JATO: Native Code Atomicity for Java

Siliang Li', Yu David Liu?, and Gang Tan'

! Department of Computer Science & Engineering, Lehigh University
2 Department of Computer Science, SUNY Binghamton

Abstract. Atomicity enforcement in a multi-threaded application can be criti-
cal to the application’s safety. In this paper, we take the challenge of enforc-
ing atomicity in a multilingual application, which is developed in multiple pro-
gramming languages. Specifically, we describe the design and implementation of
JATO, which enforces the atomicity of a native method when a Java application
invokes the native method through the Java Native Interface (JNI). JATO relies
on a constraint-based system, which generates constraints from both Java and na-
tive code based on how Java objects are accessed by threads. Constraints are then
solved to infer a set of Java objects that need to be locked in native methods to en-
force the atomicity of the native method invocation. We also propose a number of
optimizations that soundly improve the performance. Evaluation through JATO’s
prototype implementation demonstrates it enforces native-method atomicity with
reasonable run-time overhead.

1 Introduction

Atomicity in programming languages is a fundamental concurrency property: a program
fragment is atomic if its execution sequence—regardless of how the latter interleaves
with other concurrent execution sequences at run time—exhibits the same ““serial” be-
havior (i.e., as if no interleaving happened). Atomicity significantly simplifies the rea-
soning about concurrent programs because invariants held by the atomic region in a
serial execution naturally holds for a concurrent execution. Thanks to the proliferation
of multi-core and many-core architectures, there is a resurgence of interest in atom-
icity, with active research including type systems and program analyses for atomicity
enforcement and violation identification (e.g., [6,23,11,5]), efficient implementation
techniques (e.g., [10]) and alternative programming models (e.g., [1,21, 3]).

As we adopt these research ideas to serious production settings, one major hurdle to
cross is to support atomicity across foreign function interfaces (FFIs). Almost all lan-
guages support an FFI for interoperating with modules in low-level languages (e.g., [20,
28, 17]). For instance, numerous classes in java.lang. and java.io. « packages
in the Java Development Kit (JDK) use the Java Native Interface (JNI), the FFI for Java.
Existing atomicity solutions rarely provide direct support for FFIs. More commonly,
code accessed through FFIs—called native code in JNI—is treated as a “black box.”

The “black box” assumption typically yields two implementations, either leading to
severe performance penalty or unsoundness. In the first implementation, the behavior
of the native code is over-approximated as “anything can happen,” i.e., any memory
area may be accessed by the native code. In that scenario, a “stop-the-world” strategy

is usually required to guarantee soundness when native code is being executed—all
other threads must be blocked. In the second implementation, the run-time behavior
of native code is ignored, an unsound under-approximation. Atomicity violations may
occur when native code happens to access the same memory area that it interleaves with.
Such systems, no matter how sophisticated their support for atomicity for non-native
code, technically conform to weak atomicity [22] at best. The lack of atomicity support
for native code further complicates the design of new parallel/concurrent programming
models. For example, several recent languages [1, 15, 3] are designed to make programs
atomic by default, promoting the robustness of multi-core software. Native code poses
difficulties for these languages: the lack of atomicity support for it is often cited [1] as
a key reason for these languages to design “opt-out” constructs from their otherwise
elegant implicit atomicity models.

We present JATO for atomicity enforcement across the JNI. It is standard knowledge
that atomicity enforcement requires a precise accounting of the relationship between
threads and their accessed memory. JATO is built upon the simple observation that de-
spite rather different syntax and semantics between Java and native code, the memory
access of both languages can be statically abstracted in a uniform manner. JATO first
performs a static analysis to abstract memory access from both non-native code and
native code, and then uses a lock-based implementation to guarantee atomicity, judi-
ciously adding protection locks to selected memory locations. With the ability to treat
code on both sides of the JNI as “white boxes™ and perform precise analysis over them,
our solution is not only sound, but also practical in terms of performance as demon-
strated by a prototype implementation. This paper makes the following contributions:

— We propose a novel static analysis to precisely identify the set of Java objects whose
protection is necessary for atomicity enforcement. The analysis is constructed as
a constraint-based inference, which uniformly extracts memory-access constraints
from JNI programs.

— The paper reports a prototype implementation, demonstrating the effectiveness and
the performance impact on both micro-benchmarks and real-world applications.

— We propose a number of optimizations to further soundly improve the performance,
such as no locks on read-only objects.

2 Background and Assumptions

The JNI allows Java programs to interface with low-level native code written in C,
C++, or assembly languages. It allows Java code to invoke and to be invoked by native
methods. A native method is declared in a Java class by adding the native modifier to a
method. For example, the following Node class declares a native method named add:

class Node {int 1=10; native void add (Node n);}

Once declared, native methods are invoked in Java in the same way as how Java
methods are invoked. Note that the Java side may have multiple Java threads running,
each of which may invoke some native method.

The implementation of a native method receives a set of Java-object references from
the Java side; for instance, the above add method receives a reference to this object

and a reference to the n object. A native-method implementation can interact with Java
through a set of JNI interface functions (called JNI functions hereafter) as well as using
features provided by the native language. Through JNI functions, native methods can
inspect/modify/create Java objects, invoke Java methods, and so on. As an example,
it can invoke MonitorEnter to lock a Java object and MonitorExit to unlock a
Java object.

