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ABSTRACT

With the rapid growth of Artificial Intelligence (AI) applications
supported by deep learning (DL), the energy efficiency of these
applications has an increasingly large impact on sustainability. We
introduce Smaragdine, a new energy accounting system for tensor-
based DL programs implemented with TensorFlow. At the heart
of Smaragdine is a novel white-box methodology of energy ac-
counting: Smaragdine is aware of the internal structure of the
DL program, which we call tensor-aware energy accounting. With
Smaragdine, the energy consumption of a DL program can be
broken down into units aligned with its logical hierarchical de-
composition structure. We apply Smaragdine for understanding
the energy behavior of BERT, one of the most widely used lan-
guage models. Layer-by-layer and tensor-by-tensor, Smaragdine is
capable of identifying the highest energy/power-consuming com-
ponents of BERT. Furthermore, we conduct two case studies on
how Smaragdine supports downstream toolchain building, one on
the comparative energy impact of hyperparameter tuning of BERT,
the other on the energy behavior evolution when BERT evolves to
its next generation, ALBERT.
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1 INTRODUCTION

Green AI [22, 54] is a fundamental challenge with far-reaching
implications on the future practice of software engineering, and
the sustainability of our society [57]. Deep learning (DL) [6, 14,
18, 37, 52] — the technology that drives the current wave of AI
revolution— happens to be excessively energy-hungry. For example,
training DL-based large language models is estimated to consume
1,287 megawatt hours of electricity [46]. Optimizing the energy
consumption of DL systems and applications is a fast-developing
direction with intense interest [8, 21, 51].

The first step toward change is awareness 1. Underpinning many
solutions of energy optimization is the fundamental problem of
energy accounting: a deep understanding of energy consumption
by breaking it down in (software or hardware) components. This

1Nathaniel Branden, The Psychology of Self-Esteem, 1969
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is in contrast with the “monolithic” black-box approach, e.g., mea-
suring the end-to-end energy consumption of a DL training ses-
sion. Energy accounting is a classic problem, with established so-
lutions [3, 17, 65, 66] focusing on breaking down the energy con-
sumption by hardware components and OS system components. It
is not difficult to envision a gray-box approach that retrofits these
existing solutions to DL programs, i.e., breaking down black-box

DL energy consumption by architectural units or OS threads.
Our key insight is that, be it a black-box approach or a gray-box

approach, it is a missed opportunity that an energy accounting
system ignores the unique abstractions latent in the DL program.
After all, a DL program is highly structured, often broken down in
modules formed by layers of tensors. Both the black-box approach
and the gray-box approach pessimistically treat the DL program
just like any other program. How can we leverage the structural in-
formation in the DL program for energy accounting?What benefits

do we gain with this new flavor of energy accounting?

1.1 Tensor-Aware Energy Accounting

In this paper, we introduce Smaragdine 2, a novel multi-grained

energy accounting system for TensorFlow [1]-based DL programs
that aligns the decomposition of energy consumption with that of the

logical structure of the DL program. At the heart of Smaragdine
is a novel white-box methodology of energy accounting: the sys-
tem is aware of the internal structure of the DL program, and its
energy consumption can be broken down following its abstraction
boundaries. The output of Smaragdine is a series of nested En-

ergy Distribution Diagrams (EDD) corresponding to the hierarchical
decomposition of the DL program. For instance, a top-level EDD
shows how the overall energy consumption of a DL program is
broken down to modules; the EDDs for sub-modules show how the
energy consumption of a particular module is broken down to Deep
Neural Network (DNN) layers; and so on. With the hierarchically
decomposed EDDs, the atomic unit of energy accounting is a tensor
operation in TensorFlow-based implementations.

The white-box approach of Smaragdine has some distinct ben-
efits. First, it complements the active research of explainable AI [1,
12, 49] with a perspective on the explainability of non-functional
properties such as energy consumption. The hierarchical decom-
position structure of EDDs explains how energy consumption is
distributed in a layer-by-layer, or even tensor-by-tensor manner.
Second, EDDs — with their “logical” nature of energy accounting —
may offer insights to downstream designs in energy optimization
and energy debugging. With EDDs, it is a trivial task for a down-
stream designer to zero in on the “energy hotspot” — the highest
energy-consuming unit (a module, a layer, or even a tensor) of
the DL program. These energy hotspots are likely to be the ideal

2Smaragdine means "pertaining to emeralds" in Latin and refers to the Smaragdine
Tabula or Emerald Tablet, a legendary alchemical text that described the creation of
the Philosopher’s Stone.
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candidates for optimization or bug fixes due to their proportionally
larger impact. Third, the white-box approach of Smaragdine pro-
motes the study of portability in energy accounting. In gray-box
approaches, the result of energy consumption is fundamentally
platform-specific: the breakdown of energy consumption across
hardware components is dependent on what hardware components
each platform has. In contrast, Smaragdine breaks down the energy
consumption through logical components of a DL program.

The design of Smaragdinemust overcome twomajor challenges.
First, there remains a semantic gap between the DL program and the
underlying physical system: no ready-made profiler or tool can con-
nect the semantic features of the DL program execution to energy
consumption. The solution of Smaragdine is a trace-based align-
ment algorithm, which conceptually can be viewed as a monitor
that simultaneously tracks the DL program runtime events and the
energy consumption of the system, and aligns the two to compute
the EDD (details in § 3). Second, there are complex interactions at
the application-system interface. For example, most TensorFlow
applications are multi-threaded running on heterogeneous plat-
forms, i.e. with both CPUs and GPUs. How to account for energy
consumption is non-trivial (see § 3 for details).

1.2 Understanding BERT Energy Behavior

To evaluate the effectiveness of tensor-based energy accounting, we
apply Smaragdine to BERT [16], a widely used text analysis model.
In the domain of natural language processing (NLP), BERT plays
a central role in powering numerous NLP end-user applications.
In § 5, we show how the BERT application can be hierarchically
decomposed into EDDs. We also show how BERT transformers [59]
— especially its attention modules — dominate the energy consump-
tion in different stages of BERT use, from pre-training to fine-tuning
to prediction. Throughout experiments, we find Smaragdine incurs
low overhead while retaining high precision and stability.

