Win32 API
Programming

» See aso the old notes at:

http://www.cs.binghamton.edu/~reckert/360/class2a.htm
http://www.cs.binghamton.edu/~reckert/360/class3a.htm
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Win32 API Programming
» Event-driven, graphics oriented
« Example: User clicks mouse over a
program’ s window area (an event) --
—Windows decodes HW signals from mouse
—figures out which window user has sel ected
— sends a message to that window’ s program:

* "User has clicked over (X,Y)”
* "Do something and return control to me”

— Program reads message data, does what's
needed, returns control to Windows
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Overview of Win32 API Program
Structure--2 main tasks:
* |nitial activities
* Process messages from Windows
—the message loop
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Pseudocode
o Initialize variables, memory space

» Create and show program's window

e Loop
— Fetch any message sent from Windows to this
program

—If messageisWM_QUIT
* terminate program, return control to Windows

— If message is something else
» take actions based on message and parameters
* return control to Windows

 End LOOp (C) Richard R. Eckert

Essential Parts of aWin32 APl Pgm

 |. The source program (.c/.cpp file):

— A. WinMain() function
* 0. declarations, initialization, etc.
* 1. register window “class’
» 2. create awindow based on aregistered “class”
* 3. show window, make it update its client area
* 4. the message loop (get messages from Windows, dispatch
back to Windows for forwarding to correct callback
message-processing function, the WndProc)
— B. WndProc(): the message-processing function
» we write this function
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o |l. The resource script (.rcfile):
— contains resource (Windows static) data
— separate from code and dynamic data
—compiled by a separate " Resource Compiler”
— Resources determine the app’ s “look and feel”

— Examples of Windows Resources:

» Keyboard Accelerators, Bitmaps, Cursors, Dialog
Box specs, Fonts, Icons, Menus, String Tables

— Separation of resources and program code==>
* separates tasks of programmer & designer
» can change user interface without touching code
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The WinMain( ) Function

int PASCAL WinMain (HINSTANCE hinstance,

HINSTANCE hPrevinstance,
LPSTR IpszCmdLine, int nCmdShow);

WinMain() starts first
integer exit code returned to Windows OS
PASCAL: |-to-r parameter passing on stack

4 parameters passed in from Windows

— hinstance: a “handle”, identifies current pgm instance
— IpszCmdLine: string containing command line args

— nCmdShow: how window is to appear when shown
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Hungarian Notation

 help clarify variable types
 precede name with key letters representing

type

» named after Hungarian Microsoft
programmer, Charles Simonyi
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prefix data type

BYTE (unsi gned char)

BOCOL (int, TRUE=1 FALSE=0)
char

DWORD (4- byt e unsi gned | ong)
function

handl e

| ong (4 bytes)

short (int) near pointer
poi nt er

null-termnated char string
word (two byt es)

| psz long ptr to null-termnated str
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Register Class(& wndclass);

typedef struct tagWNDCLASS {
UINT style;
LRESULT CALLBACK IpfnWndProc;
int  cbClsExtra;
int  cbWndExtra;
HINSTANCE hinstance;
HICON hicon;
HCURSOR hCursor;
HBRUSH hBackground;
LPCSTR IpszMenuName;
LPCSTR IpszClassName; } WNDCLASS;
WNDCLASS wndclass;
if ('RegisterClass (&wndclass)) return O;
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CreateWindow( ) arguments:

window class name

window caption

window style (Boolean OR of window style masks)

initial X , y position in pixels

initial width , height

parent window handle (if main window, NULL)

window menu handle (NULL if class menu used)

program instance handle (from Windows)

creation parameters (for extra data, usually NULL)
Returns a handle (hwWnd) to the resulting window
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ShowWindow (hWnd,nCmdShow);

* makes window visible on screen
 hWnd: which window to make visible
 NCmdShow: how -- normal, minimized, etc.