Assumptions. In any language that supports atomicity, it is necessary to define the
atomic region, a demarcation of the program to indicate where an atomic execution
starts and where it ends. One approach is to introduce some special syntax and ask pro-
grammers to mark atomic regions — such as atomic blocks. JATO’s assumption is that
each native method forms an atomic region. This allows us to analyze unannotated JNI
code directly. Furthermore, we believe that this assumption matches Java programmers’
intuition nicely. Java programmers often view native methods as black boxes, avoiding
the reasoning about interleaving between Java code and native code. Finally, the as-
sumption does not affect expressiveness. For instance, an atomic region with two native
method invocations can be encoded as creating a third native method whose body con-
tains the two invocations. If there is Java code fragment in between the two invocations,
the encoded version can model the Java code by inserting a Java callback between the
two invocations. Overall, the core algorithm we propose stays the same regardless of
the demarcation strategy of atomic regions.

When enforcing native-method atomicity, JATO focuses on those Java objects that
cross the Java-native boundary. It ignores the memory regions owned by native methods.
For instance, native code might have a global pointer to a memory buffer in the native
heap and lack of protection of the buffer might cause atomicity violations. Enforcing
this form of atomicity can be performed on the native-side alone (e.g., [2]). Furthermore,
native code cannot pass pointers that point to C buffers across the boundary because
Java code does not understand C’s type system; native code has to invoke JNI functions
to create Java objects and pass references to those Java objects across the boundary.
Because of these reasons, JATO focuses on language-interoperation issues and analyzes
those cross-boundary Java objects.

3 The Formal Model

In this section, we use an idealized JNI language to describe the core of JATO: a
constraint-based lock inference algorithm for ensuring the atomicity of native methods.

3.1 Abstract Syntax

The following BNF presents the abstract syntax of an idealized JNI language where
notation X represents a sequence of X’s. Its Java subset is similar to Featherweight
Java (FJ) [13], but with explicit support for field update and let bindings. For simplicity,
the language omits features such as type casting, constructors, field initializers, multi-
argument methods on the Java side, and heap management on the native side.

~

P := classcextendsc {F' M N} classes
F = cf fields
M = cm(cz){e} Java methods
N ::= native c m(c z){t} native methods
e == | null|ef| ef:=e | eem(e) | new,;c|letz =eine Java terms
t == 2z | null| GetField(t,fd) | SetField(t, fd,t) native terms
| NewObjecty(c) | CallMethod(t, md,t) |letz =tint
bd = elt method body
fd == (c,f field ID
md ::= {c,m) method ID

A program is composed of a sequence of classes, each of which in turn is com-
posed of a sequence of fields F', a sequence of Java methods A/, and a sequence of
native methods N. In this JNI language, both Java and native code are within the defini-
tion of classes; real JNI programs have separate files for native code. As a convention,
metavariable c(€ CN) is used for class names, f for field names, m for method names,
and z for variable names. The root class is Ob ject. We use e for a Java term, and ¢ for
a native term. A native method uses a set of JNI functions for accessing Java objects.
GetFieldand SetField access a field via a field ID, and CallMethod invokes a
method defined on a Java object, which could either be implemented in Java or in native
code. Both the Java-side instantiation expression (new) and the native-side counterpart
(NewOb ject) are annotated with labels £(€ LAB) and we require distinctness of all
£’s in the code. We use notation Lp : LAB — CN to represent the mapping function
from labels to the names of the instantiated classes as exhibited in program P. We use
mbody(m, c) to compute the method body of m of class c, represented as z.bd where
x is the parameter and bd is the definition of the method body. The definition of this
function is identical to FJ’s namesake function when m is a Java method. When m is a
native method, the only difference is that the method should be looked up in NV instead
of M. We omit this lengthy definition in this short presentation.

Throughout this section, we will use a toy example to illustrate ideas, presented in
Fig. 1. We liberally use void and primitive types, constructors, and use “x = ej; es” for
let x = e; in ey. Note that the Node class contains a native method for adding integers
of two Node objects and updating the receiver object. The goal in our context is to
insert appropriate locks to ensure the execution of this native method being atomic.

3.2 Constraint Generation: An Overview

Atomicity enforcement relies on a precise accounting of memory access, which in JATO
is abstracted as constraints. Constraints are generated through a type inference algo-
rithm, defined in two steps: (1) constraints are generated intraprocedurally, both for
Java methods and native methods; (2) all constraints are combined together through a
closure process, analogous to interprocedural type propagation. The two-step approach
is not surprising for object-oriented type inference, because dynamic dispatch approxi-
mation and concrete class analysis are long known to be intertwined in the presence of

class Node extends Object { class Main extends Object {
int i=10; void main () {
native void add (Node n) { nl=new Nodey, ();
x1=GetField(this, <Node, i>); n2=new Nodey, () ;
x2=GetField (n, <Node, 1i>); th=new Thread2y, (nl,n2);
SetField(this, <Node, i>,x1+x2); }} th.start ();
class Thread2 extends Thread { nl.add (n2);
Node nl, n2; }
Thread?2 (Node nl, Node n2) { }