To further demonstrate the usefulness of Smaragdine in build-
ing the downstream toolchain, we use BERT in two case studies.
First, we provide a white-box study on the impact of hyperpa-
rameter tuning of BERT. We show the energy/power consump-
tion trends with different configurations in the number of layers
and the number of hidden embeddings. Second, we conduct an
evolutionary study to compare BERT with a newer variant, AL-
BERT [33]. Through Smaragdine, we show how the energy behav-
ior has evolved from BERT to ALBERT.

1.3 Contributions

To the best of our knowledge, Smaragdine is the first white-box
energy accounting system for tensor-based DL programs. This
paper makes the following contributions:

• the distinct methodology for the energy accounting of DL
programs where energy accounting is aware of the internal
structure of the DL program, i.e., semantics-aware, illustrated
by EDDs (see § 3)
• a trace-based alignment algorithm for bridging the seman-
tic gap of energy accounting while considering complex
application-system interactions (see § 3)

• an in-depth evaluation of Smaragdine through BERT, re-
vealing the module-level, layer-level, and tensor-level energy
behavior of BERT (see § 5)
• a comparative study on the energy/power impact of hyper-
parameter tuning in BERT, and the energy/power behavior
evolution from BERT to its next generation, ALBERT (see
§ 6)

Smaragdine is an open-source project. The source code and
all raw data of this paper can be found at https://github.com/
project-smaragdine/smaragdine.

2 BACKGROUND

Deep Learning Programs. A DL program is a dataflow program
that composes a number of neural networks (NNs) — and often deep

neural networks (DNNs) — together. A neural network (NN) is a
collection of neurons wired together, where each neuron serves as
a transformation function. Each neuron can be associated with a
weight, a potentially adjustable value that indicates the importance
of the transformation. DNNs hierarchically organize NNs together,
each of which is called a layer. Each DNN layer can be implemented
by a tensor [43], which generalizes scalar and vector computations
over the input/output of the neurons.

Semantically, one may view a DL program as a potentially nested
dataflow program. ADL program consists ofmoduleswired together
through dataflows, and each module can be implemented either as
a tensor, or another (nested) dataflow program. A concretization of
this view is to consider a DL program as a “nested DNN,” consisting
of layers wired together. Each layer may either be an atomic tensor
layer or composite layer, i.e. another DNN. In the rest of the paper,
we adopt this view.

DL programs can be trained, i.e., adjusting the neuron weights
of its resident NNs to fit a data set. Once trained, a DL program
can be used for prediction, i.e., estimating an output from an input.
DNNs are trained through backpropagation [37, 52], where the error
of the model’s prediction is used to adjust weights. This requires
computation of the network’s gradient – the differential impact of
neuron connections – to correctly adjust the weights.

BERT. BERT [16] is a tunable NLP model relying on DNNs.
BERT popularized the idea of splitting training into two stages:
pre-training and fine-tuning. BERT is initially pre-trained on a gen-
eral data set – where all model weights are trained for a long time.
BERT can then be fine-tuned on a curated data set – where only
a subset of model weights are trained for a shorter time. As a re-
sult, BERT can be quickly configured to solve specific kinds of text
problems without retraining from scratch [16, 36, 50], leading to a
break-through in NLP.

For NLP models, two important tasks are embedding and encod-

ing. Embedding represents the input (such as a text) for processing,
and encoding addresses the transformation between the input and
the output. In design, BERT’s encoding module, called an encoder,
is a nested DNN: it stacks together a number of modules (i.e., com-
posite layers) each of which is called a transformer [59]. For our
purpose, note that a transformer is a nested dataflow program with
NNs inside. A key BERT innovation is one of the NNs nested inside
a transformer, called self-attention. This unit enables a (now widely
used) form of encoding known as bidirectional representation.

https://github.com/project-smaragdine/smaragdine
https://github.com/project-smaragdine/smaragdine
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TensorFlow. TensorFlow [1] is a machine learning library that
supports complex tensor calculus. TensorFlow programs can be
designed using the Keras API, a framework for constructing DL
programs. For DL training, computing the gradient by hand is non-
trivial. To overcome this, TensorFlow automates this process by
using automatic differentiation [37].

3 SMARAGDINE DESIGN

3.1 Problem Statement

We use 𝑙 ∈ LN represent layer names, 𝑡 ∈ TN tensor (layer) names,
and 𝑐 ∈ CN composite layer names. LN = TN ∪ CN. We further
use TO to represent the set of tensor operations.

Definition 3.1 (DL Program). We define a program 𝑃 ∈ P as a
directed graph ⟨𝑁 ;𝐸⟩ where N = C ∪ T, and C : CN ⇀ P is a
bijective partial function for the set of composite layers, T : TN⇀

TO is a bijective partial function for the set of tensor layers, and
𝐸 : LN ⇀ LN is a partial mapping denoting the dataflow among
layers.

The primary goal of Smaragdine — i.e., tensor-level energy
accounting — is to produce an EDD:

Definition 3.2 (EnergyDistribution Diagram). Wedefine an EDD ∈
EDD as a directed graph ⟨N ;𝐸⟩ whereN = C ∪ T , and C : CN⇀

EDD is a partial function for the set of EDDs (indexed by composite
layer names), T : TN⇀ ENERGY is a partial function for the set
of energy consumption values (indexed by tensor names).

It is important to observe that the structure of an EDD in Def. 3.2
mirrors that of the DNN program in Def. 3.1. This is intentional: it
is the goal of Smaragdine that the output of energy accounting
reflects the logical structure of the DNN program.

Most DL programs rely on a very limited set of tensor operations,
i.e., the sizes of TN and TO are small. For example, BERT is built
on top of a limited number of tensor operations, such as vector
multiplication (MATMUL) and tangent gradient (TANHGRAD). However,
it is important to note that where tensors appear in the DL program
makes them semantically different: a vector multiplication used
for computing self-attention is different from one using Einstein
summation. To effectively support this difference, we introduce
qualified tensor name (𝑞 ∈ QN), in the form of ⟨[𝑐1, . . . , 𝑐𝑛]; 𝑡⟩
for some 𝑛 ≥ 0. Intuitively, this refers to a tensor named 𝑡 that
immediately resides in layer 𝑐𝑛 , which is in turn nested in 𝑐𝑛−1 and
so on.

Example 3.3 (Qualified Tensor Name and its ShortHand). The QTN
⟨[bert, encoder, layer_0, output, dense]; MatMul⟩ refers
to tensor MatMul defined in the dense layer, which in turn is
nested in the output layer, which is nested in layer_0, and so
on. From now on, we use its more mnemonic shorthand form 3

bert/encoder/layer_0/output/dense/MatMul.

