
CS-360/580H
GUI & Windows Programming

Dr. Richard R. Eckert
Computer Science Department

SUNY Binghamton
Fall, 2009

CS-360: MWF, 1:10-2:10 P.M., SL-210
CS-580H: TR, 8:30-9:55 A.M., SW-325

Course Information
• Office: EB-N6
• Phone: 777-4365
• Office Hours: W, R 1:30-2:30 P.M.
• Email: reckert@binghamton.edu
• http://www.cs.binghamton.edu/~reckert/

– CS-360 link for syllabus, notes, programs,
assignments, etc.

• Class Listserv:
– CS360-L@listserv.binghamton.edu

• CS-360 TA: Elif Dede
• CS-580H TA: Yibo Sun

Course Prerequisites

• CS-240, Data Structures
• Some knowledge of C or C++

Text Book Information
• Required:

– Deitel, et.al., “Visual C# 2005: How to Program”,
2nd Edition, PH/Pearson, 2005, ISBN 0-13-152523-9

• Recommended:
– Kate Gregory, “Special Edition Visual C++ .NET”,

Que, 2002, ISBN 0-7887-2466-9
• Many Books on Reserve

– See Reserve List in Course Syllabus

Software
• Microsoft Visual Studio 2005 or 2008 Professional

Edition
– 2008 available at most University public computer

facilities
– Get your own copy of either

• From Microsoft Academic Alliance
– Available now to all registered BU students
– https://msdn04.e-

academy.com/elms/Security/PasswordReminder.aspx?campus=binghamt
on_watson

• Smaller .NET 2005 or 2008 “Express Editions” free
from Microsoft:
– Visual C++ 2005/08, Visual C# 2005/08, SQL Server

2005/08 Visual Web Developer 2005/08 Express Editions
– http://msdn.microsoft.com/vstudio/express/

Evaluation

• Programming Assignments 40%
• Term Examinations (2) 40%
• Quizzes (360)/Paper(580H) 10%
• Final Project 10%

Policies
• Assignments

– Individual
– Due on due date, but can be turned in to CS-

360/CS-580H drop drawer in filing cabinets
outside CS Department any time that day or night

– 5% off for every day late
• Weekends and holidays not included

– No assignments accepted more than one week late
• Originality

– Any non-original work (work found to be
copied) will be grounds for an F in the course

– Individual assignments
• Students do NOT work in teams

Course Schedule (weekly)
1. Intro to GUIs & Windows Programming,

Using Visual Studio
2. Win32 API Programming
3. MFC Programming: App/Window &

Doc/View Approaches
4.Visual Studio .NET & C#, Classes, Windows

Forms, Events, Essential Structures
5. Graphics, Animation, Timers, DateTime
6. Mouse, Images, Bitmaps
7. Text, Fonts, Keyboard, Printing
8. Pages & Transformations, Menus

Course Schedule (continued)
9. Controls: Buttons, Labels, TextBoxes,

Scrollbars, Listboxes, etc.
10. Dialog Boxes, Common Dialog Boxes,

File/Stream I/O
11. Clipboard, Multimedia
12. Network Programming, TCP/IP Sockets
13. Data Bases and ADO.NET, LINQ
14. XML, Web Forms, Web Controls,

ASP.NET; WPF & WCF
15. ASP.NET Web Services
16. Other Windowing Systems: X Windows,

Java AWT/Swing

Introduction To GUIs and
Windows Programming

User Interface
• Connection between the computer and

the user
• Two types:

–Command Line
–GUI: Graphical (Visual)

Command Line Interfaces
• User types commands, must remember valid commands
• Results Scroll by
• Text-based
• “Interactive” but hard to use
• Only kind of interface available until 1970s

Visual (Graphical) Interfaces
• Show Graphical Objects on screen

– e.g., images, icons, buttons, scroll bars

• User interacts using pointing device
• Intuitive

– Objects can be dragged, buttons pushed, etc....

• Better way of using screen space
– Panes can overlap
– Underlying panes can be brought to forefront
– Desktop metaphor (like papers on a desk)

Graphical Interfaces, Continued

• Use graphics to organize user workspace
– Visually rich way of conveying information

• Environment allows many tasks to be
performed simultaneously

• Different tasks share screen space

Main Feature of GUIs
• The Window

– Rectangular area of screen onto which a
program draws text and graphics

– User interacts with program that created
the window using a pointer device to
select objects inside

– Some window components:
• border, title bar, client area, menu bar, tool

bars, scroll bars, max/min/close buttons,
etc.

