Understanding Bounding Functions in
Safety-Critical UAV Software

Xiaozhou Liang*, John Henry Burns*, Joseph Sanchez*, Karthik Dantuf, Lukasz Ziarek” and Yu David Liu*
*SUNY Binghamton, Binghamton, New York
Email: {x1iang24, jburnsll, jsanch49,davidL}@binghamton.edu
fTSUNY Buffalo, Buffalo, New York
Email: {kdantu, lziarek}@buffalo.edu

Abstract—Unmanned Aerial Vehicles (UAVs) are an emerging
computation platform known for their safety-critical need. In
this paper, we conduct an empirical study on a widely used
open-source UAV software framework, Paparazzi, with the goal
of understanding the safety-critical concerns of UAV software
from a bottom-up developer-in-the-field perspective. We set our
focus on the use of Bounding Functions (BFs), the runtime
checks injected by Paparazzi developers on the range of variables.
Through an in-depth analysis on BFs in the Paparazzi autopilot
software, we found a large number of them (109 instances) are
used to bound safety-critical variables essential to the cyber-
physical nature of the UAV, such as its thrust, its speed, and
its sensor values. The novel contributions of this study are two
fold. First, we take a static approach to classify all BF instances,
presenting a novel datatype-based 5-category taxonomy with fine-
grained insight on the role of BFs in ensuring the safety of
UAV systems. Second, we dynamically evaluate the impact of the
BF uses through a differential approach, establishing the UAV
behavioral difference with and without BFs. The two-pronged
static and dynamic approach together illuminates a rarely studied
design space of safety-critical UAV software systems.

Index Terms—unmanned aerial vehicles, bounding functions,
safety

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are an emerging platform
with promising applications such as infrastructure inspection,
precision agriculture, disaster search-and-rescue, and mer-
chandise delivery. Traditionally designed as a robotics and
embedded system with minimal software support, the software
stack of UAVs in recent years has been significantly enriched,
making them a “flying” computer system in the genuine
sense. Beyond the excitement, the main hurdle against the
broader adoption of this promising technology is their stringent
requirement on safety: any crash of the UAV is not only a
computer safety problem, but also a public safety hazard.

Even though the safety-critical nature of UAVs is universally
recognized, there is no universal definition of what safety
really means for UAVs. Broadly, any behavior that deviates
from the “intended behavior” is a safety violation. Existing
research [1]-[7] generally takes a “top-down” approach: an
expert may provide a specification of the intended behavior,
either through domain knowledge, or through the wisdom
from the broader domains of cyber-physical systems (CPS)
or robotics. Once the specification is given — whether in the
form of invariants, constraints, pre-/post- conditions, or logic

— the safety of a UAV system can be verified, monitored, or
enforced.

A. An Empirical Perspective on UAV Software Safety

In this paper, we take a bottom-up approach to empirically
study the safety of UAV software. In a nutshell, we choose
to listen to the UAV software developers in the field, and
reverse-engineer what they believe the most safety-critical
software components are. Despite early UAV systems often
being developed in a proprietary fashion, recent trends in open-
source development for UAV systems present an opportunity.
For example, the software framework that serves as the focus
of our empirical study, Paparazzi ' [8], is a popular open
software (and hardware) ecosystem with more than a decade
of development and numerous active contributors. It provides
unified software support from autopilot to ground station,
with diverse support for multi-copters, fixed-wing, helicopters
and hybrid aircraft. If domain experts are the best source
for understanding the “intended behavior,” what can we learn
about UAV safety from UAV software developers themselves?

We focus on how Bounding Functions (BF) are used in the
Paparazzi autopilot software, arguably the most safety-critical
components of the UAV software. A BF is a dynamic check
inserted by programmers to ensure a variable — which we call a
Bounded Variable (BV) — stays within a prescribed range. For
example, variable gv_z_ref in Paparazzi’s navigation guid-
ance module is frequently bounded by a BF within the range
[cur_z — GC_MAX_7Z_DIFF,cur_z + GC_MAX_Z_DIFF].
Here, the bounded variable gv_z_ref represents the al-
titude the UAV is guided to for the next time interval;
variable cur_z represents the current altitude of the UAV,
and GC_MAX_Z_DIFF is a constant. Intuitively, this BF
instance says that the UAV should not alter its altitude by
GC_MAX_7Z_DIFF or more within a time interval. This is
aligned with our high-level understanding on UAV safety that
an excessive change in altitude may jeopardize the stability of
the UAV.

The premise of our approach is that the use of BFs is aligned
with a UAV-specific safety concern. After all, the semantics of
bounding a variable is akin to introducing an invariant over

Uhttps://wiki.paparazziuav.org/



the variable: the application of the bounding function is a no-
op if the variable is already in the range, or an assignment
to the variable with the bound value otherwise. If we take
the programmer’s perspective, the need to bound a variable is
aligned with her concern that an “out-of-range” variable may
cause errors in the program.

We take a rwo-pronged approach in validating our premise.
Statically, we identify all BF instances in the source code,
and provide a detailed datatype-based taxonomy of the BF
uses. We find a large number of BF uses indeed reflecting the
safety-critical concerns of UAV systems (§ III). Dynamically,
we perform a differential simulation to illustrate the impact of
BF uses on UAV behavior. We find BF uses, and their lack
of use, do have impact on the dynamic trace of safety-critical
values of the UAV, from trajectory to pose, and hence cyber-
physical behavior of the UAV (§ IV). We now elaborate these
two contributions in more detail.

B. A Datatype-based Taxonomy

A novelty of our empirical study is that we classify the
use of BFs based on the datatype of the BVs they intend
to bound. In UAV software, a large number of values have
primitive types such as int or float. A key insight gained
in our exploration is that the BVs fall into a small set of well-
known UAV parameters reflecting their cyber-physical nature,
which we call physical variables. For example, we find a
large number of f1loat-type variables representing the 3 pose
parameters that define the orientation of a UAV: the pitch,
the roll, and the yaw. In other words, these variables carry
higher-level semantics more than a floating point number. This
insight recalls the classic programming abstraction of abstract
data type (ADT) [9]: the £1oat value above indeed logically
encapsulates the floating number and a specification on what
a pitch (or roll or yaw) parameter of a UAV should conform
to. In this study, we classify our BF instances based on the
logical datatypes of their corresponding BVs, as follows:

o Trajectory Management (TM) BF instances that pro-
vide safe navigation to the UAV, mainly bounding phys-
ical variables such as position, distance, and heading.

o Sensor Management (SM) BF instances that provide
valid sensor readings, bounding physical variables di-
rectly related to sensor values.

o Speed and Acceleration Management (SAM) BF in-
stances that ensure safe speed and acceleration to engine,
bounding these two physical variables.

« Engine Management (EM) BF instances that provide
safety to the engine by bounding 2 physical variables:
the thrust and throttle of the engine.

o Pose Management (PM) BF instances that maintain
safety for UAV orientation. These BF instances mainly
bound 3 physical variables, pitch, roll, yaw of the UAV.

Within each class, we perform an in-depth analysis on how
BFs are used in Paparazzi, defined as use scenarios. Taken the
view of ADTs, each use scenario can be viewed as a specifica-
tion — in the form of a BF — of that datatype. Overall, our
novel datatype-based taxonomy can be summarized as “not

all floating point values (or integers) are created equal.” By
refining them into datatypes, their logical role in UAV software
starts to emerge. As it turns out, except BF instances used for
defining generic algorithms (such as control and geometry),
the remaining BF instances all fall into the 5 categories above.
In other words, despite the large code base of UAV software
and despite the numerous instances of BFs, UAV developers
concentrate their efforts of performing dynamic checks on a
small set of physical variables. This cannot be accidental: it is
a conscious reminder that this small set of physical variables
are likely to play a pivotal role in defining what being safety-
critical means for UAV systems.