With the QTN, we can now “flatten” the EDD to produce a
representation more friendly for tensor-level comparison of energy
consumption:

3This notation is popularized by file systems, and broadly, hierarchical decomposed
naming systems.

Definition 3.4 (Tensor Energy Footprint). We define a tensor energy
footprint (TEF) 𝐹 as a function 𝑇𝐸𝐹 : QN⇀ ENERGY.

Given a program 𝑃 , the transformation between EDD and TEF
is simple, to be defined in § 3.3.

3.2 Algorithm Overview

Design Challenges. Aswe discussed in § 1, Smaragdine first must
overcome a Semantic Gap challenge: while it is generally known
how to perform (gray-box) energy accounting in a per hardware
component or per thread manner, how such systems-level energy
consumption can be mapped to the structure of the DL program is
an open question. Secondly, there is anApplication-Systems Interface

challenge. A typical DL program is multi-threaded, so addressing
concurrency is the rule not the exception; DL programs routinely
run in a heterogeneous environment – where there may be multiple
devices, such CPUs and GPUs. This complicates accounting further
as device reports their consumption separately.

A Solution Overview. To address the Semantic Gap challenge,
Smaragdine is designed as a runtime monitor to perform trace-

based alignment: it collects two traces of information at time in-
tervals, and align them based on timestamps. The two conceptual
traces are (1) a tensor event trace 𝜏 : TIMESTAMP⇀ QTN, which
temporarily records the tensor activities, where each tensor is iden-
tified by its QTN; (2) a power trace: 𝜋 : TIMESTAMP⇀ POWER.
The core algorithm is conceptually simple: Smaragdine continu-
ously tracks what tensor events have happened, where each event
has happened, and howmuch power the device has when it happens.
Now that 𝜏 contains the semantic information, its alignment with
𝜋 bridges the semantic gap between the program runtime and the
system runtime. Let us now overview several technical challenges:

• Imperfect Alignment: It should be known that neither 𝜏 nor
𝜋 is surjective; in other words, some timestamps may not
have a tensor event or any power reading. In a nutshell,
Smaragdine is a recency-based alignment algorithm: we
align a tensor event with the most recent power reading in
the time line.
• Multiplicity: 𝜋 is not injective; in other words, there might
be multiple tensor events that occur at the same timestamp.
In Smaragdine, all tensor events that happen at the same
time are attributed with an equal share of the energy con-
sumption.
• Durable Events: tensor events happen for a duration. This
realistic view is in contrast with our conceptual formulation
above, where the 𝜏 mapping appears to indicate that the
occurrence of a tensor event happens at an instantaneous
timestamp. We resolve this with a conceptual algorithm (in
Algorithm 2) and an optimized algorithm (see discussion in
§ 3.3).

To address the Application-System Interface challenge, Smarag-
dine behaves as a universal accountant, abstracting the system’s
consumption as energy traces. First, Smaragdine is aware of the
heterogeneity of the system, where trace alignment is performed
in a per device manner. In other words, Smaragdine operate on
the device tensor event trace 𝜃 : DEVICE⇀ 𝜏 , and the device power
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Algorithm 1 Smaragdine Data Types

1 typedef Ts Int // time stamp
2 typedef Dur Int // time duration
3 typedef Device enum {
4 CPU_0,CPU_1, ...
5 GPU_0,GPU_1, ...
6 }
7 typedef Op Int // ID of a tensor operation
8 typedef Event struct {
9 ts : Ts // event start time
10 dur : Dur // elapsed time for event
11 device : Device // executing device
12 op : Op // event operation
13 }
14 typedef EventTrace List⟨Event⟩
15 typedef Energy Float // energy in joules
16 typedef Power Float // power in watts
17 typedef PowerTrace Map⟨Ts, Power⟩
18 typedef DevicePowerTrace Map⟨Device, PowerTrace⟩
19 function Start() // begin accounting
20 function Stop() : DevicePowerTrace // stop accounting and obtain traces since

start
21 function Now(T: Ts, TL : Set⟨Ts⟩) : Ts // retrieves the largest time stamp from

a set which is smaller than a given time stamp
22 returnMax(ts ∈ TL where ts <= 𝑇 )

trace: 𝜖 : DEVICE⇀ 𝜋 . Second, Smaragdine is aware of the con-
currency of the system. With Multiplicity, the tensor events that
are concurrently executed on different threads residing on one de-
vice each will receive an equal share of the energy consumption of
that device. Smaragdine also addresses complex systems behavior
such as thread migration, where the mapping between threads and
devices is updated.

3.3 Algorithm Specification

Key Data Structures. Algorithm 1 presents the key data struc-
tures Smaragdine works with at run time. The 𝜏 and 𝜋 traces we
discussed in the previous section are represented by EventTrace
and PowerTrace respectively. Due toMultiplicity, the EventTrace
also records the duration of the tensor event (dur), together with its
starting time (dur), as shown in Lines 9-13. The QTN of the tensor
operation is kept in the op field. To address the Application-Systems

Interface challenge, we also record where in the underlying systems
such event is happening, in the device field. Possible values are
the CPU/GPU units, as shown in the enum definition for Device.
Smaragdine provides Start and Stop methods (Lines 19- 20) to
enable an accounting session. Due to the need for Imperfect Align-

ment, utility function Now returns the last interval timestamp that
is still smaller than the given timestamp.

TEF Computation. Algorithm 2 specifies the core monitoring
algorithm which ultimately produces the TEF. Due to the techni-
cal challenge of Durable Events, we flatten the EventTrace, i.e.,
turning it into a DeviceFlatTrace where the event is repeated
for every interval covered by the duration The flatten function
iterates through EvenTrace events and add them to a DeviceFlat-
Trace from the start to the end of the event (Lines 2 - 8). Finally,
we account operations by iterating over each device’s DeviceFlat-
Trace. The tensor operations for each time interval is assigned
an equal fraction of the total energy. The TEF, represented in the
algorithm as TEFootprint, is Aggregated together by combining
all TSFootprint’s.