this.nl=nl; this.n2=n2;}
void run() {n2.add(nl);}}

Fig. 1. A running example

interprocedural analysis [27]: approximating dynamic dispatch — i.e., determine which
methods would be used to enable interprocedural analysis — requires the knowledge of
the concrete classes (i.e., the class of the run-time object) of the receiver, but interproce-
dural analysis is usually required to compute the concrete classes of the receiver object.
JATO performs step (1) to intraprocedurally generate constraints useful for dynamic
dispatch approximation and concrete class analysis, and then relies on step (2) to per-
form the two tasks based on the constraints. The details of the two steps are described
in Sec. 3.3 and Sec. 3.4, respectively.

One interesting aspect of JATO is that both Java code and native code will be ab-
stracted into the same forms of constraints after step (1). JATO constraints are:

K:=%& constraint set
0 ’ .
kui=a—=d|a<d | [am]® constraint
0 = R|W access mode
a = L]¢|thisO|thisT abstract object/thread

| a.f| a.m™ | a.m™

An access constraint o i) o’ says that an (abstract) object a accesses an (abstract)
object o, and the access is either a read (f = R) or a write (0 = W). Objects in JATO’s
static system are represented in several forms. The first form is an instantiation site label
£. Recall earlier, we have required all £’s associated with the instantiation expressions
(new or NewOb ject) to be distinct. It is thus natural to represent abstract objects with
instantiation site labels. Our formal system’s precision is thus middle-of-the-road: we
differentiate objects of the same class if they are instantiated from different sites, but
reins in the complexity by leaving out more precise features such as nCFA [29] or n-
object context-sensitivity [25]. The other forms of « are used by the type inference
algorithm: label variables ¢ € LVAR, thisO for the object enclosing the code being
analyzed, thisT for the thread executing the code being analyzed, o.f for an alias to
field f of object o, and a.m™ and a.m™ for aliases to the return value and the formal
parameter of a method invocation to method name m of «, respectively.

I'ke:a\K

(T-Read) =
I'ef:af\KU{thisT — a}

I'te:a\K I'kée:a\K

(T-Write) W
I'kef:=e:a\KUK' U{a' < a.f, thisT — a}

I'Fe:a\K e :a\K'

-M -
(TMse) I'em(e):amMKUK U{d <am™, [a.m]"°T}

I'te:a\K javaT(T,e)is of a thread class

T-Thread
(T-Thread) I'te.start() : a\L U {[a.zun]*}
(T-NewThread) c is of a thread class ¢ fresh
(T-New) I F new ¢ : £\{ Y T hewe e N[0 < 6, < ()
(T-Var) I' =z : I'(z)\0 (T-Null) 7" = null : £py30\0

I'Fe:a\K 'z alke:a\K

T-Let
(T-Let I'tletz =eine : /\KUK'

Fig. 2. Java-Side Intraprocedual Constraint Generation

The additional two forms of constraints, o < o’ and [a.m]o‘,, are used for concrete
class analysis and dynamic dispatch approximation, respectively. Constraint o« < ¢’
says that & may flow into /. At a high level, one can view this form of constraint
as relating two aliases. (As we shall see, the transitive closure of the binary relation
defined by < is de facto a concrete class analysis.) Constraint [a.m]a/ is a dynamic
dispatch placeholder, denoting method m of object « is being invoked by thread «'.

3.3 Intraprocedural Constraint Generation

We now describe the constraint-generation rules for Step (1) described in Sec. 3.2.
Fig. 2 and Fig. 3 are rules for Java code and native code, respectively. The class-level
constraint-generation rules are defined in Fig. 4. Environment I' is a mapping from
x’s to a’s. Constraint summary M is a mapping from method names to constraint
sets. Judgement I" F e : «\K says expression e has type « under environment " and
constraints . Since no confusion can exist, we further use I" - ¢ : «\K to represent
the analogous judgement for native term t. Judgement F¢;5 class c...\ M says the
constraint summary of class c is M. Operator > is a mapping update: given a mapping
U, U > [u — v] is identical to U except element u maps to v in U > [u > v].
Observe that types are abstract objects (represented by a’s). Java nominal typing
(class names as types) is largely orthogonal to our interest here, so our type system

I'et:a\K fd=(cf)

(TN-Read) =
I GetField(t, fd) : a.f\K U {thisT — a}

I'Ht:a\K et o/ \K' fd = (c,f)

(TN-Write) W
'k setField(t, fd,t') : \KUK' U{a’ < a.f, thisT — «}

'tt:a\K T'kt:a"\K md = (c,m)

TN-Ms .
(e) ' callMethod(t,md,t') : am™T\K UK U{a <a.m™, [a.m]""*5T}

I'Ht:a\K md = {(c,start) cis a thread class

TN-Thread
(read) I'tcallMethod(t, md) : o\K U {[o.xun]*}

(TN-New) I" - new, c : /\()

c is a thread class ¢ fresh
I' F NewObject,(c) : A\{{ < ¢, ¢ <}

(TN-NewThread)

(TN-Var) I' =z : T'(z)\0 (TN-Null) I" - null : £5,17\0

I'—t:a\K I'slz—a kbt :a\K
I'Fletz =tint' : a/\KUK'

(TN-Let)

Fig. 3. Native-Side Intraprocedural Constraint Generation

does not include it. Taking an alternative view, one can imagine we only analyze pro-
grams already typed through Java-style nominal typing. For that reason, we liberally
use function javaT (I,) to compute the class names for expression e.

