
Interaction-Based Programming Towards Translucent Clouds
(Position Paper)

Yu David Liu and Kartik Gopalan
SUNY Binghamton

{davidL, kartik}@cs.binghamton.edu

Abstract
Today’s cloud computing platforms are typically “opaque”:
Amazon EC2 users only receive virtual units of CPU and
memory, and physical details of the platform are hidden.
Such opacity prevents programs from online optimiza-
tions and deployment adjustment, and is penalizing the
very applications cloud computing attempts to attract: high-
performance software. On the other extreme, a completely
transparent design of clouds would lead to severe security
and reliability concerns. In this position paper, we take the
middle-of-the-road approach, proposing a language model
for well-defined programmable interactions between the
cloud platform and the client program. Our proposed ideas
draw from the previous work of Classages, where first-class
interactions can be dynamically established and terminated
for two parties with mutually satisfiable contracts. In this
paper, we justify how our design can help cloud programs to
fine-tune performance, and how it may impact on other im-
portant issues of cloud computing, such as security, schedul-
ing, and pricing.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; D.4.6
[Operating Systems]: Organization and Design—Distributed
Systems

General Terms Languages

Keywords Cloud programming, interactions

1. Introduction
Cloud computing provides an attractive technology for end
users to “lease” powerful hardware platforms remotely, and
pay bills as if they were paying for electricity and gas.
Most major cloud service providers today tend to prefer
the “opaque” cloud model: users submit processing and
data storage requests to the cloud without fully knowing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
APLWACA ’10 June 6, Toronto, Canada.
Copyright c© 2010 ACM 978-1-60558-913-8/10/06. . . $5.00

where, when, and how their requests are handled. For exam-
ple, Amazon EC2 instances, Google App Engine quota re-
sources, Microsoft Azure compute instances, and Rackspace
Cloud servers are all virtual units of CPUs, memory and
storage. These units are more of quality of service (QoS)
guarantees than physical details of the cloud infrastructure
itself. Indeed, the very terminological origin of cloud com-
puting alludes to the opaque nature of the cloud platforms.

There are strong reasons why cloud platforms should
not be completely transparent to end users. Cloud service
providers are in business to make a profit. This goal trans-
lates into two operational requirements: (1) satisfying the re-
quirements of cloud applications by providing greater QoS,
and (2) minimizing the resource usage in their cloud plat-
forms, in terms of hardware infrastructure, power, and man-
agement costs. These two goals are often in conflict with
each other; to achieve a balance, the cloud service providers
are increasingly adopting virtualization technology [VMW,
BDF+03, KKL+07] – the ability to transparently execute
multiple virtual machines on a single physical machine. Vir-
tualization enables the service providers to boost resource
utilization by packing more work into fewer physical ma-
chines. Virtualization also enables flexibility in resource ad-
ministration through the use of live migration [CFH+05,
NLH05, HDG09].

However, higher resource utilization and administration
flexibility comes at the cost of application-specific per-
formance optimizations. The cloud application writers do
not know when, where and how their applications would
execute. Greater visibility into the internals of the cloud
platforms could enable application writers to better opti-
mize their applications. For example, from a scheduling
perspective, a web service application may prefer being
co-scheduled (scheduled simultaneously) with its back-end
database server in order to minimize its communication la-
tency. Similarly, a geographically distributed content deliv-
ery system may require that its servers be placed at different
physical locations at various times of the day to better op-
timize its interactions with users. As yet another example,
distributed high performance computing applications might
require maximum bounds on communication latency be-
tween any two nodes involved in collaborative computation
activity. Such usage instances call for cloud providers to en-



able cloud applications to be aware of the details of their
execution environment.