— set by Windows environment when program
IS started;
— valueis passed in from Windows;
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UpdateWindow (hWnd);

» Causes client areato be updated
 Painted with background brush
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The Message L oop

o User interaction & amessage sent to a window
» Lotsof other kinds of actions & messages
* A message structure:

—HWND hwnd; // target window handle

— UINT message; // message ID value: WM _***

— WPARAM wParam; // data passed in message

— LPARAM IParam; // more datain message

— DWORD time; / time message was sent
— POINT pt; // mouse cursor position (X,y)
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GetM essage()

» Program must keep checking for messages
« Use message loop with GetM essage()

* BOOL GetMessage(
LPMSG IpMsg, // pointer to message struct
HWND hWhd, // target window(s)

/I which windows do we want to get msgs from
UINT wMsgl, // 1st messagein range
UINT wMsg2 // last message in range)
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GetM essage( )

Reads next message from app's message queue
Fills M SG structure pointed to by first parameter
Placein aloop:

while (GetMessage(& msg, NULL, O, 0))

(.}

return((int)msg.wParam);

Returns non-0, except for WM_QUIT message

— Terminates message loop and returns control to

Windows
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The Main HMessage Loop

Windows System

K

Is there a message
for this application's
window?

Run
other
Lpps

yes

Fill in fields of
N3G structure

Application’s

WinMain() function

Createlindow()

GetMessage
1 ge ()

Process
no )

WH_QUIT message

returns 0 ves

Exit
TinMain()
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M essage Processing

» What goes inside the message | oop:

TranslateMessage (& msg)—

— "Cooks" keyboard input

— Converts raw key codesto ANS| codes

— Only important if WM_CHAR message is to be handled
DispatchMessage (& msg)—

— Sends message on to Windows, which

— Forwards it to program's "Window Procedure’:

WhdProc()—
* 2nd member of WNDCLASS structure

* Programmer must write this function
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The Window Procedure

 “Callback” function (called by Windows)

 Should contain a switch/case statement :
—Looks at message ID of current message
— Acts appropriately on "interesting" messages

— Forwards other messages to default Window
procedure--DefWindowProc()
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WndProc()
LRESULT CALLBACK WndProc (

HWND hwnd, UINT wMessage,
WPARAM wParam, LPARAM |Param)

e Parameters—

— Same asfirst four fields of MSG structure:
» window associated with message

* message ID (what message is)
* message data (wParam and |Param)

* Return value-
— Result of message handling
* 0 means message was handled
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Windows Messages, Details

Windows Bystam

Applicatian
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The WM _ DESTROY Message

» Sent by OS when window is destroyed

» WndProc() should respond by calling:
— PostQuitMessage();
—Windows sends WM _QUIT msg to queue
—wParam =0 implies:
* O returned by GetMessage() in WinMain()
* normal return to Windows
* 50 program exits WinMain()'s message loop
* And returns to Windows
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WINDOWS WM DESTROY MESSAGE PROCESSING

Windows System

i Posts a WM _QUIT message on the Queue
App's [wParam = argument = 0)
Message
Queue

PostQuitMessacge (0)

Application

TndProc()

M5y Handler 1
M=y Handler 2

WM DESTROY
Mzg Handler

Should call:

Default




Example Program

e See First Windows Program: winappl.cpp
 URL:

http://www.cs.bi nghamton.edu/~reckert/360/winappl-cpp.html
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Some other important messages

e WM_COMMAND--User clicked on menu item
— LOWORD(wParam)=menu item ID

« WM_?BUTTONDOWN--left/right mouse button pressed
- ?=L,RorM
— |Param=x,y coordinates

e WM_MOUSEMOVE--mouse moved
— |Param=x,y coordinates

* WM_CHAR--User pressed valid ANSI code character or
keyboard key combination

— wParan=ANSI code
 WM_PAINT--window was exposed, should be redrawn

« WM_KEYDOWN--keyboard key pressed
— wParam=virtual key code
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|I. The Resource Script (.rcfile)

» Resources-static data
* Example: amenu
» Defined inascript (.rc) file--

#i ncl ude "resource. h"

MYMENU MENU

BEG N
MENUI TEM "&Ci rcl e", | D C RCLE
VENUI TEM " &Rect angl e", | D RECTANGLE
MENUI TEM " Cl ear &Screen”, | D CLEARSCREEN
MENUI TEM " &Qui t ", ID QUIT

