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Abstract
Type-and-effect systems are a powerful tool for program construction and verification. We describe inten-
sional effect polymorphism, a new foundation for effect systems that integrates static and dynamic effect
checking. Our system allows the effect of polymorphic code to be intensionally inspected through a light-
weight notion of dynamic typing. When coupled with parametric polymorphism, the powerful system
utilizes runtime information to enable precise effect reasoning, while at the same time retains strong type
safety guarantees. We build our ideas on top of an imperative core calculus with regions. The technical in-
novations of our design include a relational notion of effect checking, the use of bounded existential types
to capture the subtle interactions between static typing and dynamic typing, and a differential alignment
strategy to achieve efficiency in dynamic typing. We demonstrate the applications of intensional effect
polymorphism in concurrent programming, security, graphical user interface access, and memoization.
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1 Introduction

In a type-and-effect system [27, 36], the type information of expression e encodes and approximates
the computational effects σ of e, such as how memory locations are accessed in e. Type-and-effect
systems — or effect systems for short in this paper— have broad applications (e.g., [2, 29, 24, 6]).
Improving their expressiveness and precision through static approaches is a thoroughly explored
topic, where many classic language design (e.g., [22, 15, 35, 4, 26]) and program analysis (e.g.,
[33, 3]) techniques may be useful.

Purely static effect systems are a worthy direction, but looking forward, we believe that a com-
plementary foundation is also warranted, where the default is a system that can fully account for and
exploit runtime information, aided by static approaches for optimization. Our belief is shaped by two
insights. First, emerging software systems increasingly rely on dynamic language features: reflec-
tion, dynamic linking/loading, native code interface, flexible meta programming in script languages,
to name a few. Second, traditional hurdles defying precise static reasoning — such as expression
ordering, branching, recursion, and object dynamic dispatch — are often amplified in the context of
effect reasoning.
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1000 Intensional Effect Polymorphism

In this paper, we develop intensional effect polymorphism, a system that integrates static and dy-
namic effect reasoning. The system relies on dynamic typing to compensate for the conservativeness
of traditional static approaches and account for emerging dynamic features, while at the same time
harvesting the power of static typing to vouchsafe for programs whose type safety is fundamentally
dependent on runtime decision making. Consider the following example:

I Example 1 (Conservativeness of Static Typing for Race-Free Parallelism). Imagine we
would like to design a type system to guarantee race freedom of parallel programs. Let expression
e||e′ denote running e and e′ in parallel, whose typing rule requires that e and e′ have memory access
effects over disjoint regions. Further, let r1 and r2 be disjoint regions. The following program is
race-free, even though a purely static effect system is likely to reject it:

1 (λx.λy. (x := 1) || !y)
2 (if 1 > 0 then refr1 0 else refr2 0)
3 (if 0 > 1 then refr1 0 else refr2 0)

Observe that parametric polymorphism is not helpful here: x and y can certainly be typed as
region-polymorphic, but the program remains untypable. The root cause of this problem is that race
freedom only depends on the runtime behaviors of (x:=1) || !y, which only depends on what
x and y are at runtime.

Inspired by Harper and Morrisett [19], we propose an effect system where polymorphic code
may intensionally inspect effects at runtime. Specifically, expression assuming e R e′ do e1 else e2
inspects whether the runtime (effect) type of e and that of e′ satisfy binary relation R, and evaluates
e1 if so, or e2 otherwise. Our core calculus leaves predicate R abstract, which under different
instantiations can support a family of concrete type-and-effect language systems. To illustrate the
example of race freedom, let us consider R being implemented as region disjointness relation #.
The previous example can be written in our calculus as follows.

I Example 2 (Intensional Effect Polymorphism for Race-Free Parallelism). The following
program type checks, with the static system and the dynamic system interacting in interesting ways:

1 (λx.λy. assuming (x := 0) # !y do (x := 1) || y)
2 (if 1 > 0 then refr1 0 else refr2 0)
3 (if 0 > 1 then refr1 0 else refr2 0)

Static typing can guarantee that the lambda abstraction in the first line is well-typed regardless of
how it is applied, good news for modularity. Dynamic typing provides precise typing for expression
(x := 0) and expression !y — exploiting the runtime type information of x and y — allowing
for a more precise disjointness check. Observe that in our calculus, the subexpression participating
in the assuming check — x := 0 here — does not have to be syntactically isomorphic to the
expression in the do subexpression, x := 1. For simplicity, we omit the else expression in this
example.

Technical Innovations

On the highest level, our system shares the philosophy with a number of type system designs hybrid-
izing static checking and dynamic checking (e.g., [14, 34, 18]), and some in the contexts of effect
reasoning [5, 20]. To the best of our knowledge however, this is the first time intensional type ana-
lysis is applied to effect reasoning. This combination is powerful, because not only effect reasoning
can rely on runtime type information, but also parametric polymorphism is fully retained. For ex-
ample, observe that in the example above, the types for x and y are parametric, not just “unknowns”
or “dynamic”. Let us look at another example:
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I Example 3 (Parametric Polymorphism Preservation). For the following program, the par-
allel execution in the second line is statically guaranteed to be type-safe in our system. Programs
written with intensional effect polymorphism do not have runtime type errors.

1 let s = λx.λy. assuming (x := 0) # !y do (x := 1) || !y in
2 (s refr1 0 refr2 0) || (s refr3 0 refr4 0)

In addition, intensional effect polymorphism goes beyond a mechanical adaptation of Harper-
Morrisett, with several technical innovations we now summarize. The most remarkable difference
is that the intensionality of our type system is enabled through dynamic typing. At runtime, the
evaluation of expression assuming e R e′ do e1 leads to the dynamic typing of e and e′. In contrast,
the classic intensional type analysis performs a typecase-like inspection on the runtime instanti-
ation of the polymorphic type. Our strategy is more general, in that it not only subsumes the former
— indeed, a type derivation conceptually constructed at runtime must have leaf nodes as instances
of value typing — but also allows (the effect of) arbitrary expressions to be inspected at runtime.
We believe this design is particularly relevant for effect reasoning, because it has less to do with
the effect of polymorphically-typed variables, and more with where these variables appear in the
program.

Second, we design the runtime type inspection through a relational check. In the assuming
expression, our system dynamically checks whether R holds, instead of computing what the effect
of e or e′ is. The relational design does not require programmers to explicitly provide an “effect
specification/pattern” of the runtime type — a task potentially daunting as it may either involve
enumerating region names, or expressing conditional specifications such as “a region that some other
expression does not touch.” Many safety properties reasoned about by effect systems are relational
in nature, such as thread interference.

Third, the subtle interaction between static typing and dynamic typing poses a unique challenge
on type soundness in the presence of effect subsumption. We elaborate on this issue in §4.4. We
introduce a notion of bounded existential types to differentiate but relate the types assumed by the
static system and those by the dynamic system.

Finally, a full-fledged construction of type derivations at runtime for dynamic typing would
incur significant overhead. We design a novel optimization to allow for efficient runtime effect
computation, eliminating the need for dynamic derivation construction while producing the same
result. The key insight is that we could align the static type derivation and the (would-be-constructed)
dynamic type derivation, and compute the effects of the latter simply by substituting the difference
of the two, a strategy we call differential alignment. We will detail this design in §5.

We formalize intensional effect polymorphism in λie, an imperative call-by-value λ-calculus
with regions. In summary, this paper makes the following contributions:

It describes a hybrid type system for effect reasoning centering on intensional polymorphism.
It develops a sound type system and operational semantics where relational effect inspection is
made abstract.
It illuminates the subtleties resulting from the difference between static effect reasoning and
dynamic effect reasoning, and proposes bounded existential types to preserve soundness, and
differential alignment to promote efficiency.
It demonstrates the impact of our design by extending the core calculus to the applications of
safe parallelism support, security, UI access, and memoization.

2 Motivating Examples

In this section, we demonstrate the applicability of intensional effects in reasoning about safe par-
allelism, information security, consistent UI access, and program optimization. In each of these ap-
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plications, the refined notion of type safety is fundamentally dependent on runtime decision making,
i.e., whether the relation R is satisfied. We instantiate the effect relation operator R with different
concrete relations between effects of expressions.

