncle
otherwise would not be granted access, the strategydefacto
achieves selective exposure. We are confident that a soyed ty
system of this fashion can be built based on our previousrexpme
with a similar system [SS02]. This solution also does nofdrein
spirit from existing selective exposure solutions such as€ship
Domains [AC04] and Variant Ownership [LP06].

An alternative solution to this problem is to make changehéo
object model itself. We have worked out a full solution aldhi
direction in [Liu07].

Opt-Out Pedigrees for Large-Scale Hierarchy Inferencé/Vhen
all programmer pedigree annotations are omitted, our typtes

We now state several important theorems about how pedigreeis de factoa hierarchy inference system where each constraint so-

types enforce pedigrees at runtime. Theorem 2 states thet if
programmer puts a pedigree qualifier, saiyling, on a field of a
class, then at run time that field will always hold a referewbéh
is agbling (or a pedigree subsumed lspbling, i.e. self) of the
current object. Theorem 3 says any object reference on the he

lution provides a possible “hierarchy layout” for heap alge The
high-level meaning of doing this is to rediscover the hienaral
decomposition intention of programmers.

To make such a technique practical for large-scale softeyse
tems, there is one hurdle to cross: when the applicationgtarge,

must refer to some object which can be named by a well-formed the general reference structure is commonly a graph, natrarhi

pedigree qualifier. No object can hold a reference to therate
representation of another object, since that relationsaimot be
expressed by a well-formed pedigree type.

Theorem 2 (Shape Enforcement)lf ¢ C : Ct, for all a €
Dom(Ct), Ct(a) = (mod; Mt, Fit), forall (f — t) < Ft

t = (parent)%(child)* a’ =
(rel(R, S(),0) = p)A _
(subPed(p, (parent)”(child)*) consistent

chy. Blindly using our type system would lead to untypable-pr
grams when a strict hierarchy cannot be realized by conssalv-
ing. The solution to this problem is simply to allow prograensito
declare “opt-out” references that do not follow the hiehgrcThe
high-level intuition behind this is to allow programmersdount
some references as “back-edges” on top of the hierarchyk*bac
bone”. Such an extension does not add any technical diffisuio
the type system itself: for an opt-out reference, we wouhdpy
not constrain the pedigree associated with it.



The access policy solution outlined above for selectiverexpe
is a more precise form of opt-out pedigree: rather than cetay
freeing the reference from obeying any hierarchy condsaiit

Programmer-Defined Pedigree ConstraintOur core calculus
does not allow programmers to express “two references atieeon
same (unknown) level of the ownership tree”, a demand that ca

allows back-edges but constrains to whom an object may have abe easily supported by existing ownership type systemgyesia

back-edge.

Java-Style Inheritance In principle, Java-style inheritance cap-
tures two independent issues of object design: code cotiposi
and subtyping. The issue of code composition is orthoganigide
system design. For subtyping, Java inheritance enforcesnbie
nation of nominal subtyping (explicitly declared bytends) and a
restricted form of structural subtyping (the subtype cavehaore
methods but overridden methods must have the same sigsiature
Supporting nominal subtyping involves minimal work: thelyon
change would be add one extra check(@tib-Recursive) and
(Sub-Non-Recursive), making surea; and as in the two rules
also conform to the nominal constraints declaredskiends. For
structural subtyping, our type system in fact is more flexithlan
Java’s as it supports unrestricted width and depth suldypin

Dynamic Class Loading In Sec. 3.2.6, we explained that whether
a class is declared to lefault or strict, the code of each class is
only type-checked once in a modular fashion. This is goodsrfew
dynamic class loading, since we do not need all classes tadile a
able at the onset of program execution. When a class is @eclar
default, inter-class consistency checking is performed at coinstra
merging time. What this implies in the context of dynamicssla
loading is the constraint merging will happen incremegtatirun
time. This dynamic constraint merging in fact is already own-
place; for example, the JVM maintains a set of “loader casts”

on types [LB98] which are dynamically updated and checked at
each class load. The incremental algorithm for solvingdingio-
phantine equations [CD94] is well-suited to incrementaistraint
merging.