On the Java side, (T-Read) and (T-Write) generate constraints to represent the read-
/write access from the current thread (thisT) to the object whose field is being read-
/written (o in both rules). The constraint o/ < a.f in (T-Write) abstracts the fact that
¢’ flows into the field f of e, capturing the data flow. The flow constraint generated by
(T-Msg) is for the flow from the argument to the parameter of the method. That rule
in addition generates a dynamic dispatch placeholder. (T-Thread) models the somewhat
stylistic way Java performs thread creation: when an object of a thread class is sent a
start message, the run method of the same object will be wrapped up in a new thread
and executed. (T-New) says that the label used to annotate the instantiation point will
be used as the type of the instantiated object. (T-NewThread) creates one additional
label variable to represent the thread object. The goal here is to compensate the loss
of precision of static analysis, which in turn would have affected soundness: a thread
object may very well be part of a recursive context (a loop for example) where one
instantiation point may be mapped to multiple run-time instances. The static analysis

Feas class g . .. \ M
[this — thisO, £ — thisO.m™ | F bd : &\K for all mbody(m,c) = z.bd
K'=KU{a<thiso.m'}
ks class c extends co { F M N}\(M>m— K')

(T-Cls)

(T-ClsTop) b5 class Object\[]

Fig. 4. Class-Level Constraint Generation

needs to be aware if all such instances access one shared memory location — a sound-
ness issue because exclusive access by one thread or shared access by multiple threads
have drastically different implications in reasoning about multi-threaded programs. The
solution here is called doubling [15, 34], treating every instantiation point for thread ob-
jects as two threads. Observe that we do not perform doubling for non-thread objects in
(T-New) because there is no soundness concern there. The rest of the three rules should
be obvious, where /,,11 is a predefined label for null. For the running example, the
following constraints will be generated for the two classes written in Java:

Main: {main— {{y < ¢a, ¢2 < by, [€en.run]’, €y < {1.add™, [(1.add]"""}}
Thread2: {run+ {{; < fy.add™, [(y.add|""*5T}}

The native-side inference rules have a one-on-one correspondence with the Java-
side rules — as related by names — and every pair of corresponding rules generate the
same form of constraints. This is a crucial insight of JATO: by abstracting the two
worlds of Java syntax and native code syntax into one unified constraint represen-
tation, the artificial boundary between Java and native code disappears. As a result,
thorny problems such as callbacks (to Java) inside native code no longer exists — the
two worlds, after constraints are generated, are effectively one. The constraints for the
Node class in the running example are:

. R . . w . . R . _
Node : {add — {thisT — thisO, thisT — thisO, thisT — thisO.add™ }}

3.4 Constraint Closure

Now that the constraint summary has been generated on a per-class per-method basis,
we can discuss how to combine them into one global set. This is defined by computing
the constraint closure, defined as follows:

Definition 1 (Constraint Closure). The closure of program P with entry method md,
denoted as | P, md] is the smallest set that satisfies the following conditions:

— Flows: < is reflexive and transitive in [P, md].

— Concrete Class Approaching: If {o/ < a} UK C [P,md], then K{a'/a} C
[P, md].

— Dynamic Dispatch: If [(.m]% € [P, md], then M(m){¢/thisO}{¢y/thisT} C
[P, md]| where Lp({) = cand s classc...\M.

— Bootstrapping: {[(so.m]’, lgp < lgo.m™} C [P, md] where md = (c, m).

The combination of Flows and Concrete Class Approaching is de facto a concrete
class analysis, where the “concrete class” in our case is the object instantiation sites
(not Java nominal types): the Flows rule interprocedurally builds the data flow, and the
Concrete Class Approaching rule substitutes a flow element with one “up stream” on
the data flow. When the “source” of the data flow — an instantiation point label — is sub-
stituted in, concrete class analysis is achieved. Standard notation K{a’/«} substitutes
every occurrence of « in I with o/. Dynamic Dispatch says that once the receiver
object of an invocation resolves to a concrete class, dynamic dispatch can thus be re-
solved. The substitutions of thisO and thisT are not surprising from an interproce-
dural perspective. The last rule, Bootstrapping, bootstraps the closure. ¢gg, {gr, {gp are
pre-defined labels representing the bootstrapping object (the one with method md), the
bootstrapping thread, and the parameter used for the bootstrapping invocation.

For instance, if P is the running example, the following constraints are among the
ones in the closure from its main method, i.e., [P, {Cpain, Mpain) ||:

ler 3500 e Xty le Bty
b Sto 0 vy, 0y Bpy

That is, the bootstrapping thread performs read and write access to object ¢; and read
access to object ¢5. The child thread performs read access to object ¢1 and read and
write access to object /5. This matches our intuition about the program.

