Win32 API
Programming

» See aso the old notes at:

http://www.cs.binghamton.edu/~reckert/360/class2a.htm
http://www.cs.binghamton.edu/~reckert/360/class3a.htm

(C) Richard R. Eckert

Win32 API Programming
» Event-driven, graphics oriented
« Example: User clicks mouse over a
program’ s window area (an event) --
—Windows decodes HW signals from mouse
—figures out which window user has sel ected
— sends a message to that window’ s program:

* "User has clicked over (X,Y)”
* "Do something and return control to me”

— Program reads message data, does what's
needed, returns control to Windows

(C) Richard R. Eckert

TFindows Events and Hezeagas

R igglication 1

Cnee App 3 He=zzage (a=ge=

—{ [TTTTT]

App I HNeesage QUeuE

App 1 Mesaage ueus

D=fa
Win
Pnet. Peaaags HEE

Overview of Win32 API Program
Structure--2 main tasks:
* |nitial activities
* Process messages from Windows
—the message loop

(C) Richard R. Eckert

Pseudocode
o Initialize variables, memory space

» Create and show program's window

e Loop
— Fetch any message sent from Windows to this
program

—If messageisWM_QUIT
* terminate program, return control to Windows

— If message is something else
» take actions based on message and parameters
* return control to Windows

 End LOOp (C) Richard R. Eckert

Essential Parts of aWin32 APl Pgm

 |. The source program (.c/.cpp file):

— A. WinMain() function
* 0. declarations, initialization, etc.
* 1. register window “class’
» 2. create awindow based on aregistered “class”
* 3. show window, make it update its client area
* 4. the message loop (get messages from Windows, dispatch
back to Windows for forwarding to correct callback
message-processing function, the WndProc)
— B. WndProc(): the message-processing function
» we write this function

(C) Richard R. Eckert

o |l. The resource script (.rcfile):
— contains resource (Windows static) data
— separate from code and dynamic data
—compiled by a separate " Resource Compiler”
— Resources determine the app’ s “look and feel”

— Examples of Windows Resources:

» Keyboard Accelerators, Bitmaps, Cursors, Dialog
Box specs, Fonts, Icons, Menus, String Tables

— Separation of resources and program code==>
* separates tasks of programmer & designer
» can change user interface without touching code

(C) Richard R. Eckert

The WinMain() Function

int PASCAL WinMain (HINSTANCE hinstance,

HINSTANCE hPrevinstance,
LPSTR IpszCmdLine, int nCmdShow);

WinMain() starts first
integer exit code returned to Windows OS
PASCAL: |-to-r parameter passing on stack

4 parameters passed in from Windows

— hinstance: a “handle”, identifies current pgm instance
— IpszCmdLine: string containing command line args

— nCmdShow: how window is to appear when shown

(C) Richard R. Eckert

Hungarian Notation

 help clarify variable types
 precede name with key letters representing

type

» named after Hungarian Microsoft
programmer, Charles Simonyi

(C) Richard R. Eckert

prefix data type

BYTE (unsi gned char)

BOCOL (int, TRUE=1 FALSE=0)
char

DWORD (4- byt e unsi gned | ong)
function

handl e

| ong (4 bytes)

short (int) near pointer
poi nt er

null-termnated char string
word (two byt es)

| psz long ptr to null-termnated str

(C) Richard R. Eckert

Register Class(& wndclass);

typedef struct tagWNDCLASS {
UINT style;
LRESULT CALLBACK IpfnWndProc;
int cbClsExtra;
int cbWndExtra;
HINSTANCE hinstance;
HICON hicon;
HCURSOR hCursor;
HBRUSH hBackground;
LPCSTR IpszMenuName;
LPCSTR IpszClassName; } WNDCLASS;
WNDCLASS wndclass;
if ('RegisterClass (&wndclass)) return O;

(C) Richard R. Eckert

CreateWindow() arguments:

window class name

window caption

window style (Boolean OR of window style masks)

initial X , y position in pixels

initial width , height

parent window handle (if main window, NULL)

window menu handle (NULL if class menu used)

program instance handle (from Windows)

creation parameters (for extra data, usually NULL)
Returns a handle (hwWnd) to the resulting window

(C) Richard R. Eckert

ShowWindow (hWnd,nCmdShow);

* makes window visible on screen
 hWnd: which window to make visible
 NCmdShow: how -- normal, minimized, etc.

