
MFC Windows Programming:
Document/View

Approach

?More detailed notes at:
http://www.cs.binghamton.edu/~reckert/360/class15.htm

MFC Windows Programming:
App/Window vs. Document/View

Approach
? An App/Window approach program creates

application and window objects
? Mirrors Win32 API program organization
? Main difference--MFC automates and masks

details … and does many other necessary tasks
? But data & rendering of data are intertwined
? Frequently, data members exist in window class

– Example in MSG2005.CPP: Output string defined in
window-based class

• But output string is data
• Really has nothing to do with window it’s being displayed in

? Conceptually data is different from rendering
of data

? In an App/Window approach program they
are mixed together in same window class

? Frequently we need to have different views of
same data
– (e.g., displaying data in a window or on a printer)

? So it’s a good idea to separate data and data
presentation

Doc/View Achieves Separation of
Data and Data Presentation

? Encapsulates data in a CDocument class
object

? Encapsulates data display mechanism and
user interaction with it in a CView class object

? Classes derived from CDocument
– Should handle anything affecting an application's

data
? Classes derived from CView

– Should handle display of data and user
interactions with that display

Other Classes are Still
Needed

?Still need to create CFrameWnd and
CWinApp classes

?But their roles are reduced

Documents

?Document
– Contain any forms of data associated with

the application (pure data)
– Not limited to text
– Could be anything

• game data, graphical data, etc.

? Single Document interface (SDI) application
– Program that deals with one document at a time
– All our programs to date have been SDI apps

? Multiple Document Interface (MDI)
application
– Program organized to handle multiple documents

simultaneously
– More than one document can be displayed in a

window at the same time
– Example of an MDI application: Microsoft Excel

Document Interfaces

Views

?A rendering of a document; a physical
representation of the data

?Provides mechanism for displaying data
stored in a document

?Defines how data is to be displayed in a
window

?Defines how the user can interact with it

Frame Window
?Window in which a view of a document

is displayed
?A document can have multiple views

associated with it
– different ways of looking at the same data

?But a view has only one document
associated with it

MFC Template Class Object
? Handles coordination between documents,

views, and frame windows
? In general:

– Application object creates a template...
– which coordinates display of document's data…
– in a view…
– inside a frame window

? i.e., our CWinApp object creates a Document
Template which creates a CDocument object and
a CFrameWnd object
– The CFrameWnd object creates a CView object
– Which displays the document data

Template/Document/View/Window

Serialization

?Provides for storage/retrieval of
document data

?Usually to/from a disk file
?CDocument class has serialization built

into it
– So in DOCUMENT/VIEW apps,

saving/storing data is straightforward

Dynamic Creation
? In Doc/View approach, objects are dynamic
? Doc/View program is run

– Its frame window, document, and view are created
dynamically

– Often Doc/View objects are synthesized from file
data

• They need to be created at load time (run time)

– To allow for dynamic creation, use dynamic
creation macros

• in classes derived from CFrameWnd, CDocument, and
CView)

Dynamic Creation Macros
? DECLARE_DYNCREATE(class_name)

– in declaration (.h file)
? IMPLEMENT_DYNCREATE(class_name,

parent_class_name)
– (in .cpp file)

? After IMPLEMENT_DYNCREATE() macro is
invoked:
– Class is enabled for dynamic creation
– Now a template can be created

SDI Doc/View CWinApp’s Class
InitInstance()

? Create document template and window:
CSingleDocTemplate *pDocTemplate(

IDR_MAINFRAME // Resource ID
RUNTIME_CLASS(CPgmDoc) // the document
RUNTIME_CLASS(CMainFrame) // main SDI frame window
RUNTIME_CLASS(CPgmView)); // the view

// RUNTIME_CLASS(): a macro returns pointers to app, doc, view classes
// Will only work after dynamic declaration/creation macros are invoked
AddDocTemplate(pDocTemplate): // Adds template and creates window

? Finally, show window and update client area as usual:
m_pMainWnd->ShowWindow(SW_SHOW);
m_pMainWnd->UpdateWindow();

Document/View Programs
? Almost always have at least four classes derived

from:
– CFrameWnd
– CDocument
– CView
– CWinApp

? Usually put into separate declaration (.h) and
implementation (.cpp) files

? Because of template and dynamic creation, there’s
lots of initialization

? Could be done by hand, but nobody does it that way

Microsoft Developer Studio
AppWizard and ClassWizard

Tools

AppWizard
? Tool that generates a Doc/View MFC program

framework automatically
? Can be built on and customized by programmer
? Fast, efficient way of producing Windows Apps
? Performs required initialization automatically
? Creates functional CFrameWnd, CView,

CDocument, CWinApp classes
? After AppWizard does it's thing:

– Application can be built and run
– Full-fledged window with all common menu items,

tools, etc.