3.5 Atomicity Enforcement

Based on the generated constraints, JATO infers a set of Java objects that need to be
locked in a native method to ensure its atomicity. JATO also takes several optimizing
steps to remove unnecessary locks while still maintaining atomicity.

Lock-all. The simplest way to ensure atomicity is to insert locks for all objects that a
native method may read from or write to. Suppose we need to enforce the atomicity of
a native method md in a program P, the set of objects that need to be locked are:

Ace(P,md) ¥ {a | (/L a) e [P,md] A (o € LABV labs(a) € { oo, lep }) }

The first predicate (o’ LN a) € [P, md] says that « is indeed read or written. The
a’s that satisfy this predicate may be in a form that represents an alias to an object, such
as £.f;.fo.m™, and it is clearly desirable to only inform the lock insertion procedure of
the real instantiation point of theobject (the o € LAB predicate) — e.g., “please lock the
object instantiated at label /33.” This, however, is not always possible because the in-
stantiation site for the object enclosing the native method and that for the native method

10

parameter are abstractly represented as £pg and fpp, respectively. It is thus impossible
to concretize any abstract object whose representation is “built around them”. For ex-
ample, fpg.f3 means that the object is stored in field fs of the enclosing object £gg, and
access to the stored object requires locking the enclosing object. This is the intuition
behind predicate labs(«) C { ¢gg, ¢pp }, where labs(«r) enumerates all the labels in «.

For the running example, the set of objects to lock for the native add method —
Acc(P, (Node, add)) — is { fgo, {ep }, meaning both the enclosing object and the pa-
rameter needs to be locked.

Locking all objects in Acc(P, md) is sufficient to guarantee the atomicity of md.
This comes as no surprise: every memory access by the native method is guarded by a
lock. The baseline approach here is analogous to a purely dynamic approach: instead of
statically computing the closure and the set of objects to be locked as we define here,
one could indeed achieve the same effect by just locking at run time for every object
access.

In the lock-all approach, JATO inserts code that acquires the lock for each object in
the set as computed above and releases the lock at the end. The lock is acquired by JNI
function MonitorEnter and released by MonitorExit.

Lock-on-write. 1In this strategy, we differentiate read and write access, and optimize
based on the widely known fact that non-exclusive reads and exclusive writes are ad-
equate to guarantee atomicity. The basic idea is simple: given a constraint set C, only
elements in the following set needs to be locked, where size computes the size of a set:

lockS(K) < 10| size({t' | 0 Y 0 e K)) £0Asize({0 | 0 S 0 e K}) > 1)

It would be tempting to compute the necessary locks for enforcing the atomicity
of native method md of program P as lockS([P, md]). This unfortunately would be
unsound. Consider the running example. Even though the parameter object n is only
read accessed in native method add, it is not safe to remove the lock due to two facts:
(1) in the main thread, add receives object /; as the argument; (2) in the child thread,
object ¢; is mutated. If the lock to the parameter object n were removed, atomicity of
add could not be guaranteed since the integer value in the parameter object may be
mutated in the middle of the method. Therefore, it is necessary to perform a global
analysis to apply the optimization.

The next attempt would be to lock objects in lockS ([P, (Cnain, Muain)])- Clearly,
this is sound, but it does not take into the account that native method md only accesses
a subset of these objects. To compute the objects that are accessed by md, we define
function AccG (P, md) as the smallest set satisfying the following conditions, where
md = {c,m) and Ko = [P, (Cpain, Mnain) ||:

— If {[t.m]% ¢; < £.m™} C Ko where Lp(¢) = c, then
1400(P7 md){6/6}30}{60/6}31‘}{61/6313} Q ACCG(P, md) .
- If{<aeKpanda € AccG(P,md), then £ € AccG(P, md).

In other words, Acc(P, md) almost fits our need, except that it contains placeholder
labels such as fgg, lgr, and fgp. AccG concretizes any abstract object whose represen-
tation is dependent on them. With this definition, we can now define our strategy: locks
are needed for native method md of program P for any object in the following set:

11
AccG (P, md) N lockS ([P, (Crain, Muain)])-

Lock-at-write-site. Instead of acquiring the lock of an object at the beginning of a
native method and releasing the lock at the end, this optimization inserts locking around
the code region of the native method that accesses the object. If there are multiple
accesses of the object, JATO finds the smallest code region that covers all accesses and
acquires/releases the lock only once.

4 Prototype implementation

We implemented a prototype system based on the constraint-based system described in
the previous section. Java-side constraint generation in JATO is built upon Cypress [35],
a static analysis framework focusing on memory access patterns. Native-side constraint
generation is implemented in CIL [26], an infrastructure for analyzing and transforming
C code. The rest of JATO is developed in around 5,000 lines of OCaml code.

