
JATO: Native Code Atomicity for Java

Siliang Li1, Yu David Liu2, and Gang Tan1

1 Department of Computer Science & Engineering, Lehigh University
2 Department of Computer Science, SUNY Binghamton

Abstract. Atomicity enforcement in a multi-threaded application can be criti-

cal to the application’s safety. In this paper, we take the challenge of enforc-

ing atomicity in a multilingual application, which is developed in multiple pro-

gramming languages. Specifically, we describe the design and implementation of

JATO, which enforces the atomicity of a native method when a Java application

invokes the native method through the Java Native Interface (JNI). JATO relies

on a constraint-based system, which generates constraints from both Java and na-

tive code based on how Java objects are accessed by threads. Constraints are then

solved to infer a set of Java objects that need to be locked in native methods to en-

force the atomicity of the native method invocation. We also propose a number of

optimizations that soundly improve the performance. Evaluation through JATO’s

prototype implementation demonstrates it enforces native-method atomicity with

reasonable run-time overhead.

1 Introduction

Atomicity in programming languages is a fundamental concurrency property: a program

fragment is atomic if its execution sequence—regardless of how the latter interleaves

with other concurrent execution sequences at run time—exhibits the same “serial” be-

havior (i.e., as if no interleaving happened). Atomicity significantly simplifies the rea-

soning about concurrent programs because invariants held by the atomic region in a

serial execution naturally holds for a concurrent execution. Thanks to the proliferation

of multi-core and many-core architectures, there is a resurgence of interest in atom-

icity, with active research including type systems and program analyses for atomicity

enforcement and violation identification (e.g., [6, 23, 11, 5]), efficient implementation

techniques (e.g., [10]) and alternative programming models (e.g., [1, 21, 3]).

As we adopt these research ideas to serious production settings, one major hurdle to

cross is to support atomicity across foreign function interfaces (FFIs). Almost all lan-

guages support an FFI for interoperating with modules in low-level languages (e.g., [20,

28, 17]). For instance, numerous classes in java.lang.* and java.io.* packages

in the Java Development Kit (JDK) use the Java Native Interface (JNI), the FFI for Java.

Existing atomicity solutions rarely provide direct support for FFIs. More commonly,

code accessed through FFIs—called native code in JNI—is treated as a “black box.”

The “black box” assumption typically yields two implementations, either leading to

severe performance penalty or unsoundness. In the first implementation, the behavior

of the native code is over-approximated as “anything can happen,” i.e., any memory

area may be accessed by the native code. In that scenario, a “stop-the-world” strategy

2

is usually required to guarantee soundness when native code is being executed—all

other threads must be blocked. In the second implementation, the run-time behavior

of native code is ignored, an unsound under-approximation. Atomicity violations may

occur when native code happens to access the same memory area that it interleaves with.

Such systems, no matter how sophisticated their support for atomicity for non-native

code, technically conform to weak atomicity [22] at best. The lack of atomicity support

for native code further complicates the design of new parallel/concurrent programming

models. For example, several recent languages [1, 15, 3] are designed to make programs

atomic by default, promoting the robustness of multi-core software. Native code poses

difficulties for these languages: the lack of atomicity support for it is often cited [1] as

a key reason for these languages to design “opt-out” constructs from their otherwise

elegant implicit atomicity models.

We present JATO for atomicity enforcement across the JNI. It is standard knowledge

that atomicity enforcement requires a precise accounting of the relationship between

threads and their accessed memory. JATO is built upon the simple observation that de-

spite rather different syntax and semantics between Java and native code, the memory

access of both languages can be statically abstracted in a uniform manner. JATO first

performs a static analysis to abstract memory access from both non-native code and

native code, and then uses a lock-based implementation to guarantee atomicity, judi-

ciously adding protection locks to selected memory locations. With the ability to treat

code on both sides of the JNI as “white boxes” and perform precise analysis over them,

our solution is not only sound, but also practical in terms of performance as demon-

strated by a prototype implementation. This paper makes the following contributions:

– We propose a novel static analysis to precisely identify the set of Java objects whose

protection is necessary for atomicity enforcement. The analysis is constructed as

a constraint-based inference, which uniformly extracts memory-access constraints

from JNI programs.

– The paper reports a prototype implementation, demonstrating the effectiveness and

the performance impact on both micro-benchmarks and real-world applications.

– We propose a number of optimizations to further soundly improve the performance,

such as no locks on read-only objects.

2 Background and Assumptions

The JNI allows Java programs to interface with low-level native code written in C,

C++, or assembly languages. It allows Java code to invoke and to be invoked by native

methods. A native method is declared in a Java class by adding the native modifier to a

method. For example, the following Node class declares a native method named add:

class Node {int i=10; native void add (Node n);}

Once declared, native methods are invoked in Java in the same way as how Java

methods are invoked. Note that the Java side may have multiple Java threads running,

each of which may invoke some native method.

The implementation of a native method receives a set of Java-object references from

the Java side; for instance, the above add method receives a reference to this object

3

and a reference to the n object. A native-method implementation can interact with Java

through a set of JNI interface functions (called JNI functions hereafter) as well as using

features provided by the native language. Through JNI functions, native methods can

inspect/modify/create Java objects, invoke Java methods, and so on. As an example,

it can invoke MonitorEnter to lock a Java object and MonitorExit to unlock a

Java object.