Algorithm 2 Smaragdine Accounting

1 typedef DeviceFlatTrace Map⟨Device,Map⟨Ts, Set⟨Op⟩⟩
2 function Flatten(T : EventTrace) : DeviceFlatTrace
3 ft← new DeviceFlatTrace
4 for e in T do
5 for t in Range(e.ts, e.ts + e.dur + 1) do
6 ft[e.device] [t] +← e.op

7 return ft
8
9 typedef TEFootprint Map⟨Op, Energy⟩
10 typedef TsFootprint Map⟨Ts, TEFootprint⟩
11 function BuildTEFootprint(OP : Set⟨Op⟩, P : Power) : TEFootprint
12 tef← new TEFootprint
13 for op in OP do
14 of[op] ← P / |OP|
15 return of
16
17 function GenFootprint(T : EventTrace, DPT : DevicePowerTrace) : TsFoot-

print
18 tf← new TsFootprint
19 ft← Flatten(T)
20 for d ∈ Dom(DPT) do
21 for ts ∈ Dom(ft[d] ) do
22 ops← ft[d] [ts]
23 p← DPT[d] [Now(ts,Dom(DPT[d] ) ) ]
24 tf[ts] ← BuildTEFootprint(ops, p)
25 return tf
26
27 function Aggregate(TF : TsFootprint) : TEFootprint
28 tf← new TEFootprint
29 for ts in x ∈ Dom(TF) do
30 for op ∈ Dom(TF[ts] ) do
31 tf[op] +← TF[ts] [op]
32 return tf
33

The algorithm implemented by Smaragdine is an optimized
version of Algorithm 2. In practice, if a tensor operation has a long
duration, the Flatten process in Algorithm 2 would require insert
many entries in DeviceFlattenTrace. Our optimized algorithm
keep track of the start/end timestamps of a tensor operation inter-
nally without an explicit flattening process. The specification of
this optimized algorithm can be found in the repository.

EDD Reconstruction. Given a TEF, it is simple to compute a
corresponding EDD. Function T2E(𝐹, 𝑃) computes the EDD for
program 𝑃 , defined as ⟨N ;𝐸⟩, where N is the smallest set such
that N(𝑐1) (𝑐2) . . . (𝑐𝑛) (𝑡) = 𝐹 (𝑞) for any 𝑞 ∈ domain(𝐹 ), 𝑞 =

⟨[𝑐1, . . . , 𝑐𝑛], 𝑡⟩, where 𝑃 = ⟨N;𝐸⟩.

Summarized TEF. Realistic DNN programs have a complex topol-
ogy. This implies that a typical TEF in the real world contains
numerous entries. From the standpoint of program understanding,
it would be desirable if we could combine the energy consumption
of “similar” tensors together.

For transformer-based DNN programs such as BERT, an op-
portunity exists: while such programs consist of a large number
of transformers, the internals of all transformers are self-similar,
i.e., they have indistinguishable topology [28]. This provides us
an opportunity to sum up the energy consumption of all tensors
that reside in self-similar transformers. In BERT, the boundary of
a transformer is identified by module name layer_𝑖 , where 𝑖 is a
number that ranges the number of transformers. In other words,
we can potentially sum up the following entries in a TEF:

bert/encoder/layer_0/output/dense/MatMul ↦→ 5
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bert/encoder/layer_1/output/dense/MatMul ↦→ 3
...

into one entry:
bert/encoder/transformer/output/dense/MatMul ↦→ 8

Definition 3.5 (Summarized Tensor Energy Footprint). A summa-

rized tensor energy footprint (STEF), represented as 𝑆 : SQ ⇀

ENERGY, maps summarized qualified tensor name (SQTN) to en-
ergy consumption values. An SQTN sq ∈ SQ has the structure of
⟨[𝑠1, . . . , 𝑠𝑛]; 𝑡⟩ where {𝑠1, . . . , 𝑠𝑛} ⊆ CN ∪ {transformer}.

Computing an STEF from a TEF is simple. Given a TEF 𝐹 , function
T2A(𝐹 ) compute 𝑆 as the smallest set s.t. 𝑆 (sq) =

∑︁
sq=⋄(𝑞)

𝐹 (𝑞)where

⋄(𝑞) = 𝑞 [layer_1 ↦→ transformer, . . . , layer_𝑛 ↦→ transformer].
In addition, Smaragdine can also produce the power counterpart

of STEF, which we call Summarized Tensor Power Footprint (STPF).
We elide their verbose definitions in this presentation.

4 SMARAGDINE IMPLEMENTATION

Decoupled Monitoring. We choose to implement Smaragdine as
a separate process co-running with the monitored in python applica-
tion running TensorFlow. In our implementation, Smaragdine is
written in Rust. The inter-runtime communication is implemented
through grpc 4, a widely used language-agnostic remote proce-
dure call framework. At the begin and end of the training epochs
in TensorFlow, we use SessionRunHook 5 to attach callbacks to
asynchronously communicate with Smaragdine. The Start and
Stop methods of Smaragdine are called upon receiving the grpc
messages. Decoupled monitoring enables a more language-neutral
approach toward the monitored application, anticipating the di-
versity of future ML applications, which may be written in other
languages.

In addition, if the monitoring logic were to be executed in the
same Python runtime, Python’s global interpreter lock (GIL) [58]
would be in effect. This undesirable feature would have a severe
impact on our design: the monitoring logic and the monitored
application logic would not be able execute in parallel despite a
concurrent multi-threaded design.

Power Sampling. Smaragdine samples the power consumption
of all CPU/DRAM/GPU components of the underlying system. The
power trace is broken down by device, as described at line 4 Algo-
rithm 2.

Specifically, the CPU and DRAM energy consumption is obtained
through Intel’s RAPL interface. RAPL provides Machine-Specific
Registers (MSR) to report the accumulative energy consumption
of Intel processors, reporting for each domain (i.e., motherboard
socket) separately. Within each domain, it further breaks down the
report by components, i.e., the CPU cores, the uncore (cache, TLB,
etc), and the DRAM regulator. The MSR is read through powercap,
a Linux power management module where MSR values are exposed
as a psuedo-filesystem.

GPUs energy consumption is obtained through the NVIDIA Man-

agement Library (NVML) 6, an interface for both monitoring and
4https://grpc.io/
5https://www.tensorflow.org/api_docs/python/tf/estimator/SessionRunHook
6https://developer.nvidia.com/nvidia-management-library-nvml

managing NVIDIA devices. The NVML provides high-level query-
ing of GPU devices, including the instantaneous power. Smarag-
dine samples from the NVML using the nvml-wrapper package 7,
which provides a thin Rust wrapper around the library.