One issue that we have ignored in the idealized JNI language is the necessity of
performing Java-type analysis in native code. In the idealized language, native methods
can directly use field IDs in the form of (c,f) (and similarly for method IDs). But in
real JNI programs, native methods have to invoke certain JNI functions to construct
those IDs. To read a field of a Java object, native method must take three steps: (1) use
GetObjectClass to get a reference to the class object of the Java object; (2) use
GetFieldID to get a field ID for a particular field by providing the field’s name and
type; (3) use the field ID to retrieve the value of the field in the object.

For instance, the following program first gets obJ’s field nd, which is a reference
to another object of class Node. It then reads the field 1 of the Node object.

jclass cls = GetObjectClass (obij);

jfieldID fid GetFieldID(cls, "nd", "Node");
Jjobject obij2 GetField(obj, fid);

jclass cls2 = GetObjectClass (obj2);

jfieldID fid2 = GetFieldID(cls2, "i", "I");
int x1 = GetIntField(obj, £id2);

The above steps may not always be performed in consecutive steps; caching field
and method IDs for future use is a common optimization. Furthermore, arguments pro-
vided to functions such as Get Fie1dID may not always be string constants. For better
precision, JATO uses an inter-procedural, context-sensitive static analysis to track con-
stants and infer types of Java references [19]. For the above program, it is able to decide
that there is a read access to ob j and there is a read access to ob j . nd. To do this, it is
necessary to infer what Java class c1s represents and what field ID f£1id represents.

S5 Preliminary evaluation

We performed preliminary evaluation on a set of multithreaded JNI programs. Each
program was analyzed to generate a set of constraints, as presented in Sec. 3. Based on

12

the closure of the generated constraints, a set of objects were identified to ensure atom-
icity of a native method in these programs. Different locking schemes were evaluated
to examine their performance.

All experiments were carried out on an iMac machine running Mac OS X (version
10.7.4) with Intel core i7 CPU of 4 cores clocked at 2.8GHz and with 8GB memory.
The version of Java is OpenJDK 7. For each experiment, we took the average among
ten runs.

We next summarize the JNI programs we have experimented with. The programs
include: (1) a parallel matrix-multiplication (MM) program, constructed by ourselves; (2)
a Fast-Fourier-Transform (FFT) program, adapted from JTransforms [33] by rewriting
some Java routines in C; (3) the compress program, which is a module that per-
forms multithreaded file compression provided by the MessAdmin [24] project; (4) the
derby benchmark program is selected from SPECjvm2008 [30] and is a database pro-
gram. Both compress and derby are pure Java programs, but they invoke standard
Java classes in java.ioand java. util. zip, which contain native methods.

The analysis time and LOC for both Java side and C side on each program are listed
below. It is observed that majority of the time is spent on Java side analysis, particularly
on Java-side constraint-generation.

Program |LOC (Java)|Time (Java)|LOC (C)|Time (C)
MM 275 3.34s 150 10us
FFT 6,654 8.14s| 3,169 0.01s
compress 3,197 27.8s 5,402 0.05s
derby 919,493 81.04s| 5,402 0.05s

All programs are benchmarked under the three strategies we described in the previ-
ous section. L-ALL stands for the lock-all approach. L-W stands for the lock-on-write
approach. L-WS stands for the case after applying the lock-on-write and lock-at-write-
site optimizations.

Matrix multiplication. The programs takes in two input matrices, calculates the mul-
tiplication of the two and writes the result in an output matrix. It launches multiple
threads and each thread is responsible for calculating the result of one element of the
output matrix. The calculation of one element is through a native method. In this pro-
gram, three two-dimensional arrays of double crosses the boundary from Java to the
native code.

For this program, JATO identifies that the native method accesses the three cross-
boundary objects. These objects are shared among threads. The input matrices and their
arrays are read-accessed whereas the resulting matrix and its array are read- and write-
accessed.

Fig. 5(a) presents the execution times of applying different locking schemes. The
size of the matrices is 500 by 500 with array elements ranging between 0.0 and 1000.0.
L-WS has the best performance overall.

FFT. The native method of this program takes in an array of double to be trans-
formed and sets the transformed result in an output array. The input array is read-
accessed whereas the output array is write-accessed. The arrays are shared among

13

Matrix Multiplication FFT
140000 @ 25
P o B
— 120000 — 5
I 3 2m
2 g0 =LALL E ' *L-ALL
E LW Y “+L-RW
2 60000 Lws 2 Lws
§ 40000 S os
£ 20000 5
e o
° 2 4 8 16 32 64 128 256 u ! 2 4 8 16 %2 64 128 256
#of Threads # of Therads
(a) MM (b) FFT
compress derby
@ 25000 200
2 2 180
g 20000 160
= 15000 =LALL c lzg =L-ALL
E +LRW £ 10 +LRW
2 10000 e S — L-ws 2 w0 L-ws
= -+ No Lock) -+ No lock
§ 5000 40
3 20
3 0 0
] 12 4 8 16 3 64 128 256 1 2 4 8 16 32 64 128 256
of Threads # of Threads
(c) compress (d) derby

Fig. 5. Execution time of the benchmark programs under different locking schemes.

threads. Fig. 5(b) shows the results of FFT. Similar to the program of matrix multi-
plication, L-W improved upon L-ALL, and L-WS performs the best among the three.

compress. This program compresses an input file by dividing the file into smaller
blocks and assigning one block to one thread for compression. The actual compression
is performed in the native side using the z1ib C library. JATO identifies that a number
of objects such as Deflater are shared among threads and read/write accessed at the
Java side. One exception is FileInputStream, where it is only read-accessed in
Java but is write-accessed at the native side. In term of the number of locks inserted,
there is little difference between lock-all and lock-on-write.