— set by Windows environment when program
IS started;
— valueis passed in from Windows;

(C) Richard R. Eckert

UpdateWindow (hWnd);

» Causes client areato be updated
 Painted with background brush

(C) Richard R. Eckert

The Message L oop

o User interaction & amessage sent to a window
» Lotsof other kinds of actions & messages
* A message structure:

—HWND hwnd; // target window handle

— UINT message; // message ID value: WM _***

— WPARAM wParam; // data passed in message

— LPARAM IParam; // more datain message

— DWORD time; / time message was sent
— POINT pt; // mouse cursor position (X,y)
(C) Richard R. Eckert
GetM essage()

» Program must keep checking for messages
« Use message loop with GetM essage()

* BOOL GetMessage(
LPMSG IpMsg, // pointer to message struct
HWND hWhd, // target window(s)

/I which windows do we want to get msgs from
UINT wMsgl, // 1st messagein range
UINT wMsg2 // last message in range)

(C) Richard R. Eckert

GetM essage()

Reads next message from app's message queue
Fills M SG structure pointed to by first parameter
Placein aloop:

while (GetMessage(& msg, NULL, O, 0))

(.}

return((int)msg.wParam);

Returns non-0, except for WM_QUIT message

— Terminates message loop and returns control to

Windows

(C) Richard R. Eckert

The Main HMessage Loop

Windows System

K

Is there a message
for this application's
window?

Run
other
Lpps

yes

Fill in fields of
N3G structure

Application’s

WinMain() function

Createlindow()

GetMessage
1 ge ()

Process
no)

WH_QUIT message

returns 0 ves

Exit
TinMain()

(C) Richard R. Eckert

M essage Processing

» What goes inside the message | oop:

TranslateMessage (& msg)—

— "Cooks" keyboard input

— Converts raw key codesto ANS| codes

— Only important if WM_CHAR message is to be handled
DispatchMessage (& msg)—

— Sends message on to Windows, which

— Forwards it to program's "Window Procedure’:

WhdProc()—
* 2nd member of WNDCLASS structure

* Programmer must write this function
(C) Richard R. Eckert

The Window Procedure

 “Callback” function (called by Windows)

 Should contain a switch/case statement :
—Looks at message ID of current message
— Acts appropriately on "interesting" messages

— Forwards other messages to default Window
procedure--DefWindowProc()

(C) Richard R. Eckert

WndProc()
LRESULT CALLBACK WndProc (

HWND hwnd, UINT wMessage,
WPARAM wParam, LPARAM |Param)

e Parameters—

— Same asfirst four fields of MSG structure:
» window associated with message

* message ID (what message is)
* message data (wParam and |Param)

* Return value-
— Result of message handling
* 0 means message was handled

(C) Richard R. Eckert

Windows Messages, Details

Windows Bystam

Applicatian

mmmmmm

The WM _ DESTROY Message

» Sent by OS when window is destroyed

» WndProc() should respond by calling:
— PostQuitMessage();
—Windows sends WM _QUIT msg to queue
—wParam =0 implies:
* O returned by GetMessage() in WinMain()
* normal return to Windows
* 50 program exits WinMain()'s message loop
* And returns to Windows

(C) Richard R. Eckert

WINDOWS WM DESTROY MESSAGE PROCESSING

Windows System

i Posts a WM _QUIT message on the Queue
App's [wParam = argument = 0)
Message
Queue

PostQuitMessacge (0)

Application

TndProc()

M5y Handler 1
M=y Handler 2

WM DESTROY
Mzg Handler

Should call:

Default

Example Program

e See First Windows Program: winappl.cpp
 URL:

http://www.cs.bi nghamton.edu/~reckert/360/winappl-cpp.html

(C) Richard R. Eckert

Some other important messages

e WM_COMMAND--User clicked on menu item
— LOWORD(wParam)=menu item ID

« WM_?BUTTONDOWN--left/right mouse button pressed
- ?=L,RorM
— |Param=x,y coordinates

e WM_MOUSEMOVE--mouse moved
— |Param=x,y coordinates

* WM_CHAR--User pressed valid ANSI code character or
keyboard key combination

— wParan=ANSI code
 WM_PAINT--window was exposed, should be redrawn

« WM_KEYDOWN--keyboard key pressed
— wParam=virtual key code

(C) Richard R. Eckert

|I. The Resource Script (.rcfile)

» Resources-static data
* Example: amenu
» Defined inascript (.rc) file--

#i ncl ude "resource. h"

MYMENU MENU

BEG N
MENUI TEM "&Ci rcl e", | D C RCLE
VENUI TEM " &Rect angl e", | D RECTANGLE
MENUI TEM " Cl ear &Screen”, | D CLEARSCREEN
MENUI TEM " &Qui t ", ID QUIT