As in previous work [17, 8], we optionally extend standard Java-like syntax with region declar-
ations when the client language deems them necessary. In that case, a variable declaration may
contain both type and region annotations, e.g., JLabel j in ui declares a variable j in region ui.
For client languages where regions are not explicitly annotated, different abstract locations (such as
different fields of an object) are treated as separate regions.

2.1 Safe Parallelism

We demonstrate the application of intensional effects in supporting safe parallelism, where safety in
this context refers to the conventional notion of thread non-interference (race freedom) [27]. Con-
cretely, Figure 1 is a simplified example of “operation-agnostic” data parallelism, where the pro-
grammer’s intention is to apply some statically unknown operation (encapsulated in an Op object)
— here implemented through reflection — to a data set, here simplified as a pair of data ft and
sd. The programmer wishes to “best effort” leverage parallelism to process ft and sd in parallel,
without sacrificing thread non-interference. The tricky problem of this notion of safety is it depends
on what Op object is. For instance, parallel processing of the pair with the Hash object is safe, but
not when the operation at concern is the prefix sum operator [7], encapsulated as Pref.

1 class Pair {
2 int ft = 1, sd = 2;

4 int applyTwice(Op f) {
5 assuming ft = f.op(0) # sd = f.op(5)
6 do ft = f.op(f.op(ft)) || sd = f.op(f.op(sd));
7 else ft = f.op(f.op(ft)) ; sd = f.op(f.op(sd));
8 }
9 }

11 Pair pr = new Pair();
12 Op o = (Op) newInstance(readFile("filePath"));
13 pr.applyTwice(o);

14 interface Op { int op(int i); }

16 class Pref implements Op {
17 int sum = 0;
18 // effect: write sum
19 int op(int i) { sum += i; }
20 }

22 class Hash implements Op {
23 // effect: pure, no effect
24 int op(int i) { hash(i); }
25 }

Figure 1 An application of intensional effects in enforcing safe parallelism.

Static reasoning about the correctness of the parallel composition could be challenging in this
example, because the Op object remains unknown until applyTwice is invoked at runtime.

The assuming expression (line 5) helps the program retain strong type safety guarantees for
parallel composition (line 6), while utilizing the runtime information to enable precise reasoning.
At runtime, the assuming expression intensionally inspects the effects of the expressions ft =
f.op(0) and sd = f.op(5). If they satisfy the binary relation #, parallelism will be enabled.
If f points to a Hash object, the # relation will be true and the program enjoys safe concurrency
(line 6). On the other hand, if f points to a Pref object, the program will be run sequentially,
desirable for race freedom safety.

2.2 Information Security

As another application of intensional effects, consider its usage in preventing security vulnerabilities.
Figure 2 presents an adapted (wsj.com) example of real-world security vulnerabilities [11]. The
Page class allows users to search information within the site. Once the search is called, the page

wsj.com


Y. Long and Y. D. Liu and H. Rajan 1003

will redirect to a web page corresponding to the url and searchBox strings (the redirection is
represented as changing the location variable for simplicity). The page, when created, inserts a
third party advertisement (line 8).

1 class Page {
2 String searchBox = "";
3 String url = "wsj.com/search?";
4 String location = "";

6 String load_adv(ThirdParty adv) {
7 assuming url ♦ adv.show(this)
8 do exec url adv.show(this);
9 else "no advertisement";

10 }

12 int search(ThirdParty adv) {
13 load_adv(adv);
14 location = url + searchBox;
15 }
16 }

17 interface ThirdParty { String show(Page p); }

19 class Good implements ThirdParty {
20 String show(Page p) { "404"; }
21 }

23 class Evil implements ThirdParty {
24 String show(Page p) {
25 p.url = "evil.com";
26 }
27 }

29 ThirdParty adv = (ThirdParty)
30 newInstance(readFile("filePath"));
31 new Page().render(adv);

Figure 2 An application of intensional effects in preventing security vulnerabilities.

The third party code can be malicious, e.g., it can modify the search url and redirects the search
to a malicious site, from which the whole system could be compromised, e.g., the Evil third-party
code. Ensuring the key security properties becomes challenging with the dynamic features because
the third party code is only available at runtime, loaded using reflection. The expression exec e1 e2
(line 7) encodes a check-then-act programming pattern. It executes e2 only if it does not read nor
write any object accessible by e1 and otherwise it gets stuck.

With intensional effects, users can intensionally inspect a third party code e whenever e is dy-
namically loaded. The intensional inspection, accompanied with a relational policy check, ensures
that e does not access any sensitive data (the url), specified using the relation ♦. It also ensures
that the exec expression does not get stuck.

2.3 Consistent Graphical User Interface (GUI) Access

We show how intensional effects can be used to reason about the correctness of a GUI usage pattern,
common in Subclipse, JDK, Eclipse and JFace [16]. Typically, GUI has a single UI thread handling
events in the “event loop”. This UI thread often spawns separate background threads to handle time-
consuming operations. Many frameworks enforce a single-threaded GUI policy: only the UI thread
can access the GUI objects [16]. If this policy is violated, the whole application may abort or crash.
Figure 3 shows a simplified example of a UI thread that pulls an event from the eventloop and
handles it. In the application, all UI elements reside in the ui region (declared at line 14), e.g., the
field j at line 23.

The safety here refers to no UI access in any background thread. The tricky problem here is
that the events arrive at runtime with different event handlers. Some handlers may access UI objects
while the others do not. Therefore, the correctness of spawning a thread to handle a new event,
depends heavily on what objects the corresponding event handler has. For instance, the handler
containing a NonUI object can be executed in a background thread, while UIAccess should not.
The expression spawn e1 e2, executes e2 in a background thread only if it does not allocate, read or
write any object in the region accessed by e1. Otherwise it gets stuck.

The assuming expression, used by the UI thread, statically guarantees strong type safety for the
spawn expression, so it does not get stuck. It also utilizes precise runtime information to distinguish
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1 class UIThread {
2 JLabel global in ui = new JLabel();
3 void eventloop(Runnable closure) {
4 assuming global ∅ closure.run()
5 do spawn global closure.run();
6 else closure.run();
7 }
8 }

10 Runnable closure;
11 if (1 > 0) closure = new NonUI();
12 else closure = new UIAccess();
13 new UIThread().eventloop(closure);

14 region ui;

16 interface Runnable { String run(); }

18 class NonUI implements Runnable {
19 String run() { "does nothing"; }
20 }

22 class UIAccess implements Runnable {
23 JLabel j in ui = new JLabel();
24 String run() { j.val = "UI"; }
25 }

Figure 3 An application of intensional effects in disciplining UI access.

handlers with no UI accesses from other handlers. If a handler satisfies relation ∅, it can be safely
executed by a background thread. The relation ∅ is satisfied if the RHS expression does not allocate,
read/write any region denoted by the LHS expression.

2.4 Program Optimization – Memoization

As another application, we utilize intensional effects to implement a proof-of-concept memoization
technique in a sequential program. Memoization is an optimization technique where the results of
expensive function calls are cached and these cached results are returned when the inputs and the
environment of the function are the same.

Figure 4 presents a simplified application where repeated tasks, here the heavy method calls on
line 5 and 8, are performed. These two tasks are separated by a small computation mutate, forming
a compute-mutate pattern [9]. We leave the body of the method heavy intentionally unspecified,
which could represent a set of computationally expensive operations. It could, e.g., generate the
power set ps of a set of input elements and return the size of ps or do the Bogosort.

1 class Mem {
2 Integer input = new Integer();

4 int comp(Mutate m, Integer x) {
5 int cache = heavy(input);
6 assuming m.mutate(x) \ heavy(input)
7 do lookup m.mutate(x) heavy(input); cache
8 else m.mutate(x); heavy(input);
9 }

11 int heavy(Integer i) { /* ... */}
12 }

13 class Integer { int i = 0; }

15 class Mutate {
16 int mutate(Integer input) {
17 input.i = 101;
18 }
19 }

21 Memo mm = new Mem();
22 Mutate mu = new Mutate();
23 if (1 > 0) mm.comp(mu, mm.input);
24 else mm.comp(mu, new Integer());

Figure 4 An application of intensional effects in providing effective memoization.

