MFC Windows Programming:
Document/View
Approach

= More detailed notes at:
http://www.cs.binghamton.edu/~reckert/360/class15.htm

MFC Windows Programming:
App/Window vs. Document/View
Approach

= An App/Window approach program creates
application and window objects

= Mirrors Win32 API program organization

« Main difference--MFC automates and masks
details ... and does many other necessary tasks

=« But data & rendering of data are intertwined

= Frequently, data members exist in window class
— Example in MSGNEW.CPP: Output string defined in
window-based class
« But output string is data
* Really has nothing to do with window it's being displayed in

= Conceptually data is different from
rendering of data

«In an App/Window approach program
they are mixed together in same
window class

=« Frequently we need to have different
views of same data

= S0 it's a good idea to separate data and
data presentation

Doc/View Achieves Separation of
Data and Data Presentation

= Encapsulates data in a CDocument class
object

« Encapsulates data display and user
interaction with it in a CView class object

=« Classes derived from CDocument

— Should handle anything affecting an application's
data

« Classes derived from CView

— Should handle display of data and user
interactions with that display

Other Classes are Still
Needed

& Still need to create CFrameWnd and
CWinApp classes

 But their roles are reduced

Documents

= Document

— Contain any forms of data associated with
the application (pure data)

— Not limited to text

— Could be anything
* game data, graphical data, etc.

Document Interfaces

= Single Document interface (SDI) application
— Program that deals with one document at a time
— All our programs to date have been SDI apps

=« Multiple Document Interface (MDI)
application

— Program organized to handle multiple documents
simultaneously

— More than one document can be displayed in a
window at the same time

— Example of an MDI application: Microsoft Excel

Views

=« A rendering of a document; a physical
representation of the data

=« Provides mechanism for displaying data
stored in a document

« Defines how data is to be displayed in a
window

« Defines how the user can interact with it

Frame Window

= Window in which a view of a document
is displayed

« A document can have multiple views
associated with it
— different ways of looking at the same data

=« But a view has only one document
associated with it

Document

Frame Window

I :W Viewl
[
]

X#

Documents, Views, & Frames

i
N
l_'.
i

MFC Template Class Object

« Handles coordination between documents,
views, and frame windows
« In general:
— Application object creates a template...
— which coordinates display of document's data...
— inaview...
— inside a frame window
= 1.e., our CWIinApp object creates a Document
Template which creates a CDocument object and
a CFrameWnd object
— The CFrameWnd object creates a CView object
— Which displays the document data

Template/Document/View/Window

App Object

|Doc Object |F‘rame Windowl

Poines|
to

VYiew Object

Relationship between Application, Document
Template, Document, Frame Window, & View
in a Document/View Approach MFC Program.

Point| Points
to o

Dynamic Creation

= In Doc/View approach, objects are dynamic

=« Doc/View program is run

— Its frame window, document, and view are created
dynamically

— Often Doc/View objects are synthesized from file
data

» They need to be created at load time (run time)

— To allow for dynamic creation, use dynamic

creation macros

* in classes derived from CFrameWnd, CDocument, and
CView)

Document/View Programs

= Almost always have at least four classes derived
from:
— CFrameWnd
— CDocument
— CView
— CWinApp

= Usually put into separate declaration (.h) and
implementation (.cpp) files

= Because of template and dynamic creation, there’s
lots of initialization

« Could be done by hand, but nobody does it that way

Microsoft Developer Studio
AppWizard and ClassWizard
Tools

AppWizard

=« Tool that generates a Doc/View MFC program
framework automatically

= Can be built on and customized by programmer
=« Fast, efficient way of producing Windows Apps
=« Performs required initialization automatically
« Creates functional CFrameWnd, CView,
CDocument, CWinApp classes
= After AppWizard does it's thing:
— Application can be built and run

— Full-fledged window with all common menu items,
tools, etc.

