CS-360/580H
GUI & Windows Programming

Dr. Richard R. Eckert
Computer Science Department
SUNY Binghamton
Fall, 2009

CS-360: MWF, 1:10-2:10 P.M., SL-210
CS-580H: TR, 8:30-9:55 A.M., SW-325

Course Information

o Office: EB-N6

» Phone: 777-4365

o OfficeHours: W, R 1:30-2:30 P.M.
» Email: reckert@binghamton.edu

* http://www.cs.binghamton.edu/~reckert/

— CS-360 link for syllabus, notes, programs,
assignments, €tc.

e Class Listserv:

— CS360-L @listserv.binghamton.edu
e CS-360TA: Elif Dede
e CS-580H TA: Yibo Sun

Course Prerequisites

» CS5240, Data Structures
» Some knowledgeof C or C++

Text Book | nformation

* Required:

— Deitd, et.al., “Visual C# 2005: How to Program”,
2nd Edition, PH/Pearson, 2005, ISBN 0-13-152523-9

* Recommended:

— Kate Gregory, “ Specid Edition Visua C++ .NET”,
Que, 2002, ISBN 0-7887-2466-9

* Many Books on Reserve
— See Resarve Ligt in Course Syllabus

Softwar e

e Microsoft Visual Studio 2005 or 2008 Professional

Edition

— 2008 available at most University public computer
facilities

— Get your own copy of ether

» From Microsoft Academic Alliance
— Available now to all registered BU students
— https://msdn04.e-

academy.com/elms/Security/PasswordReminder.aspx ?campus=hinghamt
on_watson

o Smaller .NET 2005 or 2008 “Express Editions” free
from Microsoft:

— Visua C++ 2005/08, Visua C# 2005/08, SQL Server
2005/08 Visua Web Developer 2005/08 Express Editions

— http://msdn.microsoft.com/vstudio/express/

Evaluation

e Programming Assignments 40%
* Term Examinations (2) 40%
* Quizzes (360)/Paper(580H) 10%
 Fina Project 10%

Policies
* Assignments
— Individual

— Due on due date, but can be turned into CS-
360/CS-580H drop drawer in filing cabinets
outside CS Department any time that day or night

— 5% off for every day late
» Weekends and holidays not included

— No assignments accepted more than one week late
« Originality
— Any non-original work (work found to be
copied) will begroundsfor an F in the course

— Individual assignments
» Studentsdo NOT work in teams

Cour se Schedule (weekly)

1. Intro to GUIs & Windows Programming,
Using Visua Studio
2. Win32 API Programming

3. MFC Programming: App/Window &
Doc/View Approaches

4.Visua Studio .NET & C#, Classes, Windows
Forms, Events, Essential Structures

5. Graphics, Animation, Timers, DateTime
6. Mouse, Images, Bitmaps

7. Text, Fonts, Keyboard, Printing

8. Pages & Transformations, Menus

Cour se Schedule (continued)

9. Controls: Buttons, Labels, TextBoxes,
Scrollbars, Listboxes, etc.

10. Dialog Boxes, Common Dialog Boxes,
File/Stream 1/O

11. Clipboard, Multimedia
12. Network Programming, TCP/IP Sockets
13. Data Bases and ADO.NET, LINQ

14. XML, Web Forms, Web Controls,
ASP.NET; WPF & WCF

15. ASP.NET Web Services

16. Other Windowing Systems: X Windows,
Java AWT/Swing

Introduction To GUlsand
Windows Programming

User Interface

» Connection between the computer and
the user

e Two types:
—Command Line
—GUI: Graphical (Visual)

Command Line Interfaces

o User types commands, must remember valid commands
* Results Scroll by

o Text-based

» “Interactive’ but hard to use

» Only kind of interface available until 1970s

\WINDOWS \system32\cmd.exe

A2/15-2004 @5:59 PM <DIR> photos
B8./22./2006 H <DIR> rof il
88162807 H <DIR>

87382006 H <DIR> Research
11142085 H <DIR> Rohotics

A5./82. /2087 H 241,816 SearchParty.log
#1./8%.,2807 H <DIR> Songs
A4.21./2005 H <DIR> Springfh
11./30./2086) <DIR> Springd6
@7,11.-2007 H <DIR> Spring@?