Assumptions. In any language that supports atomicity, it is necessary to define the

atomic region, a demarcation of the program to indicate where an atomic execution

starts and where it ends. One approach is to introduce some special syntax and ask pro-

grammers to mark atomic regions – such as atomic blocks. JATO’s assumption is that

each native method forms an atomic region. This allows us to analyze unannotated JNI

code directly. Furthermore, we believe that this assumption matches Java programmers’

intuition nicely. Java programmers often view native methods as black boxes, avoiding

the reasoning about interleaving between Java code and native code. Finally, the as-

sumption does not affect expressiveness. For instance, an atomic region with two native

method invocations can be encoded as creating a third native method whose body con-

tains the two invocations. If there is Java code fragment in between the two invocations,

the encoded version can model the Java code by inserting a Java callback between the

two invocations. Overall, the core algorithm we propose stays the same regardless of

the demarcation strategy of atomic regions.

When enforcing native-method atomicity, JATO focuses on those Java objects that

cross the Java-native boundary. It ignores the memory regions owned by native methods.

For instance, native code might have a global pointer to a memory buffer in the native

heap and lack of protection of the buffer might cause atomicity violations. Enforcing

this form of atomicity can be performed on the native-side alone (e.g., [2]). Furthermore,

native code cannot pass pointers that point to C buffers across the boundary because

Java code does not understand C’s type system; native code has to invoke JNI functions

to create Java objects and pass references to those Java objects across the boundary.

Because of these reasons, JATO focuses on language-interoperation issues and analyzes

those cross-boundary Java objects.

3 The Formal Model

In this section, we use an idealized JNI language to describe the core of JATO: a

constraint-based lock inference algorithm for ensuring the atomicity of native methods.

3.1 Abstract Syntax

The following BNF presents the abstract syntax of an idealized JNI language where

notation X represents a sequence of X’s. Its Java subset is similar to Featherweight

Java (FJ) [13], but with explicit support for field update and let bindings. For simplicity,

the language omits features such as type casting, constructors, field initializers, multi-

argument methods on the Java side, and heap management on the native side.

4

P ::= class c extends c {F M N } classes

F ::= c f fields

M ::= c m(c x){e} Java methods

N ::= native c m(c x){t} native methods

e ::= x | null | e.f | e.f:=e | e.m(e) | newℓ c | let x = e in e Java terms

t ::= x | null | GetField(t, fd) | SetField(t, fd , t) native terms

| NewObjectℓ(c) | CallMethod(t,md , t) | let x = t in t
bd ::= e | t method body

fd ::= 〈c, f〉 field ID

md ::= 〈c,m〉 method ID

A program is composed of a sequence of classes, each of which in turn is com-

posed of a sequence of fields F , a sequence of Java methods M , and a sequence of

native methods N . In this JNI language, both Java and native code are within the defini-

tion of classes; real JNI programs have separate files for native code. As a convention,

metavariable c(∈ CN) is used for class names, f for field names, m for method names,

and x for variable names. The root class is Object. We use e for a Java term, and t for

a native term. A native method uses a set of JNI functions for accessing Java objects.

GetField and SetField access a field via a field ID, and CallMethod invokes a

method defined on a Java object, which could either be implemented in Java or in native

code. Both the Java-side instantiation expression (new) and the native-side counterpart

(NewObject) are annotated with labels ℓ(∈ LAB) and we require distinctness of all

ℓ’s in the code. We use notation LP : LAB 7→ CN to represent the mapping function

from labels to the names of the instantiated classes as exhibited in program P . We use

mbody(m, c) to compute the method body of m of class c, represented as x .bd where

x is the parameter and bd is the definition of the method body. The definition of this

function is identical to FJ’s namesake function when m is a Java method. When m is a

native method, the only difference is that the method should be looked up in N instead

of M . We omit this lengthy definition in this short presentation.

Throughout this section, we will use a toy example to illustrate ideas, presented in

Fig. 1. We liberally use void and primitive types, constructors, and use “x = e1; e2” for

let x = e1 in e2. Note that the Node class contains a native method for adding integers

of two Node objects and updating the receiver object. The goal in our context is to

insert appropriate locks to ensure the execution of this native method being atomic.

3.2 Constraint Generation: An Overview

Atomicity enforcement relies on a precise accounting of memory access, which in JATO

is abstracted as constraints. Constraints are generated through a type inference algo-

rithm, defined in two steps: (1) constraints are generated intraprocedurally, both for

Java methods and native methods; (2) all constraints are combined together through a

closure process, analogous to interprocedural type propagation. The two-step approach

is not surprising for object-oriented type inference, because dynamic dispatch approxi-

mation and concrete class analysis are long known to be intertwined in the presence of

5

class Node extends Object {

int i=10;

native void add (Node n) {

x1=GetField(this,<Node,i>);

x2=GetField(n,<Node,i>);

SetField(this,<Node,i>,x1+x2);}}

class Thread2 extends Thread {

Node n1, n2;

Thread2(Node n1, Node n2) {

this.n1=n1; this.n2=n2;}

void run() {n2.add(n1);}}

class Main extends Object {

void main() {

n1=new Nodeℓ1
();

n2=new Nodeℓ2
();

th=new Thread2ℓth
(n1,n2);

th.start();

n1.add(n2);

}

}

Fig. 1. A running example

interprocedural analysis [27]: approximating dynamic dispatch – i.e., determine which

methods would be used to enable interprocedural analysis – requires the knowledge of

the concrete classes (i.e., the class of the run-time object) of the receiver, but interproce-

dural analysis is usually required to compute the concrete classes of the receiver object.