In this position paper, we propose a middle-of-the-road
approach between complete transparency and complete
opaqueness, which we term translucent cloud programming.
It is our belief that controlled exposure of the cloud infras-
tructure to application writers – and consequently principled
interaction between the cloud and the applications on it – can
only help satisfy the two previous operational requirements,
beneficial to both cloud users and cloud providers. For cloud
users, a greater awareness of platform details may lead
to application-specific optimizations. For cloud providers,
further resource usage reductions may be achieved with
a greater awareness of the application status. For the sec-
ond part, imagine cloud software is developed in a language
where the program run-time carries information on how “ac-
tive” a computation is. The cloud can then make scheduling,
paging, and caching decisions accordingly, e.g. preferring
those more “active” computations.

Concretely, we propose a new object-oriented program-
ming language, iCloud, for cloud computing. iCloud is de-
signed with the philosophy of Interaction-Based Program-
ming: interactions should be first-class citizens of programs,
and should only happen on explicitly defined interfaces.
Interaction-Based Programming is also the central theme of
Classages [LS05], a general-purpose language for represent-
ing first-class object relationships. In contrast with its pre-
cursor, the design of iCloud is more focused on how the dy-
namic aspects of interactions can help address important is-
sues in cloud programming, which we elaborate in the rest
of the paper.

2. Translucent Cloud Programming
We demonstrate the key ideas of our language with an ex-
ample, in Fig. 1 and Fig. 2. The oversimplified cloud ap-
plication here is composed of two concurrent parts, main
program logic in MyApp and database-related operations in
MyDB. A third class, CloudCPUServices in Fig. 2, is the
cloud provider’s abstraction for the scheduling service. With
this class, the application can interact with the cloud directly
to perform scheduling-related optimizations – the cloud is
thus no longer completely opaque from the programmer’s
perspective.

Connectors for Controlled Cloud Service Exposure Sim-
ilar to Java, an iCloud class may also have local fields and
local methods; what distinguishes it from a Java one is its
connectors – the interfaces defining what interactions its run-
time instances can be involved in. For instance, class MyApp
has a DB connector and Sch connector. This means that a
MyApp object can participate in two and only two kinds of
interactions with other objects at run time.

What is relevant to our discussion here is cloud services
can also be abstracted as classes with connectors. iCloud
does not allow public field or method access, so connec-

class MyApp {
MyApp(CloudCPUServices ccs, MyDB db) {

csh = connect ccs with Sch >> ISch;

db = db;

}
connector DB {

import query(Query);

export queryDone(DataSet d) {
...process result d ...

disconnect;
}

}
connector Sch {

import coschedule(Object);

import setTID(Object);

export coscheduleDone() {}
export scheduleFriends() { }

}
void process(Query q) {

cdb = connect db with DB >> Data;

cdb -> setTID(this);

cdb -> query(q);

csh -> coschedule(db);

}
Sch csh;

DB db;

...other local fields and methods ...

}

class MyDB {
MyApp(CloudCPUServices ccs) {

connect ccs with Sch >> ISch;

}
connector Data {

export void query(Query q) {
DataSet d= ... prepare result ...

queryDone(d);

}
}
connector Sch {

import coschedule(Object);

export scheduleFriends() {
for(i =0; i< FRIENDNUM; i++)

coschedule(friends[i]);

}
Object friends[FRIENDNUM];

}

Figure 1. A Cloud Application



class CloudCPUServices {
connector ISch {

state Object clientTID;

export coschedule(Object friendID) {
a1 = affinity clientTID;

a2 = affinity friendID;

if distance(a1, a2) > THRES {
a3 = findAvailable(a1);

migrate friendID to a3;

forall(c: ISch)

if(c -> clientTID == friendID)

c -> scheduleFriends();

}
coscheduleDone();

}
export setTID(Object tID) {

clientTID = tID;

}
import scheduleFriends();

import coscheduleDone();

}
connector ICache {

...

}
int findAvailable(int center, int dist) {

//return a CPU close to center within distance dist

}
int distance(int a1, int a2) {

//return the “distance” of CPUs a1 and a2

}
}

Figure 2. A Cloud Service

tors serve as the complete specification of the cloud’s expo-
sure to the programmer. To avoid “too much” transparency,
cloud service providers need to, and only need to, design
connectors carefully. For example, the ISch connector of
CloudCPUServices exposes a method called coschedule,
which allows whoever interacts with this connector to co-
schedule threads.