ClassWizards
« Facilitate message handling in a framework-
based MFC application
= TO0o0ls that connect resources and user-generated
events to program response code
=« Write C++ skeleton routines to handle messages
« Insert code into appropriate places in program
— Code then can then be customized by hand

= Can be used to create new classes or derive
classes from MFC base classes
— Add new member variables/functions to classes

= In .NET many “class wizards” are available
through Properties window

SKETCH Application

« Example of Using AppWizard and
ClassWizard

« User can use mouse as a drawing pencil
Left mouse button down:

— lines in window follow mouse motion
« Left mouse button up:
— sketching stops
« User clicks "Clear" menu item
—window client area is erased

= Sketch data (points) won't be saved

— So leave document (CSketchDoc) class
created by AppWizard alone

= Base functionality of application (CSketchApp)
and frame window (CMainFrame) classes are
adequate

— Leave them alone

« Use ClassWizard to add sketching to CView
class

Sketching Requirements

« If left mouse button is down:

— Each time mouse moves:
*» GetaDC
» Create a pen of drawing color
» Select peninto DC
* Move to old point
» Draw a line to the new point
» Make current point the old point
» Select pen out of DC

Variables

= BOOLEAN m_butdn
= CPoint m_pt, m_ptold
= COLORREF m_color
= CDC* pDC

Steps in Preparing SKETCH

=« 1. “File / New / Project’
— Project Type: “Visual C++ Projects”
— Template: “MFC Application”
— Enter name: Sketch

« 2. In “Welcome to MFC Application Wizard”
— Application type: “Single Document” Application
— Take defaults for all other screens

« 3. Build Application --> Full-fledged SDI App
with empty window and no functionality

= 4. Add member variables to CSketchView
— Can do manually in .h file

— Easier to:
» Select Class View pane
 Click on SketchView class
— Note member functions & variables
 Right click on CSketchView class
— Choose “Add” / “Variable”
— Launches “Add Member Variable Wizard”
— Variable Type: enter CPoint
— Name: m_pt
— Access: Public (default)
— Note after “Finish” that it's been added to the .h file
» Repeat for other variables (or add directly in .h file):
— CPoint m_ptold
— bool m_butdn
— COLORREF m_color
- CDC* pDC

Add Member Variable Wizard - sketcha I x|

Welcome to the Add Member Variable Wizard

This wizard adds a member variable to your dass, struct, ar union.

Access:
|public =1 [~ Gantrol vanable
Variable type: ot
I CPaint LI | _'I
Variable name: Contral type: %
Jm_ptl | I
| [
il cop file:
| 2 | I

Comment (// notation not required):

Finish Cancel Help

« 5. Add message handler functions:
— Select CSketchView in Class View

— Select “Messages” icon in Properties window
* Results in a list of WM_ messages

— Scroll to WM_LBUTTONDOWN & select it

— Add the handler by clicking on down arrow and
“<Add> OnLButtonDown”

* Note that the function is added in the edit window and the
cursor is positioned over it:

— After “TODO...” enter following code:
m_butdn = TRUE;
m_ptold = point;

| Class view - sketcha 2 x|

&
¥

B9 Csketchaview |
B 91# Bases and Interfaces

=4 GetThisClass{void)
;’ ©OnBeginPrinting{(CDC

=@ OnDraw{COC *pDC) &
4 i »
i - [Ere R @ 2

Properties 3 x

inech:a\ﬁew WCCodeClass ;‘

EltE sme =

WM_ICONERASE -]
WM_INITMENU |
WM_INITMENUF |
WM_KEYDOWN s |
WM_KEYUP |
WM_KILLFOCUS |
WM_LBUTTOND

WIM_LBUTTOND S| L]

| wM_LBUTTONDOWN |
| Indicates when left mouse buttonis |
Ipressed I

B properties | @ Dynamic Help |

= Repeat process for WM_LBUTTONUP
handler:
— Scroll to WM_LBUTTONUP
— Click: “<Add> OnLButtonUp”,

— Edit Code by adding:
m_butdn = FALSE;

= Repeat for WM_MOUSEMOVE
— Scroll to WM_MOUSEMOVE
— Click: “<Add> OnMouseMove”
— Edit by adding code:
if (m_butdn)
{
pDC = GetDC();
m_pt = point;
CPen newPen (PS_SOLID, 1, m_color);
CPen* pPenOld = pDC->SelectObject (&newPen);
pDC->MoveTo (m_ptold);
pDC->LineTo (m_pt);
m_ptold = m_pt;
pDC->SelectObject (pPenOld);