The second heavy task needs not be recomputed in full if the mutate invocation does not
modify the input nor the environment of heavy. If so, the cached result of the first call can be
reused and the repeated computation can be avoided. The expression lookup e1 e2 executes the
expressions e1 only if e1 does not write to objects in the regions read by e2. Otherwise it gets stuck.

Ensuring that the lookup expression does not get stuck is challenging. This is because the
validity of the cached result depends on the runtime value of both the mutation m and its input x. For
example, if the parameter x is a new object as the one created at line 24, the cache is valid, while the
one represented by mm.input (line 23) is not valid.
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v ::= b | λx : T.e value
e ::= v | x | e e | let x = e in e | ref ρ T e | !e | e := e | if e then e else e expression

| assuming e R e do e else e | SAFE e e
T ::= α | Bool | T σ−→ T′ | Refρ T type
ρ ::= ζ region
ζ ::= r | γ region element
σ ::= ω effect
ω ::= ς | accρT effect element
acc ::= init | rd | wr access right

Figure 5 λie Abstract Syntax (Throughout the paper, notation • represents a set of • elements, and notation
→• represents a sequence of • elements.)

The assuming expression solves the problem: the safety of the lookup expression is statically
guaranteed. At runtime, with precise dynamic information, the intensional binary \ relational check
ensures that the write accesses of the LHS do not affect the RHS expression. If this relation is
satisfied, the cache is valid and can be reused.

Other optimizations

Intensional effect polymorphism can be used for other similar optimizations, e.g., record-and-reply
style memoization, common sub-expression elimination, loop-invariant code motion and redundant
load elimination. In all these applications, if the mutation, similar to the style of, for example,
m.mutate(x), is infrequent or does not modify a large portion of the heap, the cached results can
avoid repeated expensive computations.

Summary

The essence of intensional effect polymorphism lies in the interesting interplay between static typ-
ing and dynamic typing. Static typing guarantees that the potentially unsafe expressions are only
used under runtime “safe” contexts (i.e., those that pass the relational effect inspection), in highly
dynamic scenarios such as parallel composition, loading third party code, handling I/O events, and
data reuse. Dynamic typing exploits program runtime type information to allow for more precise ef-
fect reasoning, in that “safe” contexts can be dynamically decided upon based on runtime type/effect
information.

3 λiebstract Syntax

To highlight the foundational nature of intensional effect polymorphism, we build our ideas on top
of an imperative region-based lambda calculus. The abstract syntax of λie is defined in Figure 5.
Expressions are standard for an imperative λ calculus, except the last two forms which we will soon
elaborate. We do not model integers and unit values, even though our examples may freely use them.
Since if e then e else e plays a non-trivial role in our examples, we choose to model it explicitly.
As a result, boolean values b ∈ {true, false} are also explicitly modeled. Metavariable x represents
variables.

Our core syntax is expressive enough to encode the core program logic of the examples in §2.
However, it does not model objects for simplicity without the loss of generality. An extension with
objects and classes is mostly standard [30] and is included in our technical report [25].
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1006 Intensional Effect Polymorphism

Safe Parallel Composition, §2.1

e R e′ def= e#e′ “Two effects do not interfere.”

SAFE e e′ def= (e || e′) “Run the two expressions in parallel.”

# is defined as:

∅ # σ
σ # σ′′ σ′ # σ′′

σ ∪ σ′ # σ′′
σ′ # σ

σ # σ′
rdρT # rdρ′ T′

ρ 6= ρ′

rdρT # wrρ′ T′
ρ 6= ρ′

wrρT # wrρ′ T′

Information Security, §2.2

e R e′ def= e♦e′ “Expression e′ does not read/write regions accessible by e.”

SAFE e e′ def= exec e e′ “Execute e′ if it does not read/write the regions by e.”

♦ is defined as:

σ ♦ ∅
σ ♦ σ′′ σ′ ♦ σ′′

σ ∪ σ′ ♦ σ′′
σ′′ ♦ σ σ′′ ♦ σ′

σ′′ ♦ σ ∪ σ′
ρ 6= ρ′

accρT ♦ rdρ′ T′
ρ 6= ρ′

accρT ♦ wrρ′ T′

UI Access, §2.3

e R e′ def= e∅e′ “Expression e′ does not access regions accessible by e.”

SAFE e e′ def= spawn e e′ “Execute e′ in another thread if it accesses no region by e.”

∅ is defined as:

σ ∅ ∅
σ′′ ∅ σ σ′′ ∅ σ′

σ′′ ∅ σ ∪ σ′
σ ∅ σ′′ σ′ ∅ σ′′

σ ∪ σ′ ∅ σ′′
ρ 6= ρ′

accρT ∅ accρ′ T′

Memoization, §2.4

e R e′ def= e\e′ “RHS’s read has no dependcy on the LHS’s write”

SAFE e e′ def= lookup e e′ “Execute e if e writes no region read by e′.”

\ is defined as:

∅ \ σ
σ \ σ′′ σ′ \ σ′′

σ ∪ σ′ \ σ′′
rdρT \ σ σ \ wrρT

ρ 6= ρ′

wrρT \ rdρ′ T′

Figure 6 Client Implementation of R and SAFE e e.

We introduced expression assuming e R e′ do e0 else e1, where from now on we call e and e′ the
condition expressions, e0 the do expression, and e1 the else expression. At runtime, this expression
retrieves the effects of e and e′ through dynamic typing, without evaluating e or e′. The timing of
gaining this knowledge is important: the conditions will not be evaluated and the do expression is
not evaluated yet. In other words, even though our system relies on runtime information, it is not an
a posteriori effect monitoring system.

A General Framework

As illustrated in §2, effect reasoning has diverse applications. We aimed to design a general frame-
work for effect reasoning, which can be concretized to different “client” languages. To achieve this



Y. Long and Y. D. Liu and H. Rajan 1007

goal, we choose to (1) leave the definition of the binary relation R abstract; (2) include an abstract
SAFE e e′ expression, which is type-safe iff e R e′ holds. The R relation and the SAFE expression
can be concretized to different “client” languages to capture different application domain goals. For
example, when R is concretized to thread non-interference, one possible concretization of SAFE e e′

is parallel composition e||e′. The instantiations of R of the applications in §2 are shown in Figure 6.
The only requirement for R is that it must be monotone [28, 8], i.e., closed under effect subsetting.
Concretely, it says that if σ R σ′, σ0 ⊆ σ and σ1 ⊆ σ′, then σ0 R σ1. All instantiations in §2 satisfy
this requirement.

Types, Regions, and Effects

Programmer types are either primitive types, reference types Refρ T for store values of type T in
region ρ, or function types T σ−→ T′, from T to T′ with σ as the effect of the function body. Last but
not least, as a framework with parametric polymorphism, types may be type variables α.

Our notion of regions is standard [36, 27], an abstract collection of memory locations. A region
in our language can either be demarcated as a constant r, or parametrically as a region variable γ.

An effect is a set of effect elements, either an effect variable ς , or accρT, representing an access
acc to region ρ whose stored values are of type T. Access rights init, rd, wr represent allocation,
read, and write, respectively.

As the grammar suggests, our framework is a flexible system where a type, a region, or an effect
may all be parametrically polymorphic.

4 The Type System

This section describes the static semantics to our type-and-effect system. Overall, the type system
associates each expression with effects, a goal shared by all effect systems. The highlight is how
to construct a precise and sound effect system to support dynamic-typing-based intensionality. The
precision of this type system is rooted at the R relation enforcement, at assuming time, based on
effects computed by dynamic typing over runtime values and their types. Our static type system is
designed so that any SAFE expression appearing in the do branch does not need to resort to runtime
enforcement and the R relation is guaranteed to hold by the static type system. As we shall see, this
leads to non-trivial challenges to soundness, as static typing and dynamic typing make related — yet
different — assumptions on effects.

4.1 Definitions

Relevant structures of our type system are defined in Figure 7.