Our power sampling period is set at 4 milliseconds, which is the
smallest period that we observe where power data are updated in
hardware.

Excluding Energy Consumption by OS and Smaragdine. One prac-
tical concern is that the OS maintains a basic level of energy con-
sumption, such as through daemons. In a similar vein, Smaragdine
as a co-running process also incurs a small share of energy consump-
tion itself. We need to exclude the energy consumption resulting
from the processes outside of our application, including the co-
running Smaragdine process. We resort to a prior tool Eflect[2],
an application-level energy accounting system, to accomplish this
goal. Eflect was able to virtualize the energy consumption, i.e.,
separating the fraction of energy consumption due to a specific
application from the rest of the system. In other words, for each
power sample obtained by Smaragdine at line 19 in Algorithm 1,
the sample only consists of the fraction of energy consumption
due to the monitored application itself. We do not virtualize the
energy consumption of the GPUs. Unlike the CPUs, GPUs only
execute the kernel required by our monitored application, without
the background OS daemon processes. The Smaragdine process
itself does not execute on the GPU.

Event Trace Collection. We obtain the TensorFlow event trace
through TensorFlow’s built-in profiler. The profiler monitors the
application with callbacks to the start and end of all operations
executed. We start the profiler through the ProfilerHook 8 class,
an extension of the SessionRunHook. At the end of execution, the
profiler produces an event trace using TensorFlow’s timeline
API, where events are identified by the tensor’s QTN. Combined
with traces from the Smaragdine hook described above, we account
the epoch with Algorithm 2.

5 EVALUATION

We present an experimental evaluation of Smaragdine with the
aim to answer the following questions:
• RQ1: what insights can Smaragdine provide to the design-
ers of DL applications on their energy consumption?
• RQ2: what are the precision, overhead, and scalability char-
acteristics of Smaragdine-based energy accounting?
• RQ3: can Smaragdine help build the downstream toolchain
for understanding DL applications?

We answer RQ1 and RQ2 in this section, and RQ3 in § 6.

5.1 Experimental Setup

All experiments are conducted on a server consisting of an Intel
Xeon Silver 4300 v3 2.30 GHz CPU with 20 cores, a PNY NVIDIA
Quadro P5000 GPUwith 2560 CUDA cores, and 64GBDDR4 of RAM.
The CPU is configured with hyperthreading enabled. The machine
runs with a Debian 11 OS with the default ondemand governor
where the P-state is on. All experiments were runwith TensorFlow
7https://github.com/Cldfire/nvml-wrapper
8https://www.tensorflow.org/api_docs/python/tf/estimator/ProfilerHook

https://grpc.io/
https://www.tensorflow.org/api_docs/python/tf/estimator/SessionRunHook
https://developer.nvidia.com/nvidia-management-library-nvml
https://github.com/Cldfire/nvml-wrapper
https://www.tensorflow.org/api_docs/python/tf/estimator/ProfilerHook


ICSE ’24, April 14–20, 2024, Lisbon, Portugal Timur Babakol and Yu David Liu

2.8 on Python 3.8. We use BERT through its experiment repository
9, which includes instructions to replicate the publication’s training.
Both pre-training and fine-tuning were performed for 500 epochs
with the BERT repository’s recommended parameters:
• A max sequence length of 128 words
• A training batch size of 32 records
• A learning rate of 2 × 𝑒−5

BERT is pre-trained with BookCorpus10, a collection of free,
unpublished novels, and English Wikipedia11, which contains an-
notated entries from a variety of domains. BERT is fine-tuned with
the Corpus of Linguistic Acceptability (CoLA) [62] data set. Each
experiment described in this paper is repeated 5 times.

5.2 A Bird’s Eye View of BERT’s Energy

Consumption

pre-training fine-tuning prediction
0kJ

10kJ

20kJ

30kJ

40kJ

50kJ

60kJ
backward
forward

Figure 1: BERT Total Energy Consumption (The forward and

backward passes are shown as stacked bars. Throughout the

paper, the whiskers show the standard deviation.)

Recall from § 2 that BERT operates in three stages — pre-training,
fine-tuning, and prediction. Smaragdine is capable of performing
energy accounting for all 3 stages. For pre-training and fine-tuning,
we further separate each into the forward and backward passes of
the execution, following our discussion in § 2.

Fig. 1 provides a high-level comparison on the energy consump-
tion of the 3 stages. Here, pre-training is shown as the most expen-
sive, consuming over 60 KJs, vs. fine-tuning’s 45KJ consumption.
This observation is aligned with our understanding of BERT: pre-
training updates more neurons than fine-tuning. Prediction con-
sumes very little energy, around 2KJs. Prediction does not require
the machinery of training, such as batching and iterative execution.
As a result, we expect prediction to be the cheapest task.

Since pre-training is the largest consumer, as well as the first step
in building amodel, wewill present our results of energy accounting
of this stage for the rest of this section. The results for other stages
are provided in the public repository (https://github.com/project-
smaragdine/smaragdine).

5.3 Multi-Grained Energy Accounting

Smaragdine is able to report energy consumption of a DL program
following the logical structure of its hierarchical decomposition:
• (whole) program-level accounting. At the top level, Smarag-
dine can provide an overview of how the energy consump-
tion of the program is distributed among its top-level layers.

9https://github.com/google-research/bert, rev. eedf5716ce1268e56f0a50264a88cafad334ac61
10https://paperswithcode.com/dataset/bookcorpus
11https://paperswithcode.com/dataset/wiki-en

For example, Fig. 2 is an EDD that shows the top-level view
of BERT energy consumption.
• (composite) layer-level accounting. Smaragdine can show
the energy consumption of a composite layer through nested
EDDs. For example, Fig. 2 shows the EDD of BERT’s encoder
layer. Fig. 4 shows a set of hierarchical views of the first
transformer — a composite layer in the encoder — and its
components.
• tensor-level accounting. At this fine-grained level, Smarag-
dine reports the energy consumption of tensors, i.e., the
“leaves” in the hierarchical decomposition structure. Fig. 5
shows an STEF that provides a summarized view where the
energy consumption of tensors is ranked.

bert
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Figure 2: Program-Level and Encoder-Level EDDs for BERT’s

Forward Pass during Pre-Training (The left figure shows

the top-level view, and the right figure shows the encoder

layer view. The number in each box is the normalized energy

consumption of the boxed unit relative to that of all boxes

in the same figure. The relative values of these numbers are

also represented by color intensity: a box in a more vibrant

color indicates higher energy consumption. A round-edged

box represents a composite layer, while a sharp-edged one

represents a tensor (layer). Arrows indicate the dataflow.)

https://github.com/project-smaragdine/smaragdine
https://github.com/project-smaragdine/smaragdine
https://github.com/google-research/bert
https://paperswithcode.com/dataset/bookcorpus
https://paperswithcode.com/dataset/wiki-en
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Figure 3: BERT Single-Epoch Power Trace (The X-axis is

elapsed time and the Y-axis is the power consumption. Each

point in the figure is the average of power consumption of

all training epochs at the same elapsed time. The orange data

points show the time stamps when the first transformer is

executed, while those in blue show the time stamps when

other transformers are in execution.)