END

(C) Richard R. Eckert

The Resource header (.h file)
/'l resource.h
#define | D Cl RCLE 40006
#define | D RECTANGLE 40007
#defi ne | D CLEARSCREEN 40008
#define ID QU T 40009
» Must be #included in .CPP and .RC files

e Can use Visua Studio's resource editors to
prepare .rc and .h visually
— D numbers generated automatically

(C) Richard R. Eckert

Key Idea with Menus;

* when menu item is selected
—Windows sends aWM_COMMAND msg
—low word of wParam=selected item ID
— extract with macro LOWORD()

—then do switch/case on LOWORD(wParam) to
perform correct action

(C) Richard R. Eckert

Text and Graphics Output
 Displaying something in a window
» Text and graphics done one pixel at atime
» Any size/shape/position possible
» Design goal: Device Independence

(C) Richard R. Eckert

Device Independent Graphics
| nterface

» Windows programs don’t access hardware
devices directly

» Make callsto generic drawing functions
within the Windows * Graphics Device
Interface (GDI) -- aDLL

» The GDI translates these into HW
commands

Program —>| GDI —>> Hardware

(C) Richard R. Eckert

Device Context

» Windows apps don't draw directly on hardware

» Draw on “Device Context” (DC)
— Is associated with a physical device
— Abgtracts the device it represents
— Like apainter’ scanvas
— Must be “ gotten” from Windows
— Specifies drawing attribute settings
* eg., text color

— Contains drawing objects
* e.g., pens, brushes, bitmaps, fonts

(C) Richard R. Eckert

The DC and the GDI

Windows Drawing Using the GDI and the DC

Device
Context
(DC)

Drawing
Commands

Graphics

Application Device Hardware
GDI Interface Hardware

functions (GDI) Commands

(C) Richard R. Eckert

Some GDI Attribute Settings

ATTRIBUTE DEFAULT FUNCTION
Background color ~ white SetBkColor()
Background mode OPAQUE SetBkM ode()
Current Position (0,0) MoveToEx()

Drawing Mode R2COPYPEN SetROP2()
Mapping Mode MM_TEXT SetMapMode()
Text Color Black SetTextColor()

(C) Richard R. Eckert

Some GDI Drawing Objects

Object Default What it is

Bitmap none Image object

Brush WHITE_BRUSH areafill object
Font SYSTEM_FONT text font object
Pen BLACK_PEN line-drawing object

Color Palette DEFAULT _PALETTE colors

» Can be created with GDI functions
e Must be “sdlected” into aDC to be used

(C) Richard R. Eckert

Windows Drawing "Objects™ and the DC

& Device
SelectOhject () Context
& (DC)
Drawing
CreatePen() Commands
CreateSolidBrushi()
Graphics
Application Device Hardware
GDI Interface Hardware
functions (GDI) Conmanda

(C) Richard R. Eckert

Color in Windows

 Uses four-byte numbers to represent colors

« Simplest method--direct color:
—typedef DWORD COLORREF;

—MSB=0:
e ==> RGB color used (default)
» other bytes specify R, G, B intensities

(C) Richard R. Eckert

RGB() Macro

» Specify Red, Green, Blue intensities
* RGB() generates a COLORREF value
 Can be used in color-setting functions), e.g.
COLORREF cr;
cr = RGB (0,0,255); /* bright blue*/
« Example usage in a program
SetTextColor (hDC, RGB(255,0,0)); //red text
SetBkColor (hDC, RGB(0,0,255)); //blue bkgnd

(C) Richard R. Eckert

A Typical Sequence
With Drawing Objects:

HPEN hOIdP, hNewP;

HDC hDC;

hDC = GetDC(hWnd);

hNewP = CreatePen(PS _SOLID, 3, RGB(0,0,255));
hOIdP = (HPEN)SelectObject(hDC, hNewP);

/[NOW DO SOME DRAWING WITH THE NEW PEN
SelectObject(hDC,hOIdP); //displace pen fromDC
DeleteObject(hNewP); //now can be deleted
ReleaseDC(hwWhd,hDC);

(C) Richard R. Eckert

Some GDI Drawing Primitives
o Arc(hDC,x1,y1,x2,y2 xSart,ySart,xEnd,yEnd);
» Ellipse (hDc, x1,y1,x2,y2);
* MovetoEx (hDC,x1,y1,IpPaint);
* LineTo (hDC,x1,yl);
» Polygon (hDC,points_array,nCount);
 Polyline (hDC,points_array,nCount);
» Rectangle (hDC,x1,y1,x2,y2);
o SetPixel (hDC,x1,y1,colref);
o TextOut (hDC,x,y,IpString,cbString);
« Many more (see on-line help)

(C) Richard R. Eckert

Stock Objects

* predefined in Windows

* obtain with GetStockObject();
— gets a handle to a predefined pen/brush/font

» Stock objects are maintained by Windows
— should not be deleted!