Γ ::= #          »x 7→ τ type environment
τ ::= ∀ #»g .∃Σ.T type scheme
g ::= α | γ | ς generic variable
gs ::= T | ρ | σ generic structure
Φ ::= Λ relationship set
Σ ::= g �: gs subsumption set
Λ ::= σ R σ | ∀ #»g .Σ relationship

Figure 7 λie Type System Definitions

ECOOP’15



1008 Intensional Effect Polymorphism

Type Environment and Type Scheme

Type environment Γ maps variables to type schemes, and we use notation Γ(x) to refer to T where
the rightmost occurrence of x : T′ for any T′ in Γ is x : T.

A type scheme is similar to the standard notion where names may be bound through quantific-
ation [13]. Our type scheme, in the form of ∀ #»g .∃Σ.T, supports both universal quantification and
existential quantification. Our use of universal quantification is mundane: the same is routinely used
for parametric polymorphism systems. Observe that in our system, type variables, region variables,
and effect variables may all be quantified, and we use a metavariable g for this general form, and
call it a generic variable. Similarly, we use a unified variable gs to represent either a type, a region,
or an effect, and call it a generic structure for convenience. Existential quantification is introduced
to maintain soundness, a topic we will elaborate in a later subsection. For now, only observe that
existentially quantified variables appear in the type scheme as a sequence of g �: gs, each of which
we call a subsumption relationship. Here we also informally say g is existentially quantified, with
bound gs. When #»g is a sequence of 0 and Σ is empty, we also shorten the type scheme ∀ #»g .∃Σ.T as
T . Type schemes are alpha-equivalent.

Relationship Set

Another crucial structure to construct our type system is the relationship set Φ. On the high level,
this structure captures the relationships between generic structures. Concretely, it is represented as a
set whose element may either be an abstract effect relationship σ R σ′ — denoting two effects σ and
σ′ conform to the R relation — or a subsumption context relationship. The latter is represented as
∀ #»g .Σ. Intuitively, a subsumption context relationship is a collection of subsumption relationships,
except some of its generic variables may be universally quantified. Subsumption context relation-
ships are alpha-equivalent.

As we shall see, the relationship set plays a pivotal role during type checking. At each step
of derivation, this structure represents what one can assume about effects. For example, the inter-
play between assuming and SAFE is represented through whether the relationship set constructed
through typing assuming can entail the relationship that makes the SAFE expression type-safe. Our
relationship set may have a distinct structure, but effect system designers should be able to find
conceptual analogies in existing systems, such as privileges in Marino et al. [28].

Notations and Convenience Functions

We use (overloaded) function ftv to compute the set of free (i.e., neither universally bound nor
existentially bound) variables in T, ρ and σ. We use fv(e) to compute the set of free variables in
expression e. We use dom and ran to compute the domain and the range of a function. All definitions
are standard. Substitution θ is a mapping function from type variables α to types T, region variables
γ to regions ρ and effect variables ς to effects σ. The composition of substitutions, written θθ′ is
defined as θθ′(g) = θ(θ′(g)).

We use comma for sequence concatenation. For example, Γ, x 7→ τ denotes appending sequence
Γ with an additional binding from x to τ.

4.2 Subsumption and Entailment

Figure 8 defines subsumption relations for types, effects, and regions. All three forms of subsump-
tion are reflexive and transitive. For function types, both return types and effects are covariant,
whereas argument types are contra-variant. For Ref types, the regions are covariant, whereas the
types for what the store holds must be invariant [37].
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Subtyping: Φ ` T �: T’

(TYPE-REFL)
Φ ` T �: T

(TYPE-TRAN)
Φ ` T �: T0
Φ ` T0 �: T′

Φ ` T �: T′

(TYPE-REF)
Φ r̀eg ρ �: ρ′

Φ ` Refρ T �: Refρ′ T

(TYPE-FUN)
Φ ` T′0 �: T0 Φ ` T1 �: T′1

Φ èff σ �: σ′

Φ ` T0
σ−→ T1 �: T′0

σ′

−→ T′1

Effect Subsumption: Φ èff σ �: σ′

(EFF-REFL)
Φ èff σ �: σ

(EFF-TRAN)
Φ èff σ �: σ0 Φ èff σ0 �: σ′

Φ èff σ �: σ′

(EFF-SUB)
σ ⊆ σ′

Φ èff σ �: σ′

(EFF-CONS)
σ �: σ′ ∈ Φ

Φ èff σ �: σ′

(EFF-ACC)
Φ r̀eg ρ �: ρ′

Φ èff {accρT} �: {accρ′ T}
(EFF–INST)

∀ #»g .Σ ∈ Φ σ �: σ′ ∈ θΣ for some θ
dom(θ) = #»g ran(θ) ∩ ftv(Σ) = ∅

Φ èff σ �: σ′

Region Subsumption: Φ r̀eg ρ �: ρ′

(REG-REFL)
Φ r̀eg ρ �: ρ

(REG-TRANS)
Φ r̀eg ρ �: ρ0 Φ r̀eg ρ0 �: ρ′

Φ r̀eg ρ �: ρ′

(REG-SUB)
ρ ⊆ ρ′

Φ r̀eg ρ �: ρ′

(REG-CONS)
ρ �: ρ′ ∈ Φ

Φ r̀eg ρ �: ρ′

(REG–INST)
∀ #»g .Σ ∈ Φ ρ �: ρ′ ∈ θΣ for some θ dom(θ) = #»g ran(θ) ∩ ftv(Σ) = ∅

Φ r̀eg ρ �: ρ′

Relationship Entailment: Φ àr Λ

(REL–IN)
Λ ∈ Φ
Φ àr Λ

(REL-CLOSED)
Φ àr σ R σ′ Φ èff σ0 �: σ Φ èff σ1 �: σ′

Φ àr σ0 R σ1

Figure 8 λie Subsumption and Entailment.

(EFF-INST) and (REG-INST) capture the instantiation of universal variables in subsumption con-
text relationship. After all, the latter is a collection of “parameterized” subsumption relationships
which can be instantiated.

Finally, we define a simple relation Φ àr Λ to denote that relationship set Φ can entail Λ.
(REL-IN) says any relationship set may entail its element. (REL-CLOSED) intuitively says that R
is closed under taking subsetting. (REL-CLOSED) is a manifestation of the monotonic requirement
[28, 8] for R, introduced in §3.

4.3 Typing Judgment Overview

Typing judgment in our system takes the form of Φ; Γ ` e : T, σ, which consists of a type envir-
onment Γ, a relationship set Φ, an expression e, its type T and effect σ. When the relationship set
and the type environment are empty, we further shorten the judgment as ` e : T, σ for convenience.
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Typing: Φ; Γ ` e : T, σ

(T-BOOL)
Φ; Γ ` b : Bool, ∅

(T-VAR)
T � Γ(x)

Φ; Γ ` x : T, ∅

(T-LET)
Φ; Γ ` e : T, σ Φ; Γ, x 7→ Gen(Γ, σ)(T) ` e′ : T′, σ′

Φ; Γ ` let x = e in e′ : T′, σ ∪ σ′

(T-SUB)
Φ; Γ ` e : T, σ Φ ` T �: T′ Φ èff σ �: σ′

Φ; Γ ` e : T′, σ′

(T-ABS)
∅; Γ, x 7→ T ` e : T′, σ

Φ; Γ ` λx : T.e : T σ−→ T′, ∅

(T-APP)
Φ; Γ ` e : T σ−→ T′, σ′ Φ; Γ ` e′ : T, σ′′

Φ; Γ ` e e′ : T′, σ ∪ σ′ ∪ σ′′

(T-REF)
Φ; Γ ` e : T, σ

Φ; Γ ` ref ρ T e : Refρ T, σ ∪ initρT

(T-GET)
Φ; Γ ` e : Refρ T, σ

Φ; Γ `! e : T, σ ∪ rdρT

(T-SET)
Φ; Γ ` e : Refρ T, σ Φ; Γ ` e′ : T, σ′

Φ; Γ ` e := e′ : T, σ ∪ σ′ ∪ wrρT

(T-IF-THEN-ELSE)
Φ; Γ ` e : Bool, σ Φ; Γ ` e0 : T, σ0 Φ; Γ ` e1 : T, σ1

Φ; Γ ` if e then e0 else e1 : T, σ ∪ σ0 ∪ σ1

(T-ASSUME)

x = fv(e) ∪ fv(e′) Γ(x) = τ Φ′′ ` EGen(τ)⇒ τ′ Γ′ = Γ, x 7→ τ′ Φ′ = Φ,Φ′′
Φ′; Γ′ ` e : T, σ Φ′; Γ′ ` e′ : T′, σ′

Φ′, σ R σ′; Γ′ ` e0 : T′′′, σ2 Φ ` T′′′ ↑ T′′ Φ ` σ2 ↑ σ0 Φ; Γ ` e1 : T′′, σ1

Φ; Γ ` assuming e R e′ do e0 else e1 : T′′, σ0 ∪ σ1

(T-SAFE)
Φ; Γ ` e : T0, σ0 Φ; Γ ` e′ : T1, σ1 Φ àr σ0 R σ1 clientT (T, σ,T0, σ0,T1, σ1)

Φ; Γ ` SAFE e e′ : T, σ

Figure 9 λie Typing Rules

The judgment is defined in Figure 9, with auxiliary definitions related to universal and existential
quantification deferred to Figure 10.