END
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The Resource header (.h file)
/'l resource.h
#define | D Cl RCLE 40006
#define | D RECTANGLE 40007
#defi ne | D CLEARSCREEN 40008
#define ID QU T 40009
» Must be #included in .CPP and .RC files

e Can use Visua Studio's resource editors to
prepare .rc and .h visually
— D numbers generated automatically
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Key Idea with Menus;

* when menu item is selected
—Windows sends aWM_COMMAND msg
—low word of wParam=selected item ID
— extract with macro LOWORD()

—then do switch/case on LOWORD(wParam) to
perform correct action
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Text and Graphics Output
 Displaying something in a window
» Text and graphics done one pixel at atime
» Any size/shape/position possible
» Design goal: Device Independence
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Device Independent Graphics
| nterface

» Windows programs don’t access hardware
devices directly

» Make callsto generic drawing functions
within the Windows * Graphics Device
Interface (GDI) -- aDLL

» The GDI translates these into HW
commands

Program —>| GDI —>> Hardware
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Device Context

» Windows apps don't draw directly on hardware

» Draw on “Device Context” (DC)
— Is associated with a physical device
— Abgtracts the device it represents
— Like apainter’ scanvas
— Must be “ gotten” from Windows
— Specifies drawing attribute settings
* eg., text color

— Contains drawing objects
* e.g., pens, brushes, bitmaps, fonts
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The DC and the GDI

Windows Drawing Using the GDI and the DC

Device
Context
(DC)

Drawing
Commands

Graphics

Application Device Hardware
GDI Interface Hardware

functions (GDI) Commands
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Some GDI Attribute Settings

ATTRIBUTE DEFAULT  FUNCTION
Background color ~ white SetBkColor()
Background mode OPAQUE SetBkM ode()
Current Position (0,0) MoveToEx()

Drawing Mode R2COPYPEN SetROP2()
Mapping Mode MM_TEXT SetMapMode()
Text Color Black SetTextColor()
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Some GDI Drawing Objects

Object Default What it is

Bitmap none Image object

Brush WHITE_BRUSH areafill object
Font SYSTEM_FONT text font object
Pen BLACK_PEN line-drawing object

Color Palette DEFAULT _PALETTE colors

» Can be created with GDI functions
e Must be “sdlected” into aDC to be used
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Windows Drawing "Objects™ and the DC

& Device
SelectOhject () Context
& (DC)
Drawing
CreatePen() Commands
CreateSolidBrushi()
Graphics
Application Device Hardware
GDI Interface Hardware
functions (GDI) Conmanda
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Color in Windows

 Uses four-byte numbers to represent colors

« Simplest method--direct color:
—typedef DWORD COLORREF;

—MSB=0:
e ==> RGB color used (default)
» other bytes specify R, G, B intensities
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RGB() Macro

» Specify Red, Green, Blue intensities
* RGB() generates a COLORREF value
 Can be used in color-setting functions), e.g.
COLORREF cr;
cr = RGB (0,0,255); /* bright blue*/
« Example usage in a program
SetTextColor (hDC, RGB(255,0,0)); //red text
SetBkColor (hDC, RGB(0,0,255)); //blue bkgnd
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A Typical Sequence
With Drawing Objects:

HPEN hOIdP, hNewP;

HDC hDC;

hDC = GetDC(hWnd);

hNewP = CreatePen(PS _SOLID, 3, RGB(0,0,255));
hOIdP = (HPEN)SelectObject(hDC, hNewP);

/[ NOW DO SOME DRAWING WITH THE NEW PEN
SelectObject(hDC,hOIdP); //displace pen fromDC
DeleteObject(hNewP); //now can be deleted
ReleaseDC(hwWhd,hDC);
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Some GDI Drawing Primitives
o Arc(hDC,x1,y1,x2,y2 xSart,ySart,xEnd,yEnd);
» Ellipse (hDc, x1,y1,x2,y2);
* MovetoEx (hDC,x1,y1,IpPaint);
* LineTo (hDC,x1,yl);
» Polygon (hDC,points_array,nCount);
 Polyline (hDC,points_array,nCount);
» Rectangle (hDC,x1,y1,x2,y2);
o SetPixel (hDC,x1,y1,colref);
o TextOut (hDC,x,y,IpString,cbString);
« Many more (see on-line help)
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Stock Objects

* predefined in Windows

* obtain with GetStockObject();
— gets a handle to a predefined pen/brush/font

» Stock objects are maintained by Windows
— should not be deleted!