05 ./81./2 006 H <DIR> tenp

A1.-23./,2006 H <DIR> TeralermPro
A7./27.,2083 H <DIR> TOSHIBA

A7-23-2007 £ <DIR> ultralight
89/15./2866 H <DIR> Uideos

11-368-28684 H <DIR> WehProjects
A8.-16.,2887 H <DIR> WINDOUS
B5.-17./.26084 :34 PM <DIR> WTemp
241,208 hytes

68 Dirds> 2,.887.585,.792 bytes free

C:\>cd 368
C:n368>

AT TS

Visual (Graphical) Interfaces

» Show Graphical Objects on screen
— e.g., images, icons, buttons, scroll bars
» User interacts using pointing device
* Intuitive
— Objects can be dragged, buttons pushed, etc....
» Better way of using screen space

— Panes can overlap
— Underlying panes can be brought to forefront

— Desktop metaphor (like papers on a desk)

Graphical Interfaces, Continued

» Use graphics to organize user workspace
—Visually rich way of conveying information

» Environment allows many tasks to be
performed simultaneously

 Different tasks share screen space

Main Feature of GUIs
* The Window

— Rectangular area of screen onto which a
program draws text and graphics

— User interacts with program that created
the window using a pointer device to
select objectsinside

— Some window components:

* border, title bar, client area, menu bar, tool
bars, scroll bars, max/min/close buttons,
etc.

History of GUIs

* DARPA SRI (late 60s)
o Xerox PARC Alto (early 70s)

» Microcomputers (late 70s to present)
—PC (DOS command line)
—Apple Lisa, Macintosh
* First real microcomputer GUI
— Microsoft Windows
* Many versions

» We' Il emphasize GUI Programming for Microsoft
Windowsiin this course

Other GUI-Windowing Systems

* Sun Microsystems. Java
— AWT
— Swing
— Platform independent
— JDK isfree

e The X Window System
— Developed at MIT, late 1980s
— Networked graphics programming interface

— Independent of machine architecture/OS (but
mostly used under UNIX/LINUX)

Windowing Systems Features

e Congistent user interface

— Information displayed within a window

— Menus to initiate program functions

— Make use of child window *“controls”

— Point and click user interaction with window
 All programs have same look and feel
« Same built-in logic to:

— draw text/graphics

— display menus

— recelve user input

«controls, dialog boxes, use of mouse

Multitasking

Many programs run “ simultaneously”

Each program creates/controls its own
window

User interacts with program via its window

User can switch between programs by
switching between windows

Windows Multitasking
Features

» Cooperative (Windows 3.xx)
— Programs must give up control so others can run
— Programs coexist with other programs

» Preemptive (Windows NT, 95, 98, XP, 2000,
2003, Vista)

— Thread-based: System timer allocates time dices
to running program threads

» Under both systems, code is moved or
swapped into and out of memory as needed

Windows M emory M anagement

» Older versions: 16-bit, segmented memory
— Dictated by processor architecture

— Hard to program
* 64 kilobyte memory segment limitation

* Newer versions: 32/64-bit, flat memory model
— Easier to program
— Each process sees 4 Gigabytes of virtual memory
» Asold programs terminate, new ones start
— Code swapped into and out of memory
— Windows OS does this automatically

» Programs can share code located in other files
(Dynamic Linking)

Static vs. Dynamic Linking

 Static Linking
— Code incorporated into executable at link
time
e Dynamic Linking
— Code is put into separate modules (DLLS)
—These are loaded at run time as needed

Compiled.obj File Runtime Library File

Contains several
functions

Linker

Finished Executable Program
Includes two library functions

Static Linking

Import Library contains
Compiled.cbj File DLL ftn. relocation info.

Linker

Dynamic Link Library

Executable Pgm.

BEelocation
Info.