A connector-based design is a boon for security, so that
access control policies are only needed on these well-defined
interfaces [LS02, LS06]. Information-flow related verifica-
tion may also become simpler, because it is the data that
cross the boundary of connectors are what really matter.

Each connector may have a number of import’s and
export’s. Each export is a method the connector can pro-
vide to “the other party” (i.e. whoever is connected to this
connector) , and each import is a signature specifying what
it expects the other party to provide. Such bi-directional de-
pendencies express the “mutual satisfaction” nature of inter-
actions. Each connector may also hold connection-specific
data. For example, connector ISch of CloudCPUServices
contains a mutable state clientTID, which keeps track of
the thread ID of the party concurrently connected to ISch.

Connections have a Dynamic Lifespan Constructs such
as import and export are commonly designed in module
systems and linking calculi [BC90, Car97, FKF98, FF98].
Interactions on connectors however are not linking. Such
interactions, called connections, can instead be viewed as
dynamically established and terminated pathways for mes-
sage passing. To establish a connection between the Sch
connector of a MyApp object and the ISch connector of a
CloudCPUServices object (say s), the MyApp object at run-
time can evaluate the following expression:

c = connect s with Sch >> ISch;

The result of the connect expression, c, is called a connec-
tion handle, the first-class incarnation of the message path-
way. After the connection is established, it stays alive, so
that message coschedule can be passed along from the
MyApp object to the CloudCPUServices object, via expres-
sion c->coschedule(3). The connection is terminated via
expression disconnect c, denoting connection c is discon-
nected. If the expression appears inside a connector, the ar-
gument can be ignored, denoting the current connection is
disconnected.

Note that connections are established asymmetrically:
connect is always evaluated in the scope of the connection
initiator. For the party being connected, the object can al-
ways query all the connection handles for a particular con-
nector, via forall syntax. For instance in CloudCPUServices,
the forall(c : ISch){. . .} expression enumerates all live con-
nections currently associated with connector ISch.

In the context of cloud computing, dynamic lifespan of
connections can be very useful for process and memory
management – each use of disconnect in the program ex-
presses the application programmer’s intention of “I won’t
be using this interaction for a while,” valuable information
for the cloud platform to decide how to utilize precious CPU
and memory resources. New scheduling and paging algo-
rithms can be designed to count the live connections asso-
ciated with each connector periodically, and those objects
with no live connections can be paged out of memory, and
their operating threads can be context-switched out. Observe
that the strategy here is very different from application-blind
algorithms, such as garbage collection: an object can very
well still be referenced but there are no connections to it at a
specific point in time.

Pricing Model With different kinds of services encapsu-
lated into distinct connectors, the use of each connector can
be priced separately to meet varied functionality and QoS
requirements. Advanced cloud service connectors may only
be accessed by users willing to pay an extra charge. Cloud
providers have the financial incentive for this pricing strat-
egy, and cloud users are satisfied for better services.

Connections with a dynamic lifespan may also lead to
new pricing strategies for cloud computing. Users can be
charged only for the duration when each connection is alive.



On today’s cloud computing platforms, the most common
strategy is to charge users based on the time the application
is running. This is suboptimal for several reasons. First, it
does not provide incentives for users to disconnect as often
as they can, which in turn would prevent smarter resource
optimization and management on the end of cloud providers
as we described earlier. Second, users are in general given no
incentive to save as much resource and use as little service
as they can, which eventually leads to the overall waste of
power and computing resources.

Other popular pricing strategies applied by today’s com-
mercial cloud services include those based on bandwidth,
storage, or system load (auction-based). These more QoS-
oriented metrics are certainly an improvement over the time-
based flat-rate plans, but none of these truly link the unit
of pricing with that of the program itself. With iCloud, ser-
vice providers are encouraged to offer more diversified paid
services, encapsulating each with a connector with its own
pricing strategy; In the meantime, cloud application writers
can program with pricing implications in mind – the choice
of connectors and the duration of keeping each connection
alive both reflect the programmer’s desire on how to balance
QoS and cost.

