
The Mouse and Keyboard

Mouse

• A pointing device with one or more buttons
• Important input device, but not required
• User moves physical mouse =>

– Windows moves a small bitmapped image (mouse
cursor) on display device

– "Hot spot" points to a precise location on display
– Hot spot position constantly updated by low-level logic

inside Windows

Mouse Actions
• Button Down, Button Up
• Wheel movement
• Moving mouse
• Clicking

– Pressing and releasing a mouse button
• Dragging

– Moving mouse while a button is pressed down
• Double Clicking

– Clicking a button twice in succession
– Must occur within a set period of time and with mouse cursor

in approximately the same place
• Form’s SystemInformation class has two properties that give this

information:
– int DoubleClickTime
– Size DoubleClickSize

Information about Mouse

• More of Form’s SystemInformation Properties:
– bool MousePresent
– int MouseButtons

• Gets number of mouse button on the mouse

– bool MouseButtonsSwapped
– bool MouseWheelPresent

Mouse Events

– The “Control” Class defines 9 mouse events and 9
corresponding protected event handler methods

• Form class is derived from Control class
– Only one control or form receives mouse events

• The one that has its Enabled and Visible properties set to
true

• If multiple controls are stacked, the enabled visible control
on top receives the event

– A Form object receives mouse events only when
mouse is over its client area

• But mouse can be “captured” by a control -- so it can
receive mouse events when mouse is not over it

Some Basic Mouse Events and
Handler Methods

• MouseDown OnMouseDown()
• MouseUp On MouseUp()
• MouseMove OnMouseMove()
• MouseWheel On MouseWheel()

– Delegate for each event: MouseEventHandler
– 2nd argument for each handler: MouseEventArgs

• Click OnClick()
• DoubleClick OnDoubleClick()

– Delegate for each event: EventHandler
– 2nd argument for each handler: EventArgs

MouseEventArgs Property
• Gives access to read-only properties that

come with mouse events
– int X Horizontal position of mouse
– int Y Vertical position of mouse
– MouseButtons Button

• MouseButtons enumeration possibilities:
– None, Left, Right, Middle

» e.g., MouseButtons.Left
– Indicates which button or buttons are currently pressed
– Each button corresponds to a bit set

• Example use:
– If(e.Button == MouseButtons.Left) {//Do something}

Click/DoubleClick EventArgs
Static Properties

• Give access to static, read-only properties that
come with mouse Click and DoubleClick events
– Point MousePosition

• Result in screen coordinates
• To convert to client area coordinates, use PointToClient()

– MouseButtons MouseButtons
• Returns which buttons are currently pressed

Sketching Example Program
• Sketch-dotNet

– Sketching revisited
• Using C# and the .NET Framework Class Library

• But if window is exposed, the sketch
disappears

• Two ways to avoid this:
1. Save the points in each sketch and redraw all

line segments in response to Paint event
2. Draw the sketch on a shadow bitmap that the

program draws on while it’s drawing on the
screen
– Then redraw the bitmap in response to Paint event

Saving the Sketch points
• Could use an array:

– Point[] apts = new Point[?????]
• But how big?

• Better to use a C# dynamic “ArrayList”
– A class defined in System.Collections namespace

• Also has data structures classes like: Queue, Stack, SortedList, HashTable

– To create a new ArrayList:
• ArrayList arrlst = new ArrayList();

– Could hold any data type(s)

– To add elements, e.g., a Point p:
• arrlst.Add(p);
• Can also Insert() and Remove() elements

– Accessing an element: use an indexer as for an ordinary array
• Point p = (Point) arrlst[2];
• Note typecast

– Needed because indexer returns an object of type Object

– Number of objects in an Arraylist: arrlst.Count

New Sketch-dotNet using an ArrayList
• A single run can have many sketches

– One for each time left mouse button goes down
– So use one ArrayList to store the points for each sketch

• When finished (when mouse button goes up), convert to an array of Points
– Use a second ArrayList to store the array of points for each sketch (i.e., an

ArrayList of sketches)

• MouseDown event ? start a new sketch’s ArrayList
• MouseMove event ? draw line segment and add the point to

current sketch’s ArrayList
• MouseUp event ? convert current ArrayList of points to an array of

points & add it to the ArrayList of sketches
• Paint event ? use DrawLines(…) to draw all the line segments in

each ArrayList
g.DrawLines(Pen pen, Point[] a_pts); // a_pts is an array of Points

• See Sketch-dotNet-ArrayList example program
– Here we’re really storing the drawing in a Metafile format