Calls ftns. in DLL when needed

Ojects loaded intc memory

Dynamic Linking

Pros/Cons of Dynamic Linking

» Smaller programs (code is not in program)
» DLL can be used by many programs with
no memory penalty
— Only loaded once!
 Disadvantages:
— DLL must be present at run time ==> no
standalone programs
—“DLL Hél” when new DLL versions come out

* Most of the Windows OS is implemented as
DLLs

Device | ndependent Graphics

» Windows programs don't access hardware
devices directly

» Make callsto generic functions within the
Windows ‘ Graphics Device Interface’
(GDI, GDI+, or WPF)

* The GDI/GDI+/WPF translates these into
HW commands

Program —> GDI —— Hardware

Windows API

« Application Program Interface

& The programmer’ s interface between an
application and the Windows OS

& A library of functions Windows programs
can call
= Several versions

= \Win32 APl most fundamental

#(32 bit apps for Windows
NT/95/98/X P/2000/2003/Vista)

Classical Win32 APl Windows
Programming

Use C to access raw API functions directly
No C++ class library wrappers to hide API
— But C++ compiler can be used

Hard way to go, but most basic

Faster executables

Provides understanding of how Windows OS
and application program interact

Establishes a firm foundation for MFC and
NET programming

Class-based Windows Programming

* “Microsoft Foundation Class’ Library
(MFC)

* Microsoft .NET “Framework Class Library”
(FCL)

» Borland's “Object Window Library’
(OWL)

o Characteristics:
— Encapsulate the API functions into classes

— Provide alogica framework for building
Windows applications

— Object Orientation means reusable code

MFC Library

* Microsoft’s first C++ Interface to Win32 API

* Most basic object oriented approach to
Windows programming

» Some 200 classes
» API functions encapsulated in the MFC
» Classes derived from MFC do grunt work
 Just add data/functions to customize

— Or derive your own classes from MFC classes
* Provides a uniform application framework
» Fast executables

C++ Windows Application

MFC Library

|

Win3? APT

Computer Hardware

The Relationship between Windows
MFC and Win32 API Programming

Microsoft .NET Framework

— A software system that addresses new SW requirements
* 1. Windows Forms: standalone Windows applications
* 2. Windows distributed applications over the Internet
— ASP.NET
— ADO.NET
— Multi-tier applications
» Language Independent (programs can be written in multiple
languages)
» Platform Independent Architecture
» New program devel opment process
— Object oriented
— Provides increased productivity
— New vision for using the Internet in software devel opment
* New security and reliability features

Components of .NET Framework
e Language compilers

The .NET Framework Class Library (FCL)

— Organized into “ namespaces”

* like packagesin Java

— Handle things like: 1/0 (simple & file),
Windows Forms, Web Forms, Windows
Controls, User Interfaces, Drawing, Threading,
Exceptions, Networking, Web Services, Data
Bases (ADO), XML, ASP, Security,
Collections, ... lots of others

Common Type System (CTYS)

Common Language Specification (CLYS)

Common Language Runtime (CLR)

NET Architecture

Microsoft .NET Fr*)amewor‘k Architecture

RN a S|
Cravomnd

Microsoft

4 JScript® 4

- Common Language Specification

Framework Class Library

Common Language Runtime

Windows LINUX

=
S
o
w
o
=
=
w
c
By
(73
—
=
o
Q
2
=z
]
|

Compilation in the .NET
Framework

@

Compiler

| Compiler | | Compiler |

MSIL Assembly

Unmanaged Code

| Comunon Langnage Runtimme JIT Compiler |

Managed Code Common
Language

CLR Services Runtime
|

Win32APT + Operating System

Sequential Programming
Ver sus
Event-driven Programming

Sequential Programming (Console
Applications)

= Standard programming--program solicits input
(polling loop)

=« Approach follows a structured sequence of events
= Example--averaging grades:

& |nput name

& Input first grade

& |nput second grade

& Input third grade, etc.

= Calculate average

= Output average

Event-Driven Programming

Designed to avoid limitations of sequential,
procedure-driven methodologies

OS processes user actions (events) as they
happen: non-sequential

Program doesn't solicit input

OS detects an event has happened (e.g..,
ther€ sinput) and sends a message to the
program

Program then acts on the message

M essages can occur in any order

Lpplication Operating System

Event Interpreter

Messages:

I hawve a name
I have a grade
Message Cowmpute the average

User Actions
(Events)

é_____L——— Type a hame

Type a nunber

Click 'Compute

End L mwessage

bverage' button

Others--in
any segquence

The Event-Driven Programming Paradigm

Sequential vs. Event-Driven Programming

 Standard Sequential programming:

— Program does something & user responds

— Program controls user
* the tail wags the dog

» Event-Driven Programming:

— User does something and program responds

— User can act at any time

— User controls program
* the dog wags the talil

— OSredlly isin control (coordinates message
flow to different applications)

— Good for apps with lots of user intervention