JATO performs step (1) to intraprocedurally generate constraints useful for dynamic

dispatch approximation and concrete class analysis, and then relies on step (2) to per-

form the two tasks based on the constraints. The details of the two steps are described

in Sec. 3.3 and Sec. 3.4, respectively.

One interesting aspect of JATO is that both Java code and native code will be ab-

stracted into the same forms of constraints after step (1). JATO constraints are:

K ::= κ constraint set

κ ::= α
θ
−→ α′ | α ≤ α′ | [α.m]α

′

constraint

θ ::= R | W access mode

α ::= ℓ | φ | thisO | thisT abstract object/thread

| α.f | α.m+ | α.m−

An access constraint α
θ
−→ α′ says that an (abstract) object α accesses an (abstract)

object α′, and the access is either a read (θ = R) or a write (θ = W). Objects in JATO’s

static system are represented in several forms. The first form is an instantiation site label

ℓ. Recall earlier, we have required all ℓ’s associated with the instantiation expressions

(new or NewObject) to be distinct. It is thus natural to represent abstract objects with

instantiation site labels. Our formal system’s precision is thus middle-of-the-road: we

differentiate objects of the same class if they are instantiated from different sites, but

reins in the complexity by leaving out more precise features such as nCFA [29] or n-

object context-sensitivity [25]. The other forms of α are used by the type inference

algorithm: label variables φ ∈ LVAR, thisO for the object enclosing the code being

analyzed, thisT for the thread executing the code being analyzed, α.f for an alias to

field f of object α, and α.m+ and α.m− for aliases to the return value and the formal

parameter of a method invocation to method name m of α, respectively.

6

(T-Read)
Γ ⊢ e : α\K

Γ ⊢ e.f : α.f\K ∪ {thisT
R
−→ α}

(T-Write)
Γ ⊢ e : α\K Γ ⊢ e′ : α′\K′

Γ ⊢ e.f:=e′ : α′\K ∪ K′ ∪ {α′ ≤ α.f, thisT
W
−→ α}

(T-Msg)
Γ ⊢ e : α\K Γ ⊢ e′ : α′\K′

Γ ⊢ e.m(e′) : α.m+\K ∪ K′ ∪ {α′ ≤ α.m−, [α.m]thisT}

(T-Thread)
Γ ⊢ e : α\K javaT (Γ, e) is of a thread class

Γ ⊢ e.start() : α\K ∪ {[α.run]α}

(T-New) Γ ⊢ newℓ c : ℓ\∅
(T-NewThread)

c is of a thread class φ fresh

Γ ⊢ newℓ c : ℓ\{ℓ ≤ φ, φ ≤ ℓ}

(T-Var) Γ ⊢ x : Γ (x)\∅ (T-Null) Γ ⊢ null : ℓnull\∅

(T-Let)
Γ ⊢ e : α\K Γ � [x 7→ α] ⊢ e′ : α′\K′

Γ ⊢ let x = e in e′ : α′\K ∪ K′

Fig. 2. Java-Side Intraprocedual Constraint Generation

The additional two forms of constraints, α ≤ α′ and [α.m]α
′

, are used for concrete

class analysis and dynamic dispatch approximation, respectively. Constraint α ≤ α′

says that α may flow into α′. At a high level, one can view this form of constraint

as relating two aliases. (As we shall see, the transitive closure of the binary relation

defined by ≤ is de facto a concrete class analysis.) Constraint [α.m]α
′

is a dynamic

dispatch placeholder, denoting method m of object α is being invoked by thread α′.

3.3 Intraprocedural Constraint Generation

We now describe the constraint-generation rules for Step (1) described in Sec. 3.2.

Fig. 2 and Fig. 3 are rules for Java code and native code, respectively. The class-level

constraint-generation rules are defined in Fig. 4. Environment Γ is a mapping from

x ’s to α’s. Constraint summary M is a mapping from method names to constraint

sets. Judgement Γ ⊢ e : α\K says expression e has type α under environment Γ and

constraints K. Since no confusion can exist, we further use Γ ⊢ t : α\K to represent

the analogous judgement for native term t. Judgement ⊢cls class c . . . \M says the

constraint summary of class c is M. Operator � is a mapping update: given a mapping

U , U � [u 7→ v] is identical to U except element u maps to v in U � [u 7→ v].
Observe that types are abstract objects (represented by α’s). Java nominal typing

(class names as types) is largely orthogonal to our interest here, so our type system