5.3.1 Program-Level and Top-Layer-Level Accounting. In Fig. 2, we
first present program-level accounting for BERT, and the account-
ing for its most energy-consuming top-layer, encoder. Smaragdine
is capable of performing accounting separately for its forward pass
and its backward pass. The shown EDDs show the forward pass.
The results for the backward pass are deferred to our repository,
with similar trends as discussed below.

There are two key observations. First, the encoder and its enclos-
ing transformers dominate the energy consumption of BERT. BERT
has two main tasks: embedding and encoding. As it turns out, the
latter consumes more than 99% of BERT energy consumption. With
the encoder, the stacked transformers again dominate the energy
consumption. Given the central role that transformers play in lan-
guage models like BERT, this comes with no surprise. Second, the
transformers do not consume energy uniformly. The transformers
closer to the input are lower consumers, up to 2% less than the
average consumption of 8.25±0.61%. The consumption rises until
plateauing around 8.55% at the fifth transformer. We speculate that
this is due to the power state of the executing devices. To confirm
this, we investigated the power trace of the underlying system,
with results shown in Fig. 3. The TensorFlow runtime appears to
schedule the transformer execution in phases, where the first trans-
former is executed in the earlier timestamps in each training epoch.
Interestingly, the CPU/GPU system starts at a lower-power state,
and only ramps up when the workload increases. As a result, oper-
ations executed in the early phases (such as the first transformer)
consumes less energy overall.

5.3.2 Energy Accounting for Nested Layers. Based on our earlier
discussion, transformers are the largest consumers in BERT. We
use Smaragdine to “zoom in” deeper in the hierarchy, to the first
transformer (bert/encoder/layer_0). Fig. 4a shows its EDD.

Two observations are noteworthy. First, the attention layer con-
sumes a significant amount of energy; in addition, the attention
layer’s energy is primarily consumed in computing self-attention
(self). This confirms the important role that the attention mecha-
nism plays in BERT. Second, dense computation dominates the en-
ergy consumption. Through the EDDs of the sub-layers in Fig. 4b, 4c,
and 4d, we can observe that the dense layers inside intermediate
and output dominate the energy consumption. The dense layers

bert/encoder/layer_0

attention
40.68%

intermediate
35.77%

output
23.55%

(a)

bert/encoder/layer_0/output

add
4.07%

layer_normalization_2
15.23%

dense
69.76%

dropout
10.94%

(b)

bert/encoder/layer_0/attention

output
27.49%

self
72.51%

(c)

bert/encoder/layer_0/intermediate

dense
100.00%

(d)

Figure 4: Transformer-Level EDDs for the Forward Pass of

BERT’s First Transformer (bert/encoder/layer_0) and its

Nested Layers.

are implemented as matrix multiplication, one of the most compu-
tationally intensive operations.

The forward pass and the backward pass exhibit similar energy
behavior (EDDs in the repository), with one notable exception:
the attention layer consumes a noticeably larger share in the
backward pass, 48.19%, than the forward pass of 40.68%. This share
difference also persists in the self-attention layer: the shares for
the backward pass vs. the forward pass are 79.52% vs. 72.51%. In
the backward pass, gradient calculation is relatively expensive for
attention layers.

5.3.3 Tensor-Level Accounting. Fig. 5 presents the top-10 tensors
in the form of STEF and STPF. Here, we highlight 2 observations.
First, matrix multiplication dominates the energy consumption. All
top-10 energy-consuming tensors are vector multiplication across
different BERT layers. Second, the backward pass is a much larger
consumer than the forward pass. In BERT, all backward passes are
included in the top composite layer of gradient. Here, 8 of 10 of
the top energy-consuming tensors come from the backward pass.
This is consistent with the top-level view we showed in Fig. 1, but
the STEF here provides a significantly finer-grained view on which
tensors that contribute to the larger energy consumption. Third,
the power consumption of different tensors remains stable. Indeed,
regardless of the different semantic purposes that different tensor
computations serve, all share the nature of matrix multiplication
(MatMul). As power consumption is strongly correlated with the
nature of the computation itself, the power remains similar for all
MatMul tensors.
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Figure 5: Top Energy/Power-Consuming Tensors through

STEF and STPF (The QTN is above each bar.)

5.4 Intrinsic Characteristics

5.4.1 Precision. For all sampling-based systems, the precision of
the results may be impacted by the sampling design itself, such
as how many and how often samples are taken. We evaluate the
precision of Smaragdine in two metrics: accounting similarity

with sample sparsing (ASSS) and accounting similarity with sample

widening (ASSW). Common to the two metrics is the notion of
accounting similarity, defined as the Pearson Correlation Coefficient
(PCC) of two STEFs resulted from two instances of Smaragdine,
indexed by the tensor IDs. We show an example in Fig. 6. Intuitively,
a higher value of accounting similarity implies two accounting
results demonstrate more similar trends.