C. A Differential Simulation

To cross-validate whether our discovered BFs indeed have
an impact on the correctness of UAV behavior, we perform
a fine-grained simulation on the impact of BFs. We adopt a
differential approach: for each instance of BF use, we perform
one simulation over the original Paparazzi program, and the
other over the same program except that the BF is removed.
At its core, our approach can be viewed as a form of A/B
testing. The interesting design question lies in how difference
is defined. Our approach relies on analyzing the difference
over the traces of physical variables, such as position traces
(trajectories), pose traces, and speed traces. This approach,
black-box in essence, is aligned with our intuition on the
safety of UAV systems: if the UAV behaviors with the BF
and without the BF are observably different through the lens
of physics, then the BF is likely impacting the safety of the
UAV.

D. Research Questions and Results

In this paper, we report the first empirical study on the
bounding function uses in UAV software. It complements
existing top-down approaches with a bottom-up perspective
focusing on answering two research questions:

¢« RQ1: Can the BF instances be classified to logically

reflect the use of safety-critical physical variables?

o RQ2: Do BFs have impact on the dynamic cyber-physical

behavior of UAV software?

We identified 241 BF instances through analyzing Pa-
parazzi’s 2049 source files in autopilot software modules. We
grouped 109 instances related to physical variables into the
5 categories (described earlier) most relevant to the safety
of UAVs. Our dynamic differential analysis reveals that nu-
merous BFs have observable impact on the trace of physical
variables. More specifically, 30 out of 64 simulatable cases
show difference in flight trajectory, pose, etc. This provides
experimental justification for our BF-based approach: the use
of BFs coincides with safety-critical behavior of UAVs. While
conducting the trace-based analysis, we also uncovered a bug
in Paparazzi, whose fix has been accepted.

Broadly and philosophically, our study is a quest for answers
on what makes UAV software safety-critical. The top-down
approach taken by verification frameworks and tools defines
safety as a priori properties or invariants. To do so, one needs



to resort to domain experts to come up with the definitions of
these properties or invariants first. Our bottom-up developer-
in-the-field approach identifies the use of BFs with a call for
attention from developers, and the deviation in the dynamic
traces of physical variables with a cause of safety concern “as
the developer’s program says so.” Overall, our approach and
the existing approach complement each other: our approach
discovers candidate invariants related to safety (but some may
be deemed not by an “oracle” domain expert), whereas the
existing approach focuses on invariants agreed upon a priori
(but they may be incomplete in the eyes of the “oracle” domain
expert). The two approaches together converge on revealing
the elusive essence of safety in UAV software.
Overall, this paper makes the following contributions:

o the first “developer-in-the-field” empirical study on the
safety-critical components of UAV software, based on
bounding functions

« a datatype-based taxonomy on bounding function uses,
focusing on physical variables

« a systematical differential analysis on the impact of BFs
in UAV behavior through comparing and aligning traces
of physical variables

e a tool PBF-Detector (Paparazzi Bounding Function
Detector) for automatically identifying BF instances in a
real-world code base with complex compilation schemes
(decentralized compilation with 78 makefiles mixed with
pre-processing code generation)

II. A PRIMER ON UAV FLIGHT CONTROL

The most widely known UAVs fall into two categories:
fixed-wing aircraft and rotary-wing aircraft. Fixed-wing air-
craft are featured with special-shaped wings that can make
use of forward airspeed to generate lift [10], while rotary-
wing aircraft, also referred to as rotorcraft, use rotating wings
called blades to fly [11].

A. Engine and Pose

The driving force produced by the engine is commonly
referred to as thrust or throttle. Engine management is directly
associated with the speed and the acceleration of the UAV.
UAVs are rigid bodies operating in 3-D space. Therefore, their
position can be represented by three numbers (z,y,z) in a
3-D coordinate system. Similarly, their pose (orientation) is
represented by three angles (also known as Euler angles) in
the 3-D coordinate system. These angles are roll, pitch and
yaw. The pose is also referred as the attitude. An illustration
of the three angles can be found in Figure 1. Fixed-wing
aircraft vary their attitude by utilizing flight control surfaces.
Rotorcraft vary the attitude by varying the rotational speeds
of the motors spinning in opposite directions.

B. Navigation

Navigating a UAV is usually split into two steps - path
planning and trajectory planning. Path planning is the step of
taking the objectives of a fight task. Path planning is usually

Fig. 1: A Visualization of UAV control (Left: attitude angles;
Center: their application on a fixed-wing aircraft; Right: their
application on a quadrotor) [12]

application-dependent, written in the form of flight plans in Pa-
parazzi. For example, a typical flight plan may include a step-
by-step description of take-off, a circle navigation task, and
then landing. The flight plan is translated into a trajectory. The
trajectory is defined through a series of waypoints, positions in
the 3-D space, with the Z-axis representing altitude. Trajectory
planning takes the next waypoint to be visited and plans a
thrust and pose to set the UAV to reach that waypoint. Given
the required thrust and pose, the flight controller controls the
actuators (such as engines) to achieve that thrust and pose.
While in motion, the UAV points to a direction, which is called
heading. A related concept is the course, the direction that the
UAV moves toward. Due to conditions such as wind, heading
and course are not always the same.

C. Paparazzi Flight Controller Software

Paparazzi UAV software suite is a collection of modules
capable of flying on a variety of UAVs. It is highly config-
urable with various airframes, large suite of sensors, several
controller algorithms as well as the ability to use the controller
software in simulation and on real hardware.

The autopilot software is capable of integrating with several
sensors, such as GPS, Inertial Measurement Unit (IMU),
Sonar, and barometer. Sensor values are fed into the Inertial
Navigation System (INS) that estimates position, speed, and
acceleration of the UAV. Similarly, the Attitude and Head-
ing Reference System (AHRS) performs attitude estimation.
Together, the INS and the AHRS help the flight controller
keep an estimate of the state of the UAV. This state is then
used to control the UAV through the guidance and stabilization
modules.

As is the case for all aerodynamic systems, control-theoretic
algorithms are widely used to provide feedback control in
UAVs’ stability management and autonomous control. Two
popular algorithms used by Paparazzi are Proportional Inte-
gral Derivative (PID) control [13] and Incremental Nonlinear
Dynamic Inversion (INDI) [14].

III. UNDERSTANDING BOUNDING FUNCTIONS
STATICALLY

In this section, we describe our effort in understanding BF
uses in Paparazzi through a detailed analysis on the source
code, providing answers to RQ1. The centerpiece of this study
is a taxonomy that classifies BF uses based on the physical
variables they are applied to, in § III-C. Before we detail this



TABLE I: Bounding Functions in Paparazzi

Function names

Bound

BoundInverted

BoundWrapped
VECT3_BOUND_CUBE
VECT3_BOUND_BOX
EULERS_BOUND_CUBE
RATES_BOUND_CUBE
RATES_BOUND_BOX

Clip

BoundAbs
RATES_BOUND_BOX_ABS
DeadBand

ClipAbs

BoundUpper
FLOAT_ANGLE_NORMALIZE
INT32_ANGLE_NORMALIZE
INT32_COURSE_NORMALIZE
NormRadAngle
SATURATE_SPEED_TRIM_ACCEL

Bound forms

double-ended bounds

absolute bounds

upper bounds
normalization

special bounds

result, we start with a description of our taxonomy rationale
in § III-A, and methodology in § III-B.

