Dialog Boxes

Dialog Boxes

= Popup child windows created by Windows

=« Used for special-purpose input & output
— Principal 1/0 mechanism in Windows
=« Contain several child window controls

=« Layout & what it doesis are predefined
(template--a resour ce)

= How it doesisdetermined by a" Dialog box
procedur €'

= Destroyed immediately after use

Types of Dialog Boxes

= Modal
= Modeless
« System M odal

WM _INITDIALOG Message

=« Start Dialog box with call to DialogBox(...)
— Causes WM_CREATE & WM_INITDIALOG msgs

— WM_INITDIALOG islike an ordinary window's
WM _CREATE message, but after controls have been
ceated

= Processed before window (dialog box) is made
visible
=« Good place to put dialog box initialization code

= In an MFC CDiaog-derived class, this message
activates dialog box' s OnlnitDialog() handler

EndDialog(...)

« Destroys dialog box

=« Returnscontrol to function (WndProc()) that
started the DialogBox()

User Interaction with Dialog
Box Controls

=« WM _COMMAND message

— LOWORD(wParam) contains control ID
— |Param, wPar am contain message data

Exchanging Data with a Dialog Box

=« Exchanging data between dialog box function
and app's WndProc()

= SendMessage() could be used to send message
to control inside, BUT:
— Need to know control's handle
— Not known since Windows creates the controls
— IDs are known--specified in resour ce template

= Use GetDlgltem() to get control's handle:
— hControl = GetDIgltem(hDlg, controll D);

= Then SendMessage(hControl, Msg, wParam,
|Param);

Dialog Boxes in MFC

= MFC Dialog boxes are based on the
CDialog class

Important MFC CDialog Functions

= DoModal() to start dialog box modally

=« CDialog provides three over-rideable functions
to initialize and respond to OK and Cancel
button clicks

= OnlnitDialog()
— Handler for WM_INITDIALOG message

= ONOK(), OnCancel()
— Handlers for WM_COMMAND messages from OK
and Cancel buttons

— Both call CDialog’s EndDialog() function to dismiss
the dialog box and return control to DoModal()

Stepsin Using a Modal Dialog
Box (MFC):
=« 1. Set up the dialog box templatein the

resources (.rcfile)
— Specifies controlsused, their style/layout

— Can be prepared " visually" with Visual
Studio dialog box editor
— Or "manually" with atext editor
« 2. Create a CDialog-based class
&« 3. Instantiate a CDialog obj ect
«4. Call its DoModal() function

Using Modal Dialog Boxes in MFC

= Dialog boxes are encapsulated by CDialog class
(derived from CWnd)

=« 2. App derives its own dialog box from CDialog
— e.g., class CMyDIg : public CDialog
¢ Constructor should specify that parent constructor will be used
« Also ID of DBox resource template to be used (IDD_XXX)

— Dialog box msg handling done w/ message maps
— Dialog box class declarations (.h file):

* Message map and handling function declarations
— Dialog box class implementation (.cpp file):

* Message map and handler function definitions

— Use Class Wizard to generate the CDialog-based clasg
e Sets up msg mapping, constructor & correct Dbox resource ID

= 3. App instantiates the Dialog Box:

— Usually done in CView class in response to
a main window menu item selection
— CMyDlg dlg;
* Creates the dialog box (not activated yet)

* Initialization code, if any, should be putin
CDialog’s OnlinitDialog() handler function
— Invoked in response to WM_INITDIALOG message

« 4. Activating the Dialog Box

— Use CDialog’s DoModal() member function
« dlg.DoModal();

— Displays the dialog box

— Messages from dialog box controls go to
dialog box handler functions

— Continues until dialog box has been closed
by user clicking OK or Cancel buttons
» CDialog’s EndDialog() member function causes
DoModal() to return

e Can test return value
— If(dlg.DoModal()==IDOK {//do something}

» Message processing continues in parent window

Communicating with Dialog Box Controls

 Method 1 (exchanging data)

— Get a pointer to controls ID w/ CWnd::GetDlgltem()

— Use pointer to send appropriate messages to control,
e.g. (for a list box in a dialog box):
» CListBox* pCtrl=(CListBox*)GetDIgltem(IDC_CTRL);
* pCtrl->SendMessage(WM_GETTEXT,...);
» GetDIgltemText(IDC_CTRL, m_string); combines these two
— m_string would be a pulbic variable to hold retrieved string
» SetDIgltemText(IDC_CTRL, m_string);
— Sends the string to the control
— OK for non-Wizard-generated apps

— There’s a much easier way for Wizard-generated
applications

« Method 2
— Use DDX (Dialog Data Exchange) mechanism
— Automatically built into Wizard-generated Apps

— DDX system moves data between dialog box
controls and variables in Cdialog-derived class
— Occurs when a call is made to
CWnd::UpdateData(direction);
— Boolean parameter sets direction of data
movement
» TRUE & from controls to variables
« FALSE = from variables to controls

= MFC’s CDialog::OnlnitDialog() calls
UpdateData(FALSE) automatically

— (Recall, this is called to start the dialog box)

« So Data from program variables is transferred automatically
to dialog box controls when the dialog box starts

« MFC’s CDialog::0OnOK() calls
UpdateData(TRUE)

— (This is called when user clicks the “OK” button inside
the dialog box)

« So data from dialog box controls is transferred automatically
to program variables when user clicks the dialog box’s “OK”
button)

* OnOK() then calls CDialog::EndDialog()

— So dialog box disappears and DoModal() returns
— Returns IDOK or IDCANCEL depending on user action
— Destructor destroys the dialog box

Adding a M odal Dialog Box tothe
Sketching MFC Application

= Will allow the user to specify text to
be displayed in parent window

G

Enter Text: | Hello world|

« Create a new Visual C++, MFC, SDI
application (as usual)

= Add the sketching code (see earlier
example)

« Add a new “Text” menu item (ID_TEXT)

« Add the new dialog box
— Project/Add Resource/Dialog/New
— Change ID to IDD_TEXT
— Caption: “Enter Text”
= Use the dialog box editor to drag over a
static and an edit control:

— Static Control: “Text String”
— Edit control: IDC_TEXTEDIT

« Create the new Dialog Class

— Right click on an unoccupied area of the

dialog box & choose“Add Class” to
bring up the“MFC Class Wizard” Dialog
Box

— Class name: “CTextDIg”
—Base class: “CDialog”

«=Add New Class Variables (and
connect to controls):

—1In Class View, right click on CTextDIg &
choose Add variable

* In resulting “Add member variable Wizard”
— Check “Control Variable” check box
— Control ID: IDC_TEXTEDIT
— Category: Value
— Variable type: CString
— Variable name: m_text

« Add handler code to new CView “Text”
menu item
— In Class View select CView-derived class
— In Properties Wizard Box “Events” (lightning
bolt icon):
e Scroll down to ID_TEXT
* Add Command handler OnText()

» Edit the resulting code by adding:
CTextDlg dlg;
dlg.DoModal();
pDC = GetDC(); // Assumes a CDC* pDC variable
pDC -> TextOut(0, 0, dlg.m_text, Istrlen(dlg.m_text));

=« At top of Cview .cpp file underneath the
other include statements, add:

=« #include TextDIg.h

