
Introduction to Microsoft
Windows MFC Programming:

The Application/Window
Approach

?Additional notes at:
www.cs.binghamton.edu/~reckert/360/class14.htm

MFC Windows Programming

?The Microsoft Foundation Class (MFC)
Library

?A Hierarchy of C++ classes designed
to facilitate Windows programming

?An alternative to using Win32
API functions

?A Visual C++ Windows application can use
either Win32 API, MFC, or both

Some characteristics of MFC
? 1. Convenience of reusable code
? 2. Many tasks common to all Windows apps are

provided by MFC
– e.g., WinMain, the Window Procedure, and the

message loop are buried in the MFC Framework
? 3. Produce smaller executables:

– Typically 1/3 the size of their API counterparts
? 4. Can lead to faster program development:

– But there's a steep learning curve
? 5. MFC Programs must be written in C++ and

require the use of classes
– Instantiation, encapsulation, inheritance, polymorphism

Help on MFC Classes
? See Online Help (Index) on:

“MFC” | “classes”
“MFC classes (MFC)”

? Clicking on a class ? a document with a
link to the class members

? Also look at
“MFC” | “hierarchy”

“hierarchy chart”

Base MFC Class
? CObject: At top of hierarchy ("Mother of almost

all MFC classes")
? Provides features like:

– Serialization
• Streaming an object’s persistent data to or from a storage

medium (disk reading/writing)

– Runtime class information
– Diagnostic & Debugging support
– Some important macros

? All its functionality is inherited by any classes
derived from it

Some Important Derived Classes

?CFile: Support for file operations
?CDC: Encapsulates the device context

(Graphical Drawing)
?CGdiObject: Base class for various drawing

objects (CBrush, CPen, CFont, etc.)
?CMenu: Encapsulates menus and menu

management

? CCmdTarget: Encapsulates message passing process
and is parent of:
– CWnd: Base class from which all windows are derived
– Encapsulates many important windows functions and data

members
– Examples:

• m_hWnd stores the window’s handle
• Create(…) creates a window

– Most common subclasses:
• CFrameWindow: Can contain other windows

– ("normal" kind of window we've used)
• CView: Encapsulates process of displaying and interacting with

data in a window
• CDialog: Encapsulates dialog boxes

?CCmdTarget also the parent of:
– CWinThread: Defines a thread of execution
– m_pMainWnd is a member of this class

• A pointer to an application’s main window

– Is the parent of:
• CWinApp: Most important class dealt with in MFC applications:
• Encapsulates an MFC application
• Controls following aspects of Windows programs:

– Startup, initialization, execution, the message loop, shutdown
– An application should have exactly one CWinApp object
– When instantiated, application begins to run

– Member function InitInstance() is called by WinMain()
• m_nCmdShow is a member of this class

– CDocument
• Encapsulates the data associated with a program

? Primary task in writing MFC program--to create
classes

? Most will be derived from MFC library classes
? Encapsulate MFC Class Member Functions--

– Most functions called by an application will be
members of an MFC class

? Examples:
– ShowWindow() -- a member of CWnd class
– TextOut() -- a member of CDC class
– LoadBitmap() -- a member of CBitmap class

MFC Classes and Functions

?Applications can also call API functions
directly
– Use Global Scope Resolution Operator (::), for

example:
– ::UpdateWindow(hWnd);

?Usually more convenient to use MFC
member functions

MFC Global Functions
?Not members of any MFC class
?Begin with Afx prefix (Application

FrameworKS)
? Independent of or span MFC class hierarchy
?Example:

– AfxMessageBox()
• Message boxes are predefined windows
• Can be activated independently from the rest of an

application
• Good for debugging

Some Important Global Functions
? AfxAbort() -- Unconditionally terminate an app
? AfxBeginThread() -- Create & run a new thread
? AfxGetMainWnd() -- Returns a pointer to

application’s main window
? AfxGetInstanceHandle() -- Returns handle to

applications’s current instance
? AfxRegisterWndClass() -- Register a custom

WNDCLASS for an MFC app

A Minimal MFC Program
(App/Window Approach)

? Simplest MFC programs must contain two classes
derived from the hierarchy:
– 1. An application class derived from CWinApp

• Defines the application
• provides the message loop

– 2. A window class usually derived from
CWnd or CFrameWnd

• Defines the application's main window
? To use these & other MFC classes you must have:

#include <Afxwin.h> in the .cpp file

Message Processing under MFC
? Like API programs, MFC programs must handle

messages from Windows
? API mechanism: switch/case statement in app’s

WndProc()
? In MFC, WndProc() is buried in the MFC library
? Message handling mechanism: “Message Maps"

– lookup tables the MFC WndProc() searches
? Table entries:

– Message number
– Pointer to a message-processing function

• These functions are members of CWnd
• We override/extend the ones we want our program to respond to
• Like virtual functions

Message Mapping
?Programs must:

– Declare message-processing (handler) functions
• e.g., OnWhatever() for WM_WHATEVER message

– Map them to messages program is going to
respond to

• Mapping is done by "message-mapping macros”
– Bind a message to a handler function

– e.g., ON_WM_WHATEVER()

STEPS IN WRITING A
SIMPLE MFC PROGRAM
(App/Window Approach)

DECLARATION (.h)
1. Declare a class derived from CWnd or

CFrameWnd (e.g., CMainWin)--
? Class Members:

– The constructor declaration
– Message-processing function declarations for messages

the application will override and respond to
• e.g., void OnChar(…)

– DECLARE_MESSAGE_MAP() macro:
• Allows windows based on this class to respond to messages
• Declares that a message map will be used to map messages to handler

functions defined in the application
• Should be last class member declared

2. Declare an application class derived from
CWinApp (e.g., CApp)--

? Must override/extend CWinApp's InitInstance()
virtual function:
– Called each time a new instance of application is started

• i.e., when an object of this application class is instantiated

– Purpose is for application to initialize itself
– Good place to put code that does stuff that has to be

done each time program starts

IMPLEMENTATION (.CPP)
1. Define constructor for class derived from

CFrameWnd (e.g., our CMainWin)
? Should call member function Create() to create the

window
– Does what CreateWindow() does in API

2. Define message map for class derived from
CFrameWnd (e.g., our CMainWin)--
BEGIN_MESSAGE_MAP(owner class, base class)

// List of “message-mapping macros”, e.g.
ON_WM_CHAR()

END_MESSAGE_MAP()

3. Define (implement) message-processing
functions declared in .h file declarations above

4. Define (implement) InitInstance() overriding
function--

? Done in class derived from CWinApp … our CApp:
– Should have initialization code:

• Instantiate a CMainWin object whose constructor will create the
window? pointer to program's main window object

– m_pMainWnd
– (Used to refer to the window, like hWnd in API programs)

• Invoke object's ShowWindow() member function
• Invoke object's UpdateWindow() member function
• Must return non-zero to indicate success

– [MFC's implementation of WinMain() calls this function]

?Now nature & form of simple window &
application have been defined

?But neither exists--
?Must instantiate an application object

derived from CWinApp … our CApp

5. Instantiate the app class (e.g., our CApp)
?Causes AfxWinMain() to execute

– It's now part of MFC [WINMAIN.CPP]

?AfxWinMain() does the following:
– 1. Calls AfxWinInit()--

• which calls AfxRegisterClass() to register window class

– 2. Calls CApp::InitInstance() [virtual function
overridden in 4 above]--

• which creates, shows, and updates the window

– 3. Calls CWinApp::Run() [In THRDCORE.CPP]--
• which calls CWinThread::PumpMessage()--
• which contains the GetMessage() loop

?After CWinApp::Run() returns:
– (i.e., when the WM_QUIT message is received)
– AfxWinTerm () is called--
– which cleans up and exits

MSGNEW Example MFC
Application: Mouse/Character

Message Processing

?User presses mouse button ?
– “L” or “R” displayed at current mouse cursor

position

?Keyboard key pressed ?
– Character displayed at upper left hand corner of

client area

? Message map contains:
– ON_WM_CHAR()
– ON_WM_LBUTTONDOWN()
– ON_WM_RBUTTONDOWN()

? To respond to messages:
– WM_CHAR
– WM_LBUTTONDOWN
– WM_RBUTTONDOWN

? So we need to define the following handler
function overrides:
– CWnd::OnChar(UINT ch, UINT count, UINT flags);
– CWnd::OnLButtonDown(UINT flags, CPoint loc);
– CWnd::OnRButtonDown(UINT flags, CPoint loc);

? In each handler we need to get a Device Context
to draw on:
CDC* pDC

• Declare a pointer to a CDC object

pDC = this->GetDC();
• Use GetDC() member function of ‘this ’ CWnd to get a device

context to draw on

? And then display a string using TextOut()
– If it’s a character, it must be formatted into a string first
– Can use wsprintf()

• Formats integers, characters, and other data types into a string

Steps in Creating and Building an MFC
Application like msgnew “manually”

1. “File” | “New” | “Project”
– Specify an empty Win32 project as in previous examples

2. “Project” | “Add New Item”
– Categories: “Visual C++” | “Code”
– Templates: “C++ File”
– Enter or copy/paste .cpp file text (e.g., msgnew.CPP)--see

IMPLEMENTATION above
3. “Project” | “Add New Item” | “Visual C++” | “code” | “ Header File ”

– Enter or copy/paste .h file text (e.g., msgnew.h)--see DECLARATION
above

4. With project name highlighted in Solution Explorer window,
“Project” | “Properties” | “Configuration Properties” | “General”
– From “Use of MFC”, choose:
– "Use MFC in a Shared DLL"

5. Build the project as usual