A. The Rationale of Classification

UAVs are cyber-physical systems that interact with the
physical world. Their safety is defined with respect to this
interaction, i.e., their behavior in the physical world. Our
classification of BFs is based on this observation and thus
derived from the datatypes of physical variables associated
with the BFs. Our five-category taxonomy corresponds to
the main functionalities of the UAV that define or impact
interaction with the physical world. By organizing BF uses in
this manner, we believe that this study will be useful for future
UAV control software as they will still need to fundamentally
interact with the physical world in the same manner: they will
need to navigate (trajectory), control their navigation (speed
and acceleration), understand their surroundings (sensors),
understand their orientation with respect to their surroundings
(pose), and manage their locomotion (motors). As our study
shows, the vast majority of BFs in Paparazzi revolve around
these five types of physical variables. This cannot be acciden-
tal: these five types of cyber-physical interactions are essential
to the nature of UAV software.

B. Methodology

a) BF Identification: We have developed a compiler pass,
implemented as a Clang plugin 2, to identify BF instances in
the Paparazzi code base. Our plugin defines a baseline frame-
work, PBF-Detector, for future research with advanced
program analysis and optimization. Our analysis focuses on
Paparazzi’s autopilot software modules, in the sw/airborne
directory, version v5.14.0_stable.

For our goal of identifying BFs, Paparazzi presents a unique
advantage: a set of pre-defined BFs in the forms of C macros

Zhttps://clang.llvm.org/

consistently used by Paparazzi developers. Our study focuses
on the use of these macros, 19 in total as listed in Table I.
These macros are manually identified by inspecting all .h
files, and a macro qualifies if it bounds a variable within a
given range. Some BFs are general, such as Bound, while
others are more specific. Our Clang plugin parses C files
to identify the 19 forms of BFs in the AST. One technical
hurdle is that macros are expanded in Clang before the AST is
generated. To address this, we have redefined 19 corresponding
C functions to the macros in Table I. The Paparazzi source
remains unchanged with a small number of exceptions that
we documented at our project website (see URL in § VII).
b) Makefile-Aware Identification: A significant engineer-
ing challenge in analyzing Paparazzi’s code base results from
the complex compilation process inherent in Paparazzi. Unlike
high-level applications where the compilation process is often
a “one-off” process that reaches all files in all folders, em-
bedded system software like Paparazzi must consider diverse
configurations with complex customization and platform-
dependent cross-compilation. Paparazzi adopts a hierarchical
compilation with 78 C Makefiles distributed at various levels
of the Paparazzi directories, and the dependencies between
Makefile targets are complex. To further complicate the matter,
many programs are generated on the fly during the compilation
process with generators written in OCaml and Python.

Our compiler pass is Makefile-aware: we modified the
decentralized Makefiles, and as a result, PBF-Detector
can faithfully follow the same dependencies as in compila-
tion. This not only allows us to reach all source code that
can be reached by Paparazzi compilation, but also reach it
in a semantic-aware manner: every name on the AST of
every reachable file must have been defined (because the
program compiles!). The PBF-Detector modification to
handle hierarchical Makefiles in our compiler analysis was
labor-intensive, but it is rewarding for building a toolchain for
Paparazzi to integrate with Clang/LLVM.

c¢) BF Selection: In total, we identified 241 instances
of BFs from autopilot program modules spanning 2049 files
in 331K LOC of Paparazzi source code. We further cross-
validated the number of instances through a text-based search.
Among them, our study excludes instances not directly related
to the safety of UAV software, which fall into 3 categories:
(a) 71 BF instances in core control algorithms (PID/INDI).
These BF instances are part of the algorithm design, such
as PID and INDI; they are “generic” in nature and do not
vary from a UAV implementation to a non-UAV implemen-
tation. As a standard robotics problem, bounding and tuning
generic control parameters is an independent and well-studied
problem [15]. It should be made clear that we only leave out
generic control algorithm BF uses here: if a physical variable,
say the roll value of the UAV, relies on the PID control and is
bounded while interacting with the PID, it is included in our
study. (b) 45 BF instances used for geometric transformation.
These BFs occur as parts of the trigonometry-based algorithms
solely related to geometry. For example, a common use is
to normalize an angle within the range of (27 , 2m). (¢)



15 BF instances in vision/image processing algorithms and
1 instance used for the remote control switch. For instance,
BFs frequently occur for managing auto white balance, image
refinement, sub-pixel resolution, and auto exposure. For any
vision BF instances that impact control algorithms (e.g., optic-
flow-based landing), we have included them into our study.
Overall, our guiding principle here is to conservatively leave
out BF instances unrelated to the safety-critical nature of
UAV software, and when in doubt, an instance is included in
our study. We have documented every BF instance for cross
reference, including those we left out in the study on our
project website.

There are two take-away messages from our BF selection
process. On one hand, it shows some BF instances are not
aligned with our intuition of safety-critical concerns. In that
sense, these instances are the “false positives” to the premise
of our empirical study. On the other hand, the more striking
observation is that once the well-carved categories of (a)(b)(c)
BF instances are removed, every remaining instance fits nicely
with one of 5 categories intimately linked to the safety of
UAVs, as we shall see next.

C. A Taxonomy of Bounding Function Uses

For the remaining 109 BF instances, we conducted an in-
depth manual inspection, understanding the functionality of
the program fragment each appears, and the purpose of each
BF. As it turns out, all fit nicely into the 5-category taxonomy,
which we present in Table II. In this table, observe that we
further refine each category into a number of use scenarios.
If each category is intuitively viewed as an ADT, each use
scenario serves as a specified behavior of that ADT. In the
rest of this section, we focus on trajectory management and
sensor management as examples to demonstrate our approach.
A description of all categories with the same level of detail
can be found in a technical report at our project website.

1) Trajectory Management: To follow a trajectory, the UAV
needs to follow waypoints, including turning occasionally
(in the horizontal direction) and changing altitude (in the
vertical direction). The physical variables related to trajectory
management are distance and heading (change). We identified
11 instances of BFs applied for trajectory management, which
we divided into 4 use scenarios.

a) Safe Homing: (a) Use Context: After performing the
flight task, the UAV should go back to the ground station.
(b) Datatype: distance (X and Y axis). (¢c) The Need for BFs:
to avoid catastrophic consequences due to battery drain, a UAV
(generally) should not fly too far way from the ground station.
(d) Example: In this code snippet [16], the distance between
the UAV waypoint and the home waypoint is computed, and
bounded by variable max_dist_from_home, the maximum
distance between them. (e) Occurrence: 3 instances.

b) Safe Altitude Change: (a) Use Context: UAV systems
fly in a 3-D space; altitude change is a basic task. (b) Datatype:
distance (Z axis). (c) The Need for BFs: a drastic change in
altitude may affect the stability of the UAV. (d) Example: In

TABLE II: Classification of Bounding Function Uses

Cate- | Use Scenario Datatype Occur-
gory rence
™ Safe Leg Distance in Distance (X and | 4
Guidance Y Axis)
Safe Heading Change Heading Change 3
Safe Homing Distance (X and | 3
Y Axis)
Safe Altitude Change Distance (Z Axis) | 1
SM Safe Sensor Fusion Weight for Sensor | 6
Fusion
Safe Sensor Reading Time Interval 1
Interval
Safe Sensor Readings Sensor Reading 1
SAM | Safe Acceleration Re- | Acceleration
quest as Engine Input
Safe Acceleration for Acceleration 4
Navigation
Safe Remote User Speed 3
Speed Input
Safe Wind Speed Speed 2
EM Safe Motor Mixing Thrust/Throttle 8
Safe Landing Thrust/Throttle 7
Safe Motor Speed RPM 5
Change
Collision Avoidance Thrust/Throttle 1
PM Safe Pose Change Pitch/Roll/Yaw 37
Rate
Safe Pose Maintenance | Pitch/Roll/Yaw 12
Safe Pose Change Pitch/Roll/Yaw 2
Time Interval Change Time
Interval
Safe Turn Coordination | Roll 1
3