» Example

SlectObject (hDC,
GetStockObject(BLACK _PEN));

(C) Richard R. Eckert

Some Stock Objects
Some Object Choices:

Pen BLACK_PEN, WHITE_PEN

Brush DKGRAY BRUSH, GRAY BRUSH,
BLACK_BRUSH, LTGRAY_ BRUSH,
NULL_BRUSH, WHITE_BRUSH

Font ANSI_FIXED FONT, ANS|_VAR FONT,
DEVICE_DEFAULT _FONT, SYSTEM_FONT,
OEM_FIXED_FONT, SYSTEM_FIXED FONT

(C) Richard R. Eckert

The winapp2.cpp Application

 Details of WndProc()--
—menu item clicked==>WM_COMMAND
message
* LOWORD(wParam)==ID_RECTANGLE

("Rectangle” menu item clicked):

— draw red-outlined rectangle (pen) with solid cyan interior
(brush)

* LOWORD(wParam)==ID_CIRCLE ("Circle"
clicked):
—draw blue-outlined circle (pen) with crosshatched
magentainterior (brush)

(C) Richard R. Eckert

— LOWORD(wParam)==ID_CLEAR ("Clear Screen”
clicked):
« cal InvalidateRect() ==> Windows sends WM_PAINT message
— client area needs to be repainted

— default Window Procedure repaints client areawith class background
brush

— effectively eraseswindow's client area
— LOWORD(wParam)==ID_QUIT ("Quit” clicked):
* program calls DestroyWindow()
* causes Windows to destroy window
» and send a WM_DESTROY message
» Handler posts WM_QUIT message

— Which causes program to exit message loop and terminate

(C) Richard R. Eckert

* |eft mouse button pressed ==>
WM _LBUTTONDOWN message
—get cursor’s x,y coordinates from |Param
* use LOWORD & HIWORD macros
* output "L" at (x,y) on screen DC with TextOut()
* right mouse button pressed ==>
WM _RBUTTONDOWN message
e output "R” at (X,y) on screen DC with TextOut()

(C) Richard R. Eckert

— User hits ANSI character keyboard key/s ==>

WM_CHAR message (wParam=char code)
* copy character into a buffer
* output buffer to upper left corner with TextOut()

— User takes action to close window (double clicks on
System menu or hits Alt-F4) ==> WM_DESTROY
message

* post WM_QUIT message to app's queue

* causes program to exit event loop and return control to
Windows

(C) Richard R. Eckert

Using Visual Studioto Createa
Win32 API Application with a
Menu and an lcon

1. Get into Visual Studio, open a New Project, and
create an empty Win32 application
2. Create anew Visual C++ sourcefile, type or

paste in the code (winapp2.cpp), and saveit asa
C++ sourcefilein the app' s subdirectory
* must have: #include “resource.h’

3. Add it to the project

(C) Richard R. Eckert

4. Create the Icon Resource (and the .rc file)

» Select ‘ Project | Add Resource | Icon | New!’
— Brings up icon editor
* Draw desired icon
* Click on IDI_ICON1in “Resource View” to bring

up the “Properties” window and change the icon
ID to “MYICON”

—Don't forget the quote marks
» Giveanameto .ico file (or leave the default name)

(C) Richard R. Eckert

5. Select ‘Project | Add Resource | Menu | New'

* Brings up the menu editor
— Type the caption: &Circlein the “Type Here” rectangle
—In resulting "Properties’ box, Select “False” for “Pop-
up”
— Click on the resulting Circle menu item to bring up the
“Properties” box again.
— Note the default ID of ID_CIRCLE
* Click on the next rectangle over in the menu editor
— Repeat the above steps using caption: & Rectangle
— Keep the default IDs
* Repeat for: Clear & Screen, & Quit menu items

— Keep default IDs

(C) Richard R. Eckert

6. Click on*“IDI_MENU1" in “Resource View”
to bring up the “Properties” window and
change the menu ID to“MYMENU”

- Don't forget the quote marks
7. Build the project

(C) Richard R. Eckert

Copy Project to a Disketteor CD

To save space, delete all the temporary files from
the application’ s Debug Directories

— Everything except the application itself (the .exefile)
Also delete the VC++ Intellisense Database file
from the topmost directory

Copy the entire topmost directory to your
diskette or CD-ROM

If using a public computer, delete the workspace
directory from the hard disk

(C) Richard R. Eckert

