
Timers, Animation, Images,
Bitmaps

Windows Timer
• Input device that periodically notifies an application

each time a specified time interval has elapsed
• Using a timer guarantees that a program can regain

control periodically
• Three different Timer classes in:

– System.Timers
– System.Threading
– System.Windows.Forms

• We’ll use the last one – The same one that is available
in Win32 API and MFC
– It’s integrated with other Windows events and is easiest to use

Timer applications

• Implementing a clock
• Multitasking
• Maintaining updated status report
• Implementing autosave feature
• Terminating demo versions of programs
• Activation of a screen saver after certain time
• Pacing movement – animation
• Others

The Timer Class
• Creating a Timer object:

Timer timer = new Timer();
• Timer class has one event:

– Event: Tick
– Delegate: EventHandler
– Defining a Timer Tick event handler:

Void TimerOnTick(object obj, EventArgs ea) {…};

– Attaching it to the Tick event:
timer.Tick += new EventHandler(TimerOnTick);

• Timer read/write Properties:
int Interval, Tick time in milliseconds
bool Enabled, True if timer is running

• Timer Methods:
void Start();
void Stop();

Some Timer Examples
• CloseInTen:

– A program that sets a “one-shot” timer that closes the application
after ten seconds

– Could be used to implement a “demo” version of a program that
allows the user to try it for a while

– Note use of obj argument in TimerOnTick() handler to get the
timer that sent the message

• Or simply declare a class-level timer in the Form class

• RandomRectangles-timer:
– Draws a new random rectangle once every 2 seconds

• We must use CreateGraphics() to create a Graphics object to draw with

• Note that a timer can be programmed manually…
• Or by using the Designer

– Just drag a timer into the Form and double click on it to add the
Timer Tick event handler

– Set the Enabled and Interval properties in the Properties window

Animated Graphics

• Creating a moving picture
– Give illusion of motion by continual draw/erase/redraw
– If done fast, eye perceives moving image

• In a single-user (DOS) application, we could do the
following:

Do Forever

{
// compute new location of object
// erase old object image
// draw object at new location

}

• In Windows, other programs can’t run while this
loop is executing

• Need to keep giving control back to Windows
so other programs can operate

• Ways of doing it:
– Use PeekMessage() Loop -- (for Win32 API)
– Override OnIdle() -- (for MFC)
– Use a Windows Timer (any Windows platform)

• Erase old frame and draw new frame each time there is a
timer ‘tick’ event

Bouncing Ball Example Program
• Draws a red ball that moves inside window’s client area at a

given velocity and bounces off its borders
• Responds to form’s Resize event to reset ball’s position

when window is resized
• Responds to Timer Tick event to draw next animation frame
• Class level variables (accessible to all class methods):

– xC, yC: current coordinates of ball’s center
– xDelta, yDelta: x,y components of velocity
– iXSize, iYSize: dimensions of window’s client area

• Helper function DrawBall()
– Uses the Form’s CreateGraphics() method to get a Graphics object
– Draws BackColor ellipse in old position and red one in new posn.

• After each timer tick and after window is resized

– Checks for collisions with sides of window and adjusts ball’s path

DateTime Structure in .NET

• To keep track of time and date
• Some Constructors:

DateTime(int year, int month, int day);
DateTime(int year, int month, int day, int hour, int

minute, int second);
DateTime(int year, int month, int day, int hour, int

minute, int second, int msec);
• year: 1-9999, month: 1-12, day: 1- #days in month, hour: 0-

23, minute: 0-59, second: 0-59, msec: 0-999

DateTime Properties

• Some Read-only Properties
– Year, Month, Day, Hour, Minute, Second,

Millisecond, DayOfWeek, DayOfYear
• An important Static Property

– Now
• Returns a DateTime structure filled with current

local date and time
• E.g., to get current date and time:

DateTime dt = DateTime.Now;
» dt then contains the current date/time

Some DateTime Methods
– string ToString()

• dt.ToString();
• Returns something like: “10/1/2004 10:30:01 A.M.”