» Example

SlectObject (hDC,
GetStockObject(BLACK _PEN));
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Some Stock Objects
Some Object Choices:

Pen  BLACK_PEN, WHITE_PEN

Brush DKGRAY BRUSH, GRAY BRUSH,
BLACK_BRUSH, LTGRAY_ BRUSH,
NULL_BRUSH, WHITE_BRUSH

Font ANSI_FIXED FONT, ANS|_VAR FONT,
DEVICE_DEFAULT _FONT, SYSTEM_FONT,
OEM_FIXED_FONT, SYSTEM_FIXED FONT
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The winapp2.cpp Application

 Details of WndProc()--
—menu item clicked==>WM_COMMAND
message
* LOWORD(wParam)==ID_RECTANGLE

("Rectangle” menu item clicked):

— draw red-outlined rectangle (pen) with solid cyan interior
(brush)

* LOWORD(wParam)==ID_CIRCLE ("Circle"
clicked):
—draw blue-outlined circle (pen) with crosshatched
magentainterior (brush)
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— LOWORD(wParam)==ID_CLEAR ("Clear Screen”
clicked):
« cal InvalidateRect() ==> Windows sends WM_PAINT message
— client area needs to be repainted

— default Window Procedure repaints client areawith class background
brush

— effectively eraseswindow's client area
— LOWORD(wParam)==ID_QUIT ("Quit” clicked):
* program calls DestroyWindow()
* causes Windows to destroy window
» and send a WM_DESTROY message
» Handler posts WM_QUIT message

— Which causes program to exit message loop and terminate
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* |eft mouse button pressed ==>
WM _LBUTTONDOWN message
—get cursor’s x,y coordinates from |Param
* use LOWORD & HIWORD macros
* output "L" at (x,y) on screen DC with TextOut()
* right mouse button pressed ==>
WM _RBUTTONDOWN message
e output "R” at (X,y) on screen DC with TextOut()
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— User hits ANSI character keyboard key/s ==>

WM_CHAR message (wParam=char code)
* copy character into a buffer
* output buffer to upper left corner with TextOut()

— User takes action to close window (double clicks on
System menu or hits Alt-F4) ==> WM_DESTROY
message

* post WM_QUIT message to app's queue

* causes program to exit event loop and return control to
Windows
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Using Visual Studioto Createa
Win32 API Application with a
Menu and an lcon

1. Get into Visual Studio, open a New Project, and
create an empty Win32 application
2. Create anew Visual C++ sourcefile, type or

paste in the code (winapp2.cpp), and saveit asa
C++ sourcefilein the app' s subdirectory
* must have: #include “resource.h’

3. Add it to the project
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4. Create the Icon Resource (and the .rc file)

» Select ‘ Project | Add Resource | Icon | New!’
— Brings up icon editor
* Draw desired icon
* Click on IDI_ICON1in “Resource View” to bring

up the “Properties” window and change the icon
ID to “MYICON”

—Don't forget the quote marks
» Giveanameto .ico file (or leave the default name)
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5. Select ‘Project | Add Resource | Menu | New'

* Brings up the menu editor
— Type the caption: &Circlein the “Type Here” rectangle
—In resulting "Properties’ box, Select “False” for “Pop-
up”
— Click on the resulting Circle menu item to bring up the
“Properties” box again.
— Note the default ID of ID_CIRCLE
* Click on the next rectangle over in the menu editor
— Repeat the above steps using caption: & Rectangle
— Keep the default IDs
* Repeat for: Clear & Screen, & Quit menu items

— Keep default IDs
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6. Click on*“IDI_MENU1" in “Resource View”
to bring up the “Properties” window and
change the menu ID to“MYMENU”

- Don't forget the quote marks
7. Build the project
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Copy Project to a Disketteor CD

To save space, delete all the temporary files from
the application’ s Debug Directories

— Everything except the application itself (the .exefile)
Also delete the VC++ Intellisense Database file
from the topmost directory

Copy the entire topmost directory to your
diskette or CD-ROM

If using a public computer, delete the workspace
directory from the hard disk
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