Misc.

- Project 2
 - Project on class webpage – please get started early – you may be already late!
 - Next time: help getting started – please try to read the document, even if you don’t understand everything

- Today
 - Link State Routing
 - Address assignment
 - Hierarchical Routing/BGP

Link State Routing

- Idea: Send updates to *all nodes in the network* with information about *only your immediate neighbors*
 - The update consists of a Link State Packet (LSP) which holds
 - Source node id
 - Cost of the link to each directly connected node
 - A sequence number (SEQNO)
 - A time to live (TTL)
 - How to send the packet to all nodes in the network? Reliable Flooding

- Each node has the full topology of the network, and can carry out shortest path computation locally to find optimal paths

Last Time

- Link state routing
- Link cost metrics
- Scalable Routing – reduce the overhead and computation required for routing

1. Create Hierarchy – Autonomous Systems routed independently
2. Address aggregation
 - Subnetting and supernetting – Classless routing
3. Interior protocol (intra-domain protocol)
4. Exterior protocol (inter-domain protocol)
5. OSPF and areas to add additional hierarchy within a domain

Forward Search Algorithm

```
\begin{align*}
\text{Confirmed Tentative} & \quad D,0,- B,11,BC,2,C \\
\text{Confirmed Tentative} & \quad D,0,-C,2,C A,12,C \\
\text{Confirmed Tentative} & \quad D,0,-C,2,C B,5,C \\
\end{align*}
```
Determining Link Cost

- Queue length – link properties ignored
- Queue delay + transmission delay + propagation delay?
- Third metric
 - Solution: base cost on utilization, compress the range of the cost to avoid circuitous routes

OSPF Example

- Example from OSPF RFC
 - Note that the costs a connection can be different in each direction

OSPF Example

- Each router constructs its shortest path tree
- Example shows the tree for router 6

Autonomous Systems

- Neither approach scales gracefully
- Must reduce size of stored and exchanged information
 - Use Autonomous Systems
 - Each autonomous system routed independently using an interior routing protocol (Intra-domain). Examples: RIP, OSPF
 - Routing across autonomous systems using an exterior routing protocol (inter-domain). Examples: EGP, BGP
• OSPF provides internal hierarchy to deal with a large autonomous area
 – Connections across different areas pass through the backbone
• Routers are classified depending on their location. They take part in routing among their peers
• Three types of routes
 – Intra-area routes (within area)
 – Inter-area route (area1 – backbone – area2)
 – Inter-AS routes

Break/Discussion

<table>
<thead>
<tr>
<th></th>
<th>7</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Network</td>
<td>Host</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>(b) 1</td>
<td>0</td>
<td>Network</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>8</td>
</tr>
<tr>
<td>(c) 1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

• Before we discuss Inter AS routing/the full routing picture on the internet
 – Need to understand the use of addresses
 * To ensure high utilization of the address space – it is severely limited
 * To provide hierarchy for the routing
 – Need to have a better view/model of what the internet looks like

IP Addresses

Problem: severe underutilization of address space if we follow the address classes strictly
 – Example, using a class C network for a LAN with 3 machines, 252 addresses are wasted
 – Example, if you have a network of 400 machines, need a class B address (65536)

Need a bigger address space (IPv6)
 – Until then, need to develop more efficient ways to use the available space
 – Use subnets to fit multiple sub networks within a single network (subnetting)
 – Use supernets to assign multiple networks a single id
Subnetting

- Allow multiple networks to share the same "physical network" space

- Example, Computer science department has 100 machines. Electrical Engineering department has 100 machines. We need two networks that can each be managed and routed independently
 - Assign 2 class C networks?
 - Use subnetting to share one class C network
 * 128.226.123.xx is the network number
 * CS gets 128.226.123.0 to 128.226.123.127
 * EE gets 128.226.123.128 to 128.226.123.255
 - How?
 * Address mask is used to figure out what network you are on
 - Address Mask is 255.255.255.128
 - Any address in CS ANDed with the mask produces 128.226.123.0
 - Any address in EE ANDed with the mask produces 128.226.123.128

Another Subnetting Example

<table>
<thead>
<tr>
<th>Network number</th>
<th>Host number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class B address</td>
<td></td>
</tr>
<tr>
<td>11111111111111111111111111111111</td>
<td>00000000</td>
</tr>
</tbody>
</table>

- Subnet mask (255.255.255.0)

<table>
<thead>
<tr>
<th>Network number</th>
<th>Subnet ID</th>
<th>Host ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submitted address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subnet mask: 255.255.255.128</td>
<td>Subnet number: 128.96.34.0</td>
<td></td>
</tr>
<tr>
<td>128.96.34.15</td>
<td>H1</td>
<td></td>
</tr>
<tr>
<td>128.96.34.1</td>
<td>R1</td>
<td></td>
</tr>
<tr>
<td>128.96.34.130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128.96.34.129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128.96.96.33.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128.96.33.1</td>
<td>H3</td>
<td></td>
</tr>
<tr>
<td>128.96.33.149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128.96.33.139</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128.96.33.0</td>
<td>R2</td>
<td></td>
</tr>
</tbody>
</table>