Concurrency Model Cloud computing is fundamentally
associated with parallel computing. In iCloud, a concurrency
model similar to Actors [Agh90] is adopted: each object
lives in its own thread and can be deployed on different
parallel units of the cloud. With the uniform treatment of
objects and threads, the object ID can double as a thread
ID. For example, the argument friendID of coschedule
is an object reference, but it can be used directly by the
CloudCPUServices as a thread identifier for scheduling.

From this perspective, a connection is a message pathway
between parallel threads. Following Actors and numerous
non-shared memory message passing designs, message pass-
ing through a connection in iCloud is asynchronous. Meth-
ods in a connector do not have return values. Such a design
does not present any expressiveness loss in an interface with
both import and export however. In the DB connector, when
the query message is sent, the execution is non-blocking –
no result of the query is returned immediately; later when
the DB thread is ready with the query result, the queryDone
message will be sent back to MyApp. The Hollywood princi-
ple here (“I will call you back”) should be familiar to most
event-programming programmers. An identical design has
appeared in sensor network programming [GLvB+03].

As an alternative solution, it is also possible to define
some connectors as “intra-node” and others as “inter-node.”
With this slightly more elaborate design, messages through
“intra-node” connections can be synchronous, a design that
may appear more friendly to Java programmers. A language
that allows for mixed asynchronous messaging and syn-
chronous messaging is Coqa [LLS08].

Cloud-Specific Primitives We use expression affinity e to
retrieve the CPU affinity associated with each thread e (i.e.
object ID). As scheduling becomes a central issue for cloud
management, we introduce expression migrate e to e′ to
express thread e is going to migrate to CPU e′.

The Example Revisited The example in Fig. 1 and Fig. 2
is an oversimplified illustration of a widely known co-
scheduling strategy [ADCM98]: whenever a potentially
bandwidth-heavy request happens, co-schedule the receiver
thread to be as close to the sender as possible. In our ex-
ample, let us assume the database query will return a large
DataSet. In method process, the scheduler is requested
to co-schedule the DB object as close to MyApp as possi-
ble after the query is sent. The import of coschedule
on the end of MpApp is implemented by the export on the
end of CloudCPUServices. In that method, the “distance”
of between MyApp’s CPU and MyDB’s CPU is computed,
and necessary steps are taken to bring them closer. If MyDB
has migrated from one CPU to another, the method checks
whether any other threads in close interaction with MyDB (i.e.
“friends”) need to be coscheduled too.

3. Conclusion
This paper explores programming language support for
cloud computing. The proposed iCloud language is aimed
at providing principled programmable interactions between
cloud services and cloud applications, and between different
parts inside applications. The design of iCloud touches upon
a number of important issues in cloud computing, such as
concurrency, pricing, and security.

On the philosophical level, Translucent Cloud Program-
ming favors “dialog, not confrontation” between cloud ser-
vice providers and application writers. We believe the ben-
efit is mutual: more knowledge of cloud physical details
may help programmers perform application-specific opti-
mizations such as scheduling and caching, whereas more
knowledge of applications may help cloud infrastructure
gain insight on the intentions and status of the applications
and optimize accordingly.

Just as most new programming models, the programming
idioms behind iCloud can either be implemented as a new
language or a library to an existing language. We have cho-
sen the first route here, because compiler-directed checking
offers stronger guarantees to correctness; a language-based
approach also enables more powerful static and dynamic op-
timizations. For instance, connector encapsulation and con-
nector matching at interaction time can be formulated as
type invariants and guaranteed by a sound static type sys-
tem. A similar type system has been constructed for Clas-
sages, so we are confident it can be successfully constructed
for iCloud too. As another example, the online optimiza-
tion based on live connection counting we described in Sec.2
can be performed for all programs. In cases where new lan-
guages are not possible (e.g. legacy code upgrade), we are



open to the idea of implementing the idioms of iCloud as a
library. A previous library-based implementation of connec-
tors was explored by ArchJava [ASCN03].