ClassWizards
? Facilitate message handling in a framework-

based MFC application
? Tools that connect resources and user-generated

events to program response code
? Write C++ skeleton routines to handle messages
? Insert code into appropriate places in program

– Code then can then be customized by hand
? Can be used to create new classes or derive

classes from MFC base classes
– Add new member variables/functions to classes

? In .NET many “class wizards” are available
through Properties window

SKETCH Application
?Example of Using AppWizard and

ClassWizard
?User can use mouse as a drawing pencil

Left mouse button down:
– lines in window follow mouse motion

?Left mouse button up:
– sketching stops

?User clicks "Clear" menu item
– window client area is erased

? Sketch data (points) won't be saved
– So leave document (CSketchDoc) class

created by AppWizard alone
? Base functionality of application (CSketchApp)

and frame window (CMainFrame) classes are
adequate
– Leave them alone

? Use ClassWizard to add sketching to CView
class

Sketching Requirements

? If left mouse button is down:
– Each time mouse moves:

• Get a DC
• Create a pen of drawing color
• Select pen into DC
• Move to old point
• Draw a line to the new point
• Make current point the old point
• Select pen out of DC

Variables

?BOOLEAN m_butdn
?CPoint m_pt, m_ptold
?COLORREF m_color
?CDC* pDC

Steps in Preparing SKETCH
? 1. “File / New / Project”

– Project Type: “Visual C++ Projects”
– Template: “MFC Application”
– Enter name: Sketch

? 2. In “Welcome to MFC Application Wizard”
– Application type: “Single Document” Application
– Take defaults for all other screens

? 3. Build Application --> Full-fledged SDI App
with empty window and no functionality

? 4. Add member variables to CSketchView
– Can do manually in .h file
– Easier to:

• Select Class View pane
• Click on SketchView class

– Note member functions & variables
• Right click on CSketchView class

– Choose “Add” / “Variable”
– Launches “Add Member Variable Wizard”

– Variable Type: enter CPoint
– Name: m_pt
– Access: Public (default)

– Note after “Finish” that it’s been added to the .h file
• Repeat for other variables (or add directly in .h file):

– CPoint m_ptold
– bool m_butdn
– COLORREF m_color
– CDC* pDC

? 5. Add message handler functions:
– Select CSketchView in Class View
– Select “Messages” icon in Properties window

• Results in a list of WM_ messages

– Scroll to WM_LBUTTONDOWN & select it
– Add the handler by clicking on down arrow and

“<Add> OnLButtonDown”
• Note that the function is added in the edit window and the

cursor is positioned over it:
– After “TODO…” enter following code:

m_butdn = TRUE;
m_ptold = point;

?Repeat process for WM_LBUTTONUP
handler:
– Scroll to WM_LBUTTONUP
– Click: “<Add> OnLButtonUp”,
– Edit Code by adding:

m_butdn = FALSE;

? Repeat for WM_MOUSEMOVE
– Scroll to WM_MOUSEMOVE
– Click: “<Add> OnMouseMove”
– Edit by adding code:

if (m_butdn)
{

pDC = GetDC();
m_pt = point;
CPen newPen (PS_SOLID, 1, m_color);
CPen* pPenOld = pDC->SelectObject (&newPen);
pDC->MoveTo (m_ptold);
pDC->LineTo (m_pt);
m_ptold = m_pt;
pDC->SelectObject (pPenOld);

}

?6. Initialize variables in CSketchView
constructor
– Double click on CSketchView constructor

• CSketchView(void) in Class View

– After “TODO…”, Add code:
m_butdn = FALSE;
m_pt = m_ptold = CPoint(0,0);
m_color = RGB(0,0,0);

?7. Changing Window’s Properties
– Use window’s SetWindowXxxxx() functions

• In CWinApp-derived class before window is
shown and updated

– Example: Changing the default window title
m_pMainWnd->SetWindowText(

TEXT(“Sketching Application”));

– There are many other SetWindowXxxxx()
functions that can be used to change other
properties of the window

? 8. Build and run the application

Menus and Command
Messages

? User clicks on menu item
? WM_COMMAND message is sent
? ID_XXX identifies which menu item (its ID)
? No predefined handlers
? So message mapping macro is different
? ON_COMMAND(ID_XXX, OnXxx)

– OnXxx() is the handler function
– Must be declared in .h file and defined in .cpp file

Adding Color and Clear Menu
Items to SKETCH App

? Resource View (sketch.rc folder)
– Double click Menu folder
– Double click IDR_MAINFRAME menu
– Add: “Drawing Color” popup menu item with items:

• “Red”, ID_DRAWING_COLOR_RED (default)
• “Blue”, ID_DRAWINGCOLOR_BLUE
• “Green”, ID_DRAWINGCOLOR_GREEN
• “Black”, ID_DRAWINGCOLOR_BLACK

– Add another main menu item:
• “Clear Screen”, ID_CLEARSCREEN
• Set Popup property to False

Add Menu Item Command
Handler Function

– One way: Use “Event Handler Wizard”
– In “Resource View” bring up menu editor
– Right click on “Red” menu item
– Select “Add Event Handler”? “Event Handler

Wizard” dialog box
• Class list: CSketchView
• Message type: COMMAND
• Function handler name: accept default

– OnDrawingcolorRed

• Click on “Add and edit”
• After “TODO…” in editor enter following code:

m_color = RGB(255,0,0);

– In Class View Select CSketchView
– In Properties window select Events (lightning

bolt icon)
– Scroll down to: ID_DRAWINGCOLOR_RED
– Select “COMMAND”
– Click “<Add> OnDrawingcolorRed” handler
– Edit code by adding:

m_color = RGB(255,0,0);

Another Method of Adding a
Menu Item Command Handler

Repeat for ID_DRAWINGCOLOR_BLUE
Code: m_color = RGB(0,0,255);

Repeat for ID_DRAWINGCOLOR_GREEN
Code: m_color = RGB(0,255,0);

Repeat for ID_DRAWINGCOLOR_BLACK
Code: m_color = RGB(0,0,0);

Repeat for ID_CLEAR
Code: Invalidate();

Destroying the Window

? Just need to call DestroyWindow()
– Do this in the CMainFrame class – usually

in response to a “Quit” menu item