ASSS is built upon the intuition that the ground truth is ap-
proached when the sampling rate reaches infinity. Recall in § 4,
power consumption is sampled at four milliseconds, and cannot be
sampled at a higher rate due to hardware constraints. We circum-
vent this challenge by computing the accounting similarity when
the sampling interval is further lengthened. This counter-intuitive
idea is rooted on how discrete systems approximate continuous val-
ues: if we view the result when the sampling rate is infinity as the
limit, the shape of the trajectory where the limit is approached of-
fers clues on the error of the approximation. The results are shown
in Fig. 7a. The similarity oscillates between 0.90 and 0.94. Overall,
the curve forms a “plateau”: further increasing the sampling rate

STEF1 STEF2
Input Embedding 21J 15J
Output Embedding 21J 15J
Input Attention 54J 23J
Output Attention 54J 23J
Input Add & Norm 1 118J 59J
Output Add & Norm 118J 59J
Input Feed Forward 184J 92J
Input Add & Norm 2 100J 50J
Output Feed Forward 200J 100J

→ 0.9958

Figure 6: Accounting Similarity (STEF2 has half the sampling

rate of STEF1. The PCC of the two STEFs is shown to the

right.)
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Figure 7: ASSS and ASSW (In the left figure, the X-axis is the

sampling period and the Y-axis is the ASSS value. In the right

subfigure, the X-axis is the number of experiments, and and

the Y-axis is ASSW value. The PCC is computed between the

STEF of Smaragdine’s default setting, and that of the setting

in the X-axis.)
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Figure 8: Accounting similarity across Experiments (Each

box is the PCC between two experiments indexed by a-i. Each

experiment is the default 5-run by Smaragdine. )

would likely offer little benefit in changing the trend exhibited in
the STEFs.

The intuition behindASSW is that the ground truth of a sampling-
based algorithm can be approached when the number of samples

reach infinity. Recall that each Smaragdine experiment is repeated
in 5 runs (see § 5.1). We now compute ASSW by relating the STEF
generated when 2, 3, 4, 5, etc, experiments are conducted, i.e., in 10,
15, 20, 25 runs. The results are shown in Fig. 7b. The similarity is
high, between 0.97 and 0.99.
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5.4.2 Stability. In addition to precision, a sampling system must
preserve stability: when the same experiment is repeated, a stable
sampling system should produce consistent results.

To evaluate this, we can compute the accounting similarity be-
tween different experiments, shown in Fig. 8. All pairs of experi-
ments have a high accounting similarity. Generally, a PCC greater
than 0.7 is considered to be strong correlation.

5.4.3 Overhead. Finally, we quantify the overhead Smaragdine
introduces to the application under energy accounting. We compare
the total execution time per training epoch for the application
under Smaragdine’s accounting with the same application without
accounting. We report a runtime overhead of −0.052±0.12% and an
energy overhead of 0.47 ± 1.10%. The overhead is well within the
margin of errors. Smaragdine is a low overhead energy accounting
system.

6 CASE STUDIES

In this section, we describe two cases studies that demonstrate
the usefulness of Smaragdine for supporting client studies of DL
energy consumption. This section is aimed at addressing RQ3. By
comparing the energy consumption of models that evolved from
BERT, we can examine the impact of design decisions.

6.1 A Comparative Study on BERT Variants

As shown by the original developers of BERT [16], BERT can be
configured with different hyperparameter settings. In particular,
there are two important ones that impact the model topology: the
number of stacked transformer layers (L), and the number of hidden
embeddings (H). Our analysis in §. 5 was applied to the largest model
described in the original paper, i.e. BERTBASE : L=12, H=768.

We use Smaragdine to generate the STEFs and STPFs for BERT
under alternative hyperparameter settings, with the comparative
results shown in Fig. 9. For space, we exclude hyperparameters
where either L<6 or H<512; these results are available in our public
repository. Specifically, Fig. 9a and 9b show high PCC correlation
across all variants in terms of both power and energy. This means
that the relative standing of power/energy consumption of different
tensors remains stable across different BERT variants. In other
words, the top-consuming tensors in one BERT variant are likely
the top-consuming tensors in the others too.

Fig. 9c and 9d show the results in mean error difference (MED).
According to Fig. 9c, the dominating factor of power consumption
is the number of hidden embeddings (H). All BERT variants with
H=768 have a higher power consumption than their counterparts
where H=512. For different variants with the same number of hidden
embeddings, the ones with more layers consume more power.

Fig. 9d shows the energy trend. Interestingly, this figure does not
strictly follow the trend exhibited for power consumption. It is true
that when the number of layers increases, the energy consumption
also increases. However, the number of hidden embeddings is no
longer a deciding factor on energy consumption. For example, ob-
serve the cell between E and D, which shows the former has less
(mean) energy consumption than the latter, but the former has more
hidden embeddings than the latter. This is a conscious reminder
to future DL program developers who are energy-conscious: both
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Figure 9: A Comparative Study on BERTHyperparamter Tun-

ing (In the first/second sub-figures, each box shows the PCC

between two STPFs/STEFs produced for two BERT variants

by Smaragdine. In the third/fourth sub-figures, each box

shows the mean error difference (MED) between two STPF-

s/STEFs produced for two BERT variants by Smaragdine.

For MED, the variant on the Y-axis subtracts the one on the

X-axis. For readability, red/blue colors indicate positive/neg-

ative numbers, and color intensity indicates the absolute

values of the numbers. Each letter corresponds to a specific

hyperparameter setting (A: [L=6, H=512], B: [L=8, H=512],

C: [L=10, H=512], D: [L=12, H=512], E: [L=6, H=768], F: [L=8,

H=768], G: [L=10, H=768], H: [L=12, H=768]).

the number of layers and the number of hidden embeddings have
impact on energy consumption, where neither factor may dominate.

Overall, the take-away message is that Smaragdine can help
BERT developers understand the fine-grained energy impact in
their hyperparamter tuning process, where different BERT configu-
rations exhibit different power/energy characteristics.

6.2 From BERT To ALBERT

Finally, we also apply Smaragdine to ALBERT [33], a variation
of BERT with a more efficient training method. Our experiments
were conducted over the ALBERT 12. The same hyperparameters
are used as those in our default setting of BERT.

12https://github.com/google-research/albert, rev. a36e095d3066934a30c7e2a816b2eeb3480e9b87

https://github.com/google-research/albert
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Figure 10: TopEnergy/Power-ConsumingTensors inALBERT

Fig. 10 presents the STEF and STPF for ALBERT. For all top-10
energy consumers, the EINSUM tensor is used. This refers to Einstein
summation, an index-based approach to defining tensor transfor-
mations. Indeed, matrix multiplication can also be represented with
Einstein summation. From BERT to ALBERT, the transformation
has changed from MATMUL to EINSUM, but tensor-based mathemati-
cal transformation remains dominant in energy consumption.

