Child Window Controls

More notes at:
http://www.cs.binghamton.edu/~reckert/360/class5a.htm

Child Window Controls

Windows created by a parent window

& An app uses them in conjunction with parent

= Normally used for smple 1/O tasks

= Properties, appearance, behavior determined by
predefined class definitions
— But behavior can be customized

— Easy to set them up as common Windows objects
* buttons, scroll bars, etc.

= Can dso define custom Child Window Controls

= Allow user to display/select/input info in standard
ways
=« Windows Environment does most of work in:
— painting/updating a Control's screen area
— determining what user is doing
= Often used as input devices for parent window
= Are the "working components' of Dialog Boxes
= Windows OS contains each control's WinProc
— S0 messages to controls are processed in predefined way

& Parent window communicates with controls by
sending/receiving messages

Six “Classic” Control Types

« Go back to first versions of Windows
Type Window Class MFC Class

Static Text “STATI C’ CStatic
Butt on “BUTTON" CBut t on
Edit Control “EDT” CEdi t

Li st Box “L1 STBOX’ CLi st Box
Conbo Box “ COvBOBOX” CComboBox
Scrol | Bar “ SCROLLBAR’ CScrol | Bar

« All are windows

Creating Controls--Win32 API

= CreateWindow ()
— For any kind of window, including a control

— Typically called in response to WM_CREATE or
WM_SIZE

= Parameters:

— 1. Predefined control window class names:
« "STATIC","BUTTON", “EDIT”, “LISTBOX",
“COMBOBOX”, "SCROLLBAR’, others
— 2. Name of the window
« BUTTON, EDIT, STATIC classes:
— text in center of control
+ COMBOBOX, LISTBOX, SCROLLBAR classes:
— ignored (use ")

« 3. Window style

WS ,SS ,BS ,ES ,LBS ,CBS , SBS (see
CreateWindow help)

— Severd styles can be combined with the bitwise or
operator (|)

— All controls should include WS_CHILD style
« Parameters 4-7.

— X,Y position (Relative to the upper left corner of parent

window client area)
— Width & Height

= 8. Handle to the parent window

= 9. Handle to “ menu”
— Controls don' t have menus
— So hMenu parameter used to hold control’s integer ID

— ID value passed with WM_COMMAND message
generated when user interacts with the control

— Allows program to identify which control was activated

= 10. Handle to instance of program creating control
— GetWindowL ong() usually used to get this vaue
— Could declare a global HINSTANCE variable and use
value that comesin from WinMain(...)
11. Pointer to window cregtion data
— Normally NULL

Example (Win32 API)

& Inresponse to WM_CREATE in Main Window' s
WndProc():
HWND hMyButtory
HINSTANCE hinstance;

hinstance = (HINSTANCE) GetWindowL ong (hwnd,
GWL_HINSTANCE);

hMyButton= CreateWindow (“BUTTON”, “Push M¢”,

WS _CHILD | BS_PUSHBUTTON, 10, 10, 130, 60, hwnd,

(HMENU)ID_MYBUTTON, hinstance, NULL);
ShowWindow (hMyButton SW_SHOWNORMAL);

= Could be done in response to WM_SIZE message

— Then width & height of client area can be gotten from LOWORD &
HIWORD of |Param

M essages from Controls

= Most work as follows:
— User interacts with the control
— WM_COMMAND message sent to parent window
— LOWORD(wParam) = Control ID
— IParam= control’s window handle

— HIWORD(wParam) = notification code
* identifies what the user action was

Win32 API Control Message
Handlers

= Put Control message handlersin same
switch/case statement with menu handlers
(WM_COMMAND)

&« Done just as for menu handlers

Sending Messages to

Controls, Win32 API

= SendMessagg()--sends message to awindow’ s
WinProc()

= Doesn't return until message has been processed

« Parameters:
— Handle of destination window
— ID of message to send
— wParam and |Param values containing message data, if
any
* Need to betype cast

Example, Win32 API

= Send a message to hMyControl
SendMessage (hMyControl, WM_SETTEXT, 0,
(LPARAM) “Hello") ;
— Here message isWM_SETTEXT
— When received, control's WndProc() changes control’s
window name (text string displayed)
— For this message wParam must be 0;
« There are many messages that can be sent to a
control

= Depend on type of control
— Seeonline help

Static Controls
= Lotsof styles, see online help on “Static Control
Styles’. Some examples:

— SS BITMAP, SS CENTER,
SS GRAYFRAME, SS ICON, SS SIMPLE,
SS WHITEFRAME, etc.

= Change text with WM_SETTEXT message
— May need to format values with wsprintf()

= Retrieve text with WM_GETTEXT message or
GetWindow Text()

— Can convert string to values using sscanf()
= Static Controls do not send messages
= Program examples: static, static_mfc

Button Controls

= Some Styles: BS PUSHBUTTON,
BS_ RADIOBUTTON, BS CHECKBOX,
BS_OWNERDRAW, BS_GROUPBOX, etc.
= Button notification codes:
— BN_CLICK (also BN_DOUBLECLICK)
= SO0me messages you can send to buttons:

— BM_SETCHECK, BM_GETCHECK,
BM_SETSTATE, BM_GETSTATE, etc.

= Program examples. button

Child Window Controls:
List Boxes, Edit Controls

List Box Controls

=« Lotsof styles: see on-line help on LBS
— LBS_STANDARD very common
* can send messages to parent
= Program communicates with list box by sending it messages,
some common List Box messages:

— LB_RESETCONTENTS, LB_ADDSTRING, LB_GETCURSEL,
LB_GETTEXT, LB_DELETESTRING

= Some List Box Notification codes:

— LBN_SELCHANGE, LBN_DBLCLK
= Combo boxes much like list boxes (CBS , CB_, CBN)
= Program examples: listbox, combo

EDIT CONTROLS

& For viewing and editing text

& Current location kept track of with a"carat”
— A small verticd line

« Backspace, Delete, arrow keys, highlighting
work as expected

& Scrolling possible (use WS HSCROLL,
WS VSCROLL styles)

« NoO ability to format text with different
fonts, sizes, character styles, etc.
— Use Rich Edit Control for this

Edit Control Styles

& Some common styles
— ES LEFT, ES CENTER, ES RIGHT,
ES MULTILINE, ES AUTOVSCROLL,
ES PASSWORD
* See Online Help on “Edit Styles”

Edit Control Text

& Text in an edit control stored as one long
character string

= Carriage return <CR> is stored as ASCI|
code (0x0D,0x0A)

= <CR> inserted automatically if aline
doesn't fit and wraps

= NULL character inserted only at end of last
line of text

Edit Control M essages

= User interacts with edit control,
— WM_CONTROL message to parent
— LOWORD(wParam) = Control 1D
— |Param= control’s window handle

— HIWORD(wParam) = EN_** notification code
* identifies what the user action was
+ eg., EN_CHANGE
* See Online Help EN_***

Sending M essagesto an Edit Box
= Aswith other controls use SendM essage()

= Some important messages
— WM_GETTEXT, WM_SETTEXT

— Multiline edit boxes:
« EM_GETLINECOUNT (multiline edit boxes)
— Returns number of linesin the control
— EM_GETLINE: Copy alineto abuffer
— EM_LINEINDEX: Get aline's character index

— Number of characters from the beginning of edit control to start
of specified line

— EM_LINELENGTH to get length of line

= See Editl example program