The rules (T-LET) and (T-VAR) follow the familiar let-polymorphism (or Damas-Milner poly-
morphism [13]). Universal quantification is introduced at let boundaries, through the function
Gen(Γ, σ)(T). Its elimination is performed at (T-VAR), via ���. Both definitions are standard, and
appear in Figure 10. The let-polymorphism in let x = e in e′ expression is sound because of the
Gen function in the rule (T-LET). The Gen function enforces the standard value restriction [36].
That is, if e is a value, its type could be generalized and thus be polymorphic, otherwise its type will
be monomorphic.

(T-SUB) describes subtyping, where both (monomorphic) type subsumption and effect subsump-
tion may be applied. Rules (T-REF), (T-GET) and (T-SET) for store operations produce the effects of
access rights init, rd and wr, respectively. All other rules other than (T-ASSUME) and (T-SAFE) carry
little surprise for an effect system.
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∀ Introduction: Gen Gen(Γ, σ)(T) = ∀ #»g .T where #»g = ftv(T)\(ftv(Γ) ∪ ftv(σ))
∀ Elimination: ��� T′ � ∀ #»g .T if T′ = θT for some θ

∃ Introduction: EGen

P ::= − | RefPR T | T PE−→ T | T σ−→ P pack context
PE ::= − | ω,PE, ω′ | accPR T | accρ P
PR ::= − | ζ,PR, ζ ′

EGen(∀ #»g .T) 4= ∀ #»g .EGenM(T, ∅)
EGenM(PE[σ], #»g ) 4= ∃ς �: σ.EGenM(PE[ς �: σ], #»g ∪ {ς}) if σ /∈ #»g , ftv(σ) ⊆ #»g , ς fresh

EGenM(PR[ρ], #»g ) 4= ∃γ �: ρ.EGenM(PR[γ �: ρ], #»g ∪ {γ}) if ρ /∈ #»g , ftv(ρ) ⊆ #»g , γ fresh

EGenM(T, #»g ) 4= T if σ ∈ #»g for any T = PE[σ]
ρ ∈ #»g for any T = PR[ρ]

∃ Elimination:⇒⇒⇒ ∀ #»g .(θΣ) ` ∀ #»g .∃Σ.T⇒ ∀ #»g .θT for some θ ∧ dom(θ) ⊆ #»g

Lifting: ↑↑↑

Φ ` P[ς �: σ] ↑ P[σ′] if ∀ #»g .Σ ∈ Φ, ς �: σ ∈ θΣ for some θ, Φ ` σ ↑ σ′
Φ ` P[γ �: ρ] ↑ P[ρ′] if ∀ #»g .Σ ∈ Φ, γ �: ρ ∈ θΣ for some θ, Φ ` ρ ↑ ρ′

Φ ` T ↑ T if ∀ #»g .Σ ∈ Φ, ftv(T) ∩ (∀ #»g .Σ) = ∅

Φ ` PE[ς �: σ] ↑ PE[σ′] if ∀ #»g .Σ ∈ Φ, ς �: σ ∈ θΣ for some θ, Φ ` σ ↑ σ′
Φ ` PE[γ �: ρ] ↑ PE[ρ′] if ∀ #»g .Σ ∈ Φ, γ �: ρ ∈ θΣ for some θ, Φ ` ρ ↑ ρ′

Φ ` σ ↑ σ if ∀ #»g .Σ ∈ Φ, ftv(σ) ∩ (∀ #»g .Σ) = ∅

Φ ` PR[γ �: ρ] ↑ PR[ρ′] if ∀ #»g .Σ ∈ Φ, γ �: ρ ∈ θΣ for some θ, Φ ` ρ ↑ ρ′
Φ ` ρ ↑ ρ if ∀ #»g .Σ ∈ Φ, ftv(ρ) ∩ (∀ #»g .Σ) = ∅

Figure 10 Definitions for ∀ and ∃ Introduction and Elimination

4.4 Static Typing for Dynamic Intensional Analysis

To demonstrate how intensional effect analysis works, let us first consider an unsound but intuitive
notion of assuming typing in (T-ASSUME-UNSOUND) (below).

(T-ASSUME-UNSOUND)

Φ; Γ ` e : T, σ Φ; Γ ` e′ : T′, σ′

Φ, σ R σ′; Γ ` e0 : T′′, σ0 Φ; Γ ` e1 : T′′, σ1

Φ; Γ ` assuming e R e′ do e0 else e1 : T′′, σ0 ∪ σ1

To type check the do expression e0, (T-ASSUME-UNSOUND) takes advantage of the fact that ex-
pressions e and e′ satisfy the relation R, i.e., in the third condition of the rule, we strengthen the
current Φ with σ R σ′. The (T-SAFE) rule in Figure 9 says that the expression type checks iff Φ
entails the abstract effect relationship R. As a result, a SAFE expression whose safety happens to
rely on σ R σ′ can be statically verified to be safe by the static system.

Albeit tempting, the rule above is unsound. To illustrate, consider the safe parallelism discipline
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in the following example, i.e., we instantiate the R relation with noninterference relation # and the
SAFE expression with parallel expression ||.

I Example 4 (Soundness Challenge). In the following example, the variables x and y have the
same static (but different dynamic) type. Thus, the expression x 3 and y 3 have the same static
effect. Should the parallel expression at line 5 typecheck with the assumption expression at line 4,
there would be a data race at runtime.

1 let buff = ref 0 in
2 let x = if 1 > 0 then λz. !buff else λz. buff := z in
3 let y = if 0 > 1 then λz. !buff else λz. buff := z in
4 assuming !buff # x 3
5 do !buff || y 3
6 else !buff ; x 2

In this example, we have an imperative reference buff, and two structurally similar but distinct
functions x and y. The code intends to perform parallelization, i.e., buff || y 3, line 5. Let us
review the types of the variables:

buff : Refρ Int

x : Int
{rdρInt,wrρInt}−−−−−−−−−→ Int

y : Int
{rdρInt,wrρInt}−−−−−−−−−→ Int

and the effects of the expressions:

!buff : {rdρInt}
x 3 : {rdρInt,wrρInt}
y 3 : {rdρInt,wrρInt}

According to the static system, the types of x and y are exactly the same. Thus, by the third
condition of (T-SAFE), the expression buff || y 3 on line 5, is well-formed. This is because the
assuming expression has placed {rdρInt}# {rdρInt,wrρInt} as an element of the relationship set,
after typechecking buff # x 3 on line 4.

At runtime, the initialization expression of the let expressions will be first evaluated before
being assigned to the variables (call-by-value, details in §5). Therefore, x becomes λz.!buff and
y becomes λz.buff:=z before the assuming expression. Informally, we refer to the effect com-
puted at runtime through dynamic typing (e.g., right before the assuming expression) as dynamic
effect, as opposed to the static effect computed at compile time. The dynamic types of the variables
are:

x : Int
{rdρInt}−−−−−→ Int

y : Int
{wrρInt}−−−−−→ Int

and effects of the relevant expressions are:

!buff : {rdρInt}
x 3 : {rdρInt}
y 3 : {wrρInt}
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Clearly, the dynamic effect computed for buff and that for x 3 on line 4 do not conflict. There-
fore, the do expression buff || y 3 will be evaluated. However, the effects of the expressions
buff and y 3 on line 5 do conflict, which causes unsafe parallelism.