ﬁ CARROT_DIST

/ | /abs_radius",
/ carrotanglet—~/ |

/)
nav_circle_qdr X

Fig. 2: Carrot-Based Guidance for Heading Change

this code snippet [17] , the altitude change between two iter-
ations of the control loop is bounded by GV_MAX_7_DIFF,
the maximum distance between the previous waypoint and the
current waypoint on the Z axis. (e) Occurrence: 1 instance.

c) Safe Heading Change in Guidance: (a) Use Context:
Paparazzi follows the widely used carrot-based approach [18]
for trajectory management: a virtual, continuously updated
waypoint not far from the current position of the UAV to guide
the next “leg” of movement of the UAV, similar to using a
carrot to attract a mule to move forward. As shown in Figure 2,
the carrot-based guidance implemented by Paparazzi for circle
navigation assumes a constant distance between the current
position of the UAV and the carrot, as CARROT_DIST. By



adjusting the carrot_angle, the UAV may change its head-
ing. (b) Datatype: heading (change). (c) The Need for BFs:
a drastic change in heading may affect the stability of the
UAV, and affects the correctness of the circle trajectory.
(d) Example: In Listing 1 which concerns circle navigation,
the carrot_angle is bounded to the range of [, §]. The
rest of the variables are illustrated in Figure 2. (¢) Occurrence:
3 instances.

void nav_circle (struct

)

EnuCoor_1i *wp_center, int32_t radius

2

// direction of rotation
int8_t sign_radius = radius > 0 2 1
// absolute radius
int32_t abs_radius =
// carrot_angle
int32_t carrot_angle =
/ abs_radius);
Bound (carrot_angle,
INT32_ANGLE_PI_4);
carrot_angle = nav_circle_gdr - sign_radius =
carrot_angle;

,l;
abs (radius) ;
( (CARROT_DIST << INT32_ANGLE_FRAC)

(INT32_ANGLE_PI / 16),

Listing 1: Safe Heading Change in Guidance [19]

d) Safe Leg Distance in Guidance: (a) Use Context:
For linear trajectories that do not involve heading change,
Paparazzi also uses carrot-based guidance. In this setting,
the distance between the starting point of the leg and the
carrot, which is called leg distance, is dynamically adjusted.
(b) Datatype: distance (X and Y axis). (¢c) The Need for BFs:
if the leg distance is set too long, the UAV may go “past”
the waypoint of the target point. Deviating from the planned
trajectory is a correctness concern. (d) Example: In this code
snippet [20] which concerns route (i.e., linear) navigation,
the nav_leg_progress is bounded to guarantee that the
next leg of flight does not surpass the target waypoint.
(e) Occurrence: 4 instances.

2) Sensor Management: As important components of a
UAV, sensors play an irreplaceable role in UAV’s state estima-
tion, e.g., UAV’s current attitude (pitch/roll/yaw). An accurate
estimation based on sensor data is also critical for UAV
safety. The physical variables related to sensor management
are sensor readings, the time interval among readings, and
the weight when multiple sensor readings are weighted. We
identified instances of BFs applied for sensor management,
which we divide into 3 use scenarios. .

a) Safe Sensor Readings: (a) Use Context: The raw ¢
sensing data may be unreliable, either because the sensor is .
faulty, or because the reading may only reflect a transient state.
(b) Datatype: sensor reading. (¢) The Need for BFs: The need |
for bounding is sensor-specific. Take the current sensor for
example. Due to overflow on high current spikes (fast electrical :;
transients in current), the reading may be magnitudes higher
than normal readings. This would impact battery estimation,
crucial for estimating the remaining flight time. (d) Example:
In this code snippet [21] , the current sensor keeps its readings

in electrical.current, which is in turn bounded to a
safe range [—65000, 65000]. (e) Occurrence: 1 instance.

b) Safe Sensor Reading Interval: (a) Use Context: In
UAVs, sensors are continuously reading. In some scenarios, the
time interval between different readings plays a crucial role in
physical estimation. For example, as an application of Kalman
filter [22], the UAV can use data from GPS and barometer at
different time intervals to estimate its vertical position and
velocity. (b) Datatype: time interval. (c) The Need for BFs:
if there is a significant delay between two intervals, the
estimation may be inaccurate, which in turn severely impacts
the decision-making process of the UAV. (d) Example: In
this code snippet [23] , the variable dt represents the time
interval between two GPS readings. It is bounded into the
range [0.02, 2] seconds. The variable is used by Kalman filter
(alt_kalman) for the estimation of the UAV’s altitude and
vertical speed. (e) Occurrence: 1 instance.

c) Safe Sensor Fusion: (a) Use Context: Complementary
filter [24] combines sensor readings from the accelerometer
and the gyroscope to estimate UAV attitude (pitch/roll/yaw).
(b) Datatype: weight for sensor fusion (c) The Need for BFs:
To ensure that data collected from both sensors are consid-
ered adequately, their proportions in attitude estimation need
bounding in order to reach a balance between these two
components. (d) Example: In Listing 2, ahrs_fc.weight
computed at line 9 reflects the role of accelerometer plays
in attitude estimation, which is influenced by fabs (1.0 -
g_meas_norm), the deviation between the measured grav-
itational acceleration and 1g. In the case of vibrations, large
deviations from 1g may cause a decrement of the weight for
the accelerometer data if bound is not introduced, ultimately
causing the attitude estimate to drift [25]. Attitude estimation
is critical for the safety of UAVs. In the aviation history, a
catastrophe with the same root cause is Lion Air Flight 610,
which was caused by incorrect angle-of-attack sensing (and
consequent activation of the anti-stall software to repeatedly
pitch the plane downward) [26]. (e) Occurrence: 6 instances.

2 {

void ahrs_fc_update_accel (struct FloatVect3 xaccel, float
dt)
// compute ratio between measured gravitational

acceleration and the standard value

const float g_meas_norm = float_vect3_norm(&
filtered_gravity_measurement) / 9.81;

// compute the weight of accelerometer in attitude
estimation

ahrs_fc.weight = 1.0 - ahrs_fc.gravity_heuristic_factor x

fabs (1.0 - g_meas_norm) / 10.0;
Bound (ahrs_fc.weight, 0.

15, 1.0);

}

Listing 2: An Example of Sensor Fusion [27]



IV. UNDERSTANDING BOUNDING FUNCTIONS
DYNAMICALLY

In this section, we experimentally evaluate the impact of
BFs on UAV behavior, answering RQ2. We start with a
description of our rationale in § IV-A and on experiment setup
in § IV-B, and the core results from differential simulation will
be described in the rest of the section with a summary and
several more detailed case studies.

A. The Rationale of Differential Simulation

As we stated earlier, UAVs are cyber-physical systems that
interact with the physical world. In UAV software, the traces
of UAV physical properties — pitch/roll/yaw, trajectory, or
altitude as time series — are essential for capturing their
observable behavior. When the removal of BFs leads to
observable difference in the trace of these physical variables,
it should be a concern for attention.

