
Dialog Boxes

Dialog Boxes
? Popup child windows created by Windows
? Used for special-purpose input & output

– Principal I/O mechanism in Windows
? Contain several child window controls
? Layout & what it does is are predefined

(template--a resource)
? How it does is determined by a "Dialog box

procedure"
? Destroyed immediately after use

Types of Dialog Boxes

?Modal
?Modeless
?System Modal

WM_INITDIALOG Message
? Start Dialog box with call to DialogBox(…)

– Causes WM_CREATE & WM_INITDIALOG msgs
– WM_INITDIALOG is like an ordinary window's

WM_CREATE message, but after controls have been
ceated

? Processed before window (dialog box) is made
visible

? Good place to put dialog box initialization code
? In an MFC CDialog-derived class, this message

activates dialog box’s OnInitDialog() handler

EndDialog(…)
? Destroys dialog box
? Returns control to function (WndProc()) that

started the DialogBox()

User Interaction with Dialog
Box Controls

?WM_COMMAND message
– LOWORD(wParam) contains control ID
– lParam, wParam contain message data

Exchanging Data with a Dialog Box
? Exchanging data between dialog box function

and app's WndProc()
? SendMessage() could be used to send message

to control inside, BUT:
– Need to know control's handle
– Not known since Windows creates the controls
– IDs are known--specified in resource template

? Use GetDlgItem() to get control's handle:
– hControl = GetDlgItem(hDlg, controlID);

? Then SendMessage(hControl, Msg, wParam,
lParam);

Dialog Boxes in MFC

?MFC Dialog boxes are based on the
CDialog class

Important MFC CDialog Functions
? DoModal() to start dialog box modally
? CDialog provides three over-rideable functions

to initialize and respond to OK and Cancel
button clicks

? OnInitDialog()
– Handler for WM_INITDIALOG message

? OnOK(), OnCancel()
– Handlers for WM_COMMAND messages from OK

and Cancel buttons
– Both call CDialog’s EndDialog() function to dismiss

the dialog box and return control to DoModal()

Steps in Using a Modal Dialog
Box (MFC):

? 1. Set up the dialog box template in the
resources (.rc file)
– Specifies controls used, their style/layout

– Can be prepared "visually" with Visual
Studio dialog box editor

– Or "manually" with a text editor
? 2. Create a CDialog-based class
? 3. Instantiate a CDialog object
? 4. Call its DoModal() function

Using Modal Dialog Boxes in MFC
? Dialog boxes are encapsulated by CDialog class

(derived from CWnd)
? 2. App derives its own dialog box from CDialog

– e.g., class CMyDlg : public CDialog
• Constructor should specify that parent constructor will be used
• Also ID of DBox resource template to be used (IDD_XXX)

– Dialog box msg handling done w/ message maps
– Dialog box class declarations (.h file):

• Message map and handling function declarations

– Dialog box class implementation (.cpp file):
• Message map and handler function definitions

– Use Class Wizard to generate the CDialog-based class
• Sets up msg mapping, constructor & correct Dbox resource ID

?3. App instantiates the Dialog Box:
– Usually done in CView class in response to

a main window menu item selection
– CMyDlg dlg;

• Creates the dialog box (not activated yet)
• Initialization code, if any, should be put in

CDialog’s OnInitDialog() handler function
– Invoked in response to WM_INITDIALOG message

?4. Activating the Dialog Box
– Use CDialog’s DoModal() member function

• dlg.DoModal();

– Displays the dialog box
– Messages from dialog box controls go to

dialog box handler functions
– Continues until dialog box has been closed

by user clicking OK or Cancel buttons
• CDialog’s EndDialog() member function causes

DoModal() to return
• Can test return value

– If(dlg.DoModal()==IDOK {//do something}

• Message processing continues in parent window

Communicating with Dialog Box Controls
(exchanging data)

? Method 1
– Get a pointer to control’s ID w/ CWnd::GetDlgItem()
– Use pointer to send appropriate messages to control,

e.g. (for a list box in a dialog box):
• CListBox* pCtrl=(CListBox*)GetDlgItem(IDC_CTRL);
• pCtrl->SendMessage(WM_GETTEXT,…);
• GetDlgItemText(IDC_CTRL, m_string); combines these two

– m_string would be a pulbic variable to hold retrieved string

• SetDlgItemText(IDC_CTRL, m_string);
– Sends the string to the control

– OK for non-Wizard-generated apps
– There’s a much easier way for Wizard-generated

applications

? Method 2
– Use DDX (Dialog Data Exchange) mechanism
– Automatically built into Wizard-generated Apps
– DDX system moves data between dialog box

controls and variables in Cdialog-derived class
– Occurs when a call is made to

CWnd::UpdateData(direction);
– Boolean parameter sets direction of data

movement
• TRUE ? from controls to variables

• FALSE ? from variables to controls

? MFC’s CDialog::OnInitDialog() calls
UpdateData(FALSE) automatically
– (Recall, this is called to start the dialog box)

• So Data from program variables is transferred automatically
to dialog box controls when the dialog box starts

? MFC’s CDialog::OnOK() calls
UpdateData(TRUE)
– (This is called when user clicks the “OK” button inside

the dialog box)
• So data from dialog box controls is transferred automatically

to program variables when user clicks the dialog box’s “OK”
button)

• OnOK() then calls CDialog::EndDialog()
– So dialog box disappears and DoModal() returns

– Returns IDOK or IDCANCEL depending on user action
– Destructor destroys the dialog box

Adding a Modal Dialog Box to the
Sketching MFC Application

?Will allow the user to specify text to
be displayed in parent window

? Create a new Visual C++, MFC, SDI
application (as usual)

? Add the sketching code (see earlier
example)

? Add a new “Text” menu item (ID_TEXT)
? Add the new dialog box

– Project/Add Resource/Dialog/New
– Change ID to IDD_TEXT
– Caption: “Enter Text”

? Use the dialog box editor to drag over a
static and an edit control:
– Static Control: “Text String”
– Edit control: IDC_TEXTEDIT

?Create the new Dialog Class
– Right click on an unoccupied area of the

dialog box & choose “Add Class” to
bring up the “MFC Class Wizard” Dialog
Box

– Class name: “CTextDlg”
– Base class: “CDialog”

?Add New Class Variables (and
connect to controls):
– In Class View, right click on CTextDlg &

choose Add variable
• In resulting “Add member variable Wizard”

– Check “Control Variable” check box
– Control ID: IDC_TEXTEDIT
– Category: Value

– Variable type: CString
– Variable name: m_text

? Add handler code to new CView “Text”
menu item
– In Class View select CView-derived class
– In Properties Wizard Box “Events” (lightning

bolt icon):
• Scroll down to ID_TEXT
• Add Command handler OnText()
• Edit the resulting code by adding:

CTextDlg dlg;
dlg.DoModal();
pDC = GetDC(); // Assumes a CDC* pDC variable
pDC -> TextOut(0, 0, dlg.m_text, lstrlen(dlg.m_text));

? At top of Cview .cpp file underneath the
other include statements, add:

? #include TextDlg.h