CIDR Routing

- Multi-regional 192.0.0.0 - 193.255.255.255
- Europe 194.0.0.0 - 195.255.255.255
- Others 196.0.0.0 - 197.255.255.255
- North America 198.0.0.0 - 199.255.255.255
- Central/South America 200.0.0.0 - 201.255.255.255
- Pacific Rim 202.0.0.0 - 203.255.255.255
- Others 204.0.0.0 - 207.255.255.255
- How can we make use of this information?
Assigning Addresses

- Don't have to worry about hardcoded network class boundaries
- Company kludge.com wants 1024 addresses
 - Assign it 198.15.0.0 to 198.15.3.255 with mask 255.255.252.0 (22 bit mask)
- Company bob.com wants 4096 addresses
 - Assign it 198.20.16.0 to 198.20.33.255 with mask 255.255.240.0 (20 bit mask), must start at 4096 boundary
- Company oops.com wants 2048 addresses, assign it what?

Decoding Addresses

- The mask indicates the prefix that all addresses in a range have in common
 - if B is the first address in the range and MB is its mask, then for any address A in the range, A AND MB == B
 - if C and D are the base addresses of two ranges such that MC is a prefix of MD, then D AND MC == D AND MD
- To decode an address A:
 - for each mask M and associated base address B, determine if A AND M == B
 - for all M/B for which this is so, A lies in the address range whose mask has the most bits
- A message to A can be forwarded to the router associated with the base of its address range

CIDR and Routers

- Original RIP does not understand CIDR
- OSPF understands CIDR and includes address mask in each record
- Authentication is a big concern for routing algorithms
 - New version RIP-2 does
 - OSPF supports password and cryptographic based authentication

Internet Past and Present

- Past – tree structure
- Present – multi backbone
- How to route it?
Border Gateway Protocol (BGP)

- RFCs 1771–1774
- A distance-vector protocol
- Nodes of the routing tables are the ASs
- Avoids count to infinity by using path vectors
- ASs are classified as:
 - Stub – only connected to one other AS; carries local traffic only
 - Multihomed – connected to multiple ASs, but refuses to carry transit traffic
 - Transit
- Routers must enforce policy constraints (i.e., not route through multihomed ASs)
- BGP-4 (current version) can deal with arbitrarily connected ASs (not just the simple tree structure of old which was the limitation of EGP)

BGP – Very Briefly

- Challenges:
 - Scale – still a very large scale (10s of thousands of ASs)
 - How to specify cost metrics? Each AS is independent
 - Trusting advertisements
 - Specifying and enforcing flexible routing policies
 - Integration with Intradomain routing
- BGP – How it works
 - Each AS has a BGP speaker
 - Speaker exchanges reachability information with other speakers (no costs)
 - Distance vector but advertises full path to avoid count to infinity loops (no count since only reachability info is exchanged)
 - AS numbers centrally assigned and unique
 - Speaker can cancel previously advertised paths

Example and Discussion

- AS 2 advertises it has a path to 128.96 (AS2, AS4); AS 1 advertises it has a path to 128.96 (AS1, AS2, AS4)

Discussion
 - How optimal are the paths?
 * Always trying to maintain a balance between scalability and optimality
 - How scalable?
 * Number of ASs much smaller than number of networks
 * Updates of networks in ASs can be summarized as in OSPF

BGP Table Size

- BGP table size at a sample Backbone routers (courtesy Oregon Route Views Project http://www.antc.uoregon.edu/route-views/)

- SUNY-Binghamton – CS428 Spring '05 Lec. #12
Policies

- Routing internally and externally strongly influenced by policies. Example:
 - Prefer shortest path
 - Hot Potato Routing (get it off the AS as soon as possible)
- No longer a problem of finding the best path

BGP

- Allows ISPs/administrators to specify policy; but policy is not part of the protocol
- Example policy – hot potato – get the traffic off my network as fast as possible
- Policy shaped by commercial relationships between ISPs (peering and transit relationships)
- Can lead to strange behavior
 - e.g., asymmetric routes
 - e.g., traffic between UAE and Saudi Arabia was getting routed through Washington DC

Peering vs. Transit

- Peering: Two ISPs provide connectivity for each other’s customers
 - Usually for free
 - Not a transitive relationship
- Transit: One ISP provides another with connectivity to every place it knows
 - $$$

Discussion/Summary

- Routing scalability:
 - Get routing table sizes down – how?
 - Get routing overhead down – how?
- Role of hierarchy and address aggregation
- Commercial factors and relationships, and not performance/technical factors, often play the most important role in how routing works