6. Initialize variables in CSketchView
constructor
— Double click on CSketchView constructor
» CSketchView(void) in Class View

— After “TODO...”, Add code:
m_butdn = FALSE;
m_pt = m_ptold = CPoint(0,0);
m_color = RGB(0,0,0);

« 7. Changing Window’'s Properties

— Use window's SetWindowXxxxx() functions
* In CWinApp-derived class before window is
shown and updated
— Example: Changing the default window title
m_pMainWnd->SetWindowText(
TEXT(“Sketching Application”));

— There are many other CWnd SetWindowXxxxx()
functions that can be used to change other
properties of the window

« 8. Build and run the application

Menus and Command

Messages
= User clicks on menu item
= WM_COMMAND message is sent
« ID_XXX identifies which menu item (its ID)
= No predefined handlers in CWnd
= S0 message mapping macro is different

= ON_COMMAND(ID_XXX, OnXxx)
— OnXxx() is the handler function
— Must be declared in .h file and defined in .cpp file

Adding Color and Clear Menu
ltems to SKETCH App

=« Resource View (sketch.rc folder)

— Double click Menu folder

— Double click IDR_MAINFRAME menu

— Add: “Drawing Color” popup menu item with items:
« “Red”, ID_DRAWING_COLOR_RED (default)
* “Blue”, ID_DRAWINGCOLOR_BLUE
* “Green’, ID_DRAWINGCOLOR_GREEN
» “Black”, ID_DRAWINGCOLOR_BLACK

— Add another main menu item:
* “Clear Screen’, ID_CLEARSCREEN
» Set Popup property to False

Add Menu Item Command
Handler Function

— One way: Use “Event Handler Wizard”
— In “Resource View’ bring up menu editor
— Right click on “Red” menu item

— Select “Add Event Handler” & “Event Handler
Wizard” dialog box

* Class list: CSketchView
* Message type: COMMAND

» Function handler name: accept default
— OnDrawingcolorRed

* Click on “Add and edit’
» After “TODO..."” in editor enter following code:
m_color = RGB(255,0,0);

Event Handler Wizard - sketcha x|
Welcome to the Event Handler Wizard
This wizard adds a menu or accelerator command handler or dialog control event handler to the
class of your choice.

|ID_DRAWINGCOLOR_RED

Message type: Class list:

|UPDJ‘-\TE_COI*1I'*1AI‘-JD_UI

Function handler name:

IOnDl'a','-.'ingcolorRed

Addiand Edit Edit Code Cancel Help

Another Method of Adding a
Menu Item Command Handler

—In Class View Select CSketchView

—In Properties window select Events (lightning
bolt icon)

— Scroll down to: ID_ DRAWINGCOLOR_RED
— Select “COMMAND”
— Click “<Add> OnDrawingcolorRed” handler
— Edit code by adding:

m_color = RGB(255,0,0);

[ClossView sketha 7 x]

L

-4 Dump{CDumpContext &dc) cons
4§ GetDocument{void) const

q’ OnBeginPrinting{CDC *pDC, CPr.

=@ OnDraw(CDC *pDC) -
3
Sl

Properties 1 x

Iertcha\rlew VCCodeClass ;i

Fl= ¢ |8
_DRAWINGCOLOR_BL {Ohiect) ;j
ID_DRAWINGCOLOR_GR {Object)

2] ID_DRAWINGCOLOR_RE f{es2aa]

COMMAND OnDra'ﬁ.mgcolm'R.l
UPDATE_COMMAND_L
ID_EDIT_COPY {Object)
ID_EDIT_CUT {Object)
ID_EDIT_PASTE {Object)

ID_DRAWINGCOLOR_RED

5! properties | @) Dynamic Help |

Repeat for ID_DRAWINGCOLOR_BLUE
Code: m_color = RGB(0,0,255);

Repeat for ID_ DRAWINGCOLOR_GREEN
Code: m_color = RGB(0,255,0);

Repeat for ID_DRAWINGCOLOR_BLACK
Code: m_color = RGB(0,0,0);

Repeat for ID_CLEAR
Code: Invalidate();

Destroying the Window

& Just need to call DestroyWindow()

— Do this in the CMainFrame class — usually
In response to a “Quit” menu item