New Sketch-dotNet using a Shadow
Bitmap

• Store the window client area as a shadow
bitmap
– Draw on the shadow bitmap and on the screen

when mouse moves with its left button down
– Draw the shadow bitmap on the the screen

when a Paint event occurs
– Note that with this technique all of the

information on the original points is lost
• See the Sketch-dotNet-Bitmap example

program

Some Other Mouse Events and
Event Handlers

• MouseEnter OnMouseEnter()
– Mouse cursor has been moved onto form’s client area

• MouseLeave OnMouseLeave()
– Mouse cursor is no longer on top of client area

• MouseHover OnMouseHover()
– Mouse cursor has entered client area and has stopped

moving
– Only happens once between MouseEnter and

MouseLeave events
• Delegate for each: EventHandler
• Argument for each: EventArgs
• See Mouse-Enter-Leave-Hover example program

The Mouse Cursor
• A little bitmap on screen that indicates the location of the

mouse
• Can change its appearance
• Encapsulated in the ‘Cursor’ class defined in

System.Windows.Forms
• Get a mouse cursor from the ‘Cursors’ class

– Consists of 28 static read-only properties that return predefined objects
of type ‘Cursor’, e.g.:

• Arrow, Cross, Default, Hand, Help, Ibeam, WaitCursor, etc.

• Some Static read/write Properties of ‘Cursor’ class:
– Cursor Current
– Point Position
– For example to display the hourglass cursor on the form:

• Cursor.Current = Cursors.WaitCursor;

• Some Static Cursor methods:
– Show(); Hide();

• See MouseCursors example program

The Keyboard
• A shared resource in Windows

– All applications receive input from same keyboard
– But any keystroke has a single destination

• The destination is always a ‘Control’ (e.g. a Form)

– Object that receives a keyboard event has the “input focus”
– the active Form

• Usually the topmost form

• If form has a caption bar, it is highlighted

– Form.ActiveForm static property returns the active form
– this.Activate() method can be used to make this form the

active form

Keys and Characters

• Think of keyboard in two ways:
– A collection of distinct physical keys

• Code generated by a key press or release identifies the key

– A means of generating character codes
• Code generated identifies a character in a character set

– Traditionally 8-bit ASCII code
– In Windows, extended to 16-bit Unicode
– Keyboard combinations (Shift, etc.) taken into account

Types of Keys
• Keyboard divided into four general groups of keys

– Toggle keys: Pressing key changes state
• Caps Lock, Num Lock, Scroll Lock, Insert

– Modifier keys : Pressing key affects interpretation of
other keys

• Shift, Ctrl, Alt

– Non-character keys : Not associated with displayable
characters; direct a program to carry out certain actions

• Function keys, PgUp, PgDn, Home, End, Insert, Delete, Arrow
keys

– Character keys : Letters, numbers, symbol keys,
spacebar, Backspace, Tab key

• Generate ASCII/Unicode codes when pressed

Keyboard Events & Data
• KeyDown, KeyEventArgs

– When any key is pressed (WM_KEYDOWN)
• KeyPress, KeyPressEventArgs

– When a character-generating key is pressed (WM_CHAR)
– Occurs after a KeyDown event

• KeyUp, KeyEventArgs
– When any key is released (WM_KEYUP)

• Note KeyUp/KeyDown and KeyPress event data is
different
– KeyUp/KeyDown events provide low-level information about

the keystroke – which key
– KeyPress provides the character code

• Keyboard combinations taken care of

KeyDown/KeyUp Events
• KeyEventArgs Properties

– KeyCode Identifies which key
– Modifiers Identifies shift states
– KeyData Combines KeyCode & Modifiers

• Keys: a huge enumeration, some examples:
– Keys.A, Keys.Z, Keys.D0 (zero key), Keys.F1, Keys.Add,

Keys.Home, Keys.Left, Keys.Back, Keys.Space, Keys.LShiftKey
– See Online Help on “Keys enumeration”

– bool Shift True if Shift key is pressed
– bool Alt True if Alt key is pressed
– bool Handled Set by event handler (initially false)
– int KeyValue Returns KeyData as an integer

KeyPress Event

• When key(s) pressed correspond to character
codes

• KeyPressEventArgs Properties:
– char KeyChar Unicode/ASCII character code
– bool Handled Set by handler (initially false)

Two Example Programs
• Key:

– Assembles incoming characters from keyboard
into a string that is displayed on the form’s
client area

• Handles Backspace key by removing last character
from string

– Handles KeyPress event
• KeyArrow:

– Moves an image on the form’s client area in
response to keyboard Left/Right/Up/Down
arrow key presses

– Handles KeyDown event