Top Pedigree The core calculus does not have a “top pedigree”
which subsumes all pedigrees (just as how Ja@hsect sub-
sumes all object types). This feature would be useful whes on
wanted to create a heterogeneduisst with objects each with a
different pedigree. Supporting a top pedigree is simple:ahly
change is to add one subtyping rule to indicate all pedigeges
subsumed by the top pedigree.

Dynamic Casting Dynamic casting of pedigree types involves
two dimensions: casting the pedigrees and casting the lyivdgr
object types. The second part is a standard Java operatbr wit
a standard solution. The non-trivial issue to address hetbad
casting of pedigrees.

Compared with Universe Types, Pedigree Types programmers
should encounter very few scenarios where there is a need$tr
ing pedigrees. In Universe Types, if a reference, rshyof peer
pedigree is assigned to a reference, s&y without a pedigree
(sometimes nameany pedigree), the pedigree information is lost.
If r 2 is then subsequently assigned to another reference 3af
peer pedigree, the second assignment would fail unless dynamic
casting is used (especially when such assignments go beytwnd
ject boundaries, such as via method parameter passingydigree
Types, since all variables without a pedigree declaratieriraated
with a polymorphic pedigree, assignmer8 = r 2 will succeed
without any cast.

One situation where dynamic casting would be useful in Pedi-
gree Types is when an object declared with a top pedigreena-do
cast to a more precise pedigresgy.when retrieving elements from
a heterogeneousi st . The standard solution for dynamic casting
should also work for Pedigree Types: pedigree informatim loe
maintained at run time, and some constraint solving alserdsd
to run time.

plicit parametric polymorphism. A simple extension howegan
achieve this. All that needs to be added is extra syntax ailppro-
grammers to indicate such an intention. The type systemiresqu

no change: it simply entails the addition of two constraitsne
equating the positive levels of the two pedigrees and onatauu

the negative ones — infd in (T-Class). Similarly, inequality con-
straints such as “ the two references are on unknown leveise
must be higher than the other” and even arithmetic consgsrairch

as “the two references are on unknown levels but one must be 1
level higher than the other” can be supported without diffjcu

5. Related Work

Explicitly Parametric Ownership Type SystemdNumerous own-
ership type systems — such as [NPV98, CPN98, Cla01] and many
later extensions and variations — use explicit parametsigrpor-
phism (EPP) to enforce ownership. Pedigree Types alsopocate
parametric polymorphism behind the scenes, and for thisorea
the aforecited EPP systems and Pedigree Types are genenally
an equal footing in terms of expressiveness for writing nvegol
programs, excepting some minor differences which we novercov
For instance, EPP systems allow users to specify that twey-ref
ences have the “same owner” on an unknown level, while Peligr
Types cannot (a similar notion can in fact be easily supplobte

a simple extension to Pedigree Types, see the last part ofdyec
On the flip side, Pedigree Types have several expressivgagss
over EPP systems as well. They can express singleton pedigre
constraints, such as a reference pointing tpagent to indicate

a reference to the directly enclosing object on the ownprsiie.
This feature can be useful for identifying containers wydeded in
Container-Component-based frameworks such as Enterfmise
abeans. In addition, EPP systems do not have an equivalemtifo
self; its positive impact on capturing the call-back constisiot
object-oriented programming was discussed in Sec. 2.1.

The main advantages of Pedigree Types over EPP systems, as
explained in Sec. 1, are 1) minimal annotation overhead arad 2
natural and intuitive programming interface to expliciiypport
the intention of hierarchical decomposition.

EPP system modularity is analogous to setrict mode: each
class is strictly modular at the expense of the need for aelarg
type annotation overhead. As discussed in Sec. 3.2.6, Vier phe
reverse emphasis via odefault mode, but support both modes to
let the programmer make the ultimate decision.