7

(TN-Read)
Γ ⊢ t : α\K fd = 〈c, f〉

Γ ⊢ GetField(t, fd) : α.f\K ∪ {thisT
R
−→ α}

(TN-Write)
Γ ⊢ t : α\K Γ ⊢ t′ : α′\K′ fd = 〈c, f〉

Γ ⊢ SetField(t, fd , t′) : α′\K ∪ K′ ∪ {α′ ≤ α.f, thisT
W
−→ α}

(TN-Msg)
Γ ⊢ t : α\K Γ ⊢ t′ : α′\K′ md = 〈c,m〉

Γ ⊢ CallMethod(t,md , t′) : α.m+\K ∪ K′ ∪ {α′ ≤ α.m−, [α.m]thisT}

(TN-Thread)
Γ ⊢ t : α\K md = 〈c,start〉 c is a thread class

Γ ⊢ CallMethod(t,md) : α\K ∪ {[α.run]α}

(TN-New) Γ ⊢ newℓ c : ℓ\∅

(TN-NewThread)
c is a thread class φ fresh

Γ ⊢ NewObjectℓ(c) : ℓ\{ℓ ≤ φ, φ ≤ ℓ}

(TN-Var) Γ ⊢ x : Γ (x)\∅ (TN-Null) Γ ⊢ null : ℓnull\∅

(TN-Let)
Γ ⊢ t : α\K Γ � [x 7→ α] ⊢ t′ : α′\K′

Γ ⊢ let x = t in t′ : α′\K ∪ K′

Fig. 3. Native-Side Intraprocedural Constraint Generation

does not include it. Taking an alternative view, one can imagine we only analyze pro-

grams already typed through Java-style nominal typing. For that reason, we liberally

use function javaT (Γ, e) to compute the class names for expression e.

On the Java side, (T-Read) and (T-Write) generate constraints to represent the read-

/write access from the current thread (thisT) to the object whose field is being read-

/written (α in both rules). The constraint α′ ≤ α.f in (T-Write) abstracts the fact that

e′ flows into the field f of e, capturing the data flow. The flow constraint generated by

(T-Msg) is for the flow from the argument to the parameter of the method. That rule

in addition generates a dynamic dispatch placeholder. (T-Thread) models the somewhat

stylistic way Java performs thread creation: when an object of a thread class is sent a

startmessage, the runmethod of the same object will be wrapped up in a new thread

and executed. (T-New) says that the label used to annotate the instantiation point will

be used as the type of the instantiated object. (T-NewThread) creates one additional

label variable to represent the thread object. The goal here is to compensate the loss

of precision of static analysis, which in turn would have affected soundness: a thread

object may very well be part of a recursive context (a loop for example) where one

instantiation point may be mapped to multiple run-time instances. The static analysis

8

(T-Cls)

⊢cls class c0 . . . \M
[this 7→ thisO, x 7→ thisO.m−] ⊢ bd : α\K for all mbody(m, c) = x .bd

K′ = K ∪ {α ≤ thisO.m+}

⊢cls class c extends c0 {F M N }\(M � m 7→ K′)

(T-ClsTop) ⊢cls class Object\[]

Fig. 4. Class-Level Constraint Generation

needs to be aware if all such instances access one shared memory location – a sound-

ness issue because exclusive access by one thread or shared access by multiple threads

have drastically different implications in reasoning about multi-threaded programs. The

solution here is called doubling [15, 34], treating every instantiation point for thread ob-

jects as two threads. Observe that we do not perform doubling for non-thread objects in

(T-New) because there is no soundness concern there. The rest of the three rules should

be obvious, where ℓnull is a predefined label for null. For the running example, the

following constraints will be generated for the two classes written in Java:

Main : {main 7→ {ℓth ≤ φ2, φ2 ≤ ℓth , [ℓth .run]
ℓth , ℓ2 ≤ ℓ1.add

−, [ℓ1.add]
thisT}}

Thread2 : {run 7→ {ℓ1 ≤ ℓ2.add
−, [ℓ2.add]

thisT}}

The native-side inference rules have a one-on-one correspondence with the Java-

side rules – as related by names – and every pair of corresponding rules generate the

same form of constraints. This is a crucial insight of JATO: by abstracting the two

worlds of Java syntax and native code syntax into one unified constraint represen-

tation, the artificial boundary between Java and native code disappears. As a result,

thorny problems such as callbacks (to Java) inside native code no longer exists – the

two worlds, after constraints are generated, are effectively one. The constraints for the

Node class in the running example are:

Node : {add 7→ {thisT
R
−→ thisO, thisT

W
−→ thisO, thisT

R
−→ thisO.add−}}

3.4 Constraint Closure

Now that the constraint summary has been generated on a per-class per-method basis,

we can discuss how to combine them into one global set. This is defined by computing

the constraint closure, defined as follows:

Definition 1 (Constraint Closure). The closure of program P with entry method md ,

denoted as JP,md K is the smallest set that satisfies the following conditions:

– Flows: ≤ is reflexive and transitive in JP,md K.

9

– Concrete Class Approaching: If {α′ ≤ α} ∪ K ⊆ JP,md K, then K{α′/α} ⊆
JP,md K.

– Dynamic Dispatch: If [ℓ.m]ℓ0 ∈ JP,md K, thenM(m){ℓ/thisO}{ℓ0/thisT} ⊆
JP,md K where LP (ℓ) = c and ⊢cls class c . . . \M.

– Bootstrapping: {[ℓBO.m]ℓBT , ℓBP ≤ ℓBO.m
−} ⊆ JP,md K where md = 〈c,m〉.