History of GUIs
• DARPA SRI (late 60s)
• Xerox PARC Alto (early 70s)
• Microcomputers (late 70s to present)

– PC (DOS command line)
– Apple Lisa, Macintosh

• First real microcomputer GUI

– Microsoft Windows
• Many versions
• We’ll emphasize GUI Programming for Microsoft

Windows in this course

Other GUI-Windowing Systems
• Sun Microsystems: Java

– AWT
– Swing
– Platform independent
– JDK is free

• The X Window System
– Developed at MIT, late 1980s
– Networked graphics programming interface
– Independent of machine architecture/OS (but

mostly used under UNIX/LINUX)

Windowing Systems Features
• Consistent user interface

– Information displayed within a window
– Menus to initiate program functions
– Make use of child window “controls”
– Point and click user interaction with window

• All programs have same look and feel
• Same built-in logic to:

– draw text/graphics
– display menus
– receive user input

?controls, dialog boxes, use of mouse

Multitasking
• Many programs run “simultaneously”
• Each program creates/controls its own

window
• User interacts with program via its window
• User can switch between programs by

switching between windows

Windows Multitasking
Features

• Cooperative (Windows 3.xx)
– Programs must give up control so others can run
– Programs coexist with other programs

• Preemptive (Windows NT, 95, 98, XP, 2000,
2003, Vista)
– Thread-based: System timer allocates time slices

to running program threads
• Under both systems, code is moved or

swapped into and out of memory as needed

Windows Memory Management
• Older versions: 16-bit, segmented memory

– Dictated by processor architecture
– Hard to program

• 64 kilobyte memory segment limitation

• Newer versions: 32/64-bit, flat memory model
– Easier to program
– Each process sees 4 Gigabytes of virtual memory

• As old programs terminate, new ones start
– Code swapped into and out of memory
– Windows OS does this automatically

• Programs can share code located in other files
(Dynamic Linking)

Static vs. Dynamic Linking
• Static Linking

– Code incorporated into executable at link
time

• Dynamic Linking
– Code is put into separate modules (DLLs)
– These are loaded at run time as needed

Pros/Cons of Dynamic Linking

• Smaller programs (code is not in program)
• DLL can be used by many programs with

no memory penalty
– Only loaded once!

• Disadvantages:
– DLL must be present at run time ==> no

standalone programs
– “DLL Hell” when new DLL versions come out

• Most of the Windows OS is implemented as
DLLs

Device Independent Graphics

• Windows programs don’t access hardware
devices directly

• Make calls to generic functions within the
Windows ‘Graphics Device Interface’
(GDI, GDI+, or WPF)

• The GDI/GDI+/WPF translates these into
HW commands

Program GDI Hardware

Windows API
?Application Program Interface
?The programmer’s interface between an

application and the Windows OS
?A library of functions Windows programs

can call
?Several versions
?Win32 API most fundamental
?(32 bit apps for Windows

NT/95/98/XP/2000/2003/Vista)

Classical Win32 API Windows
Programming

• Use C to access raw API functions directly
• No C++ class library wrappers to hide API

– But C++ compiler can be used
• Hard way to go, but most basic
• Faster executables
• Provides understanding of how Windows OS

and application program interact
• Establishes a firm foundation for MFC and

.NET programming

Class-based Windows Programming

• “Microsoft Foundation Class” Library
(MFC)

• Microsoft .NET “Framework Class Library”
(FCL)

• Borland’s “Object Window Library”
(OWL)

• Characteristics:
– Encapsulate the API functions into classes
– Provide a logical framework for building

Windows applications
– Object Orientation means reusable code

MFC Library
• Microsoft’s first C++ Interface to Win32 API
• Most basic object oriented approach to

Windows programming
• Some 200 classes
• API functions encapsulated in the MFC
• Classes derived from MFC do grunt work
• Just add data/functions to customize

– Or derive your own classes from MFC classes
• Provides a uniform application framework
• Fast executables

Microsoft .NET Framework
– A software system that addresses new SW requirements

• 1. Windows Forms: standalone Windows applications
• 2. Windows distributed applications over the Internet

– ASP.NET
– ADO.NET
– Multi-tier applications

• Language Independent (programs can be written in multiple
languages)

• Platform Independent Architecture
• New program development process

– Object oriented
– Provides increased productivity
– New vision for using the Internet in software development

• New security and reliability features

Components of .NET Framework
• Language compilers
• The .NET Framework Class Library (FCL)

– Organized into “namespaces”
• like packages in Java

– Handle things like: I/O (simple & file),
Windows Forms, Web Forms, Windows
Controls, User Interfaces, Drawing, Threading,
Exceptions, Networking, Web Services, Data
Bases (ADO), XML, ASP, Security,
Collections, … lots of others

• Common Type System (CTS)
• Common Language Specification (CLS)
• Common Language Runtime (CLR)

.NET Architecture

Compilation in the .NET
Framework

Common
Language
Runtime

Sequential Programming
versus

Event-driven Programming

? Standard programming--program solicits input
(polling loop)

? Approach follows a structured sequence of events
? Example--averaging grades:

? Input name
? Input first grade
? Input second grade
? Input third grade, etc.
? Calculate average
? Output average

Sequential Programming (Console
Applications)

Event-Driven Programming

• Designed to avoid limitations of sequential,
procedure-driven methodologies

• OS processes user actions (events) as they
happen: non-sequential

• Program doesn’t solicit input
• OS detects an event has happened (e.g..,

there’s input) and sends a message to the
program

• Program then acts on the message
• Messages can occur in any order

Sequential vs. Event-Driven Programming

• Standard Sequential programming:
– Program does something & user responds
– Program controls user

• the tail wags the dog

• Event-Driven Programming:
– User does something and program responds
– User can act at any time
– User controls program

• the dog wags the tail
– OS really is in control (coordinates message

flow to different applications)
– Good for apps with lots of user intervention