– string ToString(string strFormat)
• strFormat and returned values:

– “d” 10/1/2004
– “D” Friday, October 01, 2004
– “f” Friday, October 01, 2004 10:30 A.M.
– “F” Friday, October 01, 2004 10:30:01 A.M.
– “g” 10/1/2004
– “G” 10/1/2004 10:30:01 A.M.
– “m” October 1
– “t” 10:30 A.M.
– “u” 2004-10-01 10:30:01

A Simple Digital Clock Program
(SimpleClock)

– Uses a one-second timer
– Each timer tick the handler calls Invalidate() to

force a Paint message
– Paint handler uses DateTime.Now Property to

get a DateTime object containing the exact
current time and date

• The DateTime object’s ToString() method converts
it to the appropriate string format

• DrawString() draws the string at the top of the
Form’s client area

Images and Bitmaps
• Video display of images described by Images

and/or Bitmaps
– Rectangular arrays of “pixel values” stored in memory
– Pixel value determines color of a pixel in the array
– Encapsulated in .NET Image and Bitmap classes

• Can be created and edited with almost any paint
program

• Windows supports 4-bit, 8-bit (indirect) and 16 or
24-bit (direct) pixel values

• Can be stored/retrieved as .bmp files
– Take up lots of space (no compression)

• Other common file formats (some compressed):
– Jpg, Gif, Png, Tiff

• Can be displayed on a device using DrawImage()
method of the Graphics object (gr-obj) associated
with a device, e.g.:
gr-obj.DrawImage(Image img, int x, int y);
gr-obj.DrawImage(Image img, point pt);
– Lots of other overloads available

• Image can be manipulated invisibly and apart
from physical display device

• Fast transfer to/from physical device ==> flicker
free animation

• Does not store information on drawing commands
– Windows Metafiles do that

• You can also draw on an Image or Bitmap
– Then transfer it to the screen
– One screen access ==> no flicker in animations

System.Drawing.Image Class

• An abstract class
– Can’t be instantiated with a constructor
– But has overloaded static methods that return Image

objects that can be displayed
– Can load an image or bitmap from a file

Image img = Image.FromFile(strFilename);
Bitmap btmp = (Bitmap)Image.FromFile(strFilename);
• Other overloads

– Once you’ve loaded an Image, you can use a Graphics
object’s DrawImage(img, …) to display it

Two Example Programs
– ImgFromFile

• Displays a jpg image on the window’s client area
– But what if image file is not in right directory?
– FromFile() method will throw a runtime exception and

program will die
– Our program should be able to catch that exception

• And do we need to retrieve the image -- i.e. call
FromFile() -- every time there’s a Paint event?

– ImgFromFileBetter
• Uses a try/catch block to avoid errors

– Puts up a MessageBox if there is an exception

• And makes only one call to FromFile() in program’s
constructor

– Stores the Image in a class level variable so it’s accessible
to the Paint handler

try/catch/[finally] block
• Syntax:

try
{// statements that could generate exceptions};
catch [(ExceptionType variableName)]
{// statements for action when exception occurs}
[catch [(ExceptionType variableName)]
{// statements for action when exception occurs}]
…
[finally

{// statements that always execute before exiting try block}]

• Some ExceptionTypes:
– Exception // generic, variable will have info
– ArithmeticException // calculation error, e.g., divide by zero
– ArgumentOutOfRangeException
– NullReferenceException
– Lots more

Other Image Class & Image Drawing Information
• Some Image Properties (read-only):

– Size
• Represents the size of the rectangular image

– int Width, int Height
• Width and height of the image in pixels

• Other overloads of DrawImage() that specify a rectangular
destination and/or source region for the image:
DrawImage(Image img, int x, int y, int w, int h);

• x,y = position; w = width, h = height of image on destination window
DrawImage(Image img, Rectangle rectDst);

• rectDst specifes rectangle on window where image will be displayed
– Some read/write properties of Rectangle class:

» X, Y Coordinates of upper left hand corner
» Width, Height

DrawImage(Image img, Rectangle rectDst, Rectangle rectSrc, GraphicsUnit gu);
– Arguments:

• Destination and source Rectangles
• GraphicUnit enumeration value must be GraphicsUnit.Pixel

– With these we can stretch or compress all or part of an image

More Image Examples

• ImgCenter
– Maintains image in center of window’s client area

• ImgScaleToWindow
– Scales image to fit in window’s client area

• ImgPart
– Displays part of image

• ImgPartScale
– Scales part of image to fit in window’s client area

Rotating & Shearing an Image
DrawImage(Image img, Point[] apt);

– apt is an array of three points:
• apt[0] = position of upper left corner of image on client area
• apt[1] = position of upper right corner of image on client area
• apt[2] = position of lower left corner of image on client area

– 4th point generated automatically completes a parallelogram

DrawImage(Image img, Point[] aptDst, Rectangle
rectSrc, GraphicsUnit gu);
– aptDst: an array of three points specifying three corners of

area where image is to be displayed
– rectSrc: source rectangle of original image
– gu: Source rectangle GraphicsUnit enumeration value

• Display, Inch, Millimeter, Pixel, Point, etc.
• Should be GraphicsUnit.Pixel

• Depending on the points in the array, the image will
be rotated and/or sheared

• Example Program: ImgAtPoints

Drawing on an Image
• Up to now we’ve drawn an image on a Graphics object

– Refers to the video display
– The GDI+ is really drawing on a huge bitmap stored in memory

• This bitmap is associated with the screen’s video display adapter

• But we can draw on any bitmap
– First must get a Graphics object that refers to the image
– Use Graphics.FromImage(Image img) static method to get it:

Graphics g = Graphics.FromImage(img);

– Draw on it with GDI+ drawing functions
– Display it by getting a screen Graphics object and using one of its

DrawImage(img, …) methods
• Done typically in Paint handler

– Must Dispose of image’s graphics object after using it
g.Dispose();

Example: ImgDrawOn

“Shadow” Images
– We may want to compose a complex scene off

screen – a “shadow bitmap” or “shadow image”
• Draw on a graphics object that refers to the shadow image

as much as you like outside of Paint handler so you’re not
accessing the physical screen

– Even draw other images on the shadow image (sprites)!

• Then in Paint handler (or in response to timer tick),
display it with a single call to DrawImage(bitmap, …)

• See ImgShadowBitmap example
– Very useful in avoiding flicker in animations

• “Compose” the next frame in the shadow image
– Draw all the objects on it first

• Then draw the “composed” image on the physical screen
– Thus only one access per frame to the physical screen

• This technique is called “double buffering”

Bitmap Class
– Derived from Image class, but you can do more with it
– Create a blank bitmap of a specified size with

constructor:
Bitmap bm = new Bitmap(int width, int height);

– Used like Image objects in drawing pictures and in
double buffering

– Nice for making parts of a sprite “transparent”
• So there is no rectangular “halo” around the sprite when it is

drawn over the background
• For example for a sprite that has a white background:
Bitmap sprite = (Bitmap)Image.FromFile(sprite- file.bmp);
sprite.MakeTransparent(Color.White);
• Then draw as usual onto a shadow bitmap’s graphic object
• See ImgShadowBitmap2 example

Garbage Collection
• When using extensive off-screen images, program performance

may degrade
– For example, when you create new Graphics objects associated with

images/bitmaps every frame of an animation
– Your application could slow down or even crash!!!

• Problem is the way .NET handles garbage collection
– Garbage collection: releasing unused memory
– Done automatically whenever system decides to do it
– So in applications creating image graphics objects every time a fast timer

times out, garbage collection may not be done frequently enough
– Even if you’re disposing of your graphics objects associated with images,

memory is not being released fast enough

• So what can be done?
– Force garbage collection
– Use the GC class Collect() static method:

GC.Collect();
– Could be done at the end of the timer-tick handler

Using Images in Resources (a parenthesis)

• Making an image file part of your project so the file
doesn’t have to be on the computer running the app.
– Add the image file to the project

• ‘Project’ | ‘Add Existing Item’ and select the image file

– Embed it in the executable by:
• In Solution Explorer:

– Click on the image object
– In the Properties window change “Build Action” to “Embedded

Resource”

– In code use the Bitmap class constructor:
• Bitmap(Type type, String resource);
• GetType() can be used to obtain the type

Image img = new Bitmap(GetType(), “flower.jpg”);
• Then use the image as usual

– See ImgEmbedded example program