The combination of Flows and Concrete Class Approaching is de facto a concrete

class analysis, where the “concrete class” in our case is the object instantiation sites

(not Java nominal types): the Flows rule interprocedurally builds the data flow, and the

Concrete Class Approaching rule substitutes a flow element with one “up stream” on

the data flow. When the “source” of the data flow – an instantiation point label – is sub-

stituted in, concrete class analysis is achieved. Standard notation K{α′/α} substitutes

every occurrence of α in K with α′. Dynamic Dispatch says that once the receiver

object of an invocation resolves to a concrete class, dynamic dispatch can thus be re-

solved. The substitutions of thisO and thisT are not surprising from an interproce-

dural perspective. The last rule, Bootstrapping, bootstraps the closure. ℓBO, ℓBT, ℓBP are

pre-defined labels representing the bootstrapping object (the one with method md), the

bootstrapping thread, and the parameter used for the bootstrapping invocation.

For instance, if P is the running example, the following constraints are among the

ones in the closure from its main method, i.e., JP, 〈cmain,mmain〉 K:

ℓBT
R
−→ ℓ1 ℓBT

W
−→ ℓ1 ℓBT

R
−→ ℓ2

ℓth
R
−→ ℓ2 ℓth

W
−→ ℓ2 ℓth

R
−→ ℓ1

That is, the bootstrapping thread performs read and write access to object ℓ1 and read

access to object ℓ2. The child thread performs read access to object ℓ1 and read and

write access to object ℓ2. This matches our intuition about the program.

3.5 Atomicity Enforcement

Based on the generated constraints, JATO infers a set of Java objects that need to be

locked in a native method to ensure its atomicity. JATO also takes several optimizing

steps to remove unnecessary locks while still maintaining atomicity.

Lock-all. The simplest way to ensure atomicity is to insert locks for all objects that a

native method may read from or write to. Suppose we need to enforce the atomicity of

a native method md in a program P , the set of objects that need to be locked are:

Acc(P,md)
def
= {α | (α′ θ

−→ α) ∈ JP,md K ∧ (α ∈ LAB ∨ labs(α) ⊆ { ℓBO, ℓBP }) }

The first predicate (α′
θ
−→ α) ∈ JP,md K says that α is indeed read or written. The

α’s that satisfy this predicate may be in a form that represents an alias to an object, such

as ℓ.f1.f2.m
+, and it is clearly desirable to only inform the lock insertion procedure of

the real instantiation point of theobject (the α ∈ LAB predicate) – e.g., “please lock the

object instantiated at label ℓ33.” This, however, is not always possible because the in-

stantiation site for the object enclosing the native method and that for the native method

10

parameter are abstractly represented as ℓBO and ℓBP, respectively. It is thus impossible

to concretize any abstract object whose representation is “built around them”. For ex-

ample, ℓBO.f3 means that the object is stored in field f3 of the enclosing object ℓBO, and

access to the stored object requires locking the enclosing object. This is the intuition

behind predicate labs(α) ⊆ { ℓBO, ℓBP }, where labs(α) enumerates all the labels in α.

For the running example, the set of objects to lock for the native add method –

Acc(P, 〈Node, add〉) – is { ℓBO, ℓBP }, meaning both the enclosing object and the pa-

rameter needs to be locked.

Locking all objects in Acc(P,md) is sufficient to guarantee the atomicity of md .

This comes as no surprise: every memory access by the native method is guarded by a

lock. The baseline approach here is analogous to a purely dynamic approach: instead of

statically computing the closure and the set of objects to be locked as we define here,

one could indeed achieve the same effect by just locking at run time for every object

access.

In the lock-all approach, JATO inserts code that acquires the lock for each object in

the set as computed above and releases the lock at the end. The lock is acquired by JNI

function MonitorEnter and released by MonitorExit.

Lock-on-write. In this strategy, we differentiate read and write access, and optimize

based on the widely known fact that non-exclusive reads and exclusive writes are ad-

equate to guarantee atomicity. The basic idea is simple: given a constraint set K, only

elements in the following set needs to be locked, where size computes the size of a set:

lockS (K)
def
= {ℓ | size({ℓ′ | ℓ′

W
−→ ℓ ∈ K}) 6= 0 ∧ size({ℓ′ | ℓ′

θ
−→ ℓ ∈ K}) > 1}

It would be tempting to compute the necessary locks for enforcing the atomicity

of native method md of program P as lockS (JP,md K). This unfortunately would be

unsound. Consider the running example. Even though the parameter object n is only

read accessed in native method add, it is not safe to remove the lock due to two facts:

(1) in the main thread, add receives object ℓ1 as the argument; (2) in the child thread,

object ℓ1 is mutated. If the lock to the parameter object n were removed, atomicity of

add could not be guaranteed since the integer value in the parameter object may be

mutated in the middle of the method. Therefore, it is necessary to perform a global

analysis to apply the optimization.

The next attempt would be to lock objects in lockS (JP, 〈cmain,mmain〉 K). Clearly,

this is sound, but it does not take into the account that native method md only accesses

a subset of these objects. To compute the objects that are accessed by md , we define

function AccG(P,md) as the smallest set satisfying the following conditions, where

md = 〈c,m〉 and K0 = JP, 〈cmain,mmain〉 K:

– If {[ℓ.m]ℓ0 , ℓ1 ≤ ℓ.m−} ⊆ K0 where LP (ℓ) = c, then

Acc(P,md){ℓ/ℓBO}{ℓ0/ℓBT}{ℓ1/ℓBP} ⊆ AccG(P,md) .
– If ℓ ≤ α ∈ K0 and α ∈ AccG(P,md), then ℓ ∈ AccG(P,md).