The root cause of the problem is that the static and the dynamic system make decisions based on
two related but different effects: one with the static effect, and the other with the dynamic effect. A
sound type system must be able to differentiate the two.

A Sound Design with Bounded Existentials

The key insight from the discussion above is that the static system must be able to express the
dynamic effect that the assuming expression makes decision upon. Before we move on, let us first
state several simple observations:
(i) (Dynamic effect refines static effect) The static effect of an expression e is a conservative ap-

proximation of the dynamic effect.
(ii) (Free variables determine effect difference) Improved precision of intensional effect polymorph-

ism is achieved by using the more precise types for the free variables, see e.g., dynamic and static
type of the variable x in Example 4.

Observation (i) indicates the possibility of referring to the dynamic effect as “there exists some
effect that is subsumed by the static effect.” Observation (ii) further suggests that dynamic effect can
be computed by treating all free variables existentially: “there exists some type T which is a subtype
of the static type T′ for each free variable, to help mimic the type environment while dynamic effect
is computed”. Bounded existential types provide an ideal vehicle for expressing this intention.

(T-ASSUME) captures the type checking of an assuming expression. We substitute the type of
each free variable with (an instance of) its existential counterpart. Let us revisit Example 4, this time
with (T-ASSUME). The free variables of the assuming expression at line 4, in Example 4 are x and
buff. The original types of the free variables are:

buff : Refρ Int and x : Int
{rdρInt,wrρInt}−−−−−−−−−→ Int

The existential types used to type check the assuming expressions are:

buff : Refρ Int and x : ∃ς1 �: {rdρInt}, ς2 �: {wrρInt}.Int ς1,ς2−−−→ Int

The relationship set is:

Φ = ς1 �: rdρInt, ς2 �: wrρInt (1)

The effects of the condition expressions are:

!buff : rdρInt and x 3 : ς1 �: rdρInt, ς2 �: wrρInt

To type check the do expression, Φ is strengthened as:

Φ′ = {rdρInt # {ς1 �: rdρInt, ς2 �: wrρInt}, ς1 �: rdρInt, ς2 �: wrρInt} (2)

When type checking the expression on line 5, y 3 has effect {rdρInt,wrρInt}. We cannot establish
`ar (as Figure 8). A type error is correctly induced against the potential unsafe parallel expression.

Rule (T-ASSUME) first computes the free variables from the two condition expressions, written
x = fv(e) ∪ fv(e′). With assumption Γ(x) = τ, all free variables x are considered for type environ-
ment strengthening. It then applies the existential introduction function EGen to strengthen τ′, the
bounded existential with the original type τ as the bound. The definition of EGen is in Figure 10.
It then eliminates (or open) the existential quantification using ⇒. In a nutshell, this predicate
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Φ′′ ` EGen(τ)⇒ τ′ introduces an existential type and eliminates it right away (a common strategy
in building abstract data types [30]). Subsumption relationship information is placed into the rela-
tionship set, Φ′ = Φ,Φ′′. The new environment Γ′ has the new types τ′ for the free variables, an
instantiation of the bounded existential type.

Function EGen uses the EGenM function to quantify effects and regions. Here, to produce the
existential type, function EGen maintains the structure of the original type, e.g., if the original type is
a function type, it produces a new function type with all covariant types/effects/regions quantified.
Observe that contravariant types/effects/regions are harmless: their dynamic counterpart (which
also refines the static one) does not cause soundness problems. To facilitate the quantification (also
known as existential introduction or packed [30]), three pack contexts, P, PE, PR, are defined,
representing the contexts to contain a type, an effect, or a region, respectively.

Finally, the type of the do expression needs to be lifted, weakening types that may potentially
contain refreshed generic variables of existential types, through a self-explaining ↑ definition in
Figure 10. For example, the effect computed for the expression x 3 is ς1 �: rdρInt, ς2 �: wrρInt.
The ↑ function applies the substitution of {ς1 7→ rdρInt, ς2 7→ wrρInt} on the precomputed effect
and produces static effect rdρInt,wrρInt.

The typing of (T-SAFE) relies on the client function clientT. clientT (T, σ,T0, σ0,T1, σ1) defines
the conditions where a safe expression should typecheck, as shown in Figure 11.

Parallelism: || clientT (T, σ,T0, σ0,T1, σ1) def= (T = T0 = T1) ∧ (σ = σ0 ∪ σ1)
Security: exec clientT (T, σ,T0, σ0,T1, σ1) def= (T = T1) ∧ (σ = σ1)
UI: spawn clientT (T, σ,T0, σ0,T1, σ1) def= (T = void) ∧ (σ = ∅)
Memoization: lookup clientT (T, σ,T0, σ0,T1, σ1) def= (T = T1) ∧ (σ = σ0)
Figure 11 Client Implementation of Predicate clientT

5 Dynamic Semantics

This section describes the dynamic semantics of λie. The highlight is to support a highly precise
notion of effect polymorphism via a lightweight notion of dynamic typing, which we call differential
alignment.

Operational Semantics Overview

The λie runtime configuration consists of a store s, the to-be-evaluated expression e, and a trace f ,
defined in Figure 12. The store maps references (or locations) l to values v. In addition to booleans
and functions, locations themselves are values as well. Each store cell also records the region ρ
and type T information of the reference. A trace can informally be viewed as “realized effects,”
and it is defined as a sequence of accesses to references, with init(l), rd(l), and wr(l), denoting the
instantiation, read, and write to location l respectively. Traces are only needed to demonstrate the
properties of our language. This structure and its runtime maintenance are unnecessary in a λie
implementation.

The small-step semantics is defined by relation s; e; f → s′; e′; f ′, which says that the evaluation
of an expression e with the store s and trace f results in the new expression e′, the new store s′, and
the new trace f ′. We use notation [x 7→ v]e to define the substitution of x with v of expression e.
We use→∗ to represent the reflexive and transitive closure of→.
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Definitions:

s ::= l→〈ρ,T〉 v store

f ::= acc(l) trace
v ::= . . . | l (extended) values
E ::= − | E e | v E | let x = E in e | let x = v in E | ref ρ T E evaluation context

| !E| E := e | v := E | if E then e else e

Dynamic Typing: s; Φ; Γ D̀ e : T, σ (DT-LOC)
{l 7→〈ρ,T〉v} ∈ s

s; Φ; Γ D̀ l : Refρ T, ∅

For all other (DT-*) rules, each is isomorphic to its counterpart (T-*) rule, except that every
occurrence of judgment Φ; Γ ` e : T, σ in the latter rule should be substituted with

s; Φ; Γ D̀ e : T, σ in the former.

Evaluation relation: s; e; f → s′; e′; f ′

(cxt) s;E[e]; f → s′;E[e′]; f, f ′ if s; e⇒ s′; e′; f ′
(asm) s; assuming e1 R e2 ⇒ s; e0; ∅ if s; ∅; ∅ D̀ ei : Ti, σi for i = 1, 2

do e else e′ and e0 =
{

e if σ1 R σ2
e′ otherwise

(safe) s;SAFE e e′ ⇒ clientR(s, e, e′)
(set) s; l := v ⇒ s, {l 7→〈ρ,T〉v}; v; wr(l) if {l 7→〈ρ,T〉v′} ∈ s
(ref ) s; ref ρ T v ⇒ s, {l 7→〈ρ,T〉v}; l; init(l) if l fresh

(get) s; !l ⇒ s; s(l); rd(l)
(app) s;λx : T.e v ⇒ s; [x 7→ v]e; ∅
(let) s; let x = v in e ⇒ s; [x 7→ v]e; ∅

(ifT ) s; if true then e else e′ ⇒ s; e; ∅
(ifF) s; if false then e else e′ ⇒ s; e′; ∅

Figure 12 λie Operational Semantics

Dynamic Effect Inspection

Most reduction rules are conventional, except (asm) and (safe). The (asm) rule captures the essence
of the assuming expression, which relies on dynamic typing to achieve dynamic effect inspection.
Dynamic typing is defined through type derivation s; Φ; Γ D̀ e : T, σ, defined in the same figure,
which extends static typing with one additional rule for reference value typing.