Our language design is motivated by providing better in-
teractions between cloud infrastructure and cloud applica-
tions. A future direction we would like to explore is to use
the interaction-based model to program interactions between
different parts of a cloud application. Programming models
with strikingly different paradigms exist in this latter cate-
gory, such as MapReduce [DG04] and BOOM [ACC+10].
It will be interesting to see how iCloud can blend with these
existing models, and what additional benefits can be ob-
tained.

References
[ACC+10] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy,

Joseph M. Hellerstein, and Russell Sears. Boom analytics:
exploring data-centric, declarative programming for the cloud.
In EuroSys ’10: Proceedings of the 5th European conference on
Computer systems, pages 223–236, 2010.

[ADCM98] Andrea C. Arpaci-Dusseau, David E. Culler, and Alan M.
Mainwaring. Scheduling with implicit information in distributed
systems. SIGMETRICS Perform. Eval. Rev., 26(1):233–243, 1998.

[Agh90] Gul Agha. ACTORS : A model of Concurrent computations in
Distributed Systems. MITP, Cambridge, Mass., 1990.

[ASCN03] Jonathan Aldrich, Vibha Sazawal, Craig Chambers, and David
Notkin. Language support for connector abstractions. In
ECOOP’03, pages 74–102, 2003.

[BC90] Gilad Bracha and William Cook. Mixin-based inheritance. In
Proceedings of the Joint ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA) and the 4th European Conference of Object-Oriented
Programming (ECOOP), pages 303–311, 1990.

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim
Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield.
Xen and the art of virtualization. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles, Bolton, NY, USA,
pages 164–177, 2003.

[Car97] Luca Cardelli. Program fragments, linking, and modularization.
In Proceedings of the 24th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages (POPL), pages 266–277,
1997.

[CFH+05] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines. In
Proc. of Network System Design and Implementation, 2005.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI’04, 2004.

[FF98] Matthew Flatt and Matthias Felleisen. Units: Cool modules for HOT
languages. In Proceedings of ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation (PLDI), pages
236–248, 1998.

[FKF98] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen.
Classes and mixins. In Proceedings of the 25th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages
(POPL), pages 171–183, 1998.

[GLvB+03] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric
Brewer, and David Culler. The nesC language: A holistic approach
to networked embedded systems. In PLDI ’03, pages 1–11, New
York, NY, USA, 2003. ACM.

[HDG09] Michael Hines, Umesh Deshpande, and Kartik Gopalan. Post-copy
live migration of virtual machines. SIGOPS Operating Systems
Review, 43(3):14–26, July 2009.

[KKL+07] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony
Liguori. kvm: the linux virtual machine monitor. In Proc. of the
Linux Symposium, pages 225–230, June 2007.

[LLS08] Yu David Liu, Xiaoqi Lu, and Scott F. Smith. Coqa: Concurrent
objects with quantized atomicity. In CC’08, March 2008.

[LS02] Yu David Liu and Scott F. Smith. A Component Security
Infrastructure. In Foundation of Computer Security Workshop,
2002.

[LS05] Yu David Liu and Scott F. Smith. Interaction-based Programming
with Classages. In OOPSLA’05, pages 191–209, 2005.

[LS06] Xiaoqi Lu and Scott F. Smith. A microkernel virtual machine:
building security with clear interfaces. In PLAS, pages 47–56,
2006.

[NLH05] Michael Nelson, Beng-Hong Lim, and Greg Hutchins. Fast
transparent migration for virtual machines. In In Usenix Annual
Technical Conference, 2005.

[VMW] VMWare Corporation. VMWare ESX Server, available online at
http://www.vmware.com/products/vi/esx/.