In other words, Acc(P,md) almost fits our need, except that it contains placeholder

labels such as ℓBO, ℓBT, and ℓBP. AccG concretizes any abstract object whose represen-

tation is dependent on them. With this definition, we can now define our strategy: locks

are needed for native method md of program P for any object in the following set:

11

AccG(P,md) ∩ lockS (JP, 〈cmain,mmain〉 K).

Lock-at-write-site. Instead of acquiring the lock of an object at the beginning of a

native method and releasing the lock at the end, this optimization inserts locking around

the code region of the native method that accesses the object. If there are multiple

accesses of the object, JATO finds the smallest code region that covers all accesses and

acquires/releases the lock only once.

4 Prototype implementation

We implemented a prototype system based on the constraint-based system described in

the previous section. Java-side constraint generation in JATO is built upon Cypress [35],

a static analysis framework focusing on memory access patterns. Native-side constraint

generation is implemented in CIL [26], an infrastructure for analyzing and transforming

C code. The rest of JATO is developed in around 5,000 lines of OCaml code.

One issue that we have ignored in the idealized JNI language is the necessity of

performing Java-type analysis in native code. In the idealized language, native methods

can directly use field IDs in the form of 〈c, f〉 (and similarly for method IDs). But in

real JNI programs, native methods have to invoke certain JNI functions to construct

those IDs. To read a field of a Java object, native method must take three steps: (1) use

GetObjectClass to get a reference to the class object of the Java object; (2) use

GetFieldID to get a field ID for a particular field by providing the field’s name and

type; (3) use the field ID to retrieve the value of the field in the object.

For instance, the following program first gets obj’s field nd, which is a reference

to another object of class Node. It then reads the field i of the Node object.

jclass cls = GetObjectClass(obj);

jfieldID fid = GetFieldID(cls, "nd", "Node");

jobject obj2 = GetField(obj, fid);

jclass cls2 = GetObjectClass(obj2);

jfieldID fid2 = GetFieldID(cls2, "i", "I");

int x1 = GetIntField(obj, fid2);

The above steps may not always be performed in consecutive steps; caching field

and method IDs for future use is a common optimization. Furthermore, arguments pro-

vided to functions such as GetFieldIDmay not always be string constants. For better

precision, JATO uses an inter-procedural, context-sensitive static analysis to track con-

stants and infer types of Java references [19]. For the above program, it is able to decide

that there is a read access to obj and there is a read access to obj.nd. To do this, it is

necessary to infer what Java class cls represents and what field ID fid represents.

5 Preliminary evaluation

We performed preliminary evaluation on a set of multithreaded JNI programs. Each

program was analyzed to generate a set of constraints, as presented in Sec. 3. Based on

12

the closure of the generated constraints, a set of objects were identified to ensure atom-

icity of a native method in these programs. Different locking schemes were evaluated

to examine their performance.

All experiments were carried out on an iMac machine running Mac OS X (version

10.7.4) with Intel core i7 CPU of 4 cores clocked at 2.8GHz and with 8GB memory.

The version of Java is OpenJDK 7. For each experiment, we took the average among

ten runs.

We next summarize the JNI programs we have experimented with. The programs

include: (1) a parallel matrix-multiplication (MM) program, constructed by ourselves; (2)

a Fast-Fourier-Transform (FFT) program, adapted from JTransforms [33] by rewriting

some Java routines in C; (3) the compress program, which is a module that per-

forms multithreaded file compression provided by the MessAdmin [24] project; (4) the

derby benchmark program is selected from SPECjvm2008 [30] and is a database pro-

gram. Both compress and derby are pure Java programs, but they invoke standard

Java classes in java.io and java. util.zip, which contain native methods.

The analysis time and LOC for both Java side and C side on each program are listed

below. It is observed that majority of the time is spent on Java side analysis, particularly

on Java-side constraint-generation.

Program LOC (Java) Time (Java) LOC (C) Time (C)

MM 275 3.34s 150 10µs

FFT 6,654 8.14s 3,169 0.01s

compress 3,197 27.8s 5,402 0.05s

derby 919,493 81.04s 5,402 0.05s

All programs are benchmarked under the three strategies we described in the previ-

ous section. L-ALL stands for the lock-all approach. L-W stands for the lock-on-write

approach. L-WS stands for the case after applying the lock-on-write and lock-at-write-

site optimizations.

Matrix multiplication. The programs takes in two input matrices, calculates the mul-

tiplication of the two and writes the result in an output matrix. It launches multiple

threads and each thread is responsible for calculating the result of one element of the

output matrix. The calculation of one element is through a native method. In this pro-

gram, three two-dimensional arrays of double crosses the boundary from Java to the

native code.

For this program, JATO identifies that the native method accesses the three cross-

boundary objects. These objects are shared among threads. The input matrices and their

arrays are read-accessed whereas the resulting matrix and its array are read- and write-

accessed.

Fig. 5(a) presents the execution times of applying different locking schemes. The

size of the matrices is 500 by 500 with array elements ranging between 0.0 and 1000.0.

L-WS has the best performance overall.