At runtime, the assuming expression retrieves the more precise dynamic effect of expression e1
and e2, and checks whether relation R holds. Observe that at runtime, e1 and e2 in the assuming
expression are not identical to their respective forms when the program is written. Now, the free
variables in the static program have been substituted with values, which carry more precise inform-
ation on types, regions, and effects. This is the root cause why intensional effect polymorphism can
achieve higher precision than a purely static effect system.

It should be noted that we evaluate neither e1 nor e2 at the evaluation of the assuming expression.
In other words, λie is not an a posteriori effect monitoring system.

The reduction of (safe) relies on an abstract function clientR. clientR(s, e, e′) computes the
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runtime configuration after the one-step evaluation of the SAFE expression. For example, for the
information security example (Figure 2), the configuration s; adv.show(this); ∅ will be the result
of the clientR function. The abstract treatment of this function allows λie to be defined in a highly
modular fashion, similar to previous work [28]. We will come back to this topic, especially its impact
on soundness, in Sec. 6.

Abstract Syntax in Optimized λie

d ::= v | x | d d | let x = d in d | ref ρ T d |!d | d:=d | if d then d else d annotated expressions
| assuming ( #      »x : τ ) d : σ R d : σ do d else d | SAFE d d

Transformation: e
Φ,Γ
 d

x
Φ,Γ
 x

e e′
Φ,Γ
 d d′ if e

Φ,Γ
 d, e′

Φ,Γ
 d′

...

assuming e1 R e2
Φ,Γ
 assuming ( #      »x : τ) d1 : σ1 R d2 : σ2 if x = fv(e1) ∪ fv(e2), Γ(x) = τ′

do e3 else e4 do d3 else d4 Φ′′ ` EGen(τ′)⇒ τ, Φ′ = Φ,Φ′′
Φ′; Γ, x 7→τ ` di :Ti, σi for i = 1, 2
ei

Φ,Γ
 di for i = 1, 2, 3, 4

Operational Semantics in Optimized λie: s; d; f →O s; d; f

(Ocxt) s;E[d]; f →O s′;E[d′]; f, f ′ if s; d; f ⇒O s′; d′; f ′
(Oasm) s; assuming( #      »v : τ) ⇒O s; d0; ∅ if s; ∅; ∅ D̀O v : T, ∅

d1 : σ1 R d2 : σ2 and θτ = Gen(∅, ∅)(T)

do d else d′ and d0 =
{

d if θσ1 R θσ2
d′ otherwise

For all other⇒O rules, each is isomorphic to its counterpart⇒ rule, except that every occurrence
of metavariable e in the latter rule should be substituted with d in the former.

Figure 13 Optimized λie with Differential Alignment

Optimization: Efficient Effect Inspection via Differential Alignment

The reduction system we have introduced so far may not be efficient: it requires full-fledged dynamic
typing, which may entail dynamic construction of type derivations to compute the dynamic effects.
In this section, we introduce one optimization.

As observed in §4.4, the (sub)expressions that do not have free variables will have the same
static effects (i.e., computed via static typing) and dynamic effects (i.e., computed via dynamic
typing). Our key insight is that, the only “difference” between the two forms of effects for the same
expression lies with those introduced by free variables in the expression. As a result, we define a
new dynamic effect computation strategy with two steps:

1. At compile time, we compute the static effects of the two expressions used for the effect in-
spection of each assuming expression in the program. In the meantime, we record the type
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(which contains free type/effect/region variables) of each free variable that appears in these two
expressions.

2. At runtime, we “align” the static type of each free variable with the dynamic type associated
with the corresponding value that substitutes for that free variable. The alignment will compute
a substitution of (static) type/effect/region variables to their dynamic counterparts. The substi-
tution will then be used to substitute the effect we computed in Step 1 to produce the dynamic
effect.

For Step 1, we define a transformation from expression e to an annotated expression d, defined
in Figure 13. The two forms are identical, except that the assuming expression in the “annotated
expression” now takes the form of assuming ( #      »x : τ) e1 : σ1 R e2 : σ2 do e else e′, which records
the free variables of expressions e1 and e2 and their corresponding static types, denoted as #      »x : τ.
The same expression also records the statically computed effects σ1 and σ2 for e1 and e2. The free
variable computation function fv and variable substitution function are defined for d elements in an
analogous fashion as for e elements. We omit these definitions.

Considering all the annotated information is readily available while we perform static typing of
the assuming expression— as in (T-Assume) — the transformation from expression e to annotated

expression d under Φ and Γ, denoted as e
Φ,Γ
 d, is rather predictable, defined in the same Figure.

The most interesting part of our optimized system is its dynamic semantics. Here we define a
reduction system→O, at the bottom of the same figure. We further use→∗O to represent the reflexive
and transitive closure of→O. Upon the evaluation of the annotated assuming expression, the types
associated with the free variables — now substituted with values — are “aligned” with the types
associated with the corresponding values. The latter is computed by judgment s; Φ; Γ D̀O d : T, σ,

defined as s; Φ; Γ D̀ e : T, σ where e
Φ,Γ
 d. In other words, we only need to dynamically type values

in the optimized λie. The alignment is achieved through the computation of the substitution θ. As
we shall see in the next section, such a substitution always exists for well-typed programs.

6 Meta-Theories

In this section, we establish formal properties of λie. We first show our type system is sound relative
to sound customizations of the client effect systems (§6.1). We next present important soundness
results for intensional effect polymorphism in §6.2, and a soundness and completeness result on
differential alignment in §6.3. The proofs of these theorems and lemmas can be found in the accom-
panying technical report [25]. Before we proceed, let us first define two simple definitions that will
be used for the rest of the section.

I Definition 5. [Redex Configuration] We say < s; e; f > is a redex configuration of program e′,
written e′D <s, e, f>, iff ∅; e′; ∅ →∗ s;E[e]; f .

Next, let us define relations`f :σ, which says that dynamic trace f realizes static effect σ under
store s:

I Definition 6. [Effect-Trace Consistency]s`f :σholds iff acc(l) ∈ f implies accρT ∈ σ where
{l 7→〈ρ,T〉v} ∈ s.

6.1 Type Soundness

Our type system leaves the definition of R and SAFE e e′ abstract, both in terms of syntax and
semantics. As a result, the soundness of our type system is conditioned upon how these definitions
are concretized. Now let us explicitly define the sound concretization condition:

ECOOP’15
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IDefinition 7 (Sound Client Concretization). We say a λie client is sound if under that concret-
ization, the following condition holds: if s; Φ; Γ D̀ e0 : T0, σ0, s; Φ; Γ D̀ e1 : T1, σ1, clientT (T, σ,
T0, σ0,T1, σ1) and (s′, e, f) = clientR(s, e0, e1), then s′; Φ; Γ D̀ e : T, σ ands′`f :σ.

All lemmas and theorems for the rest of this section are implicitly under the assumption that
Definition 7 holds, which we do not repeatedly state.

Our soundness proof is constructed through subject reduction and progress:

I Lemma 8 (Type Preservation). If s; Φ; Γ D̀ e : T, σ and s; e; f → s′; e′; f ′, then s′; Φ; Γ D̀
e′ : T′, σ′ and T′ �: T and σ′ ⊆ σ.

I Lemma 9 (Progress). If s; Φ; Γ D̀ e : T, σ then either e is a value, or s; e; f → s′; e′; f ′ for
some s′, e′, f ′.

I Theorem 10 (Type Soundness). Given an expression e, if ∅; ∅ ` e : T, σ, then either the
evaluation of e diverges, or there exist some s, v, and f such that ∅; e; ∅ →∗ s; v; f .

6.2 Soundness of Intensional Effect Polymorphism

The essence of intensional effect polymorphism lies in the fact that through intensional inspection
(dynamic typing at the assuming expression), every instance of evaluation of the SAFE e0 e1 ex-
pression in the reduction sequence must be “safe,” where “safety” is defined through the R relation
concretized by the client language. To be more concrete:

I Definition 11 (Effect-based Soundness of Intensional Effect Polymorphism). We say e is
effect-sound iff for any redex configuration such that e D <s, e′, f> and e′ = SAFE e0 e1, it must
hold that s; ∅; ∅ D̀ e0 : T0, σ0 and s; ∅; ∅ D̀ e1 : T1, σ1 and σ0 R σ1.