Our differential simulation aims at achieving two goals.
First, it helps confirm that the BF instances indeed impact
the dynamic physical behavior of UAVs. A premise with the
“developer-in-the-field” approach is that we frust the experi-
ence and wisdom of the developers. From the perspective, the
dynamic approach here serves as the trust but verify step: we
would like to confirm BFs do make a difference in defining
the physical behavior of UAVs. With that, answers to RQ2
serve as an evidence of the significance of our taxonomy
proposed for RQ1. Second, the dynamic approach also serves
as a quantitative study of the safety-critical impact of BFs.
It complements the qualitative study of our static (taxonomy)
approach by answering how much impact BFs have on the
safety of UAV software.

B. Experiment Setup

We use Paparazzi’s built-in simulator for recording flight
trajectories. We further use Paparazzi’s log plotter to generate
traces on real-time physical variables, such as speed, altitude,
and roll-pitch-yaw values. The two complement each other,
with the former useful for elucidating macro-level navigation
patterns, and the latter useful for characterizing micro-level
time-dependent physical behavior.

Among the 109 BF instances, we are able to conduct
simulation for 64 of them. Some programs with BF instances
require manual radio control (RC) inputs. We have developed a
script to ensure RC inputs are programmably given, so that for
repetitions of the same experiment, identical RC commands
with identical timing are inputed. The not-simulatable cases
fall into two categories. First, the compilation and execution
of some program fragments are hardware-dependent, such as
requiring camera or sensor support. The Paparazzi simulator
does support physical simulation, but it does not include
features such as optical flow (for cameras) and some low-level
sensors. Second, some code fragments where BFs occur are
experimental features that cannot be built with any compatible
aircraft. For example, no existing aircraft in Paparazzi is com-
patible with the module stabilization_float_euler,
so we cannot simulate any BF instances in that module.

TABLE III: Simulation Result Summary (S-Diff: Single-BF
Simulation Different Results; M-Diff: Multi-BF Simulation
Different Results; Same: No Difference in Results; Non-Sim:
Not Simulatable)

Category  S-Diff M-Diff  Same Non-Sim  Total
™ 7 0 2 2 11
SM 3 0 4 1 8
SAM 5 4 8 0 17
EM 2 0 5 14 21
PM 3 6 15 28 52

TABLE IV: Selected Differential Analysis BF Instances

Label File Name BF Line Number

A ahrs_float_cmpl 253

B common_nav 135

C nav_gls 150

D nav_gls 181

E nav_smooth 174

F attitude_ref saturate_naive 79, 82, 83, 84 (multi-BF)
G guidance_h_ref 240, 241 (multi-BF)

For each simulatable BF instance, we perform two exper-
iments: (1) a simulation of the autopilot with a pre-defined
flight plan (see § II-B) where the code with the BF instance
is called; (2) a simulation with the same flight plan with the
BF is removed. We compute whether the traces from the two
experiments are different, where difference is defined as the
relative error in the trace values of physical variables (roll,
pitch, yaw, thrust, etc.) from the two simulations above. We
repeat each pair of simulations 5 times. The data across the 5
runs are averaged out with respect to timestamps.

It is noteworthy that when there is more than one BF in-
stance in the same function, removing one may have no impact
on the trajectory or physical variable traces, but removing
multiple can. From now on, we refer to the experiments that
involve the removal of multiple BFs in the same function at
the same time as multi-BF differential simulation, and refer to
the one-BF-a-time experiments as single-BF differential sim-
ulation. Multi-BF differential simulation is performed when
single-BF differential simulation for each BF in a function
does not show any difference.

C. Result Summary

The results from the experiments fall into 4 categories,
which we summarize in Table III. If our simulation shows
difference in a single-BF differential simulation, we classify
the involved instance as “S-Diff”. Otherwise, if difference is
shown in a multi-BF differential simulation, we classify the
involved instances as “M-Diff”. The rest of simulatable in-
stances are classified as “Same”, and non-simulatable instances
are classified as “Non-Sim”. There is no overlap between
the categories. For repeated experiments, we only mark an
instance as “different” when 5 repeated experiments all show
a difference exists: in physical simulation, small variations



X Position Y Position

Altitude Course

o mmOnNn o>
o mmOnNn o>

@ mmoOnNnw>
@ mmONn o>
N

|
10! 102 10 10! 102 10% 10

3 4

1072 107! 109 10! 102 10" 10! 102

© (d)
Speed (X,Y) Speed (Z)

o mmOnNn o>
o mmOnNn o>

(@) (b)
Pitch Roll
A A
B B
c c
D D
E E
F F
G G
].(I)“ 161 162 163 164 10‘*2 10'*1 160 161 162

(e) ®

107! 10° 10t 10°

(€3] (h)

10!

Fig. 3: Relative Errors in Differential Analysis (Each sub-figure represents a distinct physical variable. Each bar represents a
BF case, whose height is the mean and the range line is the standard deviation. The label to the left of each bar indicates a BF
instance, whose details are described in Table IV. Data is presented in log scale, where 10° (1) implies 100% relative error.)

X Position Y Position

Altitude Course

07
07 06
06
05
05
0.4
04
03
03
02 02
0.1 0.1
0.0 0.0
A B C D E F G A B C D E F G

s o o o 9o &
S 8 R & & o

>

E

a

o

m

[}
s o o o 5 o o
s B S L R OB @

" A B C D E F G

(@ (b) © ()
pitch Roll Speed (X,Y) Speed (2)
06 025
08 016
05 0.20 014
04 06 012
015 010
03 oo 04 008
0z ' 0.06
0.05 02 0.04
ot 0.02
00 0.00 00 0.00
A B C D E F G A B C D E F G A B C D E F 6 A B C D E F G
© ® (€3] (h)

Fig. 4: Pearson’s Correlation Coefficients (PCCs) in Differential Analysis (Each sub-figure represents a distinct physical variable.
Each bar represents a BF case, whose height is the PCC. The label at the bottom indicates a BF instance, whose details are
described in Table IV. A PCC value over 0.7 empirically indicates strong correlation.)

are common, so we wish to be conservative to make sure all
repeated experiments agree.

As we can see in the S-Diff and M-Diff columns, nearly half
of the instances we can simulate produce different results when
comparing executions with or without BFs. In other words,
the BFs indeed play an important role in safeguarding the
correctness of programs and consequently the safety of UAVs.

In our differential analysis, we compute the averaged rel-
ative error between the measured physical variable value of
the program with the BF, and the one without. We elide yaw

data for brevity. Figure 3 shows the result for a subset of
BF instances, whose details can be found in Table IV. The
complete results are included in the repository. Three concrete
observations can be made. First, BFs have non-equal impacts
on physical variables. For example, we can observe that BF
cases A, B, and G have large impacts on the majority of
physical variables, whereas BF case E has a minor impact on
nearly all variables. Second, the same BF instance may have
different impacts on different physical variables. For example,
BF case A has a larger impact on the Z axis of positioning



(altitude) (see Fig. 3c) than the Y axis (see Fig. 3b). As
another example, the relative error of BF case G stands out in
trajectory-related physical variables (see Fig. 3d for example)
than speed-related variables. Third, the same physical variable
may be impacted by different BF instances in different degrees.
For example, speed is significantly impacted by BF cases A
and B, but not others (see Fig. 3g).

To gain a finer-grained analysis, we further computed the
similarity of the two traces in a timestamp-wise manner.
Figure 4 shows the Pearson’s Correlation Coefficients (PCCs)
of the with-BF and without-BF traces. The most important ob-
servation is that PCC is rarely over 0.7, the golden standard for
“strong” correlation. In other words, without BFs, a program
would cause noticeable behavioral change to the UAV in a
large number of BF instances, as manifested through location
or pose or speed.