FFT. The native method of this program takes in an array of double to be trans-

formed and sets the transformed result in an output array. The input array is read-

accessed whereas the output array is write-accessed. The arrays are shared among

13

(a) MM (b) FFT

(c) compress (d) derby

Fig. 5. Execution time of the benchmark programs under different locking schemes.

threads. Fig. 5(b) shows the results of FFT. Similar to the program of matrix multi-

plication, L-W improved upon L-ALL, and L-WS performs the best among the three.

compress. This program compresses an input file by dividing the file into smaller

blocks and assigning one block to one thread for compression. The actual compression

is performed in the native side using the zlib C library. JATO identifies that a number

of objects such as Deflater are shared among threads and read/write accessed at the

Java side. One exception is FileInputStream, where it is only read-accessed in

Java but is write-accessed at the native side. In term of the number of locks inserted,

there is little difference between lock-all and lock-on-write.

Fig. 5(c) presents the results of compress. The file size is about 700MB and the

block size is 128K. The performance gain of L-W over L-ALL is negligible. We see

there is some minor improvement using L-WS. This is because in the native code, write-

access code regions to the locked objects are typically small.

derby. It is a multithreaded database. Some byte arrays and FileInputStream

objects are passed into the native code. They are read-accessed between threads from

the Java side. On the native side, both kinds of objects are write-accessed.

Fig. 5(d) shows the result of running derby. The experiment was run for 240 seconds

with 60 seconds warm-up time. The peak ops/min occurs when the number of threads is

between 8 to 32. We can see that in L-WS approach, the performance gains at its peak

is about 35% over L-ALL.

For compress and derby, we also experimented with the no-lock scheme in

which no locking is inserted in native methods. Although the uninstrumented programs

14

run successfully, there is no guarantee of native-method atomicity as provided by JATO.

The programs of matrix multiplication and FFT would generate wrong results when no

locks were inserted for native-method atomicity. For the matrix-multiplication program,

even though the native method of each thread calculates and updates only one element

of the output matrix, it is necessary to acquire the lock of the output matrix before

operating on it: native methods use JNI functionGetArrayElements to get a pointer

to the output matrix and GetArrayElements may copy the matrix and return a

pointer to the copy [20].

6 Related Work

The benefits of static reasoning of atomicity in programming languages were demon-

strated by Flanagan and Qadeer [6] through a type effect system. Since then, many static

systems have been designed to automatically insert locks to enforce atomicity: some are

type-based [23, 15]; some are based on points-to graphs [11]; some reduce the problem

to an ILP optimization problem [5]. Among them, JATO’s approach is more related

to [15]. Unlike that approach where the focus is on the interaction between language

design and static analysis, JATO focuses on static analysis in a mixed language setting.

Atomicity can either be implemented via locks (e.g., the related work above) or by

transactional memory (TM) [10]. Related to our work are two concepts articulated in

TM research: weak atomicity and strong atomicity [22]. In a system that supports weak

atomicity, the execution of an atomic program fragment exhibits serial behaviors only

when interleaving with that of other atomic program fragments; there is no guarantee

when the former interleaves with arbitrary executions. To support the latter, i.e., strong

atomicity, has been a design goal of many later systems (e.g., [4]). Most existing strong

atomicity algorithms would disallow native methods to be invoked within atomic re-

gions, an unrealistic assumption considering a significant number of Java libraries are

written in native code for example. Should they allow for native methods but ignore

their impact these approaches would revert back to what they were aimed at solving:

weak atomicity.

In a software transactional memory setting where the atomicity region is defined

as atomic blocks, external actions [9] are proposed as a language abstraction to allow

code running within an atomic block to request that a given pre-registered operation

(such as native method invocation) be executed outside the block. In the “atomicity-by-

default” language AME [1], a protected block construct is introduced to allow the

code within the block to opt out of the atomicity region. Native methods are cited as a

motivation for this construct. Overall, these solutions focus on how to faithfully model

the non-atomicity of native methods, not how to support their atomicity.

This work belongs to the general category of improving upon FFIs’ safety, reliabil-

ity, and security. FFI-based software is often error-prone; recent studies found a large

number of software bugs in the interface code between modules of different languages

based on static analysis [7, 8, 32, 14, 18, 19] and dynamic analysis [31, 16], and new

interface languages for writing safer multilingual code (e.g., [12]). JATO performs in-

terlanguage analysis and lock insertion to ensure atomicity of native methods in JNI

code. We are not aware of other work that addresses concurrency issues in FFI code.

15

7 Conclusion and Future Work

JATO is a system that enforces atomicity of native methods in multi-threaded JNI pro-

grams. Atomicity enforcement algorithms are generalized to programs developed in

multiple languages by using an inter-language, constraint-based system. JATO takes

care to enforce a small number of locks for efficiency.

As future work, we will investigate how to ensure locking inserted by JATO does

not cause deadlocks (even though we didn’t encounter such cases yet during our ex-

periment), probably using the approach of a global lock order as in Autolocker [23].

Moreover, we believe that JATO’s approach can be generalized to other FFIs such as

the OCaml/C interface [17] and the Python/C interface [28].

Acknowledgements

The authors would like to thank Haitao Steve Zhu for his assistance with running exper-

iments in Cypress. The authors would also like to thank the anonymous reviewers for

their thorough and valuable comments. This research is supported by US NSF grants

CCF-0915157, CCF-151149211, a research award from Google, and in part by National

Natural Science Foundation of China grant 61170051.

References

1. M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of transactional memory and auto-

matic mutual exclusion. In POPL ’08, pages 63–74, 2008.