Effect-based soundness is a corollary of type soundness:

I Corollary 12 (λie Effect-based Soundness). If ∅; ∅ ` e : T, σ, then e is effect-sound.

There remains a gap between this property and what one intuitively believes the SAFE e0 e1
execution is “safe”: ultimately, what we hope to enforce is at runtime, the “monitored effect” —
i.e., the trace through the evaluation of e0 and that of e1 — does not violate what R represents. The
definition above falls short because it relies on the dynamic typing of e0 and e1. To rigorously define
the more intuitive notion of soundness, let us first introduce a trace-based relation induced from R:

I Definition 13 (Induced Trace Relation). RTR is a binary relation defined over traces. We
say RTR is induced from R under store s iff RTR is the smallest relation such that if σ1 R σ2, then
f1 RTRf2 wheres`f1 :σ1 ands`f2 :σ2.

One basic property of our reduction system is the trace sequence is monotonically increasing:

I Lemma 14 (Monotone Traces). If s; e; f → s′; e′; f ′, then f ′ = f, f ′′ for some f ′′.

Given this, we can now define the more intuitive flavor of soundness over traces:

I Definition 15 (Trace-based Soundness of Intensional Effect Polymorphism). We say e
is trace-sound iff for any redex configuration such that e D <s, e′, f> and e′ = SAFE e0 e1, it
must hold that for any s0, e′0, and f0 where s; e0; f →∗ s0; e′0; f, f0 and any s1, e′1, and f1 where
s; e1; f →∗ s1; e′1; f, f1, then condition f0 RTRf1 holds.

To prove trace-based soundness, the crucial property we establish is:
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I Lemma 16 (Effect-Trace Consistency Preservation). If s; Φ; Γ D̀ e : T, σ, s ` f : σ and
s; e; f → s′; e′; f ′ thens′`f ′ :σ′.

Finally, we can prove the intuitive notion of soundness of intensional effect polymorphism:

I Theorem 17 ( λie Trace-Based Soundness). If ∅; ∅ ` e : T, σ, then e is trace-sound.

6.3 Differential Alignment Optimization

In §5, we defined an alternative “optimized λie” to avoid full-fledged dynamic typing, centering on
differential alignment. We now answer several important questions: (1) static completeness: every
typable program in λie has a corresponding program in optimized λie. (2) dynamic completeness:
for every typable program in λie, its corresponding program at runtime cannot get stuck due to the
failure of finding a differential alignment. (3) soundness: for every program in λie, its corresponding
program in optimized λie should behave “predictably” at runtime. We will rigorously define this
notion shortly; intuitively, it means that “optimized λie” is indeed an optimization of λie, i.e., without
altering the results computed by the latter.

Optimization static completeness is a simple property of
Φ,Γ
 :

I Theorem 18 (Static Completeness of Optimization). For any e such that Φ; Γ ` e : T, σ,

there exists d such that e
Φ,Γ
 d.

To correlate the dynamic behaviors of λie and optimized λie, first recall that the → reduction
system and→O reduction system are identical, except for how the assuming expression is reduced.
The progress of (Oasm) relies on the existence of substitution θ that aligns the dynamic type asso-
ciated with values and the static type. Dynamic completeness of differential alignment thus can be
viewed as the “correspondence of progress” for the two reduction systems to reduce the correspond-
ing assuming expressions. This is indeed the case, which can be generally captured by the following
theorem:

I Theorem 19 (Dynamic Completeness of Optimization). If s; Φ; Γ D̀ e : T, σ and e
∅,∅
 d,

then given some s and f , the following two are equivalent:
there exists some s′, e′ and f ′ such that s; e; f → s′; e′, f ′.
there exists some s′′, d′ and f ′′ such that s; d; f →O s′′; d′, f ′′.

Finally, we wish to study soundness. The most important insight is that the transformation

relation
Φ,Γ
 can be preserved through the corresponding reductions of λie and optimized λie. In

other words, one can view the reduction of optimized λie as a simulation of λie:

I Lemma 20 (→O Simulates → with
Φ,Γ
 Preservation). If s; Φ; Γ D̀ e : T, σ and e

∅,∅
 d and

s; e; f → s′; e′, f ′ and s; d; f →O s′′; d′, f ′′, then s′ = s′′, and f ′ = f ′′, and e′
∅,∅
 d′.

Finally, let us state our soundness of differential alignment:

I Theorem 21 (Soundness of Optimization). Given some expression e such that ∅; ∅ ` e : T, σ,

and e
∅,∅
 d then

there exists a reduction sequence such that ∅; e; ∅ →∗ s; v; f iff there exists a reduction sequence
such that ∅; d; ∅ →∗O s; v; f .
there exists a reduction sequence such that the evaluation of e diverges according to→ iff there
exists a reduction sequence such that the evaluation of d diverges according to→O.

Observe that we are careful by not stating the two reduction systems must diverge at the same
time, or reduce to the same value at the same time. That would be unrealistic if the client instanti-
ations of our calculus introduce non-determinism.
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7 Related Work

Static type-and-effect systems are well-explored. Earlier work includes Lucassen [27], and Talpin et
al. [36], and more recent examples such as Marino et al. [28], Task Types [21], Bocchino et al. [8]
and Rytz et al. [32]. There are well-known language design ideas to improve the precision and ex-
pressiveness of static type systems, and many may potentially be applied to effect reasoning, such as
flow-sensitive types [15], typestates [35] and conditional types [4]. Classic program analysis tech-
niques such as polymorphic type inference, nCFA [33], CPA [3], context-sensitive, flow-sensitive,
and path-sensitive analyses, are good candidates for effect reasoning of programs written in exist-
ing languages. For example, effect systems can gain more precision by incorporating control flow
analysis (nCFA) [33] which provides precise call-site information [23].

Bañados et al. [5] developed a gradual effect (GE) type system based on gradual typing [34],
by extending Marino et al. [28] with ? (“unknown”) types. As a gradual typing system, GE ex-
cels in scenarios such as prototyping. The system is also unique in its insight by viewing ? type
concretization as an abstract interpretation problem. Our work shares the high-level philosophy of
GE — mixing static typing and dynamic typing for effect reasoning — but the two systems are or-
thogonal in approaches. For example, GE programs may run into runtime type errors, whereas our
programs do not. Foundationally, the power of intensional effect polymorphism lies upon how para-
metric polymorphism and intensional type analysis interact — a System F framework on the famous
lambda cube — whereas frameworks based on gradual typing are not. Other than gradual typing,
other solutions to mix static typing and dynamic typing include the Dynamic type [1], soft typing
[10] and Hybrid Type Checking [14]. From the perspective of the lambda cube, their expressiveness
is on par with gradual typing. Previous work, e.g., Heumann et al. [20] and Treichler et al. [38],
relies on dynamic effects for safe concurrency. Our system is more general: it can not only support
safe concurrency as shown in §2.1, but also other important application domains such as information
security, consistent UI access and program optimization.

Intensional type analysis by Harper and Morrisett [19] is a framework with many extensions
(e.g., [12]). We apply it in the context of effect reasoning, and the intentionality in our system is
achieved through dynamic typing, instead of typecase-style inspection on polymorphic types.
To the best of our knowledge, our system is the first hybrid effect type system built on top of the
intensional type analysis.

Existential types are commonly used for type abstraction and information hiding. They are also
suggested [19, 31] to capture the notion of Dynamic type [1]. Our use of existential types are
closer to the latter application, except that we aim to differentiate (and connect) the types at compile
time and the types at runtime, instead of pessimistically viewing the former as Dynamic. We are
unaware of the use of bounded existential types to connect the two type representations.

Effect systems are an important reasoning aid with many applications. For example, beyond the
application domains we described in §2, they are also known to be useful for safe dynamic updating
[29] and checked exceptions [24, 6].

8 Conclusion

In this paper, we develop a new foundation for type-and-effect systems, where static effect reasoning
is coupled with intensional effect analysis powered by dynamic typing. We describe how a precise,
sound, and efficient hybrid reasoning system can be constructed, and demonstrate its applications in
concurrent programming, information security, UI access, and memoization.
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