Take BF case E for example. Recall that in the earlier
relative error figure, this BF has a small relative error; the
PCC results however tell a different story: a timestamp-
wise alignment of traces is poor for the majority of physical
variables, especially altitude, pitch, row, and speed on the
X/Y dimensions. In this example, the BF is used to bound
the physical variable of ground speed. With its removal, the
UAV not only has significant ground speed fluctuation, but
also leads to functuations in other physical variables. The
difference between relative error and PCC as metrics is that the
latter is time-dependent. As a result, PCC can capture behavior
differences in the presence of (time-dependent) fluctuation
despite the “mean” remains stable, a goal the relative error
cannot achieve.

Together, these experiments show that BFs do significantly
impact UAV behavior. As physical variables play a pivotal role
in safety-critical UAV behavior — from trajectory management
to pose management and so on — our experiments demonstrate
the importance of BFs in safety-critical UAV software.

In the rest of this section, we highlight 3 BF instances and
their impact on preserving the UAV behavior.

D. Case Study: Turning Angles

In § III-Clc, we discussed
carrot_angle bounded within the range [{5, 7] in function
nav_circle, which is used by Paparazzi to perform a circle
task. With the safeguard of the bounding function, the UAV
circles around normally as is shown in Figure 5a, where the red
actual trajectory fits nicely with the green desired trajectory.

However, if we remove the bounding function, as is shown
in Figure 5b, the trajectory is irregular at the beginning and
later follows a stable oval orbit. This deviation stems from the
drastic angle variation carrot_angle.

E. Case Study: Takeoff Speed

As an example of multi-BF differential simulation, Listing 3
shows a code snippet where removing only one BF does not
make a difference while removing both does. In this example,
sp represents the vertical speed setpoint computed by the
PID algorithm, and incr represents its deviation from the

the bounded variable;

10

(a) (b)

Fig. 5: A Case Study on Turning Angles (a) with-BF trajectory
(b) without-BF trajectory

— Normal 1
Normal_2
— Normal_3
— Normal_4
—— Normal_5
—-- Abnormal_1
Abnormal 2
~-- Abnormal_3
Abnormal_4
Abnormal_5

Speed (M/S)

Fig. 6: Multi-BF Differential Simulation on Takeoff Speed

current speed setpoint v_ctl_climb_setpoint. incr
is added to v_ctl_climb_setpoint in the end. If we
only remove the BF on line 7, the excessive value would be
bounded on line 10. Similarly, if we remove the latter, since the
former has already bounded sp, the following incr is thus
not likely to be excessive. However, when we remove both,
v_ctl_climb_setpoint can grow by a sharp increment.

1 void v_ctl_altitude_loop (void)

{

float sp = v_ctl_altitude_pgain * v_ctl_altitude_error +
v_ctl_altitude_pre_climb ;

BoundAbs (sp, v_ctl _max_climb);

float incr = sp - v_ctl_climb_setpoint;
BoundAbs (incr, 2 % dt_navigation);
1 v_ctl_climb_setpoint += incr;

}
Listing 3: A Multi-BF Simulation Example [28]

Figure 6 shows the UAV speed when taking off based on
the UAV’s flight logs. The solid lines show the speed when
both BFs are kept, while the dashed line show the speed when
both are removed. In the first 40 seconds, the without-BF runs
(named as “abnormal” in the Figure) reach a higher speed
during take-off: observe that the dashed lines show a higher
speed than those of the solid lines. This agrees with our source
code inspection above.

F. Case Study: Navigation Progress

In S§II-Cld, we discussed another bounded variable
nav_leg_progress in function nav_route, and this



variable reflects the navigation progress which is bounded
within the range [0,prog_2]. As is shown in Figure 7a, an
oval trajectory consists of two straight lines and two semi-
circles. The function nav_route is called in the navigation
task on both straight lines. If we remove the BF from variable
nav_leg_progress, the UAV may “flee” and move in the
opposite direction when approaching the waypoint where the
straight routine begins, as is shown in Figure 7b.

The more intriguing question is why the UAV would change
its behavior as radically as this. Let us have a close look at
the source code on how nav_leg_progress is computed:

nav_leg_progress = (pos_diff.x » wp_diff.x
+ pos_diff.y x wp_diff.y) /
nav_leg_length;

Here, wp_diff and pos_diff are two-dimensional vari-
ables representing the horizontal distance between two way-
points pl and p2 (as shown in the figure) and between the
UAV and the start waypoint pl respectively. The types of
their members x and y are both signed integers. However,
since nav_leg_length is an unsigned integer, the result
computed within the parentheses must be implicitly converted
to unsigned integer before divided by nav_leg_length.
When the UAV is approaching the waypoint pl, the result
computed within the parentheses happens to be a negative
value whose most significant bit is set to 1, and thus it is
interpreted as a large value after conversion to the unsigned
integer. After being divided by nav_1leg_length, the most
significant bit becomes 0 and therefore, when the final re-
sult is converted back to the signed integer and assigned
to nav_leg_progress, it is still a large positive value
which goes far beyond the range [0,prog_2]. It further
impacts the computation of the position of navigation target
and consequently the UAV flees eccentrically.

With a BF in place, nav_leg_progress is at least
bounded within a range, so that a radically unexpected tra-
jectory such as Figure 7b does not occur. However, note that
always adjusting its value to the upper bound prog_2 is
not reasonable either: the variable should not have shown a
completed progress before straight navigation begins.

In other words, the program contains a bug. To help
fix this bug, we added an explicit type conversion for
nav_leg_length:

nav_leg_progress = (pos_diff.x » wp_diff.x
+ pos_diff.y » wp_diff.y) /
(int32_t)nav_leg_length;

After this bug fix, we repeated our simulation without the
BF. As is shown in Figure 7c, the oval trajectory is preserved.
However, as is analyzed in our discussion in § III-C1d, the
carrot, namely the navigation target denoted as a yellow
inverted triangle in the figure, exceeds the intended trajectory
without the BF.

This case study is interesting for two reasons. First, the
use of the BF indeed reflects the developer’s concern that an
unbounded variable may significantly alter the UAV behavior.

Second, the developer appears to be unaware of the latent bug:
the BF use somewhat masks the severity of the bug. Observe
however, it is the use of the BF that led our attention to this
code snippet, and it is the simulation of BF removal that helps
us uncover the bug. We reported this bug to Paparazzi, and our
bug fix has been accepted. The updated code has now been
merged into Paparazzi’s GitHub repository.

V. THREATS TO VALIDITY

Our analysis is empirical in nature. We based our analysis
on the BFs injected by the Paparazzi developers. We assume
the correct amount of functions is leveraged to achieve safety-
criticality. In this sense, a fundamental limitation of our
approach is that it may only be as good as the programming
skills of the developers. In reality, developers may miss BFs
and may make mistakes. Incompleteness in enumerating all
safety-critical scenarios is inherent to our approach.

UAVs, and embedded systems in general, are real-time
systems driven by their onboard sensors. As such, achieving
simulations that faithfully cover all flight scenarios is chal-
lenging. Our simulation environment can replay navigation
commands and replay at a specific rate. However, due to timing
of the control software, perfect reproducibility is impossible.

Paparazzi is an influential UAV framework, but not the only
one. We believe the taxonomy of safety-critical use scenarios
and the methodology of our differential analysis may transcend
the specifics of Paparazzi, but the concrete findings of our
study — such as the number of use scenarios within each
caregory, and the dynamic impact of individual cases — may
not be representative for all UAV frameworks.

