
(C) Richard R. Eckert

Microsoft Visual Studio 
2005/2008

and the .NET Framework

(C) Richard R. Eckert

The Microsoft .NET 
Framework

•The Common Language Runtime
•Common Language Specification

–Programming Languages
•C#, Visual Basic, C++, lots of others

•Managed Modules (Assemblies)
•MSIL
•The .NET Framework Class Library
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.NET Architecture

Compilation in the .NET 
Framework

Common
Language
Runtime
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Namespace
• A collection of related classes and their methods
• FCL is composed of namespaces
• Namespaces are stored in DLL assembly files
• .NET applications must have “references” to these 

DLLs so that their code can be linked in
• Also should be included in a C# program with the using

declaration
– e.g.   using System.Windows.Forms;
– If left out, you must give the fully qualified name of 

any class method or property you use, e.g.
System.Windows.Forms.MessageBox.Show(…);

• Something like a package in Java
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Some Important .Net Namespaces
• System Core data/auxiliary classes
• System.Collections Resizable arrays + other containers
• System.Data ADO.NET database access classes
• System.Drawing Graphical Output classes (GDI+)
• System.IO Classes for file/stream I/O
• System.Net Classes to wrap network protocols
• System.Threading Classes to create/manage threads
• System.Web HTTP support classes
• System.Web.Services Classes for writing web services
• System.Web.UI Core classes used by ASP.NET
• System.Windows.Forms   Classes for Windows GUI apps

• See online help on ‘Class Library’
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C#
• A new component & object oriented language

– Emphasis on the use of classes
• Power of C++ and ease of use of Visual Basic
• Combines the best aspects of C++ and Java

– Conceptually simpler and more clear than C++
• Much smaller code files and executables

– More structured than Visual Basic
– More powerful than Java
– Many great new constructs

• Syntax very similar to C/C++
– No header files

• Managed pointers only
– “Almost no pointers”? “almost no bugs”
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C# Classes
• Can contain:

– “Fields”: Data members (like C++ variables)
– “Methods”: Code members (like C++ functions)
– “Properties”: In-between members that expose data

• To the user program they look like data fields
• Within the class they look like code methods
• Often they provide controlled access to private data fields

– Validity checks can be performed
– Values can be obtained or changed after validity checks

» Properties use Accessor methods get() and set()
» get() to retrieve the value of a data field … return data-field;
» set() to change the value of a data field … data-field = value;

– Other classes use Properties just like data fields

– “Events”: Define the notifications a class is capable of 
firing in response to user actions
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Example: Square class
public class Square
{

private  int side_length = 1;                                   // A Field

public  int Side_length                                         // A Property
{

get { return side_length; }                                     // “return”: specifies value going  out
set
{

if (value>0)
side_length = value;                 // “value”: specifies value that came  In

else
throw (new ArgumentOutOfRangeException());

}
}

public int area()                                               // A Method
{

return (side_length * side_length);
}

public Square(int side)                                         // The Constructor method
{

side_length = side;
}

}
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Instantiating and Using the Square Class
Square sq = new Square(10); // Construct a Square object called sq

// of side_length = 10
// Instantiates the object and invokes
// the class constructor

int x = sq.Side_length; // Retrieve object’s Side_Length Property
sq.Side_length = 15; // Change object’s Side_length Property
int  a = sq.area(); // Define an integer variable a and use

// the class area() method to compute
// the area of the square

MessageBox.Show(“Area= “ + a.ToString());
// Display result in a Message Box
// Note use of ToString() method 
// to convert an integer to a string.
// Show() is a static method of MessageBox 
// class
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Windows Forms
• A Windows Form: In .NET it’s just a window
• Forms depend on classes in the namespace ‘System.Windows.Forms’
• Form class is in ‘System.Windows.Forms’: 

– The heart of every Windows Forms application is a class derived from Form
• An instance of this derived class represents the application’s main window
• Inherits many properties and methods from Form that determine the look and    

behavior of the window
– E.g., Text property to change the window’s caption

• Application: Another important class from ‘System.Windows.Forms'
– Its static method Run(…) drives the Windows Form application

• Argument is the Form to be run
– Invoked in the program’s entry point function:  Main()
– Causes the program to create the form passed to it and enter the message loop

• Form’s constructor will run (typically code to set initial window properties) 
– The form passed to Run( ) has code to post a QUIT message when form is closed
– Returns to Main( ) when done and program terminates properly
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A Simple Windows Form App in C# --
HelloWorld

using System.Windows.Forms;      // the namespace containing
// the Form class

public class HelloWorld : System.Windows.Forms.Form
{                                                       // our class is derived from Form

public HelloWorld()                     // our class constructor
{

this.Text = "Hello World";     // Set this form’s Text Property
}

static void Main()                         // Application’s entry point
{

Application.Run(new HelloWorld());   // Run our form
}

}
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Compiling a C# Application from the 
Command Line

• Start a Command Window with the proper paths to the 
compiler/linker set
– Easiest way: From Task Bar:

• ‘Start’ | ‘All Programs’ | ‘Microsoft Visual Studio 2008 | ‘Visual Studio 
Tools ’ | ‘Visual Studio 2008 Command Prompt’

• Starts the DOS Box Command Window

– Navigate to the directory containing the source code file(s)
– From the command prompt Invoke the C# compiler and linker

– For example, to build an executable from the C# source file 
myprog.cs, type one of the following:

csc myprog.cs                          (easiest way, creates a console app)
csc /target:exe myprog.cs        (also creates a console application)
csc /t:winexe myprog.cs           (creates a Windows executable)
csc /t:winexe /r:System.dll,System.Windows.Forms.dll myprog.cs  

(to provide access to needed .NET DLLs)   
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Using Visual Studio to Develop a 
Simple C# Application “Manually”

• Start Visual Studio as usual
• ‘File’ | ‘New’ | ‘Project’ | ‘Visual C#’ | ‘Windows’ | ‘Empty 

Project’
• To create the program

– ‘Project’ | ‘Add New Item’
• Visual Studio installed templates: ‘C# Code File’

– This will bring up the code editor
– Type in or copy and paste the C# source code

• But you must also provide access to some additional .NET 
Common Language Runtime DLLs

• Do this by adding ‘References’:
– ‘Project’ | ‘Add Reference’ … ‘.NET’ tab
– Select: System and System.Windows.Forms

• Build project as usual (‘Build’ | ‘Build Solution’)
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Using Visual Studio’s Designer to Develop a 
Simple C# Application

• Start Visual Studio as usual
• ‘File’ | ‘New’ | ‘Project’ | ‘Visual C#’ | ‘Windows’ | ‘Windows 

Forms Application’
– Gives a “designer view” of the Windows Form the project will 

create
– Also creates skeleton code in three .cs files, 2 classes

• 2 Partial classes: Form1.Designer.cs & Form1.cs + Program class
• Right click on form & select ‘View Code’ to see Form1.cs
• Note how it’s broken up into ‘Regions’ (+ and - boxes on the left)

• These can be expanded and contracted

– To see code generated by the Visual Studio designer:
• In Solution Explorer, expand Form1.cs & double click on 

Form1.Designer.cs
• Expand the ‘Windows Form Designer generated code’ Region
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Where is Main()?

– Expand the Program class
• That is where Main() is
• It runs the Form just as in our manual code
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Changing Form Properties

• In Form1.Designer.cs, note the Form’s properties that have 
been preset
– Change code so the ‘Text’ property is “This is a Test”

• Reactivate the Designer View by clicking on the ‘Form1.cs 
[design]’ tab
– Note how the caption of the form has changed

• Look at the ‘Properties’ window 
• Find the ‘Text’ Property and change it by Typing ‘Hello World’

– Activate Form1.Designer.cs and note how code has changed

• In Designer View resize the form (drag its corners)
– note how the ClientSize property changes in Form1.Designer.cs code

• Change the Background Color in the Properties Box to red:
– Click on ‘BackColor’ | down arrow | “custom” tab | red color box
– Go back to Form1.Designer.cs and note changes in code

• Build and run the application 
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.NET Managed Modules (PE Assemblies)
• The result of building a program with any of the compilers 

capable of generating MSIL:  VC++, C#, VB, others
– Also ILASM (Intermediate Language Assembler)
– Assemblies are deployment units of .NET apps stored as .EXE files
– ‘Portable Executables’ (PEs) to be run by the CLR

• Assembly structure (contents)
– Metadata fully describing the complete assembly and its external

dependencies
• Means every managed module is “self describing”
• One of the keys to language interoperability

– Type metadata describing exported types and methods
– MSIL code
– Resources

• The manifest
A kind or roadmap to the assembly’s contents
Also contains permissions needed to run the assembly

• Can examine Assemblies with a tool called ILDASM
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The ILDASM Disassembler
• Used to examine an assembly’s metadata and code
• Start a Command Window with proper path to 

ILDASM set
– Easiest way: From Task Bar:

• ‘Start’ | ‘All Programs’ | ‘Microsoft Visual Studio .NET’ | ‘Visual 
Studio .NET Tools’ | 

• Starts the DOS Box Command Window

– Navigate to the directory containing the assembly (.exe)
– Invoke ILDASM

• e.g., for HelloWorld program:
ILDASM HelloWorld.exe

• Displays a window showing the assembly’s Manifest and the 
classes in the assembly
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A Session with ILDASM
• Double Click on ‘Manifest’

– List of assemblies that module depends on
– Assembly name
– Modules that make up the assembly

• Because HelloWorld is a single-file assembly, there is only one

• Expand HelloWorld class
– Class contains two methods:

• A constructor (.ctor)
• Main (‘S’ means it’s a static method)

– Expand Main
• .entrypoint is a directive indicating it’s where execution starts
• Code instantiates a HelloWorld object and calls Application.Run for the 

form
– Expand .ctor

• Calls parent Form ’s constructor
• Puts “Hello World” string on stack and calls set_Text(…) to set the 

form’s Text property
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Events, Delegates, and Handlers
– Events: Results of user actions
– But in .NET events are also “class notifications”
– Classes define and publish a set of events that other 

classes can subscribe to
• When an object changes its state (the event occurs), all other 

objects that subscribe to the event are notified 

– Events are processed by event handler methods
– The arguments to an event handler must match those of 

a function prototype definition called a delegate:
• A method to whom event handling is delegated

– A managed pointer to a function
• A type-safe wrapper around an event handler callback function

– Handler must use parameters specified in delegate arguments
• “Attaches” the handler function to the event
• Permits any number of handler methods for a given event
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Events, Delegates, Handlers



An Example – Handling a Paint Event
• Form class has a Paint event to notify of window exposures
• The delegate is PaintEventHandler, defined as:

public delegate void PaintEventHandler(object objSender, 
PaintEventArgs pea);

– First argument: sender “object” (where event ocurred)
– Second argument “PaintEventArgs”: provides event data

• A class with properties ‘Graphics’ and ‘ClipRectangle ’
– ‘Graphics’ property: contains an instantiation of the 

Graphics class (GDI+)
» The class is used to draw on a form (like a Device 

Context)
– ClipRectangle: Specifies the area of the window that needs 

to be redrawn
• Any Paint handler method must have these arguments
• And the Paint handler must be “attached” to the Paint event of the 

Form class (i.e., delegated to the handler)
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Defining the Paint Event Hander and Attaching 
it to the Event

• Defining the form’s Paint event handler method:
private void MyPaintHandler(object objsender, PaintEventArgs pea)
{ 

// event handling code goes here 
};

• Attaching the handler to the form’s Event 
(delegating it to the event handler):
form.Paint += new PaintEventHandler(MyPaintHandler);

– From now on MyPaintHandler(-,-) will be called any time the Paint event 
occurs

• A handler can also be “detached” from an event:
object.event -= new  delegate(method);
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Drawing Text in Response to a Paint Event
• System.Drawing namespace contains many 

classes and structures for drawing on a window
• Some of them: 

– Bitmap, Brush, Brushes, Color, Font, Graphics, Icon, 
Image, Pen, Pens, Point, Rectangle, Size

• Graphics Class
– Represents a GDI+ drawing surface

• Like a device context

– Contains many graphics drawing methods
• See Help on ‘Graphics class’ | ‘all members’

– Obtaining a graphics object:
• In Paint event handler, use second argument:

– PaintEventArgs pea provides a Graphics object
– Get it with following code:       Graphics g = pea.Graphics
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Using DrawString() to Draw Text
• Graphics DrawString() method has lots of overloads
• Simplest:

DrawString(string str, Font font, Brush brush, float x, float y);
– string class: an alias for System.String

• Defines a character string
• Also has many methods to manipulate a string

– Font class: gives a Windows Form program access to many fonts with 
scalable sizes

• A Form has a default Font:  It’s one of the Form’s properties
• Or you can instantiate a new Font object:  Lots of possibilities (we’ll see later)

– Brush or Brushes class: color/style of characters
• Lots of different static color properties, e.g.

Brushes.Black,  Brushes.Red

• Or we can create one of a specified Color
Brush br = new SolidBrush(Color.FromArgb(r,g,b));
Brush br = new SolidBrush(Color.Red);
– Color structure has many static methods and properties

– x,y : Location to draw string on window client area
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Hello_in_window Example Program
• Responds to Paint Event by displaying ‘Hello 

World’ in window’s client area using several 
different Brushes

• Manual Project
– Define Handler and Attach it to Paint event manually

• Designer Project
– Select the Paint event in the form’s Properties window

• Click on lightning bolt
• Double click on “Paint” event

– Attachment of handler using its delegate is done 
automatically

– Skeleton handler code generated automatically
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An Alternative to Installing Event Handlers: 
Overriding instead of Attaching

• In any class derived from ‘Control’ (e.g. ‘Form’),  
its protected OnPaint() and other event handlers can 
be overridden:
protected override void OnPaint(PaintEventArgs pea)
{ 

// Painting code goes here
};
– Avoids having to attach the handler to the event using the 

delegate
• See HelloWorld_override example program
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A Separate Class for Main()
• An alternative way of organizing a 

Windows Form application:
– Define the Form in one class
– Place the Main() function in another class
– Visual Studio 2008 designer does this 

automatically
– Could do it manually

• See SeparateMain example program
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Inheriting Form Classes
• Just as your Form inherits from 

‘System.Windows.Forms.Form’, you can set up a 
new Form that inherits from a previously defined 
Form

• Be sure its Main() includes keyword ‘new’
• And that Visual Studio knows which class’ Main() 

is the entry point:
– In project’s Properties box select ‘Property Pages’ icon

• ‘Common Properties’ | ‘General’ | Application’ | ‘Startup 
Object’

• Select ‘InheritHelloWorld ’

• See HelloWorld_inherit example
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Multiple Handlers
• An advantage of the delegate mechanism is that 

multiple handlers of the same event can be used
• Just attach each handler to the event

– For example:
Form.Paint += new PaintEventHandler(PaintHandler1);
Form.Paint += new PaintEventHandler(PaintHandler2);

• And then write the handlers
• Each time the event occurs, all handlers will be 

called in sequence
• See TwoPaintHandlers example
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Some other GDI+ Drawing Methods
– DrawArc( );
– DrawEllipse( );
– DrawLine( );
– DrawPolygon( );
– DrawRectangle( );
– FillEllipse( );
– FillPolygon( );
– FillRectangle( );
– Lots of others in ‘Graphics’ class

• See online help on various overloaded forms of calling these 
functions
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Random Rectangles Example Program
– Makes use of FillRectangle() GDI+ method
– ‘Random’ class contains many methods to generate 

random numbers
Random r = new Random();

– Instantiates a new Random object and seeds the pseudo-random 
number generator

• The ‘Next()’ method actually generates the number
– Many overloaded forms of Next()

• Getting a random color:
Color c = Color.fromArgb(r.Next(256), r.Next(256), r.Next(256));

– Use Form’s ClientSize Property to get width and 
height of window

– Draw filled rectangle with random size and color:
• Use FillRectangle() and Math.Min(), Math.Abs()