2. E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: safe multithreaded programming for

c/c++. In OOPSLA ’09, pages 81–96, 2009.

3. R. L. Bocchino, Jr., S. Heumann, N. Honarmand, S. V. Adve, V. S. Adve, A. Welc, and

T. Shpeisman. Safe nondeterminism in a deterministic-by-default parallel language. In POPL

’11, pages 535–548, 2011.

4. B. CarlStrom, A. McDonald, H. Chafi, J. Chung, C. Minh, C. Kozyrakis, and K. Olukotun.

The atomos transactional programming language. In PLDI’06, June 2006.

5. M. Emmi, J. S. Fischer, R. Jhala, and R. Majumdar. Lock allocation. In POPL ’07, pages

291–296, 2007.

6. C. Flanagan and S. Qadeer. A type and effect system for atomicity. In PLDI’03, pages

338–349, 2003.

7. M. Furr and J. Foster. Checking type safety of foreign function calls. In ACM Conference

on Programming Language Design and Implementation (PLDI), pages 62–72, 2005.

8. M. Furr and J. Foster. Polymorphic type inference for the JNI. In 15th European Symposium

on Programming (ESOP), pages 309–324, 2006.

9. T. Harris. Exceptions and side-effects in atomic blocks. Sci. Comput. Program., 58(3):325–

343, Dec. 2005.

10. T. Harris and K. Fraser. Language support for lightweight transactions. In OOPSLA’03,

pages 388–402, 2003.

11. M. Hicks, J. S. Foster, and P. Prattikakis. Lock inference for atomic sections. In TRANS-

ACT’06, June 2006.

12. M. Hirzel and R. Grimm. Jeannie: Granting Java Native Interface developers their wishes. In

ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA), pages 19–38, 2007.

16

13. A. Igarashi, B. Pierce, and P. Wadler. Featherweight java - a minimal core calculus for java

and gj. In ACM Transactions on Programming Languages and Systems, pages 132–146,

1999.
14. G. Kondoh and T. Onodera. Finding bugs in Java Native Interface programs. In ISSTA ’08:

Proceedings of the 2008 International Symposium on Software Testing and Analysis, pages

109–118, New York, NY, USA, 2008. ACM.
15. A. Kulkarni, Y. D. Liu, and S. F. Smith. Task types for pervasive atomicity. In OOPSLA ’10,

October 2010.
16. B. Lee, M. Hirzel, R. Grimm, B. Wiedermann, and K. S. McKinley. Jinn: Synthesizing a

dynamic bug detector for foreign language interfaces. In ACM Conference on Programming

Language Design and Implementation (PLDI), pages 36–49, 2010.
17. X. Leroy. The Objective Caml system, 2008. http://caml.inria.fr/pub/docs/

manual-ocaml/index.html.
18. S. Li and G. Tan. Finding bugs in exceptional situations of JNI programs. In 16th ACM

Conference on Computer and Communications Security (CCS), pages 442–452, 2009.
19. S. Li and G. Tan. JET: Exception checking in the Java Native Interface. In ACM Conference

on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages

345–358, 2011.
20. S. Liang. Java Native Interface: Programmer’s Guide and Reference. Addison-Wesley

Longman Publishing Co., Inc., 1999.

21. Y. D. Liu, X. Lu, and S. F. Smith. Coqa: Concurrent objects with quantized atomicity. In

CC’08: International Conference on Compiler Construction, March 2008.
22. M. M. K. Martin, C. Blundell, and E. Lewis. Subtleties of transactional memory atomicity

semantics. Computer Architecture Letters, 5(2), 2006.
23. B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker: synchronization inference for

atomic sections. In POPL’06, pages 346–358, 2006.

24. messAdmin. http://messadmin.sourceforge.net/.
25. A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object sensitivity for points-to

analysis for java. ACM Trans. Softw. Eng. Methodol., 14(1):1–41, 2005.

26. G. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language and tools

for analysis and transformation of C programs. In International Conference on Compiler

Construction (CC), pages 213–228, 2002.
27. J. Palsberg and M. I. Schwartzbach. Object-oriented type inference. In OOPSLA ’91, pages

146–161, 1991.
28. Python/C API reference manual. http://docs.python.org/c-api/index.

html, Apr. 2009.

29. O. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, Carnegie-

Mellon University, Pittsburgh, PA, May 1991. CMU-CS-91-145.
30. SPECjvm2008. http://www.spec.org/jvm2008/.

31. G. Tan, A. Appel, S. Chakradhar, A. Raghunathan, S. Ravi, and D. Wang. Safe Java Native

Interface. In Proceedings of IEEE International Symposium on Secure Software Engineering,

pages 97–106, 2006.

32. G. Tan and G. Morrisett. ILEA: Inter-language analysis across Java and C. In ACM Confer-

ence on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),

pages 39–56, 2007.

33. P. Wendykier and J. G. Nagy. Parallel colt: A high-performance java library for scientific

computing and image processing. ACM Trans. Math. Softw., 37(3):31:1–31:22, Sept. 2010.
34. J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analysis using binary

decision diagrams. In PLDI ’04, pages 131–144, 2004.
35. H. S. Zhu and Y. D. Liu. Scalable object locality analysis with cypress principle. Technical

report, SUNY Binghamton, May 2012.