VI. RELATED WORK

Verification for safety-critical software is a well-established
area, and perhaps the best example of the “top-down” approach
for studying safety of UAV systems. Blanchet et al. [1] propose
a static analyzer based on abstract interpretation to verify a
large class of properties in safety-critical software. Miller et
al. [2] apply NuSMV [3], a symbolic model checker, to the
verification of a flight control system. Kloetzer and Belta [4]
provide a fully automated framework to develop feedback
controllers for a linear system given its linear temporal logic
over a set of linear predicates in its state variables. Kress-
Gazit et al. [5] propose a linear temporal logic (LTL) based
framework to automatically generate a hybrid controller that
guarantees correct robot function given a high-level task
specification as well as a class of admissible environments.
Yoo et al. [6] introduce a formal-methods-based process that
supports development, verification, and safety analysis for the
nuclear power plant’s reactor protection system, and develop
Computer-Aided Software Engineering (CASE) tools for nu-
clear engineers to apply formal methods to safety verification.
Similarly, runtime verification of UAV software is also an
actively researched topic. Moosbrugger et al. [7] develop a
real-time, Realizable, Responsible, Unobtrusive Unit (R2U2)
to monitor security properties and diagnose security threats
of Unmanned Aerial Systems (UAS) during run time. Its



(a)

(©

Fig. 7: A Case Study on Navigation Progress (a) with-BF trajectory (original) (b) without-BF trajectory (original): UAV flees

(c) without-BF trajectory (fixed): carrot off

supervision scope covers the on-board components, as well
as inputs from the ground control station.

Software engineering for self-adaptive cyber-physical sys-
tems is an active research direction, where UAVs are of-
ten cited as a compelling use scenario [29], [30]. Testing
cyber-physical systems (e.g., [31]) and development tools
(e.g., [32], [33]) is well explored. Another family of self-
adaptive systems that have received attention in recent years
is autonomous/self-driving vehicles, with results on bug char-
acterization (e.g., [34]) and testing (e.g., [35], [36]). Program-
ming languages are proposed for supporting energy aware-
ness of UAVs [37] and context adaptation for UAVs [38].
Copilot [39] is a stream-based dataflow language to perform
hard real-time monitoring over safety-critical control systems
by sampling variables in programs and computing properties
over the sampled values. SafetyScrum [40] is a software
development methodology that relies on a notion of “safety
debt” to incrementally track the safety status of safety-critical
UAV systems in agile software development and maintenance.

Broadly speaking, our datatype-based classification can be
related to programming language efforts that refine primitive
types. For example, dimension types [41] are designed so that
value 1 can either mean one meter or one kilometer, and
misuse among them can be eliminated by the type system.
As another example, Osprey [42] is a constraint-based type
inference to automatically detect misuse of measurement units.

Fundamental to the growth of UAVs is their ability to fly
autonomously and not require human control at all times. Most
modern UAVs, from high-end fixed wing aircraft to hobby
quadcopters, come equipped with flight controllers, such as
in PixHawk [43]. These systems use well-studied algorithms
such as extended Kalman filter estimation to fuse the sensor
values into a pose, and well-studied controllers to achieve the
set commands.

VII. CONCLUDING REMARKS

This paper describes a novel empirical study on the use
of bounding functions in UAV autopilot software. Our study
shows that the use of bounding functions coincides with use
scenarios where safety concerns of UAVs are addressed by
UAV software developers. Our differential simulation further
shows that bounding functions play an important role in

preserving the physical behavior of UAVs. To the best of our
knowledge, this is the first systematic empirical in-field study
on open-source UAV software frameworks.

Beneficiaries We envision our empirical study will be
beneficial in the following ways. (1) For UAV software de-
velopers, our empirical study may serve as a reference point
for systematically addressing safety concerns in future UAV
development. UAVs are well known for their diverse hardware
platforms, but the key safety-critical datatypes identified by
this paper are likely to transcend the specifics of diverse
platforms of UAVs. We show that despite the large code
base, the BF instances revolve around a small set of phys-
ical variables, which future developers should pay particu-
lar attention to. (2) For framework and language designers,
our datatype-based taxonomy may inspire new abstractions
to generalize, modularize, and reason about UAV software
systems, with the identified datatypes and their associated
use scenarios serving as motivations for new language-based
designs such as automated BF placement and enforcement.
(3) For researchers interested in automated analysis for UAV
software (e.g., through testing, debugging, and verification),
our identified BFs and their differential simulation serve as
a source for identifying new invariants, and as a litmus test
on validating the coverage of their approaches. In addition,
PBF-Detector can serve as a base system to facilitate
Clang/LLVM-based development.

Artifacts In the repository 3 , we provide the following
artifacts: (a) the source code of PRBF-Detector together
with modified Paparazzi source (Makefiles); (b) a detailed
documentation on each BF use; (c) all data of the simulation
results, including log data, simulation screenshots, along with
aircraft and flight plan files as test cases; (d) scripts for
statistical analysis and for reproducing the results; (e) a report
of the complete BF taxonomy.

Acknowledgments We thank Brian Grant for his partici-
pation in the early stage of this project. We thank Gautier
Hattenberger for his help on the Paparazzi Forum. This project
is sponsored by NSF Awards CNS-1823260, CNS-1823230,
and SHF-1749539.

3https://github.com/SUNY-BU-Software- Systems- Research- Group/
PaparazziBF



[1]

[2]

[3]

[4]

[5]

[6]
[7]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]
[23]

[24]

REFERENCES

B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival, “A static analyzer for large safety-critical
software,” SIGPLAN Not., vol. 38, no. 5, p. 196-207, May 2003.
[Online]. Available: https://doi.org/10.1145/780822.781153

S. Miller, E. Anderson, L. Wagner, M. Whalen, and M. Heimdahl,
“Formal verification of flight critical software,” in AIAA Guidance,
Navigation, and Control Conference and Exhibit, 2005, p. 6431.

A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “Nusmv: A new
symbolic model verifier,” in International conference on computer aided
verification.  Springer, 1999, pp. 495-499.

M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Transactions
on Automatic Control, vol. 53, no. 1, pp. 287-297, 2008.

H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based
reactive mission and motion planning,” IEEE transactions on robotics,
vol. 25, no. 6, pp. 1370-1381, 20009.

J. Yoo, E. Jee, and S. Cha, “Formal modeling and verification of safety-
critical software,” IEEE Software, vol. 26, no. 3, pp. 42-49, 2009.

P. Moosbrugger, K. Y. Rozier, and J. Schumann, “R2u2: Monitoring
and diagnosis of security threats for unmanned aerial systems,” Form.
Methods Syst. Des., vol. 51, no. 1, p. 31-61, Aug. 2017.

G. Hattenberger, M. Bronz, and M. Gorraz, “Using the paparazzi uav
system for scientific research,” in Proceedings of the International Micro
Air Vehicle Conference and Competition 2014, August 2014.

