Power Efficient Comparators for Long Arguments in Superscalar Processors

Dmitry Ponomarev, Gurhan Kucuk, Oguz Ergin, Kanad Ghose
Department of Computer Science
State University of New York
Binghamton, NY 13902-6000
http://www.cs.binghamton.edu/~lowpower

*supported in part by DARPA through the PAC-C program and NSF
Outline

- Motivations
- 8-bit comparator designs
 - Traditional Comparator
 - Dissipate on Match Comparator (ICCD’02)
- 32-bit Comparator Designs
- Results: Application to the Load-Store Queue
- Conclusions
Motivation

Equality comparators are very pervasive in today’s superscalar datapaths.
- Wake-up logic of the Issue Queues
- Dependency checking logic
- Load-Store queues
- Translation Lookaside Buffers (TLB)
- Caches
- Branch Target Buffers (BTB)
Motivation (continued)

- Traditional comparators dissipate energy on mismatches in any bit position of the arguments.
- In many cases, mismatches are much more frequent than matches.
 - Issue queue: Only 3% of all comparisons result in a match (Ergin et al., ICCD’02)
- For energy efficiency, dissipate-on-match designs can be considered.
Traditional 8-bit Pull-Down Comparator
Dissipate-on-Match Comparator (DMC, ICCD’02)
Use of the Long Comparators

- Load-Store queues – to allow loads to bypass earlier stores
- TLBs – for associative lookup
- Caches – for associative lookup
- BTBs – for associative lookup
Traditional 8-bit Pull-Down Comparator
Dissipate-on-Match Comparator (DMC)
Comparison of larger operands: Some Alternatives

(a) 32-bit traditional comparator

(b) 32-bit dissipate-on-match comparator

(c) 32-bit energy-efficient comparator: variation 1

(d) 32-bit energy-efficient comparator: variation 2

(e) 32-bit energy-efficient comparator: variation 3

Each TRAD compares 8 bits
Each DMC compares 8 bits
Each DMC and TRAD compares 8 bits
Each DMC compares 8 bits

~270 ps
~270 ps
~270 ps
>400 ps
>400 ps
Choosing the Right Alternative

Need to consider impact on:
- Delay
- Energy

Have to look at distributions of bit values that are compared

More than one alternative may be acceptable
Experimental Setup (AccuPower, DATE’02)

- Compiled SPEC benchmarks
- Datapath specs
- Microarchitectural Simulator
 - Performance stats
 - Transition counts, Context information
- VLSI layout data
- SPICE deck
- SPICE
 - Energy/Power Estimator
 - Power/energy stats
 - SPICE measures of Energy per transition
Matching Statistics of 32-bit Addresses in the LSQ

Number of matching bit pairs in each of the 4 8-bit groups
Dissipate-on-Match Comparator (DMC)
Matching Statistics of 32-bit Addresses in the LSQ

Number of matching bit pairs in each of the 4 8-bit groups
Energy savings in comparison of longer operands

(a) 32-bit traditional comparator

(b) 32-bit dissipate-on-match comparator

(c) 32-bit energy-efficient comparator: variation 1

19% Energy Increase 19% Energy Savings
Main Results

- We discussed some energy-efficient 32-bit wide comparator designs.
- 19% comparator-related energy reduction in LSQ is achieved by using a hybrid design (3 TRADs + 1 DMC) compared to the use of 4 TRAD comparators.
- Results can be extended to TLBs and BTBs.
THANK YOU!

LOW POWER RESEARCH GROUP
Department of Computer Science
State University of New York
Binghamton, NY 13902-6000
http://www.cs.binghamton.edu/~lowpower

International Symposium on Low Power Electronics and Design (ISLPED’03),
August 27th 2003

*supported in part by DARPA through the PAC-C program and NSF
Timing Diagrams

Proposed comparators

Traditional comparator

t_{pre}

t_{prop}

t_{dis}

t_{eval}^*

t_{eval}

t_{pre}

t_{cycle}
32-bit Matching Statistics: LSQ
Traditional 8-bit Pull-Down Comparator
Pass Logic, Single-Stage Comparator (PLSSC)

<table>
<thead>
<tr>
<th>Number of matching 2-bit groups in the comparands</th>
<th>Energy of the 8-bit DMC used to build a 32-bit comparator (fJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.78</td>
</tr>
<tr>
<td>1</td>
<td>122.3</td>
</tr>
<tr>
<td>2</td>
<td>238.9</td>
</tr>
<tr>
<td>3</td>
<td>357.5</td>
</tr>
<tr>
<td>4</td>
<td>635.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of matching bits in the comparands</th>
<th>Energy of the traditional comparator (fJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>979.2</td>
</tr>
<tr>
<td>1</td>
<td>934.7</td>
</tr>
<tr>
<td>2</td>
<td>885.5</td>
</tr>
<tr>
<td>3</td>
<td>839.5</td>
</tr>
<tr>
<td>4</td>
<td>796.4</td>
</tr>
<tr>
<td>5</td>
<td>748.8</td>
</tr>
<tr>
<td>6</td>
<td>709.3</td>
</tr>
<tr>
<td>7</td>
<td>660.4</td>
</tr>
<tr>
<td>8</td>
<td>13.9</td>
</tr>
</tbody>
</table>