Fig. 5(c) presents the results of compress. The file size is about 700MB and the
block size is 128K. The performance gain of L-W over L-ALL is negligible. We see
there is some minor improvement using L-WS. This is because in the native code, write-
access code regions to the locked objects are typically small.

derby. Itis a multithreaded database. Some byte arrays and FileInputStream
objects are passed into the native code. They are read-accessed between threads from
the Java side. On the native side, both kinds of objects are write-accessed.

Fig. 5(d) shows the result of running derby. The experiment was run for 240 seconds
with 60 seconds warm-up time. The peak ops/min occurs when the number of threads is
between 8 to 32. We can see that in L-WS approach, the performance gains at its peak
is about 35% over L-ALL.

For compress and derby, we also experimented with the no-lock scheme in
which no locking is inserted in native methods. Although the uninstrumented programs

14

run successfully, there is no guarantee of native-method atomicity as provided by JATO.
The programs of matrix multiplication and FF T would generate wrong results when no
locks were inserted for native-method atomicity. For the matrix-multiplication program,
even though the native method of each thread calculates and updates only one element
of the output matrix, it is necessary to acquire the lock of the output matrix before
operating on it: native methods use JNI function GetArrayElement s to get a pointer
to the output matrix and GetArrayElements may copy the matrix and return a
pointer to the copy [20].

6 Related Work

The benefits of static reasoning of atomicity in programming languages were demon-
strated by Flanagan and Qadeer [6] through a type effect system. Since then, many static
systems have been designed to automatically insert locks to enforce atomicity: some are
type-based [23, 15]; some are based on points-to graphs [11]; some reduce the problem
to an ILP optimization problem [5]. Among them, JATO’s approach is more related
to [15]. Unlike that approach where the focus is on the interaction between language
design and static analysis, JATO focuses on static analysis in a mixed language setting.

Atomicity can either be implemented via locks (e.g., the related work above) or by
transactional memory (TM) [10]. Related to our work are two concepts articulated in
TM research: weak atomicity and strong atomicity [22]. In a system that supports weak
atomicity, the execution of an atomic program fragment exhibits serial behaviors only
when interleaving with that of other atomic program fragments; there is no guarantee
when the former interleaves with arbitrary executions. To support the latter, i.e., strong
atomicity, has been a design goal of many later systems (e.g., [4]). Most existing strong
atomicity algorithms would disallow native methods to be invoked within atomic re-
gions, an unrealistic assumption considering a significant number of Java libraries are
written in native code for example. Should they allow for native methods but ignore
their impact these approaches would revert back to what they were aimed at solving:
weak atomicity.

In a software transactional memory setting where the atomicity region is defined
as atomic blocks, external actions [9] are proposed as a language abstraction to allow
code running within an atomic block to request that a given pre-registered operation
(such as native method invocation) be executed outside the block. In the “atomicity-by-
default” language AME [1], a protected block construct is introduced to allow the
code within the block to opt out of the atomicity region. Native methods are cited as a
motivation for this construct. Overall, these solutions focus on how to faithfully model
the non-atomicity of native methods, not how to support their atomicity.

This work belongs to the general category of improving upon FFIs’ safety, reliabil-
ity, and security. FFI-based software is often error-prone; recent studies found a large
number of software bugs in the interface code between modules of different languages
based on static analysis [7, 8,32, 14, 18, 19] and dynamic analysis [31, 16], and new
interface languages for writing safer multilingual code (e.g., [12]). JATO performs in-
terlanguage analysis and lock insertion to ensure atomicity of native methods in JNI
code. We are not aware of other work that addresses concurrency issues in FFI code.

15

7 Conclusion and Future Work

JATO is a system that enforces atomicity of native methods in multi-threaded JNI pro-
grams. Atomicity enforcement algorithms are generalized to programs developed in
multiple languages by using an inter-language, constraint-based system. JATO takes
care to enforce a small number of locks for efficiency.

As future work, we will investigate how to ensure locking inserted by JATO does
not cause deadlocks (even though we didn’t encounter such cases yet during our ex-
periment), probably using the approach of a global lock order as in Autolocker [23].
Moreover, we believe that JATO’s approach can be generalized to other FFIs such as
the OCaml/C interface [17] and the Python/C interface [28].

Acknowledgements

The authors would like to thank Haitao Steve Zhu for his assistance with running exper-
iments in Cypress. The authors would also like to thank the anonymous reviewers for
their thorough and valuable comments. This research is supported by US NSF grants
CCF-0915157, CCF-151149211, aresearch award from Google, and in part by National
Natural Science Foundation of China grant 61170051.

References

1. M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of transactional memory and auto-
matic mutual exclusion. In POPL "08, pages 63-74, 2008.
2. E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: safe multithreaded programming for
c/c++. In OOPSLA 09, pages 81-96, 2009.
3. R. L. Bocchino, Jr., S. Heumann, N. Honarmand, S. V. Adve, V. S. Adve, A. Welc, and
T. Shpeisman. Safe nondeterminism in a deterministic-by-default parallel language. In POPL
'11, pages 535-548, 2011.
4. B. CarlStrom, A. McDonald, H. Chafi, J. Chung, C. Minh, C. Kozyrakis, and K. Olukotun.
The atomos transactional programming language. In PLDI’06, June 2006.
5. M. Emmi, J. S. Fischer, R. Jhala, and R. Majumdar. Lock allocation. In POPL '07, pages
291-296, 2007.
6. C. Flanagan and S. Qadeer. A type and effect system for atomicity. In PLDI’03, pages
338-349, 2003.
7. M. Furr and J. Foster. Checking type safety of foreign function calls. In ACM Conference
on Programming Language Design and Implementation (PLDI), pages 62-72, 2005.
8. M. Furr and J. Foster. Polymorphic type inference for the INI. In /5th European Symposium
on Programming (ESOP), pages 309-324, 2006.
9. T. Harris. Exceptions and side-effects in atomic blocks. Sci. Comput. Program., 58(3):325—
343, Dec. 2005.
10. T. Harris and K. Fraser. Language support for lightweight transactions. In OOPSLA’03,
pages 388-402, 2003.
11. M. Hicks, J. S. Foster, and P. Prattikakis. Lock inference for atomic sections. In TRANS-
ACT’06, June 2006.
12. M. Hirzel and R. Grimm. Jeannie: Granting Java Native Interface developers their wishes. In
ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 19-38, 2007.

14.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

. A.Igarashi, B. Pierce, and P. Wadler. Featherweight java - a minimal core calculus for java

and gj. In ACM Transactions on Programming Languages and Systems, pages 132-146,
1999.

G. Kondoh and T. Onodera. Finding bugs in Java Native Interface programs. In ISSTA "08:
Proceedings of the 2008 International Symposium on Software Testing and Analysis, pages
109-118, New York, NY, USA, 2008. ACM.

. A. Kulkarni, Y. D. Liu, and S. F. Smith. Task types for pervasive atomicity. In OOPSLA ’10,

October 2010.

B. Lee, M. Hirzel, R. Grimm, B. Wiedermann, and K. S. McKinley. Jinn: Synthesizing a
dynamic bug detector for foreign language interfaces. In ACM Conference on Programming
Language Design and Implementation (PLDI), pages 3649, 2010.

X. Leroy. The Objective Caml system, 2008. http://caml.inria.fr/pub/docs/
manual-ocaml/index.html.

S. Li and G. Tan. Finding bugs in exceptional situations of JNI programs. In /6th ACM
Conference on Computer and Communications Security (CCS), pages 442-452, 2009.
S.Liand G. Tan. JET: Exception checking in the Java Native Interface. In ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages
345-358, 2011.

S. Liang. Java Native Interface: Programmer’s Guide and Reference. Addison-Wesley
Longman Publishing Co., Inc., 1999.

Y. D. Liu, X. Lu, and S. F. Smith. Coqa: Concurrent objects with quantized atomicity. In
CC’08: International Conference on Compiler Construction, March 2008.

M. M. K. Martin, C. Blundell, and E. Lewis. Subtleties of transactional memory atomicity
semantics. Computer Architecture Letters, 5(2), 2006.

B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker: synchronization inference for
atomic sections. In POPL’06, pages 346-358, 2006.

messAdmin. http://messadmin.sourceforge.net/.

A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object sensitivity for points-to
analysis for java. ACM Trans. Softw. Eng. Methodol., 14(1):1-41, 2005.

G. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language and tools
for analysis and transformation of C programs. In International Conference on Compiler
Construction (CC), pages 213-228, 2002.

J. Palsberg and M. I. Schwartzbach. Object-oriented type inference. In OOPSLA 91, pages
146-161, 1991.

Python/C API reference manual. http://docs.python.org/c-api/index.
html, Apr. 2009.

O. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, Carnegie-
Mellon University, Pittsburgh, PA, May 1991. CMU-CS-91-145.

SPECjvm2008. http://www.spec.org/jvm2008/.

G. Tan, A. Appel, S. Chakradhar, A. Raghunathan, S. Ravi, and D. Wang. Safe Java Native
Interface. In Proceedings of IEEE International Symposium on Secure Software Engineering,
pages 97-106, 2006.

G. Tan and G. Morrisett. ILEA: Inter-language analysis across Java and C. In ACM Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
pages 39-56, 2007.

P. Wendykier and J. G. Nagy. Parallel colt: A high-performance java library for scientific
computing and image processing. ACM Trans. Math. Softw., 37(3):31:1-31:22, Sept. 2010.
J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analysis using binary
decision diagrams. In PLDI "04, pages 131-144, 2004.

H. S. Zhu and Y. D. Liu. Scalable object locality analysis with cypress principle. Technical
report, SUNY Binghamton, May 2012.