B. Liskov and S. Zilles, “Programming with abstract data types,” ACM
Sigplan Notices, vol. 9, no. 4, pp. 50-59, 1974.

D. Anderson and S. Eberhardt. (2015) How airplanes fly: A physical
description of lift. [Online; accessed 06-March-2020]. [Online].
Available: http://www.aviation-history.com/theory/lift.htm

S. May. (2017) What is a helicopter? [Online; accessed 06-March-
2020]. [Online]. Available: https://www.nasa.gov/audience/forstudents/
5-8/features/nasa-knows/what-is-a-helicopter- 58.html

Pir Arkam. (2020) How does a plane fly? [Online; accessed
9-May-2020].  [Online].  Available: https://rookieelectronics.com/
the-aerodynamics-of-flight-how-does-a- plane-fly/

M. Araki, “Pid control,” in CONTROL SYSTEMS, ROBOTICS AND
AUTOMATION - Volume II: System Analysis and Control: Classical
Approaches-1I, H. Unbehauen, Ed. EOLSS Publications, 2009,
pp. 58-79. [Online]. Available: https://books.google.com/books?id=
RF1xDAAAQBAJ

E. J.J. Smeur, Q. Chu, and G. C. H. E. de Croon, “Adaptive incremental
nonlinear dynamic inversion for attitude control of micro air vehicles,”
Journal of Guidance, Control, and Dynamics, vol. 39, no. 3, pp. 450—
461, 2016.

K. J. Astrém and T. Higglund, PID controllers: theory, design, and
tuning. Instrument society of America Research Triangle Park, NC,
1995, vol. 2.

“Function nav_move_waypoint: url at https://github.com/paparazzi/
paparazzi/blob/master/sw/airborne/subsystems/navigation/common_nav.
c”

“Function gv_update_ref_from_zd_sp: wurl at https://github.com/
paparazzi/paparazzi/blob/master/sw/airborne/firmwares/rotorcraft/
guidance/guidance_v_ref.c.”

G. Conte, S. Duranti, and T. Merz, “Dynamic 3d path following for an
autonomous helicopter,” in Proceedings of the 5th IFAC Symposium on
Intelligent Autonomous Vehicles, Oxford, UK, 2004, pp. 473-478.
“Function nav_circle: url at https://github.com/paparazzi/paparazzi/blob/
master/sw/airborne/firmwares/rotorcraft/navigation.c.”

“Function nav_route: url at https://github.com/paparazzi/paparazzi/blob/
master/sw/airborne/firmwares/rotorcraft/navigation.c.”

“Function electrical_periodic: url at https://github.com/paparazzi/
paparazzi/blob/363dec86938cd1090221ccd772fc6fae58ed89a2/sw/
airborne/subsystems/electrical.c.”

R. E. Kalman, “A new approach to linear filtering and prediction
problems,” 1960.

“Function ins_alt_float_update_gps: url at https://github.com/paparazzi/
paparazzi/blob/master/sw/airborne/subsystems/ins/ins_alt_float.c.”

W. T. Higgins, “A comparison of complementary and kalman filtering,”
IEEE Transactions on Aerospace and Electronic Systems, vol. AES-11,
no. 3, pp. 321-325, May 1975.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Paparazzi Wiki. (2015) Vibration. [Online; accessed 10-February-
2020]. [Online]. Available: https://wiki.paparazziuav.org/wiki/Vibration#
Complementary_AHRS

D. Shortell and J. Shelley, “Lion air crash investigators looking at
two american companies associated with boeing 737 max sensor,”
CNN, Apr 2019. [Online]. Available: https://www.cnn.com/2019/04/04/
us/boeing-sensor-investigation/index.html

“Function ahrs_fc_update_accel: url at https://github.com/paparazzi/
paparazzi/blob/master/sw/airborne/subsystems/ahrs/ahrs_float_cmpl.c.”
“Function v_ctl_altitude_loop: url at https://github.com/paparazzi/
paparazzi/blob/master/sw/airborne/firmwares/fixedwing/guidance/
energy_ctrl.c.”

B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee,
J. Andersson, B. Becker, N. Bencomo, Y. Brun, B. Cukic,
G. Di Marzo Serugendo, S. Dustdar, A. Finkelstein, C. Gacek,
K. Geihs, V. Grassi, G. Karsai, H. M. Kienle, J. Kramer, M. Litoiu,
S. Malek, R. Mirandola, H. A. Miiller, S. Park, M. Shaw, M. Tichy,
M. Tivoli, D. Weyns, and J. Whittle, Software Engineering for
Self-Adaptive Systems: A Research Roadmap. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 1-26. [Online]. Available:
https://doi.org/10.1007/978-3-642-02161-9_1

R. Lemos, H. Giese, H. Miiller, J. Andersson, M. Litoiu, B. Schmerl,
G. Tamura, N. Villegas, T. Vogel, D. Weyns, L. Baresi, B. Becker,
N. Bencomo, Y. Brun, B. Cukic, R. Desmarais, S. Dustdar, G. Engels,
and J. Wuttke, Software Engineering for Self-Adaptive Systems: A
Second Research Roadmap, 01 2013, pp. 1-32.

J. Deshmukh, M. Horvat, X. Jin, R. Majumdar, and V. S. Prabhu,
“Testing cyber-physical systems through bayesian optimization,” ACM
Trans. Embed. Comput. Syst., vol. 16, no. 5s, Sep. 2017. [Online].
Available: https://doi.org/10.1145/3126521

S. A. Chowdhury, “Automatically finding bugs in commercial cyber-
physical system development tool chains,” ser. ICSE ’18, 2018, p.
506-508.

S. A. Chowdhury, S. L. Shrestha, T. T. Johnson, and C. Csallner,
“Slemi: Equivalence modulo input (emi) based mutation of cps models
for finding compiler bugs in simulink,” in 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE), 2020, pp.
335-346.

J. Garcia, Y. Feng, J. Shen, S. Almanee, Y. Xia, and Q. A. Chen,
“A comprehensive study of autonomous vehicle bugs,” in ICSE’20,
G. Rothermel and D. Bae, Eds. ACM, 2020, pp. 385-396.

R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing
vision-based control systems using learnable evolutionary algorithms,”
in 2018 IEEE/ACM 40th International Conference on Software Engi-
neering (ICSE), 2018, pp. 1016-1026.

H. Zhou, W. Li, Z. Kong, J. Guo, Y. Zhang, B. Yu, L. Zhang, and
C. Liu, “Deepbillboard: systematic physical-world testing of autonomous
driving systems,” in /CSE’20, G. Rothermel and D. Bae, Eds. ACM,
2020, pp. 347-358.

Y. D. Liu and L. Ziarek, “Toward energy-aware programming for
unmanned aerial vehicles,” in 3rd IEEE/ACM International Work-
shop on Software Engineering for Smart Cyber-Physical Systems,
SEsCPS@ICSE 2017, Buenos Aires, Argentina, May 21, 2017. 1EEE,
2017, pp. 30-33.

J. H. Burns, X. Liang, and Y. D. Liu, “Adaptive variables for declarative
uav planning,” in The 12th International Workshop on Context-Oriented
Programming and Advanced Modularity (COP), 2020.

L. Pike, A. Goodloe, R. Morisset, and S. Niller, “Copilot: a hard
real-time runtime monitor,” in International Conference on Runtime
Verification.  Springer, 2010, pp. 345-359.

J. Cleland-Huang and M. Vierhauser, “Discovering, analyzing, and man-
aging safety stories in agile projects,” in 2018 IEEE 26th International
Requirements Engineering Conference (RE), 2018, pp. 262-273.

A. Kennedy, “Dimension types,” in In 5th European Symp. on Program-
ming, LNCS 788. Springer-Verlag, 1994, pp. 348-362.

L. Jiang and Z. Su, “Osprey: A practical type system for validating
dimensional unit correctness of ¢ programs,” in Proceedings of the
28th International Conference on Software Engineering, ser. ICSE *06.
New York, NY, USA: Association for Computing Machinery, 2006, p.
262-271. [Online]. Available: https://doi.org/10.1145/1134285.1134323
PixHawk Team. (2020) Pixhawk flight controller. [Online; accessed
15-May-2020]. [Online]. Available: https://pixhawk.org/