Solutions to reduce annotation overhead in EPP systems are
limited. SafeJava [Boy04] allows intra-procedural infeze. A cal-
culus by Wren [Wre03] infers context parameters of EPP gyste
based on a notion of Extended Object Graph. AliasJava [AKC02
describes an inter-procedural algorithm. It is formallglecidable,
but the implementation shows reasonable results in pedditua-
tions. In Uno [MFOQ7], program analysis techniques such astpo
to analysis are used for ownership inference. Some pregeirti
Uno overlap with our work, including their predicateM®@FIELD
which is analogous to inferringehild pedigree in our system.

Within the past decade, many advanced features have been de-
signed on top of EPP systems, which as of now are not covered by
Pedigree Types. Examples include how to add variant typeegl,
how to unify Java generics and ownership types [PNCBO06], twow
support multiple owners [CDNSQ7].

Ownership Type Systems Without EPRUniverse Types have a
syntax similar to Pedigree Types; we previously explairnesirt
peer andr ep modifiers in Sec. 1. All nopeer non+ ep ref-



erences are treated asy?, which in our terminology is a top
pedigree and not a polymorphic pedigree. Dynamic casting th
is often needed — see the discussion of this topic in Sec. 4. In
addition, Pedigree Types have a more general form of pesgre
(parent)™(child)?, whereas in Universe Types no pedigrees can be
given to objects which are neithempaer nor ar ep on the own-
ership tree. This is not necessarily a weakness of UniveypesT
because their design is optimized for program verificatidreng
object referential structures generally have shallowahni@hies of

2 or 3 levels. By supporting a general form of pedigree torrefe
arbitrary hierarchy levels and particularly allowing feweél infer-
ence, Pedigree Types are a more general solution to theepnobl
of expressing and rediscovering the decomposition hibyafdo
equivalents obelf andparent exist in Universe Types.

Instead of preserving the owners-as-dominators properti,
verse Types do allow an object to be accessed by objectdleutsi
the owner, as long as the access is read-only (the propdatypven
as owners-as-modifers). Pedigree Types can adapt to thpeity
easily: in that casetwo Vals constraints (used in various places of
the type system) are only added when they are constrainidig pe
grees of non-read-only references. Recently, a run-tirfexénce
algorithm was designed for Universe Types [DMO07]. Ownershi
transfer is now supported by Universe Types [MRO7] as well, a
interesting topic Pedigree Types do not yet address. [DMO7]

Several other non-EPP systems have a domain target and make

[ACO04]

[ACGT06]

[Age96]

[AKCO02]

[Boy04]

[CDY4]

[CDNS07]

[Cla01]

[CPN98]

simplifications based on need, such as Confined Types [VE®9] f [EST95]
security, and Scoped Types [AC®G6] for real-time memory man-
agement. These systems achieve their domain goals, dtingithe [Heng3]
value of object encapsulation in these domains.
[IPW99]

6. Conclusion
This paper presents an intuitive and powerful type systesape ~ [KP88l
the heap into a hierarchy of decomposition and encapsnolafioe
main contributions of this paper can be summarized as fstlow (LB98]

e The intuitive nomenclature of human genealogy is applied to [Li07]

a type system to navigate hierarchies. Familiar geneabgic
pedigrees such gsarent, child, sibling are unified into one
compact general form. Inherent aspects of human genealogy[LPO6]
trees are captured, including pedigree relativization pedi-
gree subsumption.

[LS05]
e Implicit parametric polymorphism is introduced to capttine
intuitive notion of an “I don'’t care”-kind of polymorphic jpi& [MFO7]
gree. The resulting system retains the expressiveness mf ma
existing ownership type systems, at the same time preggatin
simple and intuitive programming interface to end users. [MPHO1]
e A novel constraint-based type system is constructed toremfo
the consistency of pedigree invariants, where constrairgs [MRO7]
linear systems of integer arithmetic equations, and caimgtr
solving is finding a solution to these linear equations. [NPVOS]
e Formal properties of type soundness, pedigree invariant en
forcement, and alias protection are established. [PNCBOG]
In conclusion, Pedigree Types put the power of an explicind- [Schog]
ism for defining and constraining the heap hierarchy intdhreds
of programmers, and give programmers a greater awarenessdof  [SS02]
thus control of, the heap reference structure.
[VB99]
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