Microsoft Visual Studio
2005/2008
and the .NET Framework

(C) Richard R. Eckert

The Microsoft .NET
Framework

*The Common Language Runtime
«Common Language Specification

—Programming Languages
*C#, Visua Basic, C++, lots of others

*Managed Modules (Assemblies)
*MSIL
*The .NET Framework Class Library

(C) Richard R. Eckert

NET Architecture

Microsoft .NET Framework Architecture

[nn]
Bt

Microsoft

= Microsoft
s ank e Gl s ey

- Common Language Specification

Framework Class Library

Common Language Runtime

-

Windows LINUX

=
]
(=]
w
o
=
=
w
C
S
w
—
=
=3
L=]
=3
=
m
—‘

Compilation in the .NET
Framework

@

Compiler

| Compiler | | Compiler |

L MSIL Assembly v =

Tmanaged Code

| Commmon Language Funtimne JIT Compiler

MManaged Code Common
Language

CLE Services Runtime
[

Win32APIL + Operating Svstem

Namespace

A collection of related classes and their methods
FCL is composed of namespaces
Namespaces are stored in DLL assembly files

NET applications must have “references” to these
DLLs so that their code can be linked in

Also should be included in a C# program with the using
declaration

—eg. using SystemWindows.Forns,

— If left out, you must give the fully qualified name of
any class method or property you use, e.g.

System.Windows.Forms.MessageBox.Show(...);
Something like a package in Java

(C) Richard R. Eckert

Some I mportant .Net Namespaces

System Core data/auxiliary classes
System.Collections Resizable arrays + other containers
System.Data ADO.NET database access classes
System.Drawing Graphical Output classes (GDI+)
System.lO Classes for file/stream 1/O
System.Net Classes to wrap network protocols
System.Threading Classes to create/manage threads
System.Web HTTP support classes
System.Web.Services Classes for writing web services
System.Web.UI Core classes used by ASP.NET

System.Windows.Forms Classes for Windows GUI apps

See online help on ‘Class Library
(C) Richard R. Eckert

C#

A new component & object oriented language
— Emphasis on the use of classes
Power of C++ and ease of use of Visua Basic

Combines the best aspects of C++ and Java
— Conceptually ssmpler and more clear than C++
* Much smaller code files and executables
— More structured than Visual Basic

— More powerful than Java

— Many great new constructs
Syntax very similar to C/C++
— No header files

Managed pointers only

— “Almost no pointers’ « “amost no bugs”
(C) Richard R. Eckert

_ C# Classes
Can contain:

— “Fields’ : Data members (like C++ variables)
—“Methods’ : Code members (like C++ functions)

— “Properties’ : In-between members that expose data

* To the user program they look like data fields

 Within the class they look like code methods

» Often they provide controlled access to private data fields
— Validity checks can be performed

— Vaues can be obtained or changed after validity checks
» Properties use Accessor methods get() and set()

» get() to retrievethe value of adatafield ... return data-field;
» set() to change the value of adatafield ... data-field = value;
— Other classes use Propertiesjust like datafields
— “Events”: Define the notifications a class is capable of
firing in response to user actions

(C) Richard R. Eckert

Example: Square class

public class Square

{

private int side_length = 1; /I A Field
public int Side_length /I A Property
{
get { return side_length; } /I “return”: specifies value going out
set
{
if (value>0)
side_length = value; /I ‘value™: specifies value that came In
else

throw (new ArgumentOutOfRangeException());

}

public int area() /I A Method
{
return (side_length * side_length);

}

public Square(int side) /I The Constructor method

{

side_length = side;

} (C) Richard R. Eckert

Instantiating and Using the Square Class

Square sq = new Square(10); /I Construct a Square object called sq
/I of side_length = 10
/I Instantiates the object and invokes
I the class constructor

int x = sg.Side_length; /I Retrieve object’s Side_Length Property
sq.Side_length = 15; /I Change object’s Side_length Property
int a = sqg.area(); /I Define an integer variable a and use

/I the class area() method to compute

/I the area of the square
MessageBox.Show(“Area= “ + a.ToString());

/I Display result in a Message Box

- x| /I Note use of ToString() method
/l to convert an integer to a string.
Area = 225 /I Show() is a static method of MessageBox
/I class
(C) Richard R. Eckert

Windows Forms
A Windows Form: In .NET it’sjust a window
Forms depend on classes in the namespace * System.Windows.Forms’

Form classisin ‘ System.Windows.Forms':
— The heart of every Windows Forms application is a class derived from Eorm
< Aninstance of this derived class represents the application’s main window

* Inherits many properties and methods from Form that determine the look and
behavior of the window

— E.g., Text property to change the window’ s caption
Application: Another important class from ‘ System.Windows.Forms
— Itsgatic method Run(...) drives the Windows Form application
e Argument is the Form to be run
Invoked in the program’s entry point function: Main()
— Causesthe program to create the form passed to it and enter the message |oop
» Form’sconstructor will run (typically codeto set initial window properties)
The form passed to Run() has code to post a QUIT message when form is closed
Returns to Main() when done and program terminates properly

(C) Richard R. Eckert

A Simple Windows Form App in C# --
Helloworld

using System.Windows.Forms; // the namespace containing
/I the Form class
public class HelloWorld : System.Windows.Forms.Form

{ I/l our class is derived from Form

public HelloWorld() /I our class constructor

{

this.Text = "Hello World"; // Set this form’s Text Property

}

static void Main() /I Application’s entry point

{

Application.Run(new Helloworld()); // Run our form
}

(C) Richard R. Eckert

Compiling a C# Application from the
Command Line

» Start a Command Window with the proper paths to the
compiler/linker set

Easiest way: From Task Bar:

» ‘Start’ | ‘All Programs’ | ‘Microsoft Visual Studio 2008 | ‘Visual Studio
Tools’ | ‘Visual Studio 2008 Command Prompt
* Starts the DOS Box Command Window

Navigate to the directory containing the source code file(s)
From the command prompt Invoke the C# compiler and linker

For example, to build an executable from the C# source file
myprog.cs, type one of the following:

CSC myprog.cs (easiest way, creates a console app)
csc /target:exe myprog.cs (also creates a console application)
csc /t:winexe myprog.cs (creates a Windows executable)

csc /t:winexe /r:System.dll,System.Windows.Forms.dll myprog.cs
(to provide access to needed .NET DLLS)
(C) Richard R. Eckert

Using Visual Studioto Develop a
Simple C# Application “ Manually”

» Start Visual Studio as usual
* ‘File’ |'New |‘Project’ |‘Visual C#' | ‘Windows’ | ‘Empty
Project’
* To create the program
— ‘Project’ | ‘Add New Item’
* Visual Studio installed templates: ‘C# Code File’
— This will bring up the code editor
— Type in or copy and paste the C# source code
» But you must also provide access to some additional .NET
Common Language Runtime DLLs
* Do this by adding ‘References’:
— ‘Project’ | ‘Add Reference’NET tab
— Select: System and System.Windows.Forms

 Build project as usual (‘Build’ | ‘Build Solution’)
(C) Richard R. Eckert

Using Visual Studio’sDesigner to Develop a
Simple C# Application

Start Visual Studio as usual
‘File’ | ‘New | ‘Project’ | ‘Visual C#' | ‘Windows’ | ‘Windows
Forms Application’
— Gives a“designer view” of the Windows Form the project will
create
— Also creates skeleton code in three .cs files, 2 classes
e 2 Partial classes: Forml.Designer.cs & Forml.cs + Program class
* Right click on form & select ‘View Code’ to see Forml.cs
* Note how it's broken up into ‘Regions’ (+ and - boxes on the left)
* These can be expanded and contracted

— To see code generated by the Visual Studio designer:

« In Solution Explorer, expand Forml.cs & double click on
Form1.Designer.cs

* Expand the ‘Windows Form Designer generated code’ Region
(C) Richard R. Eckert

Where is Main()?

— Expand the Program class
* That is where Main() is
* |t runs the Form just as in our manual code

(C) Richard R. Eckert

Changing Form Properties

In Form1.Designer.cs, note the Form’s properties that have
been preset

— Change code so the ‘Text’ property is “This is a Test”

Reactivate the Designer View by clicking on the ‘Form1.cs
[design] tab

— Note how the caption of the form has changed

Look at the ‘Properties’ window

Find the ‘Text’ Property and change it by Typing ‘Hello World’
— Activate Form1.Designer.cs and note how code has changed

In Designer View resize the form (drag its corners)

— note how the ClientSize property changes in Forml.Designer.cs code
Change the Background Color in the Properties Box to red:

— Click on ‘BackColor’ | down arrow | “custom” tab | red color box

— Go back to Forml1.Designer.cs and note changes in code

Build and run the application
(C) Richard R. Eckert

NET Managed M odules (PE Assemblies)

The result of building a program with any of the compilers
capable of generating MSIL: VC++, C#, VB, others

— Also ILASM (Intermediate Language Assembler)

— Assemblies are deployment units of .NET apps stored as .EXE files
— ‘Portable Executables’ (PEs) to be run by the CLR

Assembly structure (contents)

— Metadata fully describing the complete assembly and its external
dependencies
« Means every managed module is “self describing”
« One of the keys to language interoperability

Type metadata describing exported types and methods
MSIL code

— Resources
The manifest
A kind or roadmap to the assembly’s contents
Also contains permissions needed to run the assembly

Can examine Assemblies with a tool called ILDASM
(C) Richard R. Eckert

Thel LDASM Disassembler

» Used to examine an assembly’s metadata and code

« Start a Command Window with proper path to
ILDASM set

— Easiest way: From Task Bar:

e ‘Start’ | ‘All Programs’ | ‘Microsoft Visual Studio .NET | ‘Visual
Studio .NET Tools’ |
 Starts the DOS Box Command Window

— Navigate to the directory containing the assembly (.exe)
— Invoke ILDASM
* e.g., for HelloWorld program:
ILDASM HelloWorld.exe

 Displays a window showing the assembly’s Manifest and the
classes in the assembly

(C) Richard R. Eckert

A Session with ILDASM

» Double Click on ‘Manifest’
— List of assemblies that module depends on
— Assembly name
— Modules that make up the assembly
» Because HelloWorld is a single-file assembly, there is only one

» Expand HelloWorld class

— Class contains two methods:
* A constructor (.ctor)
* Main (*S’ means it's a static method)

— Expand Main
 .entrypoint is a directive indicating its where execution starts
» Code instantiates a HelloWorld object and calls Application.Run for the

form

— Expand .ctor

» Calls parent Form'’s constructor

» Puts “Hello World” string on stack and calls set_Text(...) to set the

form’s Text property
(C) Richard R. Eckert

Events, Delegates, and Handlers

— Events: Results of user actions
— Butin .NET events are also “class notifications”
— Classes define and publish a set of events that other
classes can subscribe to
» When an object changes its state (the event occurs), all other
objects that subscribe to the event are notified
— Events are processed by event handler methods

— The arguments to an event handler must match those of
a function prototype definition called a delegate:
* A method to whom event handling is delegated
— A managed pointer to a function

» A type-safe wrapper around an event handler callback function
— Handler must use parameters specified in delegate arguments
» “Attaches” the handler function to the event
» Permits any number of handler methods for a given event
(C) Richard R. Eckert

Events and Delegates

Event-Consuming Ob ject
Event-Generating Object

Event Handler

o]
]

Event-Consuming Object

Event Handler

L]

(C) Richard R. Eckert

Events and Delegates

Event-Consuming Ob ject
Event-Generating Object

- Event Handler

o «” []
[]

-~ Event-Consuming Ob ject

Event Handler
How does this object know I:l
who to notify?

These objects must register for the event

(C) Richard R. Eckert

Events and Delegates

Event-Consuming Ob ject

Event-Generating Ob ject

Sender Event Handler

Event /

=<

Event-Consuming Object

Sender Event Handler

i

(C) Richard R. Eckert

Event-Handling Model

calls o Handler 1 for event E |

calls
Object A raises event E |—>| Delegate for event E Handler 2 for event E |

Handler 3 for event E |

(C) Richard R. Eckert

Events, Delegates, Handlers

Events, Delegates, and Handlers in NET

Class defines:
An Event [e.g. Paint]

A public Delega% - prototype for handler [e.g., PaintEventHandler(-,-) |

I

Subscribing class:

defines a handler method

must follow prototype defined is delegate
[e.g., MyPaiptHandler(-,-)]

Delegate attaches handler to the eveng: exentt=Delegate(handler)
[e.g.. this.Paint += PaintEventHandler{ MyPaintHandler)]

(C) Richard R. Eckert

An Example — Handling a Paint Event

» Formclass has a Paint event to notify of window exposures
» The delegate is PaintEventHandler, defined as:

public delegate void PaintEventHandler(object objSender,

PaintEventArgs pea); '
— First argument; ‘sender “object” (where event ocurred)
— Second argument “PaintEventArgs”: provides event data
¢ A classwith properties * Graphics' and ‘ ClipRectangle’
—‘Graphics' property:-contains an instantiation of the
Graphicscl DI+)

» The classis used
Context)

— ClipRectangle: Specifies the area of the window that needs
to be redrawn
e Any Paint handler method must have these arguments

* And the Paint handler must be “attached” to the Paint event of the
Form class (i.e., delegated to the handler)

raw on aform (like a Device

Defining the Paint Event Hander and Attaching
it to the Event

» Defining the form’s Paint event handler method:
private void MyPaintHandler(object objsender, PaintEventArgs pea)

{ ‘\
/I event handling code goes here

¥

« Attaching the handler to the form|s Event
(delegating it to the event handler):

form.Paint += new PaintEventHandler(MyPaintHandler);
— From now on MyPaintHandler(-,-) will be called any time the Paint event
occurs

« A handler can also be “detached” from an event:

object.event -= new delegate(method);

(C) Richard R. Eckert

Drawing Text in Response to a Paint Event

» System.Drawing namespace contains many
classes and structures for drawing on a window

 Some of them:

— Bitmap, Brush, Brushes, Color, Font, Graphics, Icon,
Image, Pen, Pens, Point, Rectangle, Size

» Graphics Class

— Represents a GDI+ drawing surface
* Like a device context

— Contains many graphics drawing methods
» See Help on ‘Graphics class’ | ‘all members’

— Obtaining a graphics object:
 In Paint event handler, use second argument:

— PaintEventArgs pea provides a Graphics object
— Get it with following code: Graphics g = pea.Graphics

(C) Richard R. Eckert

Using DrawString() to Draw Text

» Graphics DrawString() method has lots of overloads
o Simplest:

DrawsString(string str, Font font, Brush brush, float x, float y);
string class: an alias for System.String
« Defines a character string
« Also has many methods to manipulate a string
— Fontclass: gives a Windows Form program access to many fonts with
scalable sizes
¢ A Form has a default Font: It's one of the Fornis properties
« Oryou can instantiate a new Font object: Lots of possibilities (we'll see later)
— Brush or Brushes class: color/style of characters
« Lots of different static color properties, e.g.
Brushes.Black, Brushes.Red

« Orwe can create one of a specified Color
Brush br = new SolidBrush(Color.FromArgb(r,g,b));
Brush br = new SolidBrush(Color.Red);
— Color structure has many static methods and properties

X,y : Location to draw string on window client area

(C) Richard R. Eckert

Hello_in_window Example Program

» Responds to Paint Event by displaying ‘Hello
World inwindow’s client area using several
different Brushes

» Manual Project

— Define Handler and Attach it to Paint event manually
o Designer Project

— Sdlect the Paint event in the form’ s Properties window

* Click on lightning bolt
» Doubleclick on “Paint” event
— Attachment of handler using its delegate is done
automatically

— Skeleton handler code generated automatically

(C) Richard R. Eckert

An Alternativeto Installing Event Handlers:
Overriding instead of Attaching

* Inany class derived from ‘ Control’ (e.g. ‘Form’),
its protected OnPaint() and other event handlers can
be overridden:

protected override void OnPaint(PaintEventArgs pea)

{

// Painting code goes here

¢
— Avoids having to attach the handler to the event using the
delegate

» See HelloWorld_override example program

(C) Richard R. Eckert

A Separate Classfor Main()

« An aternative way of organizing a
Windows Form application:
— Define the Form in one class
— Place the Main() function in another class

—Visua Studio 2008 designer does this
automatically

— Could do it manually
» See SeparateMain example program

(C) Richard R. Eckert

Inheriting Form Classes

 Just as your Form inherits from
‘System.Windows.Forms.Form’, you can set up a
new Form that inherits from a previously defined
Form
* BesureitsMain() includes keyword ‘ new’
« And that Visual Studio knows which class Main()
Is the entry point:
— In project’ s Properties box select * Property Pages' icon
 ‘Common Properties | ‘General’ | Application | *Startup
Object’
» Select ‘ InheritHelloworld’
» See HelloWorld inherit example

(C) Richard R. Eckert

Multiple Handlers

An advantage of the delegate mechanism is that
multiple handlers of the same event can be used
Just attach each handler to the event

— For example:
Form.Paint += new PaintEventHandler(PaintHandlerl);
Form.Paint += new PaintEventHandler(PaintHandler2);

And then write the handlers

Each time the event occurs, all handlerswill be
called in sequence

See TwoPaintHandlers example

(C) Richard R. Eckert

Some other GDI+ Drawing M ethods

— DrawArc();

— DrawEllipse();

— DrawLine();

— DrawPolygon();
— DrawRectangle();
— FillElipse();

— FillPolygon();

— FillRectangle();

— Lots of others in ‘Graphics’ class

» See online help on various overloaded forms of calling these
functions

(C) Richard R. Eckert

Random Rectangles Example Program

— Makes use of FillRectangle() GDI+ method

—‘Random’ class contains many methods to generate
random numbers
Random r = new Random();

— Instantiates a new Random object and seeds the pseudo-random
number generator

* The ‘Next()’ method actually generates the number
— Many overloaded forms of Next()

 Getting a random color:
Color ¢ = Color.fromArgb(r.Next(256), r.Next(256), r.Next(256));
— Use Form’s ClientSize Property to get width and
height of window
— Draw filled rectangle with random size and color:
» Use FillRectangle() and Math.Min(), Math.Abs()

(C) Richard R. Eckert