ALBERT indeed has some different consumption behavior than
BERT. While the distribution of the energy for the STEFs is similar,
the values are much smaller, almost half in some cases. In contrast,
the STPF of ALBERT shows much higher power consumption — at
least 120W — for all of the top-consuming tensors. This indicates
that ALBERT is more likely to place GPUs in a higher utilization
level. In addition, the standard deviations in power consumption
are significantly larger than BERT tensors too. We speculate that
it may result from changes in scheduling from BERT to ALBERT.
Topologically, BERT chains the transformers in a sequential stack,
i.e., the output of the 𝑖th transformer is fed into (𝑖 + 1)th trans-
former as input. The topology of ALBERT however consists of
multiple data pipelines. We think this design change may offer
ALBERT more opportunities to execute multiple layers in parallel
non-deterministically. This conjecture is also consistent with the
fact that GPUs operate at a higher power in ALBERT in BERT.

7 RELATEDWORK

Energy Estimation for DL. DeLight [51] analytically models the
energy cost resulted from forward and backward passes, mathemat-
ically captured through the arithmetic operations, activation func-
tions, and propagation errors latent in the DNN. NeuralPower [8] is

another analytical approach to estimating the energy consumption
of a DNN given its topological details, with a mathematical model
to estimate the power consumption and execution time of a DNN
inference, together with parameters related to GPU scheduling
such as stride size. Energy estimation and energy accounting are
fundamentally different problems. While energy estimation offers a
priori insight of the DNN energy consumption, energy accounting
is conducted a posteriori to answer “what happened.” For energy
estimation, amodel is assumed, e.g., how propagation and its errors
are represented, how computations are kernelized, and how the
GPU scheduler sets the stride size. Smaragdine is model-less.

Garcia-Martin et al. [21] surveyed the energy estimation ap-
proaches for ML applications, with a focus on non-DL systems.

Energy Optimization of DL. A direction that received signifi-
cant interest is the energy optimization of DNNs. Domain-specific
architectures and accelerators [30, 35] often deliver better energy ef-
ficiency. As a well-known example, Tensor Processing Units (TPUs)
enable more performance- and energy-efficient executions for ap-
plications like TensorFlow. On the algorithm level, there is a long
tradition in designing neutral networks with better energy effi-
ciency. For example, SqueezeNext [23] and ChamNet [15] considers
energy efficiency as a key design constraint. Model compression
techniques can often lead to increased energy efficiency, including
quantization [24, 25, 31], pruning [26, 34], and distillation [27, 29].

Black-box systems-level approaches such as GPOEO [60] and
Zeus [63] provide tools to optimize energy consumption on GPUs.
For example, Zeus adaptively conducts the training of DNNs with
different combinations of batch sizes and GPU power limits, and
selects the more energy-optimal configurations on the Pareto curve.

Energy optimization and energy accounting go hand in hand.
Smaragdine can complement existing approaches by providing a
white-box view on the impact of their energy optimization, describ-
ing it in a per-layer or per-tensor manner. § 6 serves as examples
to demonstrate how Smaragdine can help designers gain insight
on energy optimization, i.e., what has really happened inside a DL
program when its energy consumption is reduced/changed.

Modular DL. BERT and ALBERT adopt a modular approach for
model construction, whose hierarchical decomposition structure is
leveraged by Smaragdine for accounting. DNN modularization is
common. For example, Inception [55, 56] evolves by replacing high-
dimension convolutions with a sequence of small ones. Montavon
et al. [42] uses Taylor decomposition of subnetworks to improve
network understandability. In addition, there is emerging work in
applying modularization to search for sub-networks that were not
part of the design specifications [32, 44].

Understanding/Profiling/Debugging DL Programs. TensorFlow
has released TensorBoard [1], an API which collects and visualizes
key metrics from a DL program runtime. Amazon similarly created
the Amazon SageMaker Debugger [49] for real-time monitoring
of DL applications. Both of these tools allow designers to compare
training and performance metrics. PACE [12] performs accuracy
estimation over both the data set and model to identify potential
issues before performing full training. Debugging DL programs [11,
40, 53, 61, 67] is an important direction in software engineering.
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Non-DL Energy Accounting, Profiling, and Modeling. For non-
DL applications, energy accounting can be conducted at the levels
of hardware (e.g., [17]), OS (e.g., [66]), and applications (e.g., [3]).
Energy profiling [20, 39, 45] and energy modeling [7, 41, 64] are es-
tablished directions in software engineering and computer systems.
A precise accounting of energy consumption in program under-
standing (e.g., [47, 48]), reasoning (e.g., [9, 13]), debugging (e.g., [4]),
optimization (e.g., [5, 10, 38, 68]), and metric design (e.g., [19]), are
well known. An exciting direction for future software engineering
researchers and practitioners is to explore how Smaragdine can
advance the state of the art of program understanding, reasoning,
debugging, optimization, and metric design of machine learning

applications.

8 THREATS TO VALIDITY

First, our experiments are constructed on systems only with CPUs
and GPUs; no additional accelerators are available. Hardware ac-
celeration for DL programs is a rapidly developing field [30]. Our
algorithm can be extended to support additional hardware, through
extending the energy domains, i.e, the Device construct at Line 6 in
Algorithm 1. Second, we rely on RAPL for monitoring CPU power
consumption, available primarily on Intel architectures, and on
Nvidia-specific interface for monitoring GPU power consumption.
This limitation can be overcome through external meters or power
modeling [7, 64]. Third, the TensorFlow runtime we currently
support is in Python. While this is in sync with the majority of
TensorFlow applications (BERT and ALBERT are both developed
in Python), we do not have experimental evidence on the effective-
ness of TensorFlow energy accounting in other language runtimes.
In § 4, we discussed decoupled monitoring, which may facilitate
prototyping of our designs for other languages.

9 CONCLUSION

Tensor-aware energy accounting is a novel methodology where the
accounting of energy consumption is aligned with the hierarchical
decomposition structure of nested deep neural networks defined
in TensorFlow-based deep learning programs. Through energy
distribution diagrams and tensor energy footprints, our energy
accounting system, Smaragdine is capable of revealing insights on
the white-box energy behavior of two widely used natural language
models, BERT and ALBERT.

In the future, we plan to build an automated tool of energy tuning
for BERT-like systems, based on the insights we gained from the
case studies described in § 6. We are also interested in applying
Smaragdine to newer Large Language Models (LLMs